1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* This Source Code Form is subject to the terms of the Mozilla Public
3  * License, v. 2.0. If a copy of the MPL was not distributed with this
4  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5 
6 /*
7  * prtime.c --
8  *
9  *     NSPR date and time functions
10  *
11  */
12 
13 #include "prinit.h"
14 #include "prtime.h"
15 #include "prlock.h"
16 #include "prprf.h"
17 #include "prlog.h"
18 
19 #include <string.h>
20 #include <ctype.h>
21 #include <errno.h>  /* for EINVAL */
22 #include <time.h>
23 
24 /*
25  * The COUNT_LEAPS macro counts the number of leap years passed by
26  * till the start of the given year Y.  At the start of the year 4
27  * A.D. the number of leap years passed by is 0, while at the start of
28  * the year 5 A.D. this count is 1. The number of years divisible by
29  * 100 but not divisible by 400 (the non-leap years) is deducted from
30  * the count to get the correct number of leap years.
31  *
32  * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
33  * start of the given year Y. The number of days at the start of the year
34  * 1 is 0 while the number of days at the start of the year 2 is 365
35  * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
36  * midnight 00:00:00.
37  */
38 
39 #define COUNT_LEAPS(Y)   ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 )
40 #define COUNT_DAYS(Y)  ( ((Y)-1)*365 + COUNT_LEAPS(Y) )
41 #define DAYS_BETWEEN_YEARS(A, B)  (COUNT_DAYS(B) - COUNT_DAYS(A))
42 
43 /*
44  * Static variables used by functions in this file
45  */
46 
47 /*
48  * The following array contains the day of year for the last day of
49  * each month, where index 1 is January, and day 0 is January 1.
50  */
51 
52 static const int lastDayOfMonth[2][13] = {
53     {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
54     {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
55 };
56 
57 /*
58  * The number of days in a month
59  */
60 
61 static const PRInt8 nDays[2][12] = {
62     {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
63     {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
64 };
65 
66 /*
67  * Declarations for internal functions defined later in this file.
68  */
69 
70 static void        ComputeGMT(PRTime time, PRExplodedTime *gmt);
71 static int         IsLeapYear(PRInt16 year);
72 static void        ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset);
73 
74 /*
75  *------------------------------------------------------------------------
76  *
77  * ComputeGMT --
78  *
79  *     Caveats:
80  *     - we ignore leap seconds
81  *
82  *------------------------------------------------------------------------
83  */
84 
85 static void
ComputeGMT(PRTime time,PRExplodedTime * gmt)86 ComputeGMT(PRTime time, PRExplodedTime *gmt)
87 {
88     PRInt32 tmp, rem;
89     PRInt32 numDays;
90     PRInt64 numDays64, rem64;
91     int isLeap;
92     PRInt64 sec;
93     PRInt64 usec;
94     PRInt64 usecPerSec;
95     PRInt64 secPerDay;
96 
97     /*
98      * We first do the usec, sec, min, hour thing so that we do not
99      * have to do LL arithmetic.
100      */
101 
102     LL_I2L(usecPerSec, 1000000L);
103     LL_DIV(sec, time, usecPerSec);
104     LL_MOD(usec, time, usecPerSec);
105     LL_L2I(gmt->tm_usec, usec);
106     /* Correct for weird mod semantics so the remainder is always positive */
107     if (gmt->tm_usec < 0) {
108         PRInt64 one;
109 
110         LL_I2L(one, 1L);
111         LL_SUB(sec, sec, one);
112         gmt->tm_usec += 1000000L;
113     }
114 
115     LL_I2L(secPerDay, 86400L);
116     LL_DIV(numDays64, sec, secPerDay);
117     LL_MOD(rem64, sec, secPerDay);
118     /* We are sure both of these numbers can fit into PRInt32 */
119     LL_L2I(numDays, numDays64);
120     LL_L2I(rem, rem64);
121     if (rem < 0) {
122         numDays--;
123         rem += 86400L;
124     }
125 
126     /* Compute day of week.  Epoch started on a Thursday. */
127 
128     gmt->tm_wday = (numDays + 4) % 7;
129     if (gmt->tm_wday < 0) {
130         gmt->tm_wday += 7;
131     }
132 
133     /* Compute the time of day. */
134 
135     gmt->tm_hour = rem / 3600;
136     rem %= 3600;
137     gmt->tm_min = rem / 60;
138     gmt->tm_sec = rem % 60;
139 
140     /*
141      * Compute the year by finding the 400 year period, then working
142      * down from there.
143      *
144      * Since numDays is originally the number of days since January 1, 1970,
145      * we must change it to be the number of days from January 1, 0001.
146      */
147 
148     numDays += 719162;       /* 719162 = days from year 1 up to 1970 */
149     tmp = numDays / 146097;  /* 146097 = days in 400 years */
150     rem = numDays % 146097;
151     gmt->tm_year = tmp * 400 + 1;
152 
153     /* Compute the 100 year period. */
154 
155     tmp = rem / 36524;    /* 36524 = days in 100 years */
156     rem %= 36524;
157     if (tmp == 4) {       /* the 400th year is a leap year */
158         tmp = 3;
159         rem = 36524;
160     }
161     gmt->tm_year += tmp * 100;
162 
163     /* Compute the 4 year period. */
164 
165     tmp = rem / 1461;     /* 1461 = days in 4 years */
166     rem %= 1461;
167     gmt->tm_year += tmp * 4;
168 
169     /* Compute which year in the 4. */
170 
171     tmp = rem / 365;
172     rem %= 365;
173     if (tmp == 4) {       /* the 4th year is a leap year */
174         tmp = 3;
175         rem = 365;
176     }
177 
178     gmt->tm_year += tmp;
179     gmt->tm_yday = rem;
180     isLeap = IsLeapYear(gmt->tm_year);
181 
182     /* Compute the month and day of month. */
183 
184     for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
185     }
186     gmt->tm_month = --tmp;
187     gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
188 
189     gmt->tm_params.tp_gmt_offset = 0;
190     gmt->tm_params.tp_dst_offset = 0;
191 }
192 
193 
194 /*
195  *------------------------------------------------------------------------
196  *
197  * PR_ExplodeTime --
198  *
199  *     Cf. struct tm *gmtime(const time_t *tp) and
200  *         struct tm *localtime(const time_t *tp)
201  *
202  *------------------------------------------------------------------------
203  */
204 
205 PR_IMPLEMENT(void)
PR_ExplodeTime(PRTime usecs,PRTimeParamFn params,PRExplodedTime * exploded)206 PR_ExplodeTime(
207         PRTime usecs,
208         PRTimeParamFn params,
209         PRExplodedTime *exploded)
210 {
211     ComputeGMT(usecs, exploded);
212     exploded->tm_params = params(exploded);
213     ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset
214             + exploded->tm_params.tp_dst_offset);
215 }
216 
217 
218 /*
219  *------------------------------------------------------------------------
220  *
221  * PR_ImplodeTime --
222  *
223  *     Cf. time_t mktime(struct tm *tp)
224  *     Note that 1 year has < 2^25 seconds.  So an PRInt32 is large enough.
225  *
226  *------------------------------------------------------------------------
227  */
228 PR_IMPLEMENT(PRTime)
PR_ImplodeTime(const PRExplodedTime * exploded)229 PR_ImplodeTime(const PRExplodedTime *exploded)
230 {
231     PRExplodedTime copy;
232     PRTime retVal;
233     PRInt64 secPerDay, usecPerSec;
234     PRInt64 temp;
235     PRInt64 numSecs64;
236     PRInt32 numDays;
237     PRInt32 numSecs;
238 
239     /* Normalize first.  Do this on our copy */
240     copy = *exploded;
241     PR_NormalizeTime(&copy, PR_GMTParameters);
242 
243     numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
244 
245     numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600
246             + copy.tm_min * 60 + copy.tm_sec;
247 
248     LL_I2L(temp, numDays);
249     LL_I2L(secPerDay, 86400);
250     LL_MUL(temp, temp, secPerDay);
251     LL_I2L(numSecs64, numSecs);
252     LL_ADD(numSecs64, numSecs64, temp);
253 
254     /* apply the GMT and DST offsets */
255     LL_I2L(temp,  copy.tm_params.tp_gmt_offset);
256     LL_SUB(numSecs64, numSecs64, temp);
257     LL_I2L(temp,  copy.tm_params.tp_dst_offset);
258     LL_SUB(numSecs64, numSecs64, temp);
259 
260     LL_I2L(usecPerSec, 1000000L);
261     LL_MUL(temp, numSecs64, usecPerSec);
262     LL_I2L(retVal, copy.tm_usec);
263     LL_ADD(retVal, retVal, temp);
264 
265     return retVal;
266 }
267 
268 /*
269  *-------------------------------------------------------------------------
270  *
271  * IsLeapYear --
272  *
273  *     Returns 1 if the year is a leap year, 0 otherwise.
274  *
275  *-------------------------------------------------------------------------
276  */
277 
IsLeapYear(PRInt16 year)278 static int IsLeapYear(PRInt16 year)
279 {
280     if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
281         return 1;
282     else
283         return 0;
284 }
285 
286 /*
287  * 'secOffset' should be less than 86400 (i.e., a day).
288  * 'time' should point to a normalized PRExplodedTime.
289  */
290 
291 static void
ApplySecOffset(PRExplodedTime * time,PRInt32 secOffset)292 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
293 {
294     time->tm_sec += secOffset;
295 
296     /* Note that in this implementation we do not count leap seconds */
297     if (time->tm_sec < 0 || time->tm_sec >= 60) {
298         time->tm_min += time->tm_sec / 60;
299         time->tm_sec %= 60;
300         if (time->tm_sec < 0) {
301             time->tm_sec += 60;
302             time->tm_min--;
303         }
304     }
305 
306     if (time->tm_min < 0 || time->tm_min >= 60) {
307         time->tm_hour += time->tm_min / 60;
308         time->tm_min %= 60;
309         if (time->tm_min < 0) {
310             time->tm_min += 60;
311             time->tm_hour--;
312         }
313     }
314 
315     if (time->tm_hour < 0) {
316         /* Decrement mday, yday, and wday */
317         time->tm_hour += 24;
318         time->tm_mday--;
319         time->tm_yday--;
320         if (time->tm_mday < 1) {
321             time->tm_month--;
322             if (time->tm_month < 0) {
323                 time->tm_month = 11;
324                 time->tm_year--;
325                 if (IsLeapYear(time->tm_year))
326                     time->tm_yday = 365;
327                 else
328                     time->tm_yday = 364;
329             }
330             time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
331         }
332         time->tm_wday--;
333         if (time->tm_wday < 0)
334             time->tm_wday = 6;
335     } else if (time->tm_hour > 23) {
336         /* Increment mday, yday, and wday */
337         time->tm_hour -= 24;
338         time->tm_mday++;
339         time->tm_yday++;
340         if (time->tm_mday >
341                 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
342             time->tm_mday = 1;
343             time->tm_month++;
344             if (time->tm_month > 11) {
345                 time->tm_month = 0;
346                 time->tm_year++;
347                 time->tm_yday = 0;
348             }
349         }
350         time->tm_wday++;
351         if (time->tm_wday > 6)
352             time->tm_wday = 0;
353     }
354 }
355 
356 PR_IMPLEMENT(void)
PR_NormalizeTime(PRExplodedTime * time,PRTimeParamFn params)357 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
358 {
359     int daysInMonth;
360     PRInt32 numDays;
361 
362     /* Get back to GMT */
363     time->tm_sec -= time->tm_params.tp_gmt_offset
364             + time->tm_params.tp_dst_offset;
365     time->tm_params.tp_gmt_offset = 0;
366     time->tm_params.tp_dst_offset = 0;
367 
368     /* Now normalize GMT */
369 
370     if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
371         time->tm_sec +=  time->tm_usec / 1000000;
372         time->tm_usec %= 1000000;
373         if (time->tm_usec < 0) {
374             time->tm_usec += 1000000;
375             time->tm_sec--;
376         }
377     }
378 
379     /* Note that we do not count leap seconds in this implementation */
380     if (time->tm_sec < 0 || time->tm_sec >= 60) {
381         time->tm_min += time->tm_sec / 60;
382         time->tm_sec %= 60;
383         if (time->tm_sec < 0) {
384             time->tm_sec += 60;
385             time->tm_min--;
386         }
387     }
388 
389     if (time->tm_min < 0 || time->tm_min >= 60) {
390         time->tm_hour += time->tm_min / 60;
391         time->tm_min %= 60;
392         if (time->tm_min < 0) {
393             time->tm_min += 60;
394             time->tm_hour--;
395         }
396     }
397 
398     if (time->tm_hour < 0 || time->tm_hour >= 24) {
399         time->tm_mday += time->tm_hour / 24;
400         time->tm_hour %= 24;
401         if (time->tm_hour < 0) {
402             time->tm_hour += 24;
403             time->tm_mday--;
404         }
405     }
406 
407     /* Normalize month and year before mday */
408     if (time->tm_month < 0 || time->tm_month >= 12) {
409         time->tm_year += time->tm_month / 12;
410         time->tm_month %= 12;
411         if (time->tm_month < 0) {
412             time->tm_month += 12;
413             time->tm_year--;
414         }
415     }
416 
417     /* Now that month and year are in proper range, normalize mday */
418 
419     if (time->tm_mday < 1) {
420         /* mday too small */
421         do {
422             /* the previous month */
423             time->tm_month--;
424             if (time->tm_month < 0) {
425                 time->tm_month = 11;
426                 time->tm_year--;
427             }
428             time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
429         } while (time->tm_mday < 1);
430     } else {
431         daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
432         while (time->tm_mday > daysInMonth) {
433             /* mday too large */
434             time->tm_mday -= daysInMonth;
435             time->tm_month++;
436             if (time->tm_month > 11) {
437                 time->tm_month = 0;
438                 time->tm_year++;
439             }
440             daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
441         }
442     }
443 
444     /* Recompute yday and wday */
445     time->tm_yday = time->tm_mday +
446             lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
447 
448     numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
449     time->tm_wday = (numDays + 4) % 7;
450     if (time->tm_wday < 0) {
451         time->tm_wday += 7;
452     }
453 
454     /* Recompute time parameters */
455 
456     time->tm_params = params(time);
457 
458     ApplySecOffset(time, time->tm_params.tp_gmt_offset
459             + time->tm_params.tp_dst_offset);
460 }
461 
462 
463 /*
464  *-------------------------------------------------------------------------
465  *
466  * PR_LocalTimeParameters --
467  *
468  *     returns the time parameters for the local time zone
469  *
470  *     The following uses localtime() from the standard C library.
471  *     (time.h)  This is our fallback implementation.  Unix, PC, and BeOS
472  *     use this version.  A platform may have its own machine-dependent
473  *     implementation of this function.
474  *
475  *-------------------------------------------------------------------------
476  */
477 
478 #if defined(HAVE_INT_LOCALTIME_R)
479 
480 /*
481  * In this case we could define the macro as
482  *     #define MT_safe_localtime(timer, result) \
483  *             (localtime_r(timer, result) == 0 ? result : NULL)
484  * I chose to compare the return value of localtime_r with -1 so
485  * that I can catch the cases where localtime_r returns a pointer
486  * to struct tm.  The macro definition above would not be able to
487  * detect such mistakes because it is legal to compare a pointer
488  * with 0.
489  */
490 
491 #define MT_safe_localtime(timer, result) \
492         (localtime_r(timer, result) == -1 ? NULL: result)
493 
494 #elif defined(HAVE_POINTER_LOCALTIME_R)
495 
496 #define MT_safe_localtime localtime_r
497 
498 #else
499 
500 #define HAVE_LOCALTIME_MONITOR 1  /* We use 'monitor' to serialize our calls
501                                    * to localtime(). */
502 static PRLock *monitor = NULL;
503 
MT_safe_localtime(const time_t * clock,struct tm * result)504 static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result)
505 {
506     struct tm *tmPtr;
507     int needLock = PR_Initialized();  /* We need to use a lock to protect
508                                        * against NSPR threads only when the
509                                        * NSPR thread system is activated. */
510 
511     if (needLock) PR_Lock(monitor);
512 
513     /*
514      * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
515      * represents a time before midnight January 1, 1970.  In
516      * that case, we also return a NULL pointer and the struct tm
517      * object pointed to by 'result' is not modified.
518      *
519      * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long
520      * hence, does not recognize negative values of clock as pre-1/1/70.
521      * We have to manually check (WIN16 only) for negative value of
522      * clock and return NULL.
523      *
524      * With negative values of clock, OS/2 returns the struct tm for
525      * clock plus ULONG_MAX. So we also have to check for the invalid
526      * structs returned for timezones west of Greenwich when clock == 0.
527      */
528 
529     tmPtr = localtime(clock);
530 
531 #if defined(WIN16) || defined(XP_OS2)
532     if ( (PRInt32) *clock < 0 ||
533          ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70))
534         result = NULL;
535     else
536         *result = *tmPtr;
537 #else
538     if (tmPtr) {
539         *result = *tmPtr;
540     } else {
541         result = NULL;
542     }
543 #endif /* WIN16 */
544 
545     if (needLock) PR_Unlock(monitor);
546 
547     return result;
548 }
549 
550 #endif  /* definition of MT_safe_localtime() */
551 
_PR_InitTime(void)552 void _PR_InitTime(void)
553 {
554 #ifdef HAVE_LOCALTIME_MONITOR
555     monitor = PR_NewLock();
556 #endif
557 #ifdef WINCE
558     _MD_InitTime();
559 #endif
560 }
561 
_PR_CleanupTime(void)562 void _PR_CleanupTime(void)
563 {
564 #ifdef HAVE_LOCALTIME_MONITOR
565     if (monitor) {
566         PR_DestroyLock(monitor);
567         monitor = NULL;
568     }
569 #endif
570 #ifdef WINCE
571     _MD_CleanupTime();
572 #endif
573 }
574 
575 #if defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS)
576 
577 PR_IMPLEMENT(PRTimeParameters)
PR_LocalTimeParameters(const PRExplodedTime * gmt)578 PR_LocalTimeParameters(const PRExplodedTime *gmt)
579 {
580 
581     PRTimeParameters retVal;
582     struct tm localTime;
583     time_t secs;
584     PRTime secs64;
585     PRInt64 usecPerSec;
586     PRInt64 usecPerSec_1;
587     PRInt64 maxInt32;
588     PRInt64 minInt32;
589     PRInt32 dayOffset;
590     PRInt32 offset2Jan1970;
591     PRInt32 offsetNew;
592     int isdst2Jan1970;
593 
594     /*
595      * Calculate the GMT offset.  First, figure out what is
596      * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
597      * seconds, since the epoch) in local time.  Then we calculate
598      * the difference between local time and GMT in seconds:
599      *     gmt_offset = local_time - GMT
600      *
601      * Caveat: the validity of this calculation depends on two
602      * assumptions:
603      * 1. Daylight saving time was not in effect on Jan. 2, 1970.
604      * 2. The time zone of the geographic location has not changed
605      *    since Jan. 2, 1970.
606      */
607 
608     secs = 86400L;
609     (void) MT_safe_localtime(&secs, &localTime);
610 
611     /* GMT is 00:00:00, 2nd of Jan. */
612 
613     offset2Jan1970 = (PRInt32)localTime.tm_sec
614             + 60L * (PRInt32)localTime.tm_min
615             + 3600L * (PRInt32)localTime.tm_hour
616             + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
617 
618     isdst2Jan1970 = localTime.tm_isdst;
619 
620     /*
621      * Now compute DST offset.  We calculate the overall offset
622      * of local time from GMT, similar to above.  The overall
623      * offset has two components: gmt offset and dst offset.
624      * We subtract gmt offset from the overall offset to get
625      * the dst offset.
626      *     overall_offset = local_time - GMT
627      *     overall_offset = gmt_offset + dst_offset
628      * ==> dst_offset = local_time - GMT - gmt_offset
629      */
630 
631     secs64 = PR_ImplodeTime(gmt);    /* This is still in microseconds */
632     LL_I2L(usecPerSec, PR_USEC_PER_SEC);
633     LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1);
634     /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */
635     if (LL_GE_ZERO(secs64)) {
636         LL_DIV(secs64, secs64, usecPerSec);
637     } else {
638         LL_NEG(secs64, secs64);
639         LL_ADD(secs64, secs64, usecPerSec_1);
640         LL_DIV(secs64, secs64, usecPerSec);
641         LL_NEG(secs64, secs64);
642     }
643     LL_I2L(maxInt32, PR_INT32_MAX);
644     LL_I2L(minInt32, PR_INT32_MIN);
645     if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
646         /* secs64 is too large or too small for time_t (32-bit integer) */
647         retVal.tp_gmt_offset = offset2Jan1970;
648         retVal.tp_dst_offset = 0;
649         return retVal;
650     }
651     LL_L2I(secs, secs64);
652 
653     /*
654      * On Windows, localtime() (and our MT_safe_localtime() too)
655      * returns a NULL pointer for time before midnight January 1,
656      * 1970 GMT.  In that case, we just use the GMT offset for
657      * Jan 2, 1970 and assume that DST was not in effect.
658      */
659 
660     if (MT_safe_localtime(&secs, &localTime) == NULL) {
661         retVal.tp_gmt_offset = offset2Jan1970;
662         retVal.tp_dst_offset = 0;
663         return retVal;
664     }
665 
666     /*
667      * dayOffset is the offset between local time and GMT in
668      * the day component, which can only be -1, 0, or 1.  We
669      * use the day of the week to compute dayOffset.
670      */
671 
672     dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday;
673 
674     /*
675      * Need to adjust for wrapping around of day of the week from
676      * 6 back to 0.
677      */
678 
679     if (dayOffset == -6) {
680         /* Local time is Sunday (0) and GMT is Saturday (6) */
681         dayOffset = 1;
682     } else if (dayOffset == 6) {
683         /* Local time is Saturday (6) and GMT is Sunday (0) */
684         dayOffset = -1;
685     }
686 
687     offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec
688             + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min)
689             + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour)
690             + 86400L * (PRInt32)dayOffset;
691 
692     if (localTime.tm_isdst <= 0) {
693         /* DST is not in effect */
694         retVal.tp_gmt_offset = offsetNew;
695         retVal.tp_dst_offset = 0;
696     } else {
697         /* DST is in effect */
698         if (isdst2Jan1970 <=0) {
699             /*
700              * DST was not in effect back in 2 Jan. 1970.
701              * Use the offset back then as the GMT offset,
702              * assuming the time zone has not changed since then.
703              */
704             retVal.tp_gmt_offset = offset2Jan1970;
705             retVal.tp_dst_offset = offsetNew - offset2Jan1970;
706         } else {
707             /*
708              * DST was also in effect back in 2 Jan. 1970.
709              * Then our clever trick (or rather, ugly hack) fails.
710              * We will just assume DST offset is an hour.
711              */
712             retVal.tp_gmt_offset = offsetNew - 3600;
713             retVal.tp_dst_offset = 3600;
714         }
715     }
716 
717     return retVal;
718 }
719 
720 #endif    /* defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS) */
721 
722 /*
723  *------------------------------------------------------------------------
724  *
725  * PR_USPacificTimeParameters --
726  *
727  *     The time parameters function for the US Pacific Time Zone.
728  *
729  *------------------------------------------------------------------------
730  */
731 
732 /*
733  * Returns the mday of the first sunday of the month, where
734  * mday and wday are for a given day in the month.
735  * mdays start with 1 (e.g. 1..31).
736  * wdays start with 0 and are in the range 0..6.  0 = Sunday.
737  */
738 #define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1)
739 
740 /*
741  * Returns the mday for the N'th Sunday of the month, where
742  * mday and wday are for a given day in the month.
743  * mdays start with 1 (e.g. 1..31).
744  * wdays start with 0 and are in the range 0..6.  0 = Sunday.
745  * N has the following values: 0 = first, 1 = second (etc), -1 = last.
746  * ndays is the number of days in that month, the same value as the
747  * mday of the last day of the month.
748  */
749 static PRInt32
NthSunday(PRInt32 mday,PRInt32 wday,PRInt32 N,PRInt32 ndays)750 NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays)
751 {
752     PRInt32 firstSun = firstSunday(mday, wday);
753 
754     if (N < 0)
755         N = (ndays - firstSun) / 7;
756     return firstSun + (7 * N);
757 }
758 
759 typedef struct DSTParams {
760     PRInt8 dst_start_month;       /* 0 = January */
761     PRInt8 dst_start_Nth_Sunday;  /* N as defined above */
762     PRInt8 dst_start_month_ndays; /* ndays as defined above */
763     PRInt8 dst_end_month;         /* 0 = January */
764     PRInt8 dst_end_Nth_Sunday;    /* N as defined above */
765     PRInt8 dst_end_month_ndays;   /* ndays as defined above */
766 } DSTParams;
767 
768 static const DSTParams dstParams[2] = {
769     /* year < 2007:  First April Sunday - Last October Sunday */
770     { 3, 0, 30, 9, -1, 31 },
771     /* year >= 2007: Second March Sunday - First November Sunday */
772     { 2, 1, 31, 10, 0, 30 }
773 };
774 
775 PR_IMPLEMENT(PRTimeParameters)
PR_USPacificTimeParameters(const PRExplodedTime * gmt)776 PR_USPacificTimeParameters(const PRExplodedTime *gmt)
777 {
778     const DSTParams *dst;
779     PRTimeParameters retVal;
780     PRExplodedTime st;
781 
782     /*
783      * Based on geographic location and GMT, figure out offset of
784      * standard time from GMT.  In this example implementation, we
785      * assume the local time zone is US Pacific Time.
786      */
787 
788     retVal.tp_gmt_offset = -8L * 3600L;
789 
790     /*
791      * Make a copy of GMT.  Note that the tm_params field of this copy
792      * is ignored.
793      */
794 
795     st.tm_usec = gmt->tm_usec;
796     st.tm_sec = gmt->tm_sec;
797     st.tm_min = gmt->tm_min;
798     st.tm_hour = gmt->tm_hour;
799     st.tm_mday = gmt->tm_mday;
800     st.tm_month = gmt->tm_month;
801     st.tm_year = gmt->tm_year;
802     st.tm_wday = gmt->tm_wday;
803     st.tm_yday = gmt->tm_yday;
804 
805     /* Apply the offset to GMT to obtain the local standard time */
806     ApplySecOffset(&st, retVal.tp_gmt_offset);
807 
808     if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */
809 	dst = &dstParams[0];
810     } else {                 /* Second March Sunday - First November Sunday */
811 	dst = &dstParams[1];
812     }
813 
814     /*
815      * Apply the rules on standard time or GMT to obtain daylight saving
816      * time offset.  In this implementation, we use the US DST rule.
817      */
818     if (st.tm_month < dst->dst_start_month) {
819         retVal.tp_dst_offset = 0L;
820     } else if (st.tm_month == dst->dst_start_month) {
821 	int NthSun = NthSunday(st.tm_mday, st.tm_wday,
822 			       dst->dst_start_Nth_Sunday,
823 			       dst->dst_start_month_ndays);
824 	if (st.tm_mday < NthSun) {              /* Before starting Sunday */
825 	    retVal.tp_dst_offset = 0L;
826         } else if (st.tm_mday == NthSun) {      /* Starting Sunday */
827 	    /* 01:59:59 PST -> 03:00:00 PDT */
828 	    if (st.tm_hour < 2) {
829 		retVal.tp_dst_offset = 0L;
830 	    } else {
831 		retVal.tp_dst_offset = 3600L;
832 	    }
833 	} else {                                /* After starting Sunday */
834 	    retVal.tp_dst_offset = 3600L;
835         }
836     } else if (st.tm_month < dst->dst_end_month) {
837         retVal.tp_dst_offset = 3600L;
838     } else if (st.tm_month == dst->dst_end_month) {
839 	int NthSun = NthSunday(st.tm_mday, st.tm_wday,
840 			       dst->dst_end_Nth_Sunday,
841 			       dst->dst_end_month_ndays);
842 	if (st.tm_mday < NthSun) {              /* Before ending Sunday */
843 	    retVal.tp_dst_offset = 3600L;
844         } else if (st.tm_mday == NthSun) {      /* Ending Sunday */
845 	    /* 01:59:59 PDT -> 01:00:00 PST */
846 	    if (st.tm_hour < 1) {
847 		retVal.tp_dst_offset = 3600L;
848 	    } else {
849 		retVal.tp_dst_offset = 0L;
850 	    }
851 	} else {                                /* After ending Sunday */
852 	    retVal.tp_dst_offset = 0L;
853         }
854     } else {
855         retVal.tp_dst_offset = 0L;
856     }
857     return retVal;
858 }
859 
860 /*
861  *------------------------------------------------------------------------
862  *
863  * PR_GMTParameters --
864  *
865  *     Returns the PRTimeParameters for Greenwich Mean Time.
866  *     Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
867  *
868  *------------------------------------------------------------------------
869  */
870 
871 PR_IMPLEMENT(PRTimeParameters)
PR_GMTParameters(const PRExplodedTime * gmt)872 PR_GMTParameters(const PRExplodedTime *gmt)
873 {
874     PRTimeParameters retVal = { 0, 0 };
875     return retVal;
876 }
877 
878 /*
879  * The following code implements PR_ParseTimeString().  It is based on
880  * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
881  */
882 
883 /*
884  * We only recognize the abbreviations of a small subset of time zones
885  * in North America, Europe, and Japan.
886  *
887  * PST/PDT: Pacific Standard/Daylight Time
888  * MST/MDT: Mountain Standard/Daylight Time
889  * CST/CDT: Central Standard/Daylight Time
890  * EST/EDT: Eastern Standard/Daylight Time
891  * AST: Atlantic Standard Time
892  * NST: Newfoundland Standard Time
893  * GMT: Greenwich Mean Time
894  * BST: British Summer Time
895  * MET: Middle Europe Time
896  * EET: Eastern Europe Time
897  * JST: Japan Standard Time
898  */
899 
900 typedef enum
901 {
902   TT_UNKNOWN,
903 
904   TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
905 
906   TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
907   TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
908 
909   TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
910   TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
911 } TIME_TOKEN;
912 
913 /*
914  * This parses a time/date string into a PRTime
915  * (microseconds after "1-Jan-1970 00:00:00 GMT").
916  * It returns PR_SUCCESS on success, and PR_FAILURE
917  * if the time/date string can't be parsed.
918  *
919  * Many formats are handled, including:
920  *
921  *   14 Apr 89 03:20:12
922  *   14 Apr 89 03:20 GMT
923  *   Fri, 17 Mar 89 4:01:33
924  *   Fri, 17 Mar 89 4:01 GMT
925  *   Mon Jan 16 16:12 PDT 1989
926  *   Mon Jan 16 16:12 +0130 1989
927  *   6 May 1992 16:41-JST (Wednesday)
928  *   22-AUG-1993 10:59:12.82
929  *   22-AUG-1993 10:59pm
930  *   22-AUG-1993 12:59am
931  *   22-AUG-1993 12:59 PM
932  *   Friday, August 04, 1995 3:54 PM
933  *   06/21/95 04:24:34 PM
934  *   20/06/95 21:07
935  *   95-06-08 19:32:48 EDT
936  *
937  * If the input string doesn't contain a description of the timezone,
938  * we consult the `default_to_gmt' to decide whether the string should
939  * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
940  * The correct value for this argument depends on what standard specified
941  * the time string which you are parsing.
942  */
943 
944 PR_IMPLEMENT(PRStatus)
PR_ParseTimeStringToExplodedTime(const char * string,PRBool default_to_gmt,PRExplodedTime * result)945 PR_ParseTimeStringToExplodedTime(
946         const char *string,
947         PRBool default_to_gmt,
948         PRExplodedTime *result)
949 {
950   TIME_TOKEN dotw = TT_UNKNOWN;
951   TIME_TOKEN month = TT_UNKNOWN;
952   TIME_TOKEN zone = TT_UNKNOWN;
953   int zone_offset = -1;
954   int dst_offset = 0;
955   int date = -1;
956   PRInt32 year = -1;
957   int hour = -1;
958   int min = -1;
959   int sec = -1;
960 
961   const char *rest = string;
962 
963   int iterations = 0;
964 
965   PR_ASSERT(string && result);
966   if (!string || !result) return PR_FAILURE;
967 
968   while (*rest)
969         {
970 
971           if (iterations++ > 1000)
972                 {
973                   return PR_FAILURE;
974                 }
975 
976           switch (*rest)
977                 {
978                 case 'a': case 'A':
979                   if (month == TT_UNKNOWN &&
980                           (rest[1] == 'p' || rest[1] == 'P') &&
981                           (rest[2] == 'r' || rest[2] == 'R'))
982                         month = TT_APR;
983                   else if (zone == TT_UNKNOWN &&
984                                    (rest[1] == 's' || rest[1] == 'S') &&
985                                    (rest[2] == 't' || rest[2] == 'T'))
986                         zone = TT_AST;
987                   else if (month == TT_UNKNOWN &&
988                                    (rest[1] == 'u' || rest[1] == 'U') &&
989                                    (rest[2] == 'g' || rest[2] == 'G'))
990                         month = TT_AUG;
991                   break;
992                 case 'b': case 'B':
993                   if (zone == TT_UNKNOWN &&
994                           (rest[1] == 's' || rest[1] == 'S') &&
995                           (rest[2] == 't' || rest[2] == 'T'))
996                         zone = TT_BST;
997                   break;
998                 case 'c': case 'C':
999                   if (zone == TT_UNKNOWN &&
1000                           (rest[1] == 'd' || rest[1] == 'D') &&
1001                           (rest[2] == 't' || rest[2] == 'T'))
1002                         zone = TT_CDT;
1003                   else if (zone == TT_UNKNOWN &&
1004                                    (rest[1] == 's' || rest[1] == 'S') &&
1005                                    (rest[2] == 't' || rest[2] == 'T'))
1006                         zone = TT_CST;
1007                   break;
1008                 case 'd': case 'D':
1009                   if (month == TT_UNKNOWN &&
1010                           (rest[1] == 'e' || rest[1] == 'E') &&
1011                           (rest[2] == 'c' || rest[2] == 'C'))
1012                         month = TT_DEC;
1013                   break;
1014                 case 'e': case 'E':
1015                   if (zone == TT_UNKNOWN &&
1016                           (rest[1] == 'd' || rest[1] == 'D') &&
1017                           (rest[2] == 't' || rest[2] == 'T'))
1018                         zone = TT_EDT;
1019                   else if (zone == TT_UNKNOWN &&
1020                                    (rest[1] == 'e' || rest[1] == 'E') &&
1021                                    (rest[2] == 't' || rest[2] == 'T'))
1022                         zone = TT_EET;
1023                   else if (zone == TT_UNKNOWN &&
1024                                    (rest[1] == 's' || rest[1] == 'S') &&
1025                                    (rest[2] == 't' || rest[2] == 'T'))
1026                         zone = TT_EST;
1027                   break;
1028                 case 'f': case 'F':
1029                   if (month == TT_UNKNOWN &&
1030                           (rest[1] == 'e' || rest[1] == 'E') &&
1031                           (rest[2] == 'b' || rest[2] == 'B'))
1032                         month = TT_FEB;
1033                   else if (dotw == TT_UNKNOWN &&
1034                                    (rest[1] == 'r' || rest[1] == 'R') &&
1035                                    (rest[2] == 'i' || rest[2] == 'I'))
1036                         dotw = TT_FRI;
1037                   break;
1038                 case 'g': case 'G':
1039                   if (zone == TT_UNKNOWN &&
1040                           (rest[1] == 'm' || rest[1] == 'M') &&
1041                           (rest[2] == 't' || rest[2] == 'T'))
1042                         zone = TT_GMT;
1043                   break;
1044                 case 'j': case 'J':
1045                   if (month == TT_UNKNOWN &&
1046                           (rest[1] == 'a' || rest[1] == 'A') &&
1047                           (rest[2] == 'n' || rest[2] == 'N'))
1048                         month = TT_JAN;
1049                   else if (zone == TT_UNKNOWN &&
1050                                    (rest[1] == 's' || rest[1] == 'S') &&
1051                                    (rest[2] == 't' || rest[2] == 'T'))
1052                         zone = TT_JST;
1053                   else if (month == TT_UNKNOWN &&
1054                                    (rest[1] == 'u' || rest[1] == 'U') &&
1055                                    (rest[2] == 'l' || rest[2] == 'L'))
1056                         month = TT_JUL;
1057                   else if (month == TT_UNKNOWN &&
1058                                    (rest[1] == 'u' || rest[1] == 'U') &&
1059                                    (rest[2] == 'n' || rest[2] == 'N'))
1060                         month = TT_JUN;
1061                   break;
1062                 case 'm': case 'M':
1063                   if (month == TT_UNKNOWN &&
1064                           (rest[1] == 'a' || rest[1] == 'A') &&
1065                           (rest[2] == 'r' || rest[2] == 'R'))
1066                         month = TT_MAR;
1067                   else if (month == TT_UNKNOWN &&
1068                                    (rest[1] == 'a' || rest[1] == 'A') &&
1069                                    (rest[2] == 'y' || rest[2] == 'Y'))
1070                         month = TT_MAY;
1071                   else if (zone == TT_UNKNOWN &&
1072                                    (rest[1] == 'd' || rest[1] == 'D') &&
1073                                    (rest[2] == 't' || rest[2] == 'T'))
1074                         zone = TT_MDT;
1075                   else if (zone == TT_UNKNOWN &&
1076                                    (rest[1] == 'e' || rest[1] == 'E') &&
1077                                    (rest[2] == 't' || rest[2] == 'T'))
1078                         zone = TT_MET;
1079                   else if (dotw == TT_UNKNOWN &&
1080                                    (rest[1] == 'o' || rest[1] == 'O') &&
1081                                    (rest[2] == 'n' || rest[2] == 'N'))
1082                         dotw = TT_MON;
1083                   else if (zone == TT_UNKNOWN &&
1084                                    (rest[1] == 's' || rest[1] == 'S') &&
1085                                    (rest[2] == 't' || rest[2] == 'T'))
1086                         zone = TT_MST;
1087                   break;
1088                 case 'n': case 'N':
1089                   if (month == TT_UNKNOWN &&
1090                           (rest[1] == 'o' || rest[1] == 'O') &&
1091                           (rest[2] == 'v' || rest[2] == 'V'))
1092                         month = TT_NOV;
1093                   else if (zone == TT_UNKNOWN &&
1094                                    (rest[1] == 's' || rest[1] == 'S') &&
1095                                    (rest[2] == 't' || rest[2] == 'T'))
1096                         zone = TT_NST;
1097                   break;
1098                 case 'o': case 'O':
1099                   if (month == TT_UNKNOWN &&
1100                           (rest[1] == 'c' || rest[1] == 'C') &&
1101                           (rest[2] == 't' || rest[2] == 'T'))
1102                         month = TT_OCT;
1103                   break;
1104                 case 'p': case 'P':
1105                   if (zone == TT_UNKNOWN &&
1106                           (rest[1] == 'd' || rest[1] == 'D') &&
1107                           (rest[2] == 't' || rest[2] == 'T'))
1108                         zone = TT_PDT;
1109                   else if (zone == TT_UNKNOWN &&
1110                                    (rest[1] == 's' || rest[1] == 'S') &&
1111                                    (rest[2] == 't' || rest[2] == 'T'))
1112                         zone = TT_PST;
1113                   break;
1114                 case 's': case 'S':
1115                   if (dotw == TT_UNKNOWN &&
1116                           (rest[1] == 'a' || rest[1] == 'A') &&
1117                           (rest[2] == 't' || rest[2] == 'T'))
1118                         dotw = TT_SAT;
1119                   else if (month == TT_UNKNOWN &&
1120                                    (rest[1] == 'e' || rest[1] == 'E') &&
1121                                    (rest[2] == 'p' || rest[2] == 'P'))
1122                         month = TT_SEP;
1123                   else if (dotw == TT_UNKNOWN &&
1124                                    (rest[1] == 'u' || rest[1] == 'U') &&
1125                                    (rest[2] == 'n' || rest[2] == 'N'))
1126                         dotw = TT_SUN;
1127                   break;
1128                 case 't': case 'T':
1129                   if (dotw == TT_UNKNOWN &&
1130                           (rest[1] == 'h' || rest[1] == 'H') &&
1131                           (rest[2] == 'u' || rest[2] == 'U'))
1132                         dotw = TT_THU;
1133                   else if (dotw == TT_UNKNOWN &&
1134                                    (rest[1] == 'u' || rest[1] == 'U') &&
1135                                    (rest[2] == 'e' || rest[2] == 'E'))
1136                         dotw = TT_TUE;
1137                   break;
1138                 case 'u': case 'U':
1139                   if (zone == TT_UNKNOWN &&
1140                           (rest[1] == 't' || rest[1] == 'T') &&
1141                           !(rest[2] >= 'A' && rest[2] <= 'Z') &&
1142                           !(rest[2] >= 'a' && rest[2] <= 'z'))
1143                         /* UT is the same as GMT but UTx is not. */
1144                         zone = TT_GMT;
1145                   break;
1146                 case 'w': case 'W':
1147                   if (dotw == TT_UNKNOWN &&
1148                           (rest[1] == 'e' || rest[1] == 'E') &&
1149                           (rest[2] == 'd' || rest[2] == 'D'))
1150                         dotw = TT_WED;
1151                   break;
1152 
1153                 case '+': case '-':
1154                   {
1155                         const char *end;
1156                         int sign;
1157                         if (zone_offset != -1)
1158                           {
1159                                 /* already got one... */
1160                                 rest++;
1161                                 break;
1162                           }
1163                         if (zone != TT_UNKNOWN && zone != TT_GMT)
1164                           {
1165                                 /* GMT+0300 is legal, but PST+0300 is not. */
1166                                 rest++;
1167                                 break;
1168                           }
1169 
1170                         sign = ((*rest == '+') ? 1 : -1);
1171                         rest++; /* move over sign */
1172                         end = rest;
1173                         while (*end >= '0' && *end <= '9')
1174                           end++;
1175                         if (rest == end) /* no digits here */
1176                           break;
1177 
1178                         if ((end - rest) == 4)
1179                           /* offset in HHMM */
1180                           zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
1181                                                          (((rest[2]-'0')*10) + (rest[3]-'0')));
1182                         else if ((end - rest) == 2)
1183                           /* offset in hours */
1184                           zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
1185                         else if ((end - rest) == 1)
1186                           /* offset in hours */
1187                           zone_offset = (rest[0]-'0') * 60;
1188                         else
1189                           /* 3 or >4 */
1190                           break;
1191 
1192                         zone_offset *= sign;
1193                         zone = TT_GMT;
1194                         break;
1195                   }
1196 
1197                 case '0': case '1': case '2': case '3': case '4':
1198                 case '5': case '6': case '7': case '8': case '9':
1199                   {
1200                         int tmp_hour = -1;
1201                         int tmp_min = -1;
1202                         int tmp_sec = -1;
1203                         const char *end = rest + 1;
1204                         while (*end >= '0' && *end <= '9')
1205                           end++;
1206 
1207                         /* end is now the first character after a range of digits. */
1208 
1209                         if (*end == ':')
1210                           {
1211                                 if (hour >= 0 && min >= 0) /* already got it */
1212                                   break;
1213 
1214                                 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
1215                                 if ((end - rest) > 2)
1216                                   /* it is [0-9][0-9][0-9]+: */
1217                                   break;
1218                                 else if ((end - rest) == 2)
1219                                   tmp_hour = ((rest[0]-'0')*10 +
1220                                                           (rest[1]-'0'));
1221                                 else
1222                                   tmp_hour = (rest[0]-'0');
1223 
1224                                 /* move over the colon, and parse minutes */
1225 
1226                                 rest = ++end;
1227                                 while (*end >= '0' && *end <= '9')
1228                                   end++;
1229 
1230                                 if (end == rest)
1231                                   /* no digits after first colon? */
1232                                   break;
1233                                 else if ((end - rest) > 2)
1234                                   /* it is [0-9][0-9][0-9]+: */
1235                                   break;
1236                                 else if ((end - rest) == 2)
1237                                   tmp_min = ((rest[0]-'0')*10 +
1238                                                          (rest[1]-'0'));
1239                                 else
1240                                   tmp_min = (rest[0]-'0');
1241 
1242                                 /* now go for seconds */
1243                                 rest = end;
1244                                 if (*rest == ':')
1245                                   rest++;
1246                                 end = rest;
1247                                 while (*end >= '0' && *end <= '9')
1248                                   end++;
1249 
1250                                 if (end == rest)
1251                                   /* no digits after second colon - that's ok. */
1252                                   ;
1253                                 else if ((end - rest) > 2)
1254                                   /* it is [0-9][0-9][0-9]+: */
1255                                   break;
1256                                 else if ((end - rest) == 2)
1257                                   tmp_sec = ((rest[0]-'0')*10 +
1258                                                          (rest[1]-'0'));
1259                                 else
1260                                   tmp_sec = (rest[0]-'0');
1261 
1262                                 /* If we made it here, we've parsed hour and min,
1263                                    and possibly sec, so it worked as a unit. */
1264 
1265                                 /* skip over whitespace and see if there's an AM or PM
1266                                    directly following the time.
1267                                  */
1268                                 if (tmp_hour <= 12)
1269                                   {
1270                                         const char *s = end;
1271                                         while (*s && (*s == ' ' || *s == '\t'))
1272                                           s++;
1273                                         if ((s[0] == 'p' || s[0] == 'P') &&
1274                                                 (s[1] == 'm' || s[1] == 'M'))
1275                                           /* 10:05pm == 22:05, and 12:05pm == 12:05 */
1276                                           tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
1277                                         else if (tmp_hour == 12 &&
1278                                                          (s[0] == 'a' || s[0] == 'A') &&
1279                                                          (s[1] == 'm' || s[1] == 'M'))
1280                                           /* 12:05am == 00:05 */
1281                                           tmp_hour = 0;
1282                                   }
1283 
1284                                 hour = tmp_hour;
1285                                 min = tmp_min;
1286                                 sec = tmp_sec;
1287                                 rest = end;
1288                                 break;
1289                           }
1290                         else if ((*end == '/' || *end == '-') &&
1291                                          end[1] >= '0' && end[1] <= '9')
1292                           {
1293                                 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
1294                                    or even 95-06-05...
1295                                    #### But it doesn't handle 1995-06-22.
1296                                  */
1297                                 int n1, n2, n3;
1298                                 const char *s;
1299 
1300                                 if (month != TT_UNKNOWN)
1301                                   /* if we saw a month name, this can't be. */
1302                                   break;
1303 
1304                                 s = rest;
1305 
1306                                 n1 = (*s++ - '0');                                /* first 1 or 2 digits */
1307                                 if (*s >= '0' && *s <= '9')
1308                                   n1 = n1*10 + (*s++ - '0');
1309 
1310                                 if (*s != '/' && *s != '-')                /* slash */
1311                                   break;
1312                                 s++;
1313 
1314                                 if (*s < '0' || *s > '9')                /* second 1 or 2 digits */
1315                                   break;
1316                                 n2 = (*s++ - '0');
1317                                 if (*s >= '0' && *s <= '9')
1318                                   n2 = n2*10 + (*s++ - '0');
1319 
1320                                 if (*s != '/' && *s != '-')                /* slash */
1321                                   break;
1322                                 s++;
1323 
1324                                 if (*s < '0' || *s > '9')                /* third 1, 2, 4, or 5 digits */
1325                                   break;
1326                                 n3 = (*s++ - '0');
1327                                 if (*s >= '0' && *s <= '9')
1328                                   n3 = n3*10 + (*s++ - '0');
1329 
1330                                 if (*s >= '0' && *s <= '9')            /* optional digits 3, 4, and 5 */
1331                                   {
1332                                         n3 = n3*10 + (*s++ - '0');
1333                                         if (*s < '0' || *s > '9')
1334                                           break;
1335                                         n3 = n3*10 + (*s++ - '0');
1336                                         if (*s >= '0' && *s <= '9')
1337                                           n3 = n3*10 + (*s++ - '0');
1338                                   }
1339 
1340                                 if ((*s >= '0' && *s <= '9') ||        /* followed by non-alphanum */
1341                                         (*s >= 'A' && *s <= 'Z') ||
1342                                         (*s >= 'a' && *s <= 'z'))
1343                                   break;
1344 
1345                                 /* Ok, we parsed three 1-2 digit numbers, with / or -
1346                                    between them.  Now decide what the hell they are
1347                                    (DD/MM/YY or MM/DD/YY or YY/MM/DD.)
1348                                  */
1349 
1350                                 if (n1 > 31 || n1 == 0)  /* must be YY/MM/DD */
1351                                   {
1352                                         if (n2 > 12) break;
1353                                         if (n3 > 31) break;
1354                                         year = n1;
1355                                         if (year < 70)
1356                                             year += 2000;
1357                                         else if (year < 100)
1358                                             year += 1900;
1359                                         month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1360                                         date = n3;
1361                                         rest = s;
1362                                         break;
1363                                   }
1364 
1365                                 if (n1 > 12 && n2 > 12)  /* illegal */
1366                                   {
1367                                         rest = s;
1368                                         break;
1369                                   }
1370 
1371                                 if (n3 < 70)
1372                                     n3 += 2000;
1373                                 else if (n3 < 100)
1374                                     n3 += 1900;
1375 
1376                                 if (n1 > 12)  /* must be DD/MM/YY */
1377                                   {
1378                                         date = n1;
1379                                         month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1380                                         year = n3;
1381                                   }
1382                                 else                  /* assume MM/DD/YY */
1383                                   {
1384                                         /* #### In the ambiguous case, should we consult the
1385                                            locale to find out the local default? */
1386                                         month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
1387                                         date = n2;
1388                                         year = n3;
1389                                   }
1390                                 rest = s;
1391                           }
1392                         else if ((*end >= 'A' && *end <= 'Z') ||
1393                                          (*end >= 'a' && *end <= 'z'))
1394                           /* Digits followed by non-punctuation - what's that? */
1395                           ;
1396                         else if ((end - rest) == 5)                /* five digits is a year */
1397                           year = (year < 0
1398                                           ? ((rest[0]-'0')*10000L +
1399                                                  (rest[1]-'0')*1000L +
1400                                                  (rest[2]-'0')*100L +
1401                                                  (rest[3]-'0')*10L +
1402                                                  (rest[4]-'0'))
1403                                           : year);
1404                         else if ((end - rest) == 4)                /* four digits is a year */
1405                           year = (year < 0
1406                                           ? ((rest[0]-'0')*1000L +
1407                                                  (rest[1]-'0')*100L +
1408                                                  (rest[2]-'0')*10L +
1409                                                  (rest[3]-'0'))
1410                                           : year);
1411                         else if ((end - rest) == 2)                /* two digits - date or year */
1412                           {
1413                                 int n = ((rest[0]-'0')*10 +
1414                                                  (rest[1]-'0'));
1415                                 /* If we don't have a date (day of the month) and we see a number
1416                                      less than 32, then assume that is the date.
1417 
1418                                          Otherwise, if we have a date and not a year, assume this is the
1419                                          year.  If it is less than 70, then assume it refers to the 21st
1420                                          century.  If it is two digits (>= 70), assume it refers to this
1421                                          century.  Otherwise, assume it refers to an unambiguous year.
1422 
1423                                          The world will surely end soon.
1424                                    */
1425                                 if (date < 0 && n < 32)
1426                                   date = n;
1427                                 else if (year < 0)
1428                                   {
1429                                         if (n < 70)
1430                                           year = 2000 + n;
1431                                         else if (n < 100)
1432                                           year = 1900 + n;
1433                                         else
1434                                           year = n;
1435                                   }
1436                                 /* else what the hell is this. */
1437                           }
1438                         else if ((end - rest) == 1)                /* one digit - date */
1439                           date = (date < 0 ? (rest[0]-'0') : date);
1440                         /* else, three or more than five digits - what's that? */
1441 
1442                         break;
1443                   }
1444                 }
1445 
1446           /* Skip to the end of this token, whether we parsed it or not.
1447                  Tokens are delimited by whitespace, or ,;-/
1448                  But explicitly not :+-.
1449            */
1450           while (*rest &&
1451                          *rest != ' ' && *rest != '\t' &&
1452                          *rest != ',' && *rest != ';' &&
1453                          *rest != '-' && *rest != '+' &&
1454                          *rest != '/' &&
1455                          *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']')
1456                 rest++;
1457           /* skip over uninteresting chars. */
1458         SKIP_MORE:
1459           while (*rest &&
1460                          (*rest == ' ' || *rest == '\t' ||
1461                           *rest == ',' || *rest == ';' || *rest == '/' ||
1462                           *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']'))
1463                 rest++;
1464 
1465           /* "-" is ignored at the beginning of a token if we have not yet
1466                  parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1467                  the character after the dash is not a digit. */
1468           if (*rest == '-' && ((rest > string &&
1469               isalpha((unsigned char)rest[-1]) && year < 0) ||
1470               rest[1] < '0' || rest[1] > '9'))
1471                 {
1472                   rest++;
1473                   goto SKIP_MORE;
1474                 }
1475 
1476         }
1477 
1478   if (zone != TT_UNKNOWN && zone_offset == -1)
1479         {
1480           switch (zone)
1481                 {
1482                 case TT_PST: zone_offset = -8 * 60; break;
1483                 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
1484                 case TT_MST: zone_offset = -7 * 60; break;
1485                 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
1486                 case TT_CST: zone_offset = -6 * 60; break;
1487                 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
1488                 case TT_EST: zone_offset = -5 * 60; break;
1489                 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
1490                 case TT_AST: zone_offset = -4 * 60; break;
1491                 case TT_NST: zone_offset = -3 * 60 - 30; break;
1492                 case TT_GMT: zone_offset =  0 * 60; break;
1493                 case TT_BST: zone_offset =  0 * 60; dst_offset = 1 * 60; break;
1494                 case TT_MET: zone_offset =  1 * 60; break;
1495                 case TT_EET: zone_offset =  2 * 60; break;
1496                 case TT_JST: zone_offset =  9 * 60; break;
1497                 default:
1498                   PR_ASSERT (0);
1499                   break;
1500                 }
1501         }
1502 
1503   /* If we didn't find a year, month, or day-of-the-month, we can't
1504          possibly parse this, and in fact, mktime() will do something random
1505          (I'm seeing it return "Tue Feb  5 06:28:16 2036", which is no doubt
1506          a numerologically significant date... */
1507   if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
1508       return PR_FAILURE;
1509 
1510   memset(result, 0, sizeof(*result));
1511   if (sec != -1)
1512         result->tm_sec = sec;
1513   if (min != -1)
1514         result->tm_min = min;
1515   if (hour != -1)
1516         result->tm_hour = hour;
1517   if (date != -1)
1518         result->tm_mday = date;
1519   if (month != TT_UNKNOWN)
1520         result->tm_month = (((int)month) - ((int)TT_JAN));
1521   if (year != -1)
1522         result->tm_year = year;
1523   if (dotw != TT_UNKNOWN)
1524         result->tm_wday = (((int)dotw) - ((int)TT_SUN));
1525   /*
1526    * Mainly to compute wday and yday, but normalized time is also required
1527    * by the check below that works around a Visual C++ 2005 mktime problem.
1528    */
1529   PR_NormalizeTime(result, PR_GMTParameters);
1530   /* The remaining work is to set the gmt and dst offsets in tm_params. */
1531 
1532   if (zone == TT_UNKNOWN && default_to_gmt)
1533         {
1534           /* No zone was specified, so pretend the zone was GMT. */
1535           zone = TT_GMT;
1536           zone_offset = 0;
1537         }
1538 
1539   if (zone_offset == -1)
1540          {
1541            /* no zone was specified, and we're to assume that everything
1542              is local. */
1543           struct tm localTime;
1544           time_t secs;
1545 
1546           PR_ASSERT(result->tm_month > -1 &&
1547                     result->tm_mday > 0 &&
1548                     result->tm_hour > -1 &&
1549                     result->tm_min > -1 &&
1550                     result->tm_sec > -1);
1551 
1552             /*
1553              * To obtain time_t from a tm structure representing the local
1554              * time, we call mktime().  However, we need to see if we are
1555              * on 1-Jan-1970 or before.  If we are, we can't call mktime()
1556              * because mktime() will crash on win16. In that case, we
1557              * calculate zone_offset based on the zone offset at
1558              * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1559              * date we are parsing to transform the date to GMT.  We also
1560              * do so if mktime() returns (time_t) -1 (time out of range).
1561            */
1562 
1563           /* month, day, hours, mins and secs are always non-negative
1564              so we dont need to worry about them. */
1565           if(result->tm_year >= 1970)
1566                 {
1567                   PRInt64 usec_per_sec;
1568 
1569                   localTime.tm_sec = result->tm_sec;
1570                   localTime.tm_min = result->tm_min;
1571                   localTime.tm_hour = result->tm_hour;
1572                   localTime.tm_mday = result->tm_mday;
1573                   localTime.tm_mon = result->tm_month;
1574                   localTime.tm_year = result->tm_year - 1900;
1575                   /* Set this to -1 to tell mktime "I don't care".  If you set
1576                      it to 0 or 1, you are making assertions about whether the
1577                      date you are handing it is in daylight savings mode or not;
1578                      and if you're wrong, it will "fix" it for you. */
1579                   localTime.tm_isdst = -1;
1580 
1581 #if _MSC_VER == 1400  /* 1400 = Visual C++ 2005 (8.0) */
1582                   /*
1583                    * mktime will return (time_t) -1 if the input is a date
1584                    * after 23:59:59, December 31, 3000, US Pacific Time (not
1585                    * UTC as documented):
1586                    * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1587                    * But if the year is 3001, mktime also invokes the invalid
1588                    * parameter handler, causing the application to crash.  This
1589                    * problem has been reported in
1590                    * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1591                    * We avoid this crash by not calling mktime if the date is
1592                    * out of range.  To use a simple test that works in any time
1593                    * zone, we consider year 3000 out of range as well.  (See
1594                    * bug 480740.)
1595                    */
1596                   if (result->tm_year >= 3000) {
1597                       /* Emulate what mktime would have done. */
1598                       errno = EINVAL;
1599                       secs = (time_t) -1;
1600                   } else {
1601                       secs = mktime(&localTime);
1602                   }
1603 #else
1604                   secs = mktime(&localTime);
1605 #endif
1606                   if (secs != (time_t) -1)
1607                     {
1608                       PRTime usecs64;
1609                       LL_I2L(usecs64, secs);
1610                       LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
1611                       LL_MUL(usecs64, usecs64, usec_per_sec);
1612                       PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result);
1613                       return PR_SUCCESS;
1614                     }
1615                 }
1616 
1617                 /* So mktime() can't handle this case.  We assume the
1618                    zone_offset for the date we are parsing is the same as
1619                    the zone offset on 00:00:00 2 Jan 1970 GMT. */
1620                 secs = 86400;
1621                 (void) MT_safe_localtime(&secs, &localTime);
1622                 zone_offset = localTime.tm_min
1623                               + 60 * localTime.tm_hour
1624                               + 1440 * (localTime.tm_mday - 2);
1625         }
1626 
1627   result->tm_params.tp_gmt_offset = zone_offset * 60;
1628   result->tm_params.tp_dst_offset = dst_offset * 60;
1629 
1630   return PR_SUCCESS;
1631 }
1632 
1633 PR_IMPLEMENT(PRStatus)
PR_ParseTimeString(const char * string,PRBool default_to_gmt,PRTime * result)1634 PR_ParseTimeString(
1635         const char *string,
1636         PRBool default_to_gmt,
1637         PRTime *result)
1638 {
1639   PRExplodedTime tm;
1640   PRStatus rv;
1641 
1642   rv = PR_ParseTimeStringToExplodedTime(string,
1643                                         default_to_gmt,
1644                                         &tm);
1645   if (rv != PR_SUCCESS)
1646         return rv;
1647 
1648   *result = PR_ImplodeTime(&tm);
1649 
1650   return PR_SUCCESS;
1651 }
1652 
1653 /*
1654  *******************************************************************
1655  *******************************************************************
1656  **
1657  **    OLD COMPATIBILITY FUNCTIONS
1658  **
1659  *******************************************************************
1660  *******************************************************************
1661  */
1662 
1663 
1664 /*
1665  *-----------------------------------------------------------------------
1666  *
1667  * PR_FormatTime --
1668  *
1669  *     Format a time value into a buffer. Same semantics as strftime().
1670  *
1671  *-----------------------------------------------------------------------
1672  */
1673 
1674 PR_IMPLEMENT(PRUint32)
PR_FormatTime(char * buf,int buflen,const char * fmt,const PRExplodedTime * time)1675 PR_FormatTime(char *buf, int buflen, const char *fmt,
1676               const PRExplodedTime *time)
1677 {
1678     size_t rv;
1679     struct tm a;
1680     struct tm *ap;
1681 
1682     if (time) {
1683         ap = &a;
1684         a.tm_sec = time->tm_sec;
1685         a.tm_min = time->tm_min;
1686         a.tm_hour = time->tm_hour;
1687         a.tm_mday = time->tm_mday;
1688         a.tm_mon = time->tm_month;
1689         a.tm_wday = time->tm_wday;
1690         a.tm_year = time->tm_year - 1900;
1691         a.tm_yday = time->tm_yday;
1692         a.tm_isdst = time->tm_params.tp_dst_offset ? 1 : 0;
1693 
1694         /*
1695          * On some platforms, for example SunOS 4, struct tm has two
1696          * additional fields: tm_zone and tm_gmtoff.
1697          */
1698 
1699 #if (__GLIBC__ >= 2) || defined(XP_BEOS) \
1700         || defined(NETBSD) || defined(OPENBSD) || defined(FREEBSD) \
1701         || defined(DARWIN) || defined(SYMBIAN) || defined(ANDROID)
1702         a.tm_zone = NULL;
1703         a.tm_gmtoff = time->tm_params.tp_gmt_offset +
1704                       time->tm_params.tp_dst_offset;
1705 #endif
1706     } else {
1707         ap = NULL;
1708     }
1709 
1710     rv = strftime(buf, buflen, fmt, ap);
1711     if (!rv && buf && buflen > 0) {
1712         /*
1713          * When strftime fails, the contents of buf are indeterminate.
1714          * Some callers don't check the return value from this function,
1715          * so store an empty string in buf in case they try to print it.
1716          */
1717         buf[0] = '\0';
1718     }
1719     return rv;
1720 }
1721 
1722 
1723 /*
1724  * The following string arrays and macros are used by PR_FormatTimeUSEnglish().
1725  */
1726 
1727 static const char* abbrevDays[] =
1728 {
1729    "Sun","Mon","Tue","Wed","Thu","Fri","Sat"
1730 };
1731 
1732 static const char* days[] =
1733 {
1734    "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"
1735 };
1736 
1737 static const char* abbrevMonths[] =
1738 {
1739    "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1740    "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1741 };
1742 
1743 static const char* months[] =
1744 {
1745     "January", "February", "March", "April", "May", "June",
1746     "July", "August", "September", "October", "November", "December"
1747 };
1748 
1749 
1750 /*
1751  * Add a single character to the given buffer, incrementing the buffer pointer
1752  * and decrementing the buffer size. Return 0 on error.
1753  */
1754 #define ADDCHAR( buf, bufSize, ch )             \
1755 do                                              \
1756 {                                               \
1757    if( bufSize < 1 )                            \
1758    {                                            \
1759       *(--buf) = '\0';                          \
1760       return 0;                                 \
1761    }                                            \
1762    *buf++ = ch;                                 \
1763    bufSize--;                                   \
1764 }                                               \
1765 while(0)
1766 
1767 
1768 /*
1769  * Add a string to the given buffer, incrementing the buffer pointer
1770  * and decrementing the buffer size appropriately.  Return 0 on error.
1771  */
1772 #define ADDSTR( buf, bufSize, str )             \
1773 do                                              \
1774 {                                               \
1775    PRUint32 strSize = strlen( str );              \
1776    if( strSize > bufSize )                      \
1777    {                                            \
1778       if( bufSize==0 )                          \
1779          *(--buf) = '\0';                       \
1780       else                                      \
1781          *buf = '\0';                           \
1782       return 0;                                 \
1783    }                                            \
1784    memcpy(buf, str, strSize);                   \
1785    buf += strSize;                              \
1786    bufSize -= strSize;                          \
1787 }                                               \
1788 while(0)
1789 
1790 /* Needed by PR_FormatTimeUSEnglish() */
1791 static unsigned int  pr_WeekOfYear(const PRExplodedTime* time,
1792         unsigned int firstDayOfWeek);
1793 
1794 
1795 /***********************************************************************************
1796  *
1797  * Description:
1798  *  This is a dumbed down version of strftime that will format the date in US
1799  *  English regardless of the setting of the global locale.  This functionality is
1800  *  needed to write things like MIME headers which must always be in US English.
1801  *
1802  **********************************************************************************/
1803 
1804 PR_IMPLEMENT(PRUint32)
PR_FormatTimeUSEnglish(char * buf,PRUint32 bufSize,const char * format,const PRExplodedTime * time)1805 PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize,
1806                         const char* format, const PRExplodedTime* time )
1807 {
1808    char*         bufPtr = buf;
1809    const char*   fmtPtr;
1810    char          tmpBuf[ 40 ];
1811    const int     tmpBufSize = sizeof( tmpBuf );
1812 
1813 
1814    for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ )
1815    {
1816       if( *fmtPtr != '%' )
1817       {
1818          ADDCHAR( bufPtr, bufSize, *fmtPtr );
1819       }
1820       else
1821       {
1822          switch( *(++fmtPtr) )
1823          {
1824          case '%':
1825             /* escaped '%' character */
1826             ADDCHAR( bufPtr, bufSize, '%' );
1827             break;
1828 
1829          case 'a':
1830             /* abbreviated weekday name */
1831             ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] );
1832             break;
1833 
1834          case 'A':
1835             /* full weekday name */
1836             ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] );
1837             break;
1838 
1839          case 'b':
1840             /* abbreviated month name */
1841             ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] );
1842             break;
1843 
1844          case 'B':
1845             /* full month name */
1846             ADDSTR(bufPtr, bufSize,  months[ time->tm_month ] );
1847             break;
1848 
1849          case 'c':
1850             /* Date and time. */
1851             PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time );
1852             ADDSTR( bufPtr, bufSize, tmpBuf );
1853             break;
1854 
1855          case 'd':
1856             /* day of month ( 01 - 31 ) */
1857             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday );
1858             ADDSTR( bufPtr, bufSize, tmpBuf );
1859             break;
1860 
1861          case 'H':
1862             /* hour ( 00 - 23 ) */
1863             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour );
1864             ADDSTR( bufPtr, bufSize, tmpBuf );
1865             break;
1866 
1867          case 'I':
1868             /* hour ( 01 - 12 ) */
1869             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",
1870                         (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 );
1871             ADDSTR( bufPtr, bufSize, tmpBuf );
1872             break;
1873 
1874          case 'j':
1875             /* day number of year ( 001 - 366 ) */
1876             PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1);
1877             ADDSTR( bufPtr, bufSize, tmpBuf );
1878             break;
1879 
1880          case 'm':
1881             /* month number ( 01 - 12 ) */
1882             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1);
1883             ADDSTR( bufPtr, bufSize, tmpBuf );
1884             break;
1885 
1886          case 'M':
1887             /* minute ( 00 - 59 ) */
1888             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min );
1889             ADDSTR( bufPtr, bufSize, tmpBuf );
1890             break;
1891 
1892          case 'p':
1893             /* locale's equivalent of either AM or PM */
1894             ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" );
1895             break;
1896 
1897          case 'S':
1898             /* seconds ( 00 - 61 ), allows for leap seconds */
1899             PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec );
1900             ADDSTR( bufPtr, bufSize, tmpBuf );
1901             break;
1902 
1903          case 'U':
1904             /* week number of year ( 00 - 53  ),  Sunday  is  the first day of week 1 */
1905             PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) );
1906             ADDSTR( bufPtr, bufSize, tmpBuf );
1907             break;
1908 
1909          case 'w':
1910             /* weekday number ( 0 - 6 ), Sunday = 0 */
1911             PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday );
1912             ADDSTR( bufPtr, bufSize, tmpBuf );
1913             break;
1914 
1915          case 'W':
1916             /* Week number of year ( 00 - 53  ),  Monday  is  the first day of week 1 */
1917             PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) );
1918             ADDSTR( bufPtr, bufSize, tmpBuf );
1919             break;
1920 
1921          case 'x':
1922             /* Date representation */
1923             PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time );
1924             ADDSTR( bufPtr, bufSize, tmpBuf );
1925             break;
1926 
1927          case 'X':
1928             /* Time representation. */
1929             PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time );
1930             ADDSTR( bufPtr, bufSize, tmpBuf );
1931             break;
1932 
1933          case 'y':
1934             /* year within century ( 00 - 99 ) */
1935             PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 );
1936             ADDSTR( bufPtr, bufSize, tmpBuf );
1937             break;
1938 
1939          case 'Y':
1940             /* year as ccyy ( for example 1986 ) */
1941             PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year );
1942             ADDSTR( bufPtr, bufSize, tmpBuf );
1943             break;
1944 
1945          case 'Z':
1946             /* Time zone name or no characters if  no  time  zone exists.
1947              * Since time zone name is supposed to be independant of locale, we
1948              * defer to PR_FormatTime() for this option.
1949              */
1950             PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time );
1951             ADDSTR( bufPtr, bufSize, tmpBuf );
1952             break;
1953 
1954          default:
1955             /* Unknown format.  Simply copy format into output buffer. */
1956             ADDCHAR( bufPtr, bufSize, '%' );
1957             ADDCHAR( bufPtr, bufSize, *fmtPtr );
1958             break;
1959 
1960          }
1961       }
1962    }
1963 
1964    ADDCHAR( bufPtr, bufSize, '\0' );
1965    return (PRUint32)(bufPtr - buf - 1);
1966 }
1967 
1968 
1969 
1970 /***********************************************************************************
1971  *
1972  * Description:
1973  *  Returns the week number of the year (0-53) for the given time.  firstDayOfWeek
1974  *  is the day on which the week is considered to start (0=Sun, 1=Mon, ...).
1975  *  Week 1 starts the first time firstDayOfWeek occurs in the year.  In other words,
1976  *  a partial week at the start of the year is considered week 0.
1977  *
1978  **********************************************************************************/
1979 
1980 static unsigned int
pr_WeekOfYear(const PRExplodedTime * time,unsigned int firstDayOfWeek)1981 pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek)
1982 {
1983    int dayOfWeek;
1984    int dayOfYear;
1985 
1986   /* Get the day of the year for the given time then adjust it to represent the
1987    * first day of the week containing the given time.
1988    */
1989   dayOfWeek = time->tm_wday - firstDayOfWeek;
1990   if (dayOfWeek < 0)
1991     dayOfWeek += 7;
1992 
1993   dayOfYear = time->tm_yday - dayOfWeek;
1994 
1995 
1996   if( dayOfYear <= 0 )
1997   {
1998      /* If dayOfYear is <= 0, it is in the first partial week of the year. */
1999      return 0;
2000   }
2001   else
2002   {
2003      /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
2004       * are any days left over ( dayOfYear % 7 ).  Because we are only counting to
2005       * the first day of the week containing the given time, rather than to the
2006       * actual day representing the given time, any days in week 0 will be "absorbed"
2007       * as extra days in the given week.
2008       */
2009      return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 );
2010   }
2011 }
2012 
2013