1 /* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 * This Source Code Form is subject to the terms of the Mozilla Public
3 * License, v. 2.0. If a copy of the MPL was not distributed with this
4 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
5
6 #include "mozilla/ArrayUtils.h"
7 #include "gfxCoreTextShaper.h"
8 #include "gfxMacFont.h"
9 #include "gfxFontUtils.h"
10 #include "gfxTextRun.h"
11 #include "mozilla/gfx/2D.h"
12 #include "mozilla/UniquePtrExtensions.h"
13
14 #include <algorithm>
15
16 #include <dlfcn.h>
17
18 using namespace mozilla;
19
20 // standard font descriptors that we construct the first time they're needed
21 CTFontDescriptorRef gfxCoreTextShaper::sFeaturesDescriptor[kMaxFontInstances];
22
23 // Helper to create a CFDictionary with the right attributes for shaping our
24 // text, including imposing the given directionality.
CreateAttrDict(bool aRightToLeft)25 CFDictionaryRef gfxCoreTextShaper::CreateAttrDict(bool aRightToLeft) {
26 // Because we always shape unidirectional runs, and may have applied
27 // directional overrides, we want to force a direction rather than
28 // allowing CoreText to do its own unicode-based bidi processing.
29 SInt16 dirOverride = kCTWritingDirectionOverride |
30 (aRightToLeft ? kCTWritingDirectionRightToLeft
31 : kCTWritingDirectionLeftToRight);
32 CFNumberRef dirNumber =
33 ::CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt16Type, &dirOverride);
34 CFArrayRef dirArray = ::CFArrayCreate(
35 kCFAllocatorDefault, (const void**)&dirNumber, 1, &kCFTypeArrayCallBacks);
36 ::CFRelease(dirNumber);
37 CFTypeRef attrs[] = {kCTFontAttributeName, kCTWritingDirectionAttributeName};
38 CFTypeRef values[] = {mCTFont[0], dirArray};
39 CFDictionaryRef attrDict = ::CFDictionaryCreate(
40 kCFAllocatorDefault, attrs, values, ArrayLength(attrs),
41 &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
42 ::CFRelease(dirArray);
43 return attrDict;
44 }
45
gfxCoreTextShaper(gfxMacFont * aFont)46 gfxCoreTextShaper::gfxCoreTextShaper(gfxMacFont* aFont)
47 : gfxFontShaper(aFont),
48 mAttributesDictLTR(nullptr),
49 mAttributesDictRTL(nullptr) {
50 for (size_t i = 0; i < kMaxFontInstances; i++) {
51 mCTFont[i] = nullptr;
52 }
53 // Create our default CTFontRef
54 mCTFont[0] = CreateCTFontWithFeatures(
55 aFont->GetAdjustedSize(), GetFeaturesDescriptor(kDefaultFeatures));
56 }
57
~gfxCoreTextShaper()58 gfxCoreTextShaper::~gfxCoreTextShaper() {
59 if (mAttributesDictLTR) {
60 ::CFRelease(mAttributesDictLTR);
61 }
62 if (mAttributesDictRTL) {
63 ::CFRelease(mAttributesDictRTL);
64 }
65 for (size_t i = 0; i < kMaxFontInstances; i++) {
66 if (mCTFont[i]) {
67 ::CFRelease(mCTFont[i]);
68 }
69 }
70 }
71
IsBuggyIndicScript(intl::Script aScript)72 static bool IsBuggyIndicScript(intl::Script aScript) {
73 return aScript == intl::Script::BENGALI || aScript == intl::Script::KANNADA ||
74 aScript == intl::Script::ORIYA || aScript == intl::Script::KHMER;
75 }
76
ShapeText(DrawTarget * aDrawTarget,const char16_t * aText,uint32_t aOffset,uint32_t aLength,Script aScript,nsAtom * aLanguage,bool aVertical,RoundingFlags aRounding,gfxShapedText * aShapedText)77 bool gfxCoreTextShaper::ShapeText(DrawTarget* aDrawTarget,
78 const char16_t* aText, uint32_t aOffset,
79 uint32_t aLength, Script aScript,
80 nsAtom* aLanguage, bool aVertical,
81 RoundingFlags aRounding,
82 gfxShapedText* aShapedText) {
83 // Create a CFAttributedString with text and style info, so we can use
84 // CoreText to lay it out.
85 bool isRightToLeft = aShapedText->IsRightToLeft();
86 const UniChar* text = reinterpret_cast<const UniChar*>(aText);
87
88 CFStringRef stringObj = ::CFStringCreateWithCharactersNoCopy(
89 kCFAllocatorDefault, text, aLength, kCFAllocatorNull);
90
91 // Figure out whether we should try to set the AAT small-caps feature:
92 // examine OpenType tags for the requested style, and see if 'smcp' is
93 // among them.
94 const gfxFontStyle* style = mFont->GetStyle();
95 gfxFontEntry* entry = mFont->GetFontEntry();
96 auto handleFeatureTag = [](const uint32_t& aTag, uint32_t& aValue,
97 void* aUserArg) -> void {
98 if (aTag == HB_TAG('s', 'm', 'c', 'p') && aValue) {
99 *static_cast<bool*>(aUserArg) = true;
100 }
101 };
102 bool addSmallCaps = false;
103 MergeFontFeatures(style, entry->mFeatureSettings, false, entry->FamilyName(),
104 false, handleFeatureTag, &addSmallCaps);
105
106 // Get an attributes dictionary suitable for shaping text in the
107 // current direction, creating it if necessary.
108 CFDictionaryRef attrObj =
109 isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR;
110 if (!attrObj) {
111 attrObj = CreateAttrDict(isRightToLeft);
112 (isRightToLeft ? mAttributesDictRTL : mAttributesDictLTR) = attrObj;
113 }
114
115 FeatureFlags featureFlags = kDefaultFeatures;
116 if (IsBuggyIndicScript(aScript)) {
117 // To work around buggy Indic AAT fonts shipped with OS X,
118 // we re-enable the Line Initial Smart Swashes feature that is needed
119 // for "split vowels" to work in at least Bengali and Kannada fonts.
120 // Affected fonts include Bangla MN, Bangla Sangam MN, Kannada MN,
121 // Kannada Sangam MN. See bugs 686225, 728557, 953231, 1145515.
122 // Also applies to Oriya and Khmer, see bug 1370927 and bug 1403166.
123 featureFlags |= kIndicFeatures;
124 }
125 if (aShapedText->DisableLigatures()) {
126 // For letterspacing (or maybe other situations) we need to make
127 // a copy of the CTFont with the ligature feature disabled.
128 featureFlags |= kDisableLigatures;
129 }
130 if (addSmallCaps) {
131 featureFlags |= kAddSmallCaps;
132 }
133
134 // For the disabled-ligature, buggy-indic-font or small-caps case, replace
135 // the default CTFont in the attribute dictionary with a tweaked version.
136 CFMutableDictionaryRef mutableAttr = nullptr;
137 if (featureFlags != 0) {
138 if (!mCTFont[featureFlags]) {
139 mCTFont[featureFlags] = CreateCTFontWithFeatures(
140 mFont->GetAdjustedSize(), GetFeaturesDescriptor(featureFlags));
141 }
142 mutableAttr =
143 ::CFDictionaryCreateMutableCopy(kCFAllocatorDefault, 2, attrObj);
144 ::CFDictionaryReplaceValue(mutableAttr, kCTFontAttributeName,
145 mCTFont[featureFlags]);
146 attrObj = mutableAttr;
147 }
148
149 // Now we can create an attributed string
150 CFAttributedStringRef attrStringObj =
151 ::CFAttributedStringCreate(kCFAllocatorDefault, stringObj, attrObj);
152 ::CFRelease(stringObj);
153
154 // Create the CoreText line from our string, then we're done with it
155 CTLineRef line = ::CTLineCreateWithAttributedString(attrStringObj);
156 ::CFRelease(attrStringObj);
157
158 // and finally retrieve the glyph data and store into the gfxTextRun
159 CFArrayRef glyphRuns = ::CTLineGetGlyphRuns(line);
160 uint32_t numRuns = ::CFArrayGetCount(glyphRuns);
161
162 // Iterate through the glyph runs.
163 bool success = true;
164 for (uint32_t runIndex = 0; runIndex < numRuns; runIndex++) {
165 CTRunRef aCTRun = (CTRunRef)::CFArrayGetValueAtIndex(glyphRuns, runIndex);
166 CFRange range = ::CTRunGetStringRange(aCTRun);
167 CFDictionaryRef runAttr = ::CTRunGetAttributes(aCTRun);
168 if (runAttr != attrObj) {
169 // If Core Text manufactured a new dictionary, this may indicate
170 // unexpected font substitution. In that case, we fail (and fall
171 // back to harfbuzz shaping)...
172 const void* font1 = ::CFDictionaryGetValue(attrObj, kCTFontAttributeName);
173 const void* font2 = ::CFDictionaryGetValue(runAttr, kCTFontAttributeName);
174 if (font1 != font2) {
175 // ...except that if the fallback was only for a variation
176 // selector or join control that is otherwise unsupported,
177 // we just ignore it.
178 if (range.length == 1) {
179 char16_t ch = aText[range.location];
180 if (gfxFontUtils::IsJoinControl(ch) ||
181 gfxFontUtils::IsVarSelector(ch)) {
182 continue;
183 }
184 }
185 NS_WARNING("unexpected font fallback in Core Text");
186 success = false;
187 break;
188 }
189 }
190 if (SetGlyphsFromRun(aShapedText, aOffset, aLength, aCTRun) != NS_OK) {
191 success = false;
192 break;
193 }
194 }
195
196 if (mutableAttr) {
197 ::CFRelease(mutableAttr);
198 }
199 ::CFRelease(line);
200
201 return success;
202 }
203
204 #define SMALL_GLYPH_RUN \
205 128 // preallocated size of our auto arrays for per-glyph data;
206 // some testing indicates that 90%+ of glyph runs will fit
207 // without requiring a separate allocation
208
SetGlyphsFromRun(gfxShapedText * aShapedText,uint32_t aOffset,uint32_t aLength,CTRunRef aCTRun)209 nsresult gfxCoreTextShaper::SetGlyphsFromRun(gfxShapedText* aShapedText,
210 uint32_t aOffset, uint32_t aLength,
211 CTRunRef aCTRun) {
212 typedef gfxShapedText::CompressedGlyph CompressedGlyph;
213
214 int32_t direction = aShapedText->IsRightToLeft() ? -1 : 1;
215
216 int32_t numGlyphs = ::CTRunGetGlyphCount(aCTRun);
217 if (numGlyphs == 0) {
218 return NS_OK;
219 }
220
221 int32_t wordLength = aLength;
222
223 // character offsets get really confusing here, as we have to keep track of
224 // (a) the text in the actual textRun we're constructing
225 // (c) the string that was handed to CoreText, which contains the text of
226 // the font run
227 // (d) the CTRun currently being processed, which may be a sub-run of the
228 // CoreText line
229
230 // get the source string range within the CTLine's text
231 CFRange stringRange = ::CTRunGetStringRange(aCTRun);
232 // skip the run if it is entirely outside the actual range of the font run
233 if (stringRange.location + stringRange.length <= 0 ||
234 stringRange.location >= wordLength) {
235 return NS_OK;
236 }
237
238 // retrieve the laid-out glyph data from the CTRun
239 UniquePtr<CGGlyph[]> glyphsArray;
240 UniquePtr<CGPoint[]> positionsArray;
241 UniquePtr<CFIndex[]> glyphToCharArray;
242 const CGGlyph* glyphs = nullptr;
243 const CGPoint* positions = nullptr;
244 const CFIndex* glyphToChar = nullptr;
245
246 // Testing indicates that CTRunGetGlyphsPtr (almost?) always succeeds,
247 // and so allocating a new array and copying data with CTRunGetGlyphs
248 // will be extremely rare.
249 // If this were not the case, we could use an AutoTArray<> to
250 // try and avoid the heap allocation for small runs.
251 // It's possible that some future change to CoreText will mean that
252 // CTRunGetGlyphsPtr fails more often; if this happens, AutoTArray<>
253 // may become an attractive option.
254 glyphs = ::CTRunGetGlyphsPtr(aCTRun);
255 if (!glyphs) {
256 glyphsArray = MakeUniqueFallible<CGGlyph[]>(numGlyphs);
257 if (!glyphsArray) {
258 return NS_ERROR_OUT_OF_MEMORY;
259 }
260 ::CTRunGetGlyphs(aCTRun, ::CFRangeMake(0, 0), glyphsArray.get());
261 glyphs = glyphsArray.get();
262 }
263
264 positions = ::CTRunGetPositionsPtr(aCTRun);
265 if (!positions) {
266 positionsArray = MakeUniqueFallible<CGPoint[]>(numGlyphs);
267 if (!positionsArray) {
268 return NS_ERROR_OUT_OF_MEMORY;
269 }
270 ::CTRunGetPositions(aCTRun, ::CFRangeMake(0, 0), positionsArray.get());
271 positions = positionsArray.get();
272 }
273
274 // Remember that the glyphToChar indices relate to the CoreText line,
275 // not to the beginning of the textRun, the font run,
276 // or the stringRange of the glyph run
277 glyphToChar = ::CTRunGetStringIndicesPtr(aCTRun);
278 if (!glyphToChar) {
279 glyphToCharArray = MakeUniqueFallible<CFIndex[]>(numGlyphs);
280 if (!glyphToCharArray) {
281 return NS_ERROR_OUT_OF_MEMORY;
282 }
283 ::CTRunGetStringIndices(aCTRun, ::CFRangeMake(0, 0),
284 glyphToCharArray.get());
285 glyphToChar = glyphToCharArray.get();
286 }
287
288 double runWidth = ::CTRunGetTypographicBounds(aCTRun, ::CFRangeMake(0, 0),
289 nullptr, nullptr, nullptr);
290
291 AutoTArray<gfxShapedText::DetailedGlyph, 1> detailedGlyphs;
292 CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset;
293
294 // CoreText gives us the glyphindex-to-charindex mapping, which relates each
295 // glyph to a source text character; we also need the charindex-to-glyphindex
296 // mapping to find the glyph for a given char. Note that some chars may not
297 // map to any glyph (ligature continuations), and some may map to several
298 // glyphs (eg Indic split vowels). We set the glyph index to NO_GLYPH for
299 // chars that have no associated glyph, and we record the last glyph index for
300 // cases where the char maps to several glyphs, so that our clumping will
301 // include all the glyph fragments for the character.
302
303 // The charToGlyph array is indexed by char position within the stringRange of
304 // the glyph run.
305
306 static const int32_t NO_GLYPH = -1;
307 AutoTArray<int32_t, SMALL_GLYPH_RUN> charToGlyphArray;
308 if (!charToGlyphArray.SetLength(stringRange.length, fallible)) {
309 return NS_ERROR_OUT_OF_MEMORY;
310 }
311 int32_t* charToGlyph = charToGlyphArray.Elements();
312 for (int32_t offset = 0; offset < stringRange.length; ++offset) {
313 charToGlyph[offset] = NO_GLYPH;
314 }
315 for (int32_t i = 0; i < numGlyphs; ++i) {
316 int32_t loc = glyphToChar[i] - stringRange.location;
317 if (loc >= 0 && loc < stringRange.length) {
318 charToGlyph[loc] = i;
319 }
320 }
321
322 // Find character and glyph clumps that correspond, allowing for ligatures,
323 // indic reordering, split glyphs, etc.
324 //
325 // The idea is that we'll find a character sequence starting at the first char
326 // of stringRange, and extend it until it includes the character associated
327 // with the first glyph; we also extend it as long as there are "holes" in the
328 // range of glyphs. So we will eventually have a contiguous sequence of
329 // characters, starting at the beginning of the range, that map to a
330 // contiguous sequence of glyphs, starting at the beginning of the glyph
331 // array. That's a clump; then we update the starting positions and repeat.
332 //
333 // NB: In the case of RTL layouts, we iterate over the stringRange in reverse.
334 //
335
336 // This may find characters that fall outside the range 0:wordLength,
337 // so we won't necessarily use everything we find here.
338
339 bool isRightToLeft = aShapedText->IsRightToLeft();
340 int32_t glyphStart =
341 0; // looking for a clump that starts at this glyph index
342 int32_t charStart =
343 isRightToLeft
344 ? stringRange.length - 1
345 : 0; // and this char index (in the stringRange of the glyph run)
346
347 while (glyphStart <
348 numGlyphs) { // keep finding groups until all glyphs are accounted for
349 bool inOrder = true;
350 int32_t charEnd = glyphToChar[glyphStart] - stringRange.location;
351 NS_WARNING_ASSERTION(charEnd >= 0 && charEnd < stringRange.length,
352 "glyph-to-char mapping points outside string range");
353 // clamp charEnd to the valid range of the string
354 charEnd = std::max(charEnd, 0);
355 charEnd = std::min(charEnd, int32_t(stringRange.length));
356
357 int32_t glyphEnd = glyphStart;
358 int32_t charLimit = isRightToLeft ? -1 : stringRange.length;
359 do {
360 // This is normally executed once for each iteration of the outer loop,
361 // but in unusual cases where the character/glyph association is complex,
362 // the initial character range might correspond to a non-contiguous
363 // glyph range with "holes" in it. If so, we will repeat this loop to
364 // extend the character range until we have a contiguous glyph sequence.
365 NS_ASSERTION((direction > 0 && charEnd < charLimit) ||
366 (direction < 0 && charEnd > charLimit),
367 "no characters left in range?");
368 charEnd += direction;
369 while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
370 charEnd += direction;
371 }
372
373 // find the maximum glyph index covered by the clump so far
374 if (isRightToLeft) {
375 for (int32_t i = charStart; i > charEnd; --i) {
376 if (charToGlyph[i] != NO_GLYPH) {
377 // update extent of glyph range
378 glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
379 }
380 }
381 } else {
382 for (int32_t i = charStart; i < charEnd; ++i) {
383 if (charToGlyph[i] != NO_GLYPH) {
384 // update extent of glyph range
385 glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
386 }
387 }
388 }
389
390 if (glyphEnd == glyphStart + 1) {
391 // for the common case of a single-glyph clump, we can skip the
392 // following checks
393 break;
394 }
395
396 if (glyphEnd == glyphStart) {
397 // no glyphs, try to extend the clump
398 continue;
399 }
400
401 // check whether all glyphs in the range are associated with the
402 // characters in our clump; if not, we have a discontinuous range, and
403 // should extend it unless we've reached the end of the text
404 bool allGlyphsAreWithinCluster = true;
405 int32_t prevGlyphCharIndex = charStart;
406 for (int32_t i = glyphStart; i < glyphEnd; ++i) {
407 int32_t glyphCharIndex = glyphToChar[i] - stringRange.location;
408 if (isRightToLeft) {
409 if (glyphCharIndex > charStart || glyphCharIndex <= charEnd) {
410 allGlyphsAreWithinCluster = false;
411 break;
412 }
413 if (glyphCharIndex > prevGlyphCharIndex) {
414 inOrder = false;
415 }
416 prevGlyphCharIndex = glyphCharIndex;
417 } else {
418 if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
419 allGlyphsAreWithinCluster = false;
420 break;
421 }
422 if (glyphCharIndex < prevGlyphCharIndex) {
423 inOrder = false;
424 }
425 prevGlyphCharIndex = glyphCharIndex;
426 }
427 }
428 if (allGlyphsAreWithinCluster) {
429 break;
430 }
431 } while (charEnd != charLimit);
432
433 NS_WARNING_ASSERTION(glyphStart < glyphEnd,
434 "character/glyph clump contains no glyphs!");
435 if (glyphStart == glyphEnd) {
436 ++glyphStart; // make progress - avoid potential infinite loop
437 charStart = charEnd;
438 continue;
439 }
440
441 NS_WARNING_ASSERTION(charStart != charEnd,
442 "character/glyph clump contains no characters!");
443 if (charStart == charEnd) {
444 glyphStart = glyphEnd; // this is bad - we'll discard the glyph(s),
445 // as there's nowhere to attach them
446 continue;
447 }
448
449 // Now charStart..charEnd is a ligature clump, corresponding to
450 // glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach
451 // the glyphs to (1st of ligature), and endCharIndex to the limit (position
452 // beyond the last char), adjusting for the offset of the stringRange
453 // relative to the textRun.
454 int32_t baseCharIndex, endCharIndex;
455 if (isRightToLeft) {
456 while (charEnd >= 0 && charToGlyph[charEnd] == NO_GLYPH) {
457 charEnd--;
458 }
459 baseCharIndex = charEnd + stringRange.location + 1;
460 endCharIndex = charStart + stringRange.location + 1;
461 } else {
462 while (charEnd < stringRange.length && charToGlyph[charEnd] == NO_GLYPH) {
463 charEnd++;
464 }
465 baseCharIndex = charStart + stringRange.location;
466 endCharIndex = charEnd + stringRange.location;
467 }
468
469 // Then we check if the clump falls outside our actual string range; if so,
470 // just go to the next.
471 if (endCharIndex <= 0 || baseCharIndex >= wordLength) {
472 glyphStart = glyphEnd;
473 charStart = charEnd;
474 continue;
475 }
476 // Ensure we won't try to go beyond the valid length of the word's text
477 baseCharIndex = std::max(baseCharIndex, 0);
478 endCharIndex = std::min(endCharIndex, wordLength);
479
480 // Now we're ready to set the glyph info in the textRun; measure the glyph
481 // width of the first (perhaps only) glyph, to see if it is "Simple"
482 int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
483 double toNextGlyph;
484 if (glyphStart < numGlyphs - 1) {
485 toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x;
486 } else {
487 toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
488 }
489 int32_t advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
490
491 // Check if it's a simple one-to-one mapping
492 int32_t glyphsInClump = glyphEnd - glyphStart;
493 if (glyphsInClump == 1 &&
494 gfxTextRun::CompressedGlyph::IsSimpleGlyphID(glyphs[glyphStart]) &&
495 gfxTextRun::CompressedGlyph::IsSimpleAdvance(advance) &&
496 charGlyphs[baseCharIndex].IsClusterStart() &&
497 positions[glyphStart].y == 0.0) {
498 charGlyphs[baseCharIndex].SetSimpleGlyph(advance, glyphs[glyphStart]);
499 } else {
500 // collect all glyphs in a list to be assigned to the first char;
501 // there must be at least one in the clump, and we already measured its
502 // advance, hence the placement of the loop-exit test and the measurement
503 // of the next glyph
504 while (true) {
505 gfxTextRun::DetailedGlyph* details = detailedGlyphs.AppendElement();
506 details->mGlyphID = glyphs[glyphStart];
507 details->mOffset.y = -positions[glyphStart].y * appUnitsPerDevUnit;
508 details->mAdvance = advance;
509 if (++glyphStart >= glyphEnd) {
510 break;
511 }
512 if (glyphStart < numGlyphs - 1) {
513 toNextGlyph = positions[glyphStart + 1].x - positions[glyphStart].x;
514 } else {
515 toNextGlyph = positions[0].x + runWidth - positions[glyphStart].x;
516 }
517 advance = int32_t(toNextGlyph * appUnitsPerDevUnit);
518 }
519
520 aShapedText->SetDetailedGlyphs(aOffset + baseCharIndex,
521 detailedGlyphs.Length(),
522 detailedGlyphs.Elements());
523
524 detailedGlyphs.Clear();
525 }
526
527 // the rest of the chars in the group are ligature continuations, no
528 // associated glyphs
529 while (++baseCharIndex != endCharIndex && baseCharIndex < wordLength) {
530 CompressedGlyph& shapedTextGlyph = charGlyphs[baseCharIndex];
531 NS_ASSERTION(!shapedTextGlyph.IsSimpleGlyph(),
532 "overwriting a simple glyph");
533 shapedTextGlyph.SetComplex(inOrder && shapedTextGlyph.IsClusterStart(),
534 false);
535 }
536
537 glyphStart = glyphEnd;
538 charStart = charEnd;
539 }
540
541 return NS_OK;
542 }
543
544 #undef SMALL_GLYPH_RUN
545
546 // Construct the font attribute descriptor that we'll apply by default when
547 // creating a CTFontRef. This will turn off line-edge swashes by default,
548 // because we don't know the actual line breaks when doing glyph shaping.
549
550 // We also cache feature descriptors for shaping with disabled ligatures, and
551 // for buggy Indic AAT font workarounds, created on an as-needed basis.
552
553 #define MAX_FEATURES 5 // max used by any of our Get*Descriptor functions
554
CreateFontFeaturesDescriptor(const std::pair<SInt16,SInt16> * aFeatures,size_t aCount)555 CTFontDescriptorRef gfxCoreTextShaper::CreateFontFeaturesDescriptor(
556 const std::pair<SInt16, SInt16>* aFeatures, size_t aCount) {
557 MOZ_ASSERT(aCount <= MAX_FEATURES);
558
559 CFDictionaryRef featureSettings[MAX_FEATURES];
560
561 for (size_t i = 0; i < aCount; i++) {
562 CFNumberRef type = ::CFNumberCreate(
563 kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].first);
564 CFNumberRef selector = ::CFNumberCreate(
565 kCFAllocatorDefault, kCFNumberSInt16Type, &aFeatures[i].second);
566
567 CFTypeRef keys[] = {kCTFontFeatureTypeIdentifierKey,
568 kCTFontFeatureSelectorIdentifierKey};
569 CFTypeRef values[] = {type, selector};
570 featureSettings[i] = ::CFDictionaryCreate(
571 kCFAllocatorDefault, (const void**)keys, (const void**)values,
572 ArrayLength(keys), &kCFTypeDictionaryKeyCallBacks,
573 &kCFTypeDictionaryValueCallBacks);
574
575 ::CFRelease(selector);
576 ::CFRelease(type);
577 }
578
579 CFArrayRef featuresArray =
580 ::CFArrayCreate(kCFAllocatorDefault, (const void**)featureSettings,
581 aCount, // not ArrayLength(featureSettings), as we
582 // may not have used all the allocated slots
583 &kCFTypeArrayCallBacks);
584
585 for (size_t i = 0; i < aCount; i++) {
586 ::CFRelease(featureSettings[i]);
587 }
588
589 const CFTypeRef attrKeys[] = {kCTFontFeatureSettingsAttribute};
590 const CFTypeRef attrValues[] = {featuresArray};
591 CFDictionaryRef attributesDict = ::CFDictionaryCreate(
592 kCFAllocatorDefault, (const void**)attrKeys, (const void**)attrValues,
593 ArrayLength(attrKeys), &kCFTypeDictionaryKeyCallBacks,
594 &kCFTypeDictionaryValueCallBacks);
595 ::CFRelease(featuresArray);
596
597 CTFontDescriptorRef descriptor =
598 ::CTFontDescriptorCreateWithAttributes(attributesDict);
599 ::CFRelease(attributesDict);
600
601 return descriptor;
602 }
603
GetFeaturesDescriptor(FeatureFlags aFeatureFlags)604 CTFontDescriptorRef gfxCoreTextShaper::GetFeaturesDescriptor(
605 FeatureFlags aFeatureFlags) {
606 MOZ_ASSERT(aFeatureFlags < kMaxFontInstances);
607 if (!sFeaturesDescriptor[aFeatureFlags]) {
608 typedef std::pair<SInt16, SInt16> FeatT;
609 AutoTArray<FeatT, MAX_FEATURES> features;
610 features.AppendElement(
611 FeatT(kSmartSwashType, kLineFinalSwashesOffSelector));
612 if ((aFeatureFlags & kIndicFeatures) == 0) {
613 features.AppendElement(
614 FeatT(kSmartSwashType, kLineInitialSwashesOffSelector));
615 }
616 if (aFeatureFlags & kAddSmallCaps) {
617 features.AppendElement(FeatT(kLetterCaseType, kSmallCapsSelector));
618 features.AppendElement(
619 FeatT(kLowerCaseType, kLowerCaseSmallCapsSelector));
620 }
621 if (aFeatureFlags & kDisableLigatures) {
622 features.AppendElement(
623 FeatT(kLigaturesType, kCommonLigaturesOffSelector));
624 }
625 MOZ_ASSERT(features.Length() <= MAX_FEATURES);
626 sFeaturesDescriptor[aFeatureFlags] =
627 CreateFontFeaturesDescriptor(features.Elements(), features.Length());
628 }
629 return sFeaturesDescriptor[aFeatureFlags];
630 }
631
CreateCTFontWithFeatures(CGFloat aSize,CTFontDescriptorRef aDescriptor)632 CTFontRef gfxCoreTextShaper::CreateCTFontWithFeatures(
633 CGFloat aSize, CTFontDescriptorRef aDescriptor) {
634 const gfxFontEntry* fe = mFont->GetFontEntry();
635 bool isInstalledFont = !fe->IsUserFont() || fe->IsLocalUserFont();
636 CGFontRef cgFont = static_cast<gfxMacFont*>(mFont)->GetCGFontRef();
637 return gfxMacFont::CreateCTFontFromCGFontWithVariations(
638 cgFont, aSize, isInstalledFont, aDescriptor);
639 }
640
Shutdown()641 void gfxCoreTextShaper::Shutdown() // [static]
642 {
643 for (size_t i = 0; i < kMaxFontInstances; i++) {
644 if (sFeaturesDescriptor[i] != nullptr) {
645 ::CFRelease(sFeaturesDescriptor[i]);
646 sFeaturesDescriptor[i] = nullptr;
647 }
648 }
649 }
650