1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3
4 // Copyright 2006, 2010 Google Inc. All Rights Reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met:
9 //
10 // * Redistributions of source code must retain the above copyright
11 // notice, this list of conditions and the following disclaimer.
12 // * Redistributions in binary form must reproduce the above
13 // copyright notice, this list of conditions and the following disclaimer
14 // in the documentation and/or other materials provided with the
15 // distribution.
16 // * Neither the name of Google Inc. nor the names of its
17 // contributors may be used to endorse or promote products derived from
18 // this software without specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32 // Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
33
34 // This file is derived from the following files in
35 // toolkit/crashreporter/google-breakpad:
36 // src/common/dwarf/types.h
37 // src/common/dwarf/dwarf2enums.h
38 // src/common/dwarf/bytereader.h
39 // src/common/dwarf_cfi_to_module.h
40 // src/common/dwarf/dwarf2reader.h
41
42 #ifndef LulDwarfExt_h
43 #define LulDwarfExt_h
44
45 #include "LulDwarfSummariser.h"
46
47 #include "mozilla/Assertions.h"
48
49 #include <stdint.h>
50 #include <string>
51
52 typedef signed char int8;
53 typedef short int16;
54 typedef int int32;
55 typedef long long int64;
56
57 typedef unsigned char uint8;
58 typedef unsigned short uint16;
59 typedef unsigned int uint32;
60 typedef unsigned long long uint64;
61
62 #ifdef __PTRDIFF_TYPE__
63 typedef __PTRDIFF_TYPE__ intptr;
64 typedef unsigned __PTRDIFF_TYPE__ uintptr;
65 #else
66 # error "Can't find pointer-sized integral types."
67 #endif
68
69 namespace lul {
70
71 class UniqueString;
72
73 // Exception handling frame description pointer formats, as described
74 // by the Linux Standard Base Core Specification 4.0, section 11.5,
75 // DWARF Extensions.
76 enum DwarfPointerEncoding {
77 DW_EH_PE_absptr = 0x00,
78 DW_EH_PE_omit = 0xff,
79 DW_EH_PE_uleb128 = 0x01,
80 DW_EH_PE_udata2 = 0x02,
81 DW_EH_PE_udata4 = 0x03,
82 DW_EH_PE_udata8 = 0x04,
83 DW_EH_PE_sleb128 = 0x09,
84 DW_EH_PE_sdata2 = 0x0A,
85 DW_EH_PE_sdata4 = 0x0B,
86 DW_EH_PE_sdata8 = 0x0C,
87 DW_EH_PE_pcrel = 0x10,
88 DW_EH_PE_textrel = 0x20,
89 DW_EH_PE_datarel = 0x30,
90 DW_EH_PE_funcrel = 0x40,
91 DW_EH_PE_aligned = 0x50,
92
93 // The GNU toolchain sources define this enum value as well,
94 // simply to help classify the lower nybble values into signed and
95 // unsigned groups.
96 DW_EH_PE_signed = 0x08,
97
98 // This is not documented in LSB 4.0, but it is used in both the
99 // Linux and OS X toolchains. It can be added to any other
100 // encoding (except DW_EH_PE_aligned), and indicates that the
101 // encoded value represents the address at which the true address
102 // is stored, not the true address itself.
103 DW_EH_PE_indirect = 0x80
104 };
105
106 // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN
107 // because it conflicts with a macro
108 enum Endianness { ENDIANNESS_BIG, ENDIANNESS_LITTLE };
109
110 // A ByteReader knows how to read single- and multi-byte values of
111 // various endiannesses, sizes, and encodings, as used in DWARF
112 // debugging information and Linux C++ exception handling data.
113 class ByteReader {
114 public:
115 // Construct a ByteReader capable of reading one-, two-, four-, and
116 // eight-byte values according to ENDIANNESS, absolute machine-sized
117 // addresses, DWARF-style "initial length" values, signed and
118 // unsigned LEB128 numbers, and Linux C++ exception handling data's
119 // encoded pointers.
120 explicit ByteReader(enum Endianness endianness);
121 virtual ~ByteReader();
122
123 // Read a single byte from BUFFER and return it as an unsigned 8 bit
124 // number.
125 uint8 ReadOneByte(const char* buffer) const;
126
127 // Read two bytes from BUFFER and return them as an unsigned 16 bit
128 // number, using this ByteReader's endianness.
129 uint16 ReadTwoBytes(const char* buffer) const;
130
131 // Read four bytes from BUFFER and return them as an unsigned 32 bit
132 // number, using this ByteReader's endianness. This function returns
133 // a uint64 so that it is compatible with ReadAddress and
134 // ReadOffset. The number it returns will never be outside the range
135 // of an unsigned 32 bit integer.
136 uint64 ReadFourBytes(const char* buffer) const;
137
138 // Read eight bytes from BUFFER and return them as an unsigned 64
139 // bit number, using this ByteReader's endianness.
140 uint64 ReadEightBytes(const char* buffer) const;
141
142 // Read an unsigned LEB128 (Little Endian Base 128) number from
143 // BUFFER and return it as an unsigned 64 bit integer. Set LEN to
144 // the number of bytes read.
145 //
146 // The unsigned LEB128 representation of an integer N is a variable
147 // number of bytes:
148 //
149 // - If N is between 0 and 0x7f, then its unsigned LEB128
150 // representation is a single byte whose value is N.
151 //
152 // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
153 // 0x80, followed by the unsigned LEB128 representation of N /
154 // 128, rounded towards negative infinity.
155 //
156 // In other words, we break VALUE into groups of seven bits, put
157 // them in little-endian order, and then write them as eight-bit
158 // bytes with the high bit on all but the last.
159 uint64 ReadUnsignedLEB128(const char* buffer, size_t* len) const;
160
161 // Read a signed LEB128 number from BUFFER and return it as an
162 // signed 64 bit integer. Set LEN to the number of bytes read.
163 //
164 // The signed LEB128 representation of an integer N is a variable
165 // number of bytes:
166 //
167 // - If N is between -0x40 and 0x3f, then its signed LEB128
168 // representation is a single byte whose value is N in two's
169 // complement.
170 //
171 // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
172 // 0x80, followed by the signed LEB128 representation of N / 128,
173 // rounded towards negative infinity.
174 //
175 // In other words, we break VALUE into groups of seven bits, put
176 // them in little-endian order, and then write them as eight-bit
177 // bytes with the high bit on all but the last.
178 int64 ReadSignedLEB128(const char* buffer, size_t* len) const;
179
180 // Indicate that addresses on this architecture are SIZE bytes long. SIZE
181 // must be either 4 or 8. (DWARF allows addresses to be any number of
182 // bytes in length from 1 to 255, but we only support 32- and 64-bit
183 // addresses at the moment.) You must call this before using the
184 // ReadAddress member function.
185 //
186 // For data in a .debug_info section, or something that .debug_info
187 // refers to like line number or macro data, the compilation unit
188 // header's address_size field indicates the address size to use. Call
189 // frame information doesn't indicate its address size (a shortcoming of
190 // the spec); you must supply the appropriate size based on the
191 // architecture of the target machine.
192 void SetAddressSize(uint8 size);
193
194 // Return the current address size, in bytes. This is either 4,
195 // indicating 32-bit addresses, or 8, indicating 64-bit addresses.
AddressSize()196 uint8 AddressSize() const { return address_size_; }
197
198 // Read an address from BUFFER and return it as an unsigned 64 bit
199 // integer, respecting this ByteReader's endianness and address size. You
200 // must call SetAddressSize before calling this function.
201 uint64 ReadAddress(const char* buffer) const;
202
203 // DWARF actually defines two slightly different formats: 32-bit DWARF
204 // and 64-bit DWARF. This is *not* related to the size of registers or
205 // addresses on the target machine; it refers only to the size of section
206 // offsets and data lengths appearing in the DWARF data. One only needs
207 // 64-bit DWARF when the debugging data itself is larger than 4GiB.
208 // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the
209 // debugging data itself is very large.
210 //
211 // DWARF information identifies itself as 32-bit or 64-bit DWARF: each
212 // compilation unit and call frame information entry begins with an
213 // "initial length" field, which, in addition to giving the length of the
214 // data, also indicates the size of section offsets and lengths appearing
215 // in that data. The ReadInitialLength member function, below, reads an
216 // initial length and sets the ByteReader's offset size as a side effect.
217 // Thus, in the normal process of reading DWARF data, the appropriate
218 // offset size is set automatically. So, you should only need to call
219 // SetOffsetSize if you are using the same ByteReader to jump from the
220 // midst of one block of DWARF data into another.
221
222 // Read a DWARF "initial length" field from START, and return it as
223 // an unsigned 64 bit integer, respecting this ByteReader's
224 // endianness. Set *LEN to the length of the initial length in
225 // bytes, either four or twelve. As a side effect, set this
226 // ByteReader's offset size to either 4 (if we see a 32-bit DWARF
227 // initial length) or 8 (if we see a 64-bit DWARF initial length).
228 //
229 // A DWARF initial length is either:
230 //
231 // - a byte count stored as an unsigned 32-bit value less than
232 // 0xffffff00, indicating that the data whose length is being
233 // measured uses the 32-bit DWARF format, or
234 //
235 // - The 32-bit value 0xffffffff, followed by a 64-bit byte count,
236 // indicating that the data whose length is being measured uses
237 // the 64-bit DWARF format.
238 uint64 ReadInitialLength(const char* start, size_t* len);
239
240 // Read an offset from BUFFER and return it as an unsigned 64 bit
241 // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the
242 // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes
243 // long. You must call ReadInitialLength or SetOffsetSize before calling
244 // this function; see the comments above for details.
245 uint64 ReadOffset(const char* buffer) const;
246
247 // Return the current offset size, in bytes.
248 // A return value of 4 indicates that we are reading 32-bit DWARF.
249 // A return value of 8 indicates that we are reading 64-bit DWARF.
OffsetSize()250 uint8 OffsetSize() const { return offset_size_; }
251
252 // Indicate that section offsets and lengths are SIZE bytes long. SIZE
253 // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF).
254 // Usually, you should not call this function yourself; instead, let a
255 // call to ReadInitialLength establish the data's offset size
256 // automatically.
257 void SetOffsetSize(uint8 size);
258
259 // The Linux C++ ABI uses a variant of DWARF call frame information
260 // for exception handling. This data is included in the program's
261 // address space as the ".eh_frame" section, and intepreted at
262 // runtime to walk the stack, find exception handlers, and run
263 // cleanup code. The format is mostly the same as DWARF CFI, with
264 // some adjustments made to provide the additional
265 // exception-handling data, and to make the data easier to work with
266 // in memory --- for example, to allow it to be placed in read-only
267 // memory even when describing position-independent code.
268 //
269 // In particular, exception handling data can select a number of
270 // different encodings for pointers that appear in the data, as
271 // described by the DwarfPointerEncoding enum. There are actually
272 // four axes(!) to the encoding:
273 //
274 // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use
275 // the DWARF LEB128 encoding.
276 //
277 // - The pointer's signedness: pointers can be signed or unsigned.
278 //
279 // - The pointer's base address: the data stored in the exception
280 // handling data can be the actual address (that is, an absolute
281 // pointer), or relative to one of a number of different base
282 // addreses --- including that of the encoded pointer itself, for
283 // a form of "pc-relative" addressing.
284 //
285 // - The pointer may be indirect: it may be the address where the
286 // true pointer is stored. (This is used to refer to things via
287 // global offset table entries, program linkage table entries, or
288 // other tricks used in position-independent code.)
289 //
290 // There are also two options that fall outside that matrix
291 // altogether: the pointer may be omitted, or it may have padding to
292 // align it on an appropriate address boundary. (That last option
293 // may seem like it should be just another axis, but it is not.)
294
295 // Indicate that the exception handling data is loaded starting at
296 // SECTION_BASE, and that the start of its buffer in our own memory
297 // is BUFFER_BASE. This allows us to find the address that a given
298 // byte in our buffer would have when loaded into the program the
299 // data describes. We need this to resolve DW_EH_PE_pcrel pointers.
300 void SetCFIDataBase(uint64 section_base, const char* buffer_base);
301
302 // Indicate that the base address of the program's ".text" section
303 // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers.
304 void SetTextBase(uint64 text_base);
305
306 // Indicate that the base address for DW_EH_PE_datarel pointers is
307 // DATA_BASE. The proper value depends on the ABI; it is usually the
308 // address of the global offset table, held in a designated register in
309 // position-independent code. You will need to look at the startup code
310 // for the target system to be sure. I tried; my eyes bled.
311 void SetDataBase(uint64 data_base);
312
313 // Indicate that the base address for the FDE we are processing is
314 // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel
315 // pointers. (This encoding does not seem to be used by the GNU
316 // toolchain.)
317 void SetFunctionBase(uint64 function_base);
318
319 // Indicate that we are no longer processing any FDE, so any use of
320 // a DW_EH_PE_funcrel encoding is an error.
321 void ClearFunctionBase();
322
323 // Return true if ENCODING is a valid pointer encoding.
324 bool ValidEncoding(DwarfPointerEncoding encoding) const;
325
326 // Return true if we have all the information we need to read a
327 // pointer that uses ENCODING. This checks that the appropriate
328 // SetFooBase function for ENCODING has been called.
329 bool UsableEncoding(DwarfPointerEncoding encoding) const;
330
331 // Read an encoded pointer from BUFFER using ENCODING; return the
332 // absolute address it represents, and set *LEN to the pointer's
333 // length in bytes, including any padding for aligned pointers.
334 //
335 // This function calls 'abort' if ENCODING is invalid or refers to a
336 // base address this reader hasn't been given, so you should check
337 // with ValidEncoding and UsableEncoding first if you would rather
338 // die in a more helpful way.
339 uint64 ReadEncodedPointer(const char* buffer, DwarfPointerEncoding encoding,
340 size_t* len) const;
341
342 private:
343 // Function pointer type for our address and offset readers.
344 typedef uint64 (ByteReader::*AddressReader)(const char*) const;
345
346 // Read an offset from BUFFER and return it as an unsigned 64 bit
347 // integer. DWARF2/3 define offsets as either 4 or 8 bytes,
348 // generally depending on the amount of DWARF2/3 info present.
349 // This function pointer gets set by SetOffsetSize.
350 AddressReader offset_reader_;
351
352 // Read an address from BUFFER and return it as an unsigned 64 bit
353 // integer. DWARF2/3 allow addresses to be any size from 0-255
354 // bytes currently. Internally we support 4 and 8 byte addresses,
355 // and will CHECK on anything else.
356 // This function pointer gets set by SetAddressSize.
357 AddressReader address_reader_;
358
359 Endianness endian_;
360 uint8 address_size_;
361 uint8 offset_size_;
362
363 // Base addresses for Linux C++ exception handling data's encoded pointers.
364 bool have_section_base_, have_text_base_, have_data_base_;
365 bool have_function_base_;
366 uint64 section_base_;
367 uint64 text_base_, data_base_, function_base_;
368 const char* buffer_base_;
369 };
370
ReadOneByte(const char * buffer)371 inline uint8 ByteReader::ReadOneByte(const char* buffer) const {
372 return buffer[0];
373 }
374
ReadTwoBytes(const char * signed_buffer)375 inline uint16 ByteReader::ReadTwoBytes(const char* signed_buffer) const {
376 const unsigned char* buffer =
377 reinterpret_cast<const unsigned char*>(signed_buffer);
378 const uint16 buffer0 = buffer[0];
379 const uint16 buffer1 = buffer[1];
380 if (endian_ == ENDIANNESS_LITTLE) {
381 return buffer0 | buffer1 << 8;
382 } else {
383 return buffer1 | buffer0 << 8;
384 }
385 }
386
ReadFourBytes(const char * signed_buffer)387 inline uint64 ByteReader::ReadFourBytes(const char* signed_buffer) const {
388 const unsigned char* buffer =
389 reinterpret_cast<const unsigned char*>(signed_buffer);
390 const uint32 buffer0 = buffer[0];
391 const uint32 buffer1 = buffer[1];
392 const uint32 buffer2 = buffer[2];
393 const uint32 buffer3 = buffer[3];
394 if (endian_ == ENDIANNESS_LITTLE) {
395 return buffer0 | buffer1 << 8 | buffer2 << 16 | buffer3 << 24;
396 } else {
397 return buffer3 | buffer2 << 8 | buffer1 << 16 | buffer0 << 24;
398 }
399 }
400
ReadEightBytes(const char * signed_buffer)401 inline uint64 ByteReader::ReadEightBytes(const char* signed_buffer) const {
402 const unsigned char* buffer =
403 reinterpret_cast<const unsigned char*>(signed_buffer);
404 const uint64 buffer0 = buffer[0];
405 const uint64 buffer1 = buffer[1];
406 const uint64 buffer2 = buffer[2];
407 const uint64 buffer3 = buffer[3];
408 const uint64 buffer4 = buffer[4];
409 const uint64 buffer5 = buffer[5];
410 const uint64 buffer6 = buffer[6];
411 const uint64 buffer7 = buffer[7];
412 if (endian_ == ENDIANNESS_LITTLE) {
413 return buffer0 | buffer1 << 8 | buffer2 << 16 | buffer3 << 24 |
414 buffer4 << 32 | buffer5 << 40 | buffer6 << 48 | buffer7 << 56;
415 } else {
416 return buffer7 | buffer6 << 8 | buffer5 << 16 | buffer4 << 24 |
417 buffer3 << 32 | buffer2 << 40 | buffer1 << 48 | buffer0 << 56;
418 }
419 }
420
421 // Read an unsigned LEB128 number. Each byte contains 7 bits of
422 // information, plus one bit saying whether the number continues or
423 // not.
424
ReadUnsignedLEB128(const char * buffer,size_t * len)425 inline uint64 ByteReader::ReadUnsignedLEB128(const char* buffer,
426 size_t* len) const {
427 uint64 result = 0;
428 size_t num_read = 0;
429 unsigned int shift = 0;
430 unsigned char byte;
431
432 do {
433 byte = *buffer++;
434 num_read++;
435
436 result |= (static_cast<uint64>(byte & 0x7f)) << shift;
437
438 shift += 7;
439
440 } while (byte & 0x80);
441
442 *len = num_read;
443
444 return result;
445 }
446
447 // Read a signed LEB128 number. These are like regular LEB128
448 // numbers, except the last byte may have a sign bit set.
449
ReadSignedLEB128(const char * buffer,size_t * len)450 inline int64 ByteReader::ReadSignedLEB128(const char* buffer,
451 size_t* len) const {
452 int64 result = 0;
453 unsigned int shift = 0;
454 size_t num_read = 0;
455 unsigned char byte;
456
457 do {
458 byte = *buffer++;
459 num_read++;
460 result |= (static_cast<uint64>(byte & 0x7f) << shift);
461 shift += 7;
462 } while (byte & 0x80);
463
464 if ((shift < 8 * sizeof(result)) && (byte & 0x40))
465 result |= -((static_cast<int64>(1)) << shift);
466 *len = num_read;
467 return result;
468 }
469
ReadOffset(const char * buffer)470 inline uint64 ByteReader::ReadOffset(const char* buffer) const {
471 MOZ_ASSERT(this->offset_reader_);
472 return (this->*offset_reader_)(buffer);
473 }
474
ReadAddress(const char * buffer)475 inline uint64 ByteReader::ReadAddress(const char* buffer) const {
476 MOZ_ASSERT(this->address_reader_);
477 return (this->*address_reader_)(buffer);
478 }
479
SetCFIDataBase(uint64 section_base,const char * buffer_base)480 inline void ByteReader::SetCFIDataBase(uint64 section_base,
481 const char* buffer_base) {
482 section_base_ = section_base;
483 buffer_base_ = buffer_base;
484 have_section_base_ = true;
485 }
486
SetTextBase(uint64 text_base)487 inline void ByteReader::SetTextBase(uint64 text_base) {
488 text_base_ = text_base;
489 have_text_base_ = true;
490 }
491
SetDataBase(uint64 data_base)492 inline void ByteReader::SetDataBase(uint64 data_base) {
493 data_base_ = data_base;
494 have_data_base_ = true;
495 }
496
SetFunctionBase(uint64 function_base)497 inline void ByteReader::SetFunctionBase(uint64 function_base) {
498 function_base_ = function_base;
499 have_function_base_ = true;
500 }
501
ClearFunctionBase()502 inline void ByteReader::ClearFunctionBase() { have_function_base_ = false; }
503
504 // (derived from)
505 // dwarf_cfi_to_module.h: Define the DwarfCFIToModule class, which
506 // accepts parsed DWARF call frame info and adds it to a Summariser object.
507
508 // This class is a reader for DWARF's Call Frame Information. CFI
509 // describes how to unwind stack frames --- even for functions that do
510 // not follow fixed conventions for saving registers, whose frame size
511 // varies as they execute, etc.
512 //
513 // CFI describes, at each machine instruction, how to compute the
514 // stack frame's base address, how to find the return address, and
515 // where to find the saved values of the caller's registers (if the
516 // callee has stashed them somewhere to free up the registers for its
517 // own use).
518 //
519 // For example, suppose we have a function whose machine code looks
520 // like this (imagine an assembly language that looks like C, for a
521 // machine with 32-bit registers, and a stack that grows towards lower
522 // addresses):
523 //
524 // func: ; entry point; return address at sp
525 // func+0: sp = sp - 16 ; allocate space for stack frame
526 // func+1: sp[12] = r0 ; save r0 at sp+12
527 // ... ; other code, not frame-related
528 // func+10: sp -= 4; *sp = x ; push some x on the stack
529 // ... ; other code, not frame-related
530 // func+20: r0 = sp[16] ; restore saved r0
531 // func+21: sp += 20 ; pop whole stack frame
532 // func+22: pc = *sp; sp += 4 ; pop return address and jump to it
533 //
534 // DWARF CFI is (a very compressed representation of) a table with a
535 // row for each machine instruction address and a column for each
536 // register showing how to restore it, if possible.
537 //
538 // A special column named "CFA", for "Canonical Frame Address", tells how
539 // to compute the base address of the frame; registers' entries may
540 // refer to the CFA in describing where the registers are saved.
541 //
542 // Another special column, named "RA", represents the return address.
543 //
544 // For example, here is a complete (uncompressed) table describing the
545 // function above:
546 //
547 // insn cfa r0 r1 ... ra
548 // =======================================
549 // func+0: sp cfa[0]
550 // func+1: sp+16 cfa[0]
551 // func+2: sp+16 cfa[-4] cfa[0]
552 // func+11: sp+20 cfa[-4] cfa[0]
553 // func+21: sp+20 cfa[0]
554 // func+22: sp cfa[0]
555 //
556 // Some things to note here:
557 //
558 // - Each row describes the state of affairs *before* executing the
559 // instruction at the given address. Thus, the row for func+0
560 // describes the state before we allocate the stack frame. In the
561 // next row, the formula for computing the CFA has changed,
562 // reflecting that allocation.
563 //
564 // - The other entries are written in terms of the CFA; this allows
565 // them to remain unchanged as the stack pointer gets bumped around.
566 // For example, the rule for recovering the return address (the "ra"
567 // column) remains unchanged throughout the function, even as the
568 // stack pointer takes on three different offsets from the return
569 // address.
570 //
571 // - Although we haven't shown it, most calling conventions designate
572 // "callee-saves" and "caller-saves" registers. The callee must
573 // preserve the values of callee-saves registers; if it uses them,
574 // it must save their original values somewhere, and restore them
575 // before it returns. In contrast, the callee is free to trash
576 // caller-saves registers; if the callee uses these, it will
577 // probably not bother to save them anywhere, and the CFI will
578 // probably mark their values as "unrecoverable".
579 //
580 // (However, since the caller cannot assume the callee was going to
581 // save them, caller-saves registers are probably dead in the caller
582 // anyway, so compilers usually don't generate CFA for caller-saves
583 // registers.)
584 //
585 // - Exactly where the CFA points is a matter of convention that
586 // depends on the architecture and ABI in use. In the example, the
587 // CFA is the value the stack pointer had upon entry to the
588 // function, pointing at the saved return address. But on the x86,
589 // the call frame information generated by GCC follows the
590 // convention that the CFA is the address *after* the saved return
591 // address.
592 //
593 // But by definition, the CFA remains constant throughout the
594 // lifetime of the frame. This makes it a useful value for other
595 // columns to refer to. It is also gives debuggers a useful handle
596 // for identifying a frame.
597 //
598 // If you look at the table above, you'll notice that a given entry is
599 // often the same as the one immediately above it: most instructions
600 // change only one or two aspects of the stack frame, if they affect
601 // it at all. The DWARF format takes advantage of this fact, and
602 // reduces the size of the data by mentioning only the addresses and
603 // columns at which changes take place. So for the above, DWARF CFI
604 // data would only actually mention the following:
605 //
606 // insn cfa r0 r1 ... ra
607 // =======================================
608 // func+0: sp cfa[0]
609 // func+1: sp+16
610 // func+2: cfa[-4]
611 // func+11: sp+20
612 // func+21: r0
613 // func+22: sp
614 //
615 // In fact, this is the way the parser reports CFI to the consumer: as
616 // a series of statements of the form, "At address X, column Y changed
617 // to Z," and related conventions for describing the initial state.
618 //
619 // Naturally, it would be impractical to have to scan the entire
620 // program's CFI, noting changes as we go, just to recover the
621 // unwinding rules in effect at one particular instruction. To avoid
622 // this, CFI data is grouped into "entries", each of which covers a
623 // specified range of addresses and begins with a complete statement
624 // of the rules for all recoverable registers at that starting
625 // address. Each entry typically covers a single function.
626 //
627 // Thus, to compute the contents of a given row of the table --- that
628 // is, rules for recovering the CFA, RA, and registers at a given
629 // instruction --- the consumer should find the entry that covers that
630 // instruction's address, start with the initial state supplied at the
631 // beginning of the entry, and work forward until it has processed all
632 // the changes up to and including those for the present instruction.
633 //
634 // There are seven kinds of rules that can appear in an entry of the
635 // table:
636 //
637 // - "undefined": The given register is not preserved by the callee;
638 // its value cannot be recovered.
639 //
640 // - "same value": This register has the same value it did in the callee.
641 //
642 // - offset(N): The register is saved at offset N from the CFA.
643 //
644 // - val_offset(N): The value the register had in the caller is the
645 // CFA plus offset N. (This is usually only useful for describing
646 // the stack pointer.)
647 //
648 // - register(R): The register's value was saved in another register R.
649 //
650 // - expression(E): Evaluating the DWARF expression E using the
651 // current frame's registers' values yields the address at which the
652 // register was saved.
653 //
654 // - val_expression(E): Evaluating the DWARF expression E using the
655 // current frame's registers' values yields the value the register
656 // had in the caller.
657
658 class CallFrameInfo {
659 public:
660 // The different kinds of entries one finds in CFI. Used internally,
661 // and for error reporting.
662 enum EntryKind { kUnknown, kCIE, kFDE, kTerminator };
663
664 // The handler class to which the parser hands the parsed call frame
665 // information. Defined below.
666 class Handler;
667
668 // A reporter class, which CallFrameInfo uses to report errors
669 // encountered while parsing call frame information. Defined below.
670 class Reporter;
671
672 // Create a DWARF CFI parser. BUFFER points to the contents of the
673 // .debug_frame section to parse; BUFFER_LENGTH is its length in bytes.
674 // REPORTER is an error reporter the parser should use to report
675 // problems. READER is a ByteReader instance that has the endianness and
676 // address size set properly. Report the data we find to HANDLER.
677 //
678 // This class can also parse Linux C++ exception handling data, as found
679 // in '.eh_frame' sections. This data is a variant of DWARF CFI that is
680 // placed in loadable segments so that it is present in the program's
681 // address space, and is interpreted by the C++ runtime to search the
682 // call stack for a handler interested in the exception being thrown,
683 // actually pop the frames, and find cleanup code to run.
684 //
685 // There are two differences between the call frame information described
686 // in the DWARF standard and the exception handling data Linux places in
687 // the .eh_frame section:
688 //
689 // - Exception handling data uses uses a different format for call frame
690 // information entry headers. The distinguished CIE id, the way FDEs
691 // refer to their CIEs, and the way the end of the series of entries is
692 // determined are all slightly different.
693 //
694 // If the constructor's EH_FRAME argument is true, then the
695 // CallFrameInfo parses the entry headers as Linux C++ exception
696 // handling data. If EH_FRAME is false or omitted, the CallFrameInfo
697 // parses standard DWARF call frame information.
698 //
699 // - Linux C++ exception handling data uses CIE augmentation strings
700 // beginning with 'z' to specify the presence of additional data after
701 // the CIE and FDE headers and special encodings used for addresses in
702 // frame description entries.
703 //
704 // CallFrameInfo can handle 'z' augmentations in either DWARF CFI or
705 // exception handling data if you have supplied READER with the base
706 // addresses needed to interpret the pointer encodings that 'z'
707 // augmentations can specify. See the ByteReader interface for details
708 // about the base addresses. See the CallFrameInfo::Handler interface
709 // for details about the additional information one might find in
710 // 'z'-augmented data.
711 //
712 // Thus:
713 //
714 // - If you are parsing standard DWARF CFI, as found in a .debug_frame
715 // section, you should pass false for the EH_FRAME argument, or omit
716 // it, and you need not worry about providing READER with the
717 // additional base addresses.
718 //
719 // - If you want to parse Linux C++ exception handling data from a
720 // .eh_frame section, you should pass EH_FRAME as true, and call
721 // READER's Set*Base member functions before calling our Start method.
722 //
723 // - If you want to parse DWARF CFI that uses the 'z' augmentations
724 // (although I don't think any toolchain ever emits such data), you
725 // could pass false for EH_FRAME, but call READER's Set*Base members.
726 //
727 // The extensions the Linux C++ ABI makes to DWARF for exception
728 // handling are described here, rather poorly:
729 // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/dwarfext.html
730 // http://refspecs.linux-foundation.org/LSB_4.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
731 //
732 // The mechanics of C++ exception handling, personality routines,
733 // and language-specific data areas are described here, rather nicely:
734 // http://www.codesourcery.com/public/cxx-abi/abi-eh.html
735
736 CallFrameInfo(const char* buffer, size_t buffer_length, ByteReader* reader,
737 Handler* handler, Reporter* reporter, bool eh_frame = false)
buffer_(buffer)738 : buffer_(buffer),
739 buffer_length_(buffer_length),
740 reader_(reader),
741 handler_(handler),
742 reporter_(reporter),
743 eh_frame_(eh_frame) {}
744
~CallFrameInfo()745 ~CallFrameInfo() {}
746
747 // Parse the entries in BUFFER, reporting what we find to HANDLER.
748 // Return true if we reach the end of the section successfully, or
749 // false if we encounter an error.
750 bool Start();
751
752 // Return the textual name of KIND. For error reporting.
753 static const char* KindName(EntryKind kind);
754
755 private:
756 struct CIE;
757
758 // A CFI entry, either an FDE or a CIE.
759 struct Entry {
760 // The starting offset of the entry in the section, for error
761 // reporting.
762 size_t offset;
763
764 // The start of this entry in the buffer.
765 const char* start;
766
767 // Which kind of entry this is.
768 //
769 // We want to be able to use this for error reporting even while we're
770 // in the midst of parsing. Error reporting code may assume that kind,
771 // offset, and start fields are valid, although kind may be kUnknown.
772 EntryKind kind;
773
774 // The end of this entry's common prologue (initial length and id), and
775 // the start of this entry's kind-specific fields.
776 const char* fields;
777
778 // The start of this entry's instructions.
779 const char* instructions;
780
781 // The address past the entry's last byte in the buffer. (Note that
782 // since offset points to the entry's initial length field, and the
783 // length field is the number of bytes after that field, this is not
784 // simply buffer_ + offset + length.)
785 const char* end;
786
787 // For both DWARF CFI and .eh_frame sections, this is the CIE id in a
788 // CIE, and the offset of the associated CIE in an FDE.
789 uint64 id;
790
791 // The CIE that applies to this entry, if we've parsed it. If this is a
792 // CIE, then this field points to this structure.
793 CIE* cie;
794 };
795
796 // A common information entry (CIE).
797 struct CIE : public Entry {
798 uint8 version; // CFI data version number
799 std::string augmentation; // vendor format extension markers
800 uint64 code_alignment_factor; // scale for code address adjustments
801 int data_alignment_factor; // scale for stack pointer adjustments
802 unsigned return_address_register; // which register holds the return addr
803
804 // True if this CIE includes Linux C++ ABI 'z' augmentation data.
805 bool has_z_augmentation;
806
807 // Parsed 'z' augmentation data. These are meaningful only if
808 // has_z_augmentation is true.
809 bool has_z_lsda; // The 'z' augmentation included 'L'.
810 bool has_z_personality; // The 'z' augmentation included 'P'.
811 bool has_z_signal_frame; // The 'z' augmentation included 'S'.
812
813 // If has_z_lsda is true, this is the encoding to be used for language-
814 // specific data area pointers in FDEs.
815 DwarfPointerEncoding lsda_encoding;
816
817 // If has_z_personality is true, this is the encoding used for the
818 // personality routine pointer in the augmentation data.
819 DwarfPointerEncoding personality_encoding;
820
821 // If has_z_personality is true, this is the address of the personality
822 // routine --- or, if personality_encoding & DW_EH_PE_indirect, the
823 // address where the personality routine's address is stored.
824 uint64 personality_address;
825
826 // This is the encoding used for addresses in the FDE header and
827 // in DW_CFA_set_loc instructions. This is always valid, whether
828 // or not we saw a 'z' augmentation string; its default value is
829 // DW_EH_PE_absptr, which is what normal DWARF CFI uses.
830 DwarfPointerEncoding pointer_encoding;
831 };
832
833 // A frame description entry (FDE).
834 struct FDE : public Entry {
835 uint64 address; // start address of described code
836 uint64 size; // size of described code, in bytes
837
838 // If cie->has_z_lsda is true, then this is the language-specific data
839 // area's address --- or its address's address, if cie->lsda_encoding
840 // has the DW_EH_PE_indirect bit set.
841 uint64 lsda_address;
842 };
843
844 // Internal use.
845 class Rule;
846 class UndefinedRule;
847 class SameValueRule;
848 class OffsetRule;
849 class ValOffsetRule;
850 class RegisterRule;
851 class ExpressionRule;
852 class ValExpressionRule;
853 class RuleMap;
854 class State;
855
856 // Parse the initial length and id of a CFI entry, either a CIE, an FDE,
857 // or a .eh_frame end-of-data mark. CURSOR points to the beginning of the
858 // data to parse. On success, populate ENTRY as appropriate, and return
859 // true. On failure, report the problem, and return false. Even if we
860 // return false, set ENTRY->end to the first byte after the entry if we
861 // were able to figure that out, or NULL if we weren't.
862 bool ReadEntryPrologue(const char* cursor, Entry* entry);
863
864 // Parse the fields of a CIE after the entry prologue, including any 'z'
865 // augmentation data. Assume that the 'Entry' fields of CIE are
866 // populated; use CIE->fields and CIE->end as the start and limit for
867 // parsing. On success, populate the rest of *CIE, and return true; on
868 // failure, report the problem and return false.
869 bool ReadCIEFields(CIE* cie);
870
871 // Parse the fields of an FDE after the entry prologue, including any 'z'
872 // augmentation data. Assume that the 'Entry' fields of *FDE are
873 // initialized; use FDE->fields and FDE->end as the start and limit for
874 // parsing. Assume that FDE->cie is fully initialized. On success,
875 // populate the rest of *FDE, and return true; on failure, report the
876 // problem and return false.
877 bool ReadFDEFields(FDE* fde);
878
879 // Report that ENTRY is incomplete, and return false. This is just a
880 // trivial wrapper for invoking reporter_->Incomplete; it provides a
881 // little brevity.
882 bool ReportIncomplete(Entry* entry);
883
884 // Return true if ENCODING has the DW_EH_PE_indirect bit set.
IsIndirectEncoding(DwarfPointerEncoding encoding)885 static bool IsIndirectEncoding(DwarfPointerEncoding encoding) {
886 return encoding & DW_EH_PE_indirect;
887 }
888
889 // The contents of the DWARF .debug_info section we're parsing.
890 const char* buffer_;
891 size_t buffer_length_;
892
893 // For reading multi-byte values with the appropriate endianness.
894 ByteReader* reader_;
895
896 // The handler to which we should report the data we find.
897 Handler* handler_;
898
899 // For reporting problems in the info we're parsing.
900 Reporter* reporter_;
901
902 // True if we are processing .eh_frame-format data.
903 bool eh_frame_;
904 };
905
906 // The handler class for CallFrameInfo. The a CFI parser calls the
907 // member functions of a handler object to report the data it finds.
908 class CallFrameInfo::Handler {
909 public:
910 // The pseudo-register number for the canonical frame address.
911 enum { kCFARegister = DW_REG_CFA };
912
Handler()913 Handler() {}
~Handler()914 virtual ~Handler() {}
915
916 // The parser has found CFI for the machine code at ADDRESS,
917 // extending for LENGTH bytes. OFFSET is the offset of the frame
918 // description entry in the section, for use in error messages.
919 // VERSION is the version number of the CFI format. AUGMENTATION is
920 // a string describing any producer-specific extensions present in
921 // the data. RETURN_ADDRESS is the number of the register that holds
922 // the address to which the function should return.
923 //
924 // Entry should return true to process this CFI, or false to skip to
925 // the next entry.
926 //
927 // The parser invokes Entry for each Frame Description Entry (FDE)
928 // it finds. The parser doesn't report Common Information Entries
929 // to the handler explicitly; instead, if the handler elects to
930 // process a given FDE, the parser reiterates the appropriate CIE's
931 // contents at the beginning of the FDE's rules.
932 virtual bool Entry(size_t offset, uint64 address, uint64 length,
933 uint8 version, const std::string& augmentation,
934 unsigned return_address) = 0;
935
936 // When the Entry function returns true, the parser calls these
937 // handler functions repeatedly to describe the rules for recovering
938 // registers at each instruction in the given range of machine code.
939 // Immediately after a call to Entry, the handler should assume that
940 // the rule for each callee-saves register is "unchanged" --- that
941 // is, that the register still has the value it had in the caller.
942 //
943 // If a *Rule function returns true, we continue processing this entry's
944 // instructions. If a *Rule function returns false, we stop evaluating
945 // instructions, and skip to the next entry. Either way, we call End
946 // before going on to the next entry.
947 //
948 // In all of these functions, if the REG parameter is kCFARegister, then
949 // the rule describes how to find the canonical frame address.
950 // kCFARegister may be passed as a BASE_REGISTER argument, meaning that
951 // the canonical frame address should be used as the base address for the
952 // computation. All other REG values will be positive.
953
954 // At ADDRESS, register REG's value is not recoverable.
955 virtual bool UndefinedRule(uint64 address, int reg) = 0;
956
957 // At ADDRESS, register REG's value is the same as that it had in
958 // the caller.
959 virtual bool SameValueRule(uint64 address, int reg) = 0;
960
961 // At ADDRESS, register REG has been saved at offset OFFSET from
962 // BASE_REGISTER.
963 virtual bool OffsetRule(uint64 address, int reg, int base_register,
964 long offset) = 0;
965
966 // At ADDRESS, the caller's value of register REG is the current
967 // value of BASE_REGISTER plus OFFSET. (This rule doesn't provide an
968 // address at which the register's value is saved.)
969 virtual bool ValOffsetRule(uint64 address, int reg, int base_register,
970 long offset) = 0;
971
972 // At ADDRESS, register REG has been saved in BASE_REGISTER. This differs
973 // from ValOffsetRule(ADDRESS, REG, BASE_REGISTER, 0), in that
974 // BASE_REGISTER is the "home" for REG's saved value: if you want to
975 // assign to a variable whose home is REG in the calling frame, you
976 // should put the value in BASE_REGISTER.
977 virtual bool RegisterRule(uint64 address, int reg, int base_register) = 0;
978
979 // At ADDRESS, the DWARF expression EXPRESSION yields the address at
980 // which REG was saved.
981 virtual bool ExpressionRule(uint64 address, int reg,
982 const std::string& expression) = 0;
983
984 // At ADDRESS, the DWARF expression EXPRESSION yields the caller's
985 // value for REG. (This rule doesn't provide an address at which the
986 // register's value is saved.)
987 virtual bool ValExpressionRule(uint64 address, int reg,
988 const std::string& expression) = 0;
989
990 // Indicate that the rules for the address range reported by the
991 // last call to Entry are complete. End should return true if
992 // everything is okay, or false if an error has occurred and parsing
993 // should stop.
994 virtual bool End() = 0;
995
996 // Handler functions for Linux C++ exception handling data. These are
997 // only called if the data includes 'z' augmentation strings.
998
999 // The Linux C++ ABI uses an extension of the DWARF CFI format to
1000 // walk the stack to propagate exceptions from the throw to the
1001 // appropriate catch, and do the appropriate cleanups along the way.
1002 // CFI entries used for exception handling have two additional data
1003 // associated with them:
1004 //
1005 // - The "language-specific data area" describes which exception
1006 // types the function has 'catch' clauses for, and indicates how
1007 // to go about re-entering the function at the appropriate catch
1008 // clause. If the exception is not caught, it describes the
1009 // destructors that must run before the frame is popped.
1010 //
1011 // - The "personality routine" is responsible for interpreting the
1012 // language-specific data area's contents, and deciding whether
1013 // the exception should continue to propagate down the stack,
1014 // perhaps after doing some cleanup for this frame, or whether the
1015 // exception will be caught here.
1016 //
1017 // In principle, the language-specific data area is opaque to
1018 // everybody but the personality routine. In practice, these values
1019 // may be useful or interesting to readers with extra context, and
1020 // we have to at least skip them anyway, so we might as well report
1021 // them to the handler.
1022
1023 // This entry's exception handling personality routine's address is
1024 // ADDRESS. If INDIRECT is true, then ADDRESS is the address at
1025 // which the routine's address is stored. The default definition for
1026 // this handler function simply returns true, allowing parsing of
1027 // the entry to continue.
PersonalityRoutine(uint64 address,bool indirect)1028 virtual bool PersonalityRoutine(uint64 address, bool indirect) {
1029 return true;
1030 }
1031
1032 // This entry's language-specific data area (LSDA) is located at
1033 // ADDRESS. If INDIRECT is true, then ADDRESS is the address at
1034 // which the area's address is stored. The default definition for
1035 // this handler function simply returns true, allowing parsing of
1036 // the entry to continue.
LanguageSpecificDataArea(uint64 address,bool indirect)1037 virtual bool LanguageSpecificDataArea(uint64 address, bool indirect) {
1038 return true;
1039 }
1040
1041 // This entry describes a signal trampoline --- this frame is the
1042 // caller of a signal handler. The default definition for this
1043 // handler function simply returns true, allowing parsing of the
1044 // entry to continue.
1045 //
1046 // The best description of the rationale for and meaning of signal
1047 // trampoline CFI entries seems to be in the GCC bug database:
1048 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26208
SignalHandler()1049 virtual bool SignalHandler() { return true; }
1050 };
1051
1052 // The CallFrameInfo class makes calls on an instance of this class to
1053 // report errors or warn about problems in the data it is parsing.
1054 // These messages are sent to the message sink |aLog| provided to the
1055 // constructor.
1056 class CallFrameInfo::Reporter {
1057 public:
1058 // Create an error reporter which attributes troubles to the section
1059 // named SECTION in FILENAME.
1060 //
1061 // Normally SECTION would be .debug_frame, but the Mac puts CFI data
1062 // in a Mach-O section named __debug_frame. If we support
1063 // Linux-style exception handling data, we could be reading an
1064 // .eh_frame section.
1065 Reporter(void (*aLog)(const char*), const std::string& filename,
1066 const std::string& section = ".debug_frame")
log_(aLog)1067 : log_(aLog), filename_(filename), section_(section) {}
~Reporter()1068 virtual ~Reporter() {}
1069
1070 // The CFI entry at OFFSET ends too early to be well-formed. KIND
1071 // indicates what kind of entry it is; KIND can be kUnknown if we
1072 // haven't parsed enough of the entry to tell yet.
1073 virtual void Incomplete(uint64 offset, CallFrameInfo::EntryKind kind);
1074
1075 // The .eh_frame data has a four-byte zero at OFFSET where the next
1076 // entry's length would be; this is a terminator. However, the buffer
1077 // length as given to the CallFrameInfo constructor says there should be
1078 // more data.
1079 virtual void EarlyEHTerminator(uint64 offset);
1080
1081 // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the
1082 // section is not that large.
1083 virtual void CIEPointerOutOfRange(uint64 offset, uint64 cie_offset);
1084
1085 // The FDE at OFFSET refers to the CIE at CIE_OFFSET, but the entry
1086 // there is not a CIE.
1087 virtual void BadCIEId(uint64 offset, uint64 cie_offset);
1088
1089 // The FDE at OFFSET refers to a CIE with version number VERSION,
1090 // which we don't recognize. We cannot parse DWARF CFI if it uses
1091 // a version number we don't recognize.
1092 virtual void UnrecognizedVersion(uint64 offset, int version);
1093
1094 // The FDE at OFFSET refers to a CIE with augmentation AUGMENTATION,
1095 // which we don't recognize. We cannot parse DWARF CFI if it uses
1096 // augmentations we don't recognize.
1097 virtual void UnrecognizedAugmentation(uint64 offset,
1098 const std::string& augmentation);
1099
1100 // The FDE at OFFSET contains an invalid or otherwise unusable Dwarf4
1101 // specific field (currently, only "address_size" or "segment_size").
1102 // Parsing DWARF CFI with unexpected values here seems dubious at best,
1103 // so we stop. WHAT gives a little more information about what is wrong.
1104 virtual void InvalidDwarf4Artefact(uint64 offset, const char* what);
1105
1106 // The pointer encoding ENCODING, specified by the CIE at OFFSET, is not
1107 // a valid encoding.
1108 virtual void InvalidPointerEncoding(uint64 offset, uint8 encoding);
1109
1110 // The pointer encoding ENCODING, specified by the CIE at OFFSET, depends
1111 // on a base address which has not been supplied.
1112 virtual void UnusablePointerEncoding(uint64 offset, uint8 encoding);
1113
1114 // The CIE at OFFSET contains a DW_CFA_restore instruction at
1115 // INSN_OFFSET, which may not appear in a CIE.
1116 virtual void RestoreInCIE(uint64 offset, uint64 insn_offset);
1117
1118 // The entry at OFFSET, of kind KIND, has an unrecognized
1119 // instruction at INSN_OFFSET.
1120 virtual void BadInstruction(uint64 offset, CallFrameInfo::EntryKind kind,
1121 uint64 insn_offset);
1122
1123 // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
1124 // KIND, establishes a rule that cites the CFA, but we have not
1125 // established a CFA rule yet.
1126 virtual void NoCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
1127 uint64 insn_offset);
1128
1129 // The instruction at INSN_OFFSET in the entry at OFFSET, of kind
1130 // KIND, is a DW_CFA_restore_state instruction, but the stack of
1131 // saved states is empty.
1132 virtual void EmptyStateStack(uint64 offset, CallFrameInfo::EntryKind kind,
1133 uint64 insn_offset);
1134
1135 // The DW_CFA_remember_state instruction at INSN_OFFSET in the entry
1136 // at OFFSET, of kind KIND, would restore a state that has no CFA
1137 // rule, whereas the current state does have a CFA rule. This is
1138 // bogus input, which the CallFrameInfo::Handler interface doesn't
1139 // (and shouldn't) have any way to report.
1140 virtual void ClearingCFARule(uint64 offset, CallFrameInfo::EntryKind kind,
1141 uint64 insn_offset);
1142
1143 private:
1144 // A logging sink function, as supplied by LUL's user.
1145 void (*log_)(const char*);
1146
1147 protected:
1148 // The name of the file whose CFI we're reading.
1149 std::string filename_;
1150
1151 // The name of the CFI section in that file.
1152 std::string section_;
1153 };
1154
1155 using lul::CallFrameInfo;
1156 using lul::Summariser;
1157
1158 // A class that accepts parsed call frame information from the DWARF
1159 // CFI parser and populates a google_breakpad::Module object with the
1160 // contents.
1161 class DwarfCFIToModule : public CallFrameInfo::Handler {
1162 public:
1163 // DwarfCFIToModule uses an instance of this class to report errors
1164 // detected while converting DWARF CFI to Breakpad STACK CFI records.
1165 class Reporter {
1166 public:
1167 // Create a reporter that writes messages to the message sink
1168 // |aLog|. FILE is the name of the file we're processing, and
1169 // SECTION is the name of the section within that file that we're
1170 // looking at (.debug_frame, .eh_frame, etc.).
Reporter(void (* aLog)(const char *),const std::string & file,const std::string & section)1171 Reporter(void (*aLog)(const char*), const std::string& file,
1172 const std::string& section)
1173 : log_(aLog), file_(file), section_(section) {}
~Reporter()1174 virtual ~Reporter() {}
1175
1176 // The DWARF CFI entry at OFFSET says that REG is undefined, but the
1177 // Breakpad symbol file format cannot express this.
1178 virtual void UndefinedNotSupported(size_t offset, const UniqueString* reg);
1179
1180 // The DWARF CFI entry at OFFSET says that REG uses a DWARF
1181 // expression to find its value, but parseDwarfExpr could not
1182 // convert it to a sequence of PfxInstrs.
1183 virtual void ExpressionCouldNotBeSummarised(size_t offset,
1184 const UniqueString* reg);
1185
1186 private:
1187 // A logging sink function, as supplied by LUL's user.
1188 void (*log_)(const char*);
1189
1190 protected:
1191 std::string file_, section_;
1192 };
1193
1194 // Register name tables. If TABLE is a vector returned by one of these
1195 // functions, then TABLE[R] is the name of the register numbered R in
1196 // DWARF call frame information.
1197 class RegisterNames {
1198 public:
1199 // Intel's "x86" or IA-32.
1200 static unsigned int I386();
1201
1202 // AMD x86_64, AMD64, Intel EM64T, or Intel 64
1203 static unsigned int X86_64();
1204
1205 // ARM.
1206 static unsigned int ARM();
1207
1208 // AARCH64.
1209 static unsigned int ARM64();
1210
1211 // MIPS.
1212 static unsigned int MIPS();
1213 };
1214
1215 // Create a handler for the dwarf2reader::CallFrameInfo parser that
1216 // records the stack unwinding information it receives in SUMM.
1217 //
1218 // Use REGISTER_NAMES[I] as the name of register number I; *this
1219 // keeps a reference to the vector, so the vector should remain
1220 // alive for as long as the DwarfCFIToModule does.
1221 //
1222 // Use REPORTER for reporting problems encountered in the conversion
1223 // process.
DwarfCFIToModule(const unsigned int num_dw_regs,Reporter * reporter,ByteReader * reader,UniqueStringUniverse * usu,Summariser * summ)1224 DwarfCFIToModule(const unsigned int num_dw_regs, Reporter* reporter,
1225 ByteReader* reader,
1226 /*MOD*/ UniqueStringUniverse* usu,
1227 /*OUT*/ Summariser* summ)
1228 : summ_(summ),
1229 usu_(usu),
1230 num_dw_regs_(num_dw_regs),
1231 reporter_(reporter),
1232 reader_(reader),
1233 return_address_(-1) {}
~DwarfCFIToModule()1234 virtual ~DwarfCFIToModule() {}
1235
1236 virtual bool Entry(size_t offset, uint64 address, uint64 length,
1237 uint8 version, const std::string& augmentation,
1238 unsigned return_address) override;
1239 virtual bool UndefinedRule(uint64 address, int reg) override;
1240 virtual bool SameValueRule(uint64 address, int reg) override;
1241 virtual bool OffsetRule(uint64 address, int reg, int base_register,
1242 long offset) override;
1243 virtual bool ValOffsetRule(uint64 address, int reg, int base_register,
1244 long offset) override;
1245 virtual bool RegisterRule(uint64 address, int reg,
1246 int base_register) override;
1247 virtual bool ExpressionRule(uint64 address, int reg,
1248 const std::string& expression) override;
1249 virtual bool ValExpressionRule(uint64 address, int reg,
1250 const std::string& expression) override;
1251 virtual bool End() override;
1252
1253 private:
1254 // Return the name to use for register I.
1255 const UniqueString* RegisterName(int i);
1256
1257 // The Summariser to which we should give entries
1258 Summariser* summ_;
1259
1260 // Universe for creating UniqueStrings in, should that be necessary.
1261 UniqueStringUniverse* usu_;
1262
1263 // The number of Dwarf-defined register names for this architecture.
1264 const unsigned int num_dw_regs_;
1265
1266 // The reporter to use to report problems.
1267 Reporter* reporter_;
1268
1269 // The ByteReader to use for parsing Dwarf expressions.
1270 ByteReader* reader_;
1271
1272 // The section offset of the current frame description entry, for
1273 // use in error messages.
1274 size_t entry_offset_;
1275
1276 // The return address column for that entry.
1277 unsigned return_address_;
1278 };
1279
1280 // Convert the Dwarf expression in |expr| into PfxInstrs stored in the
1281 // SecMap referred to by |summ|, and return the index of the starting
1282 // PfxInstr added, which must be >= 0. In case of failure return -1.
1283 int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader,
1284 std::string expr, bool debug, bool pushCfaAtStart,
1285 bool derefAtEnd);
1286
1287 } // namespace lul
1288
1289 #endif // LulDwarfExt_h
1290