1 /*
2  * sha1.c
3  *
4  * an implementation of the Secure Hash Algorithm v.1 (SHA-1),
5  * specified in FIPS 180-1
6  *
7  * David A. McGrew
8  * Cisco Systems, Inc.
9  */
10 
11 /*
12  *
13  * Copyright (c) 2001-2017, Cisco Systems, Inc.
14  * All rights reserved.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  *
20  *   Redistributions of source code must retain the above copyright
21  *   notice, this list of conditions and the following disclaimer.
22  *
23  *   Redistributions in binary form must reproduce the above
24  *   copyright notice, this list of conditions and the following
25  *   disclaimer in the documentation and/or other materials provided
26  *   with the distribution.
27  *
28  *   Neither the name of the Cisco Systems, Inc. nor the names of its
29  *   contributors may be used to endorse or promote products derived
30  *   from this software without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
37  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
38  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
39  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  * OF THE POSSIBILITY OF SUCH DAMAGE.
44  *
45  */
46 
47 #ifdef HAVE_CONFIG_H
48 #include <config.h>
49 #endif
50 
51 #include "sha1.h"
52 
53 srtp_debug_module_t srtp_mod_sha1 = {
54     0,      /* debugging is off by default */
55     "sha-1" /* printable module name       */
56 };
57 
58 /* SN == Rotate left N bits */
59 #define S1(X) ((X << 1) | (X >> 31))
60 #define S5(X) ((X << 5) | (X >> 27))
61 #define S30(X) ((X << 30) | (X >> 2))
62 
63 #define f0(B, C, D) ((B & C) | (~B & D))
64 #define f1(B, C, D) (B ^ C ^ D)
65 #define f2(B, C, D) ((B & C) | (B & D) | (C & D))
66 #define f3(B, C, D) (B ^ C ^ D)
67 
68 /*
69  * nota bene: the variable K0 appears in the curses library, so we
70  * give longer names to these variables to avoid spurious warnings
71  * on systems that uses curses
72  */
73 
74 uint32_t SHA_K0 = 0x5A827999; /* Kt for 0  <= t <= 19 */
75 uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */
76 uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */
77 uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */
78 
79 /*
80  *  srtp_sha1_core(M, H) computes the core compression function, where M is
81  *  the next part of the message (in network byte order) and H is the
82  *  intermediate state { H0, H1, ...} (in host byte order)
83  *
84  *  this function does not do any of the padding required in the
85  *  complete SHA1 function
86  *
87  *  this function is used in the SEAL 3.0 key setup routines
88  *  (crypto/cipher/seal.c)
89  */
90 
srtp_sha1_core(const uint32_t M[16],uint32_t hash_value[5])91 void srtp_sha1_core(const uint32_t M[16], uint32_t hash_value[5])
92 {
93     uint32_t H0;
94     uint32_t H1;
95     uint32_t H2;
96     uint32_t H3;
97     uint32_t H4;
98     uint32_t W[80];
99     uint32_t A, B, C, D, E, TEMP;
100     int t;
101 
102     /* copy hash_value into H0, H1, H2, H3, H4 */
103     H0 = hash_value[0];
104     H1 = hash_value[1];
105     H2 = hash_value[2];
106     H3 = hash_value[3];
107     H4 = hash_value[4];
108 
109     /* copy/xor message into array */
110 
111     W[0] = be32_to_cpu(M[0]);
112     W[1] = be32_to_cpu(M[1]);
113     W[2] = be32_to_cpu(M[2]);
114     W[3] = be32_to_cpu(M[3]);
115     W[4] = be32_to_cpu(M[4]);
116     W[5] = be32_to_cpu(M[5]);
117     W[6] = be32_to_cpu(M[6]);
118     W[7] = be32_to_cpu(M[7]);
119     W[8] = be32_to_cpu(M[8]);
120     W[9] = be32_to_cpu(M[9]);
121     W[10] = be32_to_cpu(M[10]);
122     W[11] = be32_to_cpu(M[11]);
123     W[12] = be32_to_cpu(M[12]);
124     W[13] = be32_to_cpu(M[13]);
125     W[14] = be32_to_cpu(M[14]);
126     W[15] = be32_to_cpu(M[15]);
127     TEMP = W[13] ^ W[8] ^ W[2] ^ W[0];
128     W[16] = S1(TEMP);
129     TEMP = W[14] ^ W[9] ^ W[3] ^ W[1];
130     W[17] = S1(TEMP);
131     TEMP = W[15] ^ W[10] ^ W[4] ^ W[2];
132     W[18] = S1(TEMP);
133     TEMP = W[16] ^ W[11] ^ W[5] ^ W[3];
134     W[19] = S1(TEMP);
135     TEMP = W[17] ^ W[12] ^ W[6] ^ W[4];
136     W[20] = S1(TEMP);
137     TEMP = W[18] ^ W[13] ^ W[7] ^ W[5];
138     W[21] = S1(TEMP);
139     TEMP = W[19] ^ W[14] ^ W[8] ^ W[6];
140     W[22] = S1(TEMP);
141     TEMP = W[20] ^ W[15] ^ W[9] ^ W[7];
142     W[23] = S1(TEMP);
143     TEMP = W[21] ^ W[16] ^ W[10] ^ W[8];
144     W[24] = S1(TEMP);
145     TEMP = W[22] ^ W[17] ^ W[11] ^ W[9];
146     W[25] = S1(TEMP);
147     TEMP = W[23] ^ W[18] ^ W[12] ^ W[10];
148     W[26] = S1(TEMP);
149     TEMP = W[24] ^ W[19] ^ W[13] ^ W[11];
150     W[27] = S1(TEMP);
151     TEMP = W[25] ^ W[20] ^ W[14] ^ W[12];
152     W[28] = S1(TEMP);
153     TEMP = W[26] ^ W[21] ^ W[15] ^ W[13];
154     W[29] = S1(TEMP);
155     TEMP = W[27] ^ W[22] ^ W[16] ^ W[14];
156     W[30] = S1(TEMP);
157     TEMP = W[28] ^ W[23] ^ W[17] ^ W[15];
158     W[31] = S1(TEMP);
159 
160     /* process the remainder of the array */
161     for (t = 32; t < 80; t++) {
162         TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
163         W[t] = S1(TEMP);
164     }
165 
166     A = H0;
167     B = H1;
168     C = H2;
169     D = H3;
170     E = H4;
171 
172     for (t = 0; t < 20; t++) {
173         TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
174         E = D;
175         D = C;
176         C = S30(B);
177         B = A;
178         A = TEMP;
179     }
180     for (; t < 40; t++) {
181         TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
182         E = D;
183         D = C;
184         C = S30(B);
185         B = A;
186         A = TEMP;
187     }
188     for (; t < 60; t++) {
189         TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
190         E = D;
191         D = C;
192         C = S30(B);
193         B = A;
194         A = TEMP;
195     }
196     for (; t < 80; t++) {
197         TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
198         E = D;
199         D = C;
200         C = S30(B);
201         B = A;
202         A = TEMP;
203     }
204 
205     hash_value[0] = H0 + A;
206     hash_value[1] = H1 + B;
207     hash_value[2] = H2 + C;
208     hash_value[3] = H3 + D;
209     hash_value[4] = H4 + E;
210 
211     return;
212 }
213 
srtp_sha1_init(srtp_sha1_ctx_t * ctx)214 void srtp_sha1_init(srtp_sha1_ctx_t *ctx)
215 {
216     /* initialize state vector */
217     ctx->H[0] = 0x67452301;
218     ctx->H[1] = 0xefcdab89;
219     ctx->H[2] = 0x98badcfe;
220     ctx->H[3] = 0x10325476;
221     ctx->H[4] = 0xc3d2e1f0;
222 
223     /* indicate that message buffer is empty */
224     ctx->octets_in_buffer = 0;
225 
226     /* reset message bit-count to zero */
227     ctx->num_bits_in_msg = 0;
228 }
229 
srtp_sha1_update(srtp_sha1_ctx_t * ctx,const uint8_t * msg,int octets_in_msg)230 void srtp_sha1_update(srtp_sha1_ctx_t *ctx,
231                       const uint8_t *msg,
232                       int octets_in_msg)
233 {
234     int i;
235     uint8_t *buf = (uint8_t *)ctx->M;
236 
237     /* update message bit-count */
238     ctx->num_bits_in_msg += octets_in_msg * 8;
239 
240     /* loop over 16-word blocks of M */
241     while (octets_in_msg > 0) {
242         if (octets_in_msg + ctx->octets_in_buffer >= 64) {
243             /*
244              * copy words of M into msg buffer until that buffer is full,
245              * converting them into host byte order as needed
246              */
247             octets_in_msg -= (64 - ctx->octets_in_buffer);
248             for (i = ctx->octets_in_buffer; i < 64; i++) {
249                 buf[i] = *msg++;
250             }
251             ctx->octets_in_buffer = 0;
252 
253             /* process a whole block */
254 
255             debug_print0(srtp_mod_sha1, "(update) running srtp_sha1_core()");
256 
257             srtp_sha1_core(ctx->M, ctx->H);
258 
259         } else {
260             debug_print0(srtp_mod_sha1,
261                          "(update) not running srtp_sha1_core()");
262 
263             for (i = ctx->octets_in_buffer;
264                  i < (ctx->octets_in_buffer + octets_in_msg); i++) {
265                 buf[i] = *msg++;
266             }
267             ctx->octets_in_buffer += octets_in_msg;
268             octets_in_msg = 0;
269         }
270     }
271 }
272 
273 /*
274  * srtp_sha1_final(ctx, output) computes the result for ctx and copies it
275  * into the twenty octets located at *output
276  */
277 
srtp_sha1_final(srtp_sha1_ctx_t * ctx,uint32_t output[5])278 void srtp_sha1_final(srtp_sha1_ctx_t *ctx, uint32_t output[5])
279 {
280     uint32_t A, B, C, D, E, TEMP;
281     uint32_t W[80];
282     int i, t;
283 
284     /*
285      * process the remaining octets_in_buffer, padding and terminating as
286      * necessary
287      */
288     {
289         int tail = ctx->octets_in_buffer % 4;
290 
291         /* copy/xor message into array */
292         for (i = 0; i < (ctx->octets_in_buffer + 3) / 4; i++) {
293             W[i] = be32_to_cpu(ctx->M[i]);
294         }
295 
296         /* set the high bit of the octet immediately following the message */
297         switch (tail) {
298         case (3):
299             W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffffff00) | 0x80;
300             W[i] = 0x0;
301             break;
302         case (2):
303             W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xffff0000) | 0x8000;
304             W[i] = 0x0;
305             break;
306         case (1):
307             W[i - 1] = (be32_to_cpu(ctx->M[i - 1]) & 0xff000000) | 0x800000;
308             W[i] = 0x0;
309             break;
310         case (0):
311             W[i] = 0x80000000;
312             break;
313         }
314 
315         /* zeroize remaining words */
316         for (i++; i < 15; i++) {
317             W[i] = 0x0;
318         }
319 
320         /*
321          * if there is room at the end of the word array, then set the
322          * last word to the bit-length of the message; otherwise, set that
323          * word to zero and then we need to do one more run of the
324          * compression algo.
325          */
326         if (ctx->octets_in_buffer < 56) {
327             W[15] = ctx->num_bits_in_msg;
328         } else if (ctx->octets_in_buffer < 60) {
329             W[15] = 0x0;
330         }
331 
332         /* process the word array */
333         for (t = 16; t < 80; t++) {
334             TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
335             W[t] = S1(TEMP);
336         }
337 
338         A = ctx->H[0];
339         B = ctx->H[1];
340         C = ctx->H[2];
341         D = ctx->H[3];
342         E = ctx->H[4];
343 
344         for (t = 0; t < 20; t++) {
345             TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
346             E = D;
347             D = C;
348             C = S30(B);
349             B = A;
350             A = TEMP;
351         }
352         for (; t < 40; t++) {
353             TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
354             E = D;
355             D = C;
356             C = S30(B);
357             B = A;
358             A = TEMP;
359         }
360         for (; t < 60; t++) {
361             TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
362             E = D;
363             D = C;
364             C = S30(B);
365             B = A;
366             A = TEMP;
367         }
368         for (; t < 80; t++) {
369             TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
370             E = D;
371             D = C;
372             C = S30(B);
373             B = A;
374             A = TEMP;
375         }
376 
377         ctx->H[0] += A;
378         ctx->H[1] += B;
379         ctx->H[2] += C;
380         ctx->H[3] += D;
381         ctx->H[4] += E;
382     }
383 
384     debug_print0(srtp_mod_sha1, "(final) running srtp_sha1_core()");
385 
386     if (ctx->octets_in_buffer >= 56) {
387         debug_print0(srtp_mod_sha1, "(final) running srtp_sha1_core() again");
388 
389         /* we need to do one final run of the compression algo */
390 
391         /*
392          * set initial part of word array to zeros, and set the
393          * final part to the number of bits in the message
394          */
395         for (i = 0; i < 15; i++) {
396             W[i] = 0x0;
397         }
398         W[15] = ctx->num_bits_in_msg;
399 
400         /* process the word array */
401         for (t = 16; t < 80; t++) {
402             TEMP = W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16];
403             W[t] = S1(TEMP);
404         }
405 
406         A = ctx->H[0];
407         B = ctx->H[1];
408         C = ctx->H[2];
409         D = ctx->H[3];
410         E = ctx->H[4];
411 
412         for (t = 0; t < 20; t++) {
413             TEMP = S5(A) + f0(B, C, D) + E + W[t] + SHA_K0;
414             E = D;
415             D = C;
416             C = S30(B);
417             B = A;
418             A = TEMP;
419         }
420         for (; t < 40; t++) {
421             TEMP = S5(A) + f1(B, C, D) + E + W[t] + SHA_K1;
422             E = D;
423             D = C;
424             C = S30(B);
425             B = A;
426             A = TEMP;
427         }
428         for (; t < 60; t++) {
429             TEMP = S5(A) + f2(B, C, D) + E + W[t] + SHA_K2;
430             E = D;
431             D = C;
432             C = S30(B);
433             B = A;
434             A = TEMP;
435         }
436         for (; t < 80; t++) {
437             TEMP = S5(A) + f3(B, C, D) + E + W[t] + SHA_K3;
438             E = D;
439             D = C;
440             C = S30(B);
441             B = A;
442             A = TEMP;
443         }
444 
445         ctx->H[0] += A;
446         ctx->H[1] += B;
447         ctx->H[2] += C;
448         ctx->H[3] += D;
449         ctx->H[4] += E;
450     }
451 
452     /* copy result into output buffer */
453     output[0] = be32_to_cpu(ctx->H[0]);
454     output[1] = be32_to_cpu(ctx->H[1]);
455     output[2] = be32_to_cpu(ctx->H[2]);
456     output[3] = be32_to_cpu(ctx->H[3]);
457     output[4] = be32_to_cpu(ctx->H[4]);
458 
459     /* indicate that message buffer in context is empty */
460     ctx->octets_in_buffer = 0;
461 
462     return;
463 }
464