1// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package ssh
6
7import (
8	"bytes"
9	"crypto"
10	"crypto/aes"
11	"crypto/cipher"
12	"crypto/dsa"
13	"crypto/ecdsa"
14	"crypto/elliptic"
15	"crypto/md5"
16	"crypto/rsa"
17	"crypto/sha256"
18	"crypto/x509"
19	"encoding/asn1"
20	"encoding/base64"
21	"encoding/hex"
22	"encoding/pem"
23	"errors"
24	"fmt"
25	"io"
26	"math/big"
27	"strings"
28
29	"golang.org/x/crypto/ed25519"
30	"golang.org/x/crypto/ssh/internal/bcrypt_pbkdf"
31)
32
33// Public key algorithms names. These values can appear in PublicKey.Type,
34// ClientConfig.HostKeyAlgorithms, Signature.Format, or as AlgorithmSigner
35// arguments.
36const (
37	KeyAlgoRSA        = "ssh-rsa"
38	KeyAlgoDSA        = "ssh-dss"
39	KeyAlgoECDSA256   = "ecdsa-sha2-nistp256"
40	KeyAlgoSKECDSA256 = "sk-ecdsa-sha2-nistp256@openssh.com"
41	KeyAlgoECDSA384   = "ecdsa-sha2-nistp384"
42	KeyAlgoECDSA521   = "ecdsa-sha2-nistp521"
43	KeyAlgoED25519    = "ssh-ed25519"
44	KeyAlgoSKED25519  = "sk-ssh-ed25519@openssh.com"
45
46	// KeyAlgoRSASHA256 and KeyAlgoRSASHA512 are only public key algorithms, not
47	// public key formats, so they can't appear as a PublicKey.Type. The
48	// corresponding PublicKey.Type is KeyAlgoRSA. See RFC 8332, Section 2.
49	KeyAlgoRSASHA256 = "rsa-sha2-256"
50	KeyAlgoRSASHA512 = "rsa-sha2-512"
51)
52
53const (
54	// Deprecated: use KeyAlgoRSA.
55	SigAlgoRSA = KeyAlgoRSA
56	// Deprecated: use KeyAlgoRSASHA256.
57	SigAlgoRSASHA2256 = KeyAlgoRSASHA256
58	// Deprecated: use KeyAlgoRSASHA512.
59	SigAlgoRSASHA2512 = KeyAlgoRSASHA512
60)
61
62// parsePubKey parses a public key of the given algorithm.
63// Use ParsePublicKey for keys with prepended algorithm.
64func parsePubKey(in []byte, algo string) (pubKey PublicKey, rest []byte, err error) {
65	switch algo {
66	case KeyAlgoRSA:
67		return parseRSA(in)
68	case KeyAlgoDSA:
69		return parseDSA(in)
70	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
71		return parseECDSA(in)
72	case KeyAlgoSKECDSA256:
73		return parseSKECDSA(in)
74	case KeyAlgoED25519:
75		return parseED25519(in)
76	case KeyAlgoSKED25519:
77		return parseSKEd25519(in)
78	case CertAlgoRSAv01, CertAlgoDSAv01, CertAlgoECDSA256v01, CertAlgoECDSA384v01, CertAlgoECDSA521v01, CertAlgoSKECDSA256v01, CertAlgoED25519v01, CertAlgoSKED25519v01:
79		cert, err := parseCert(in, certKeyAlgoNames[algo])
80		if err != nil {
81			return nil, nil, err
82		}
83		return cert, nil, nil
84	}
85	return nil, nil, fmt.Errorf("ssh: unknown key algorithm: %v", algo)
86}
87
88// parseAuthorizedKey parses a public key in OpenSSH authorized_keys format
89// (see sshd(8) manual page) once the options and key type fields have been
90// removed.
91func parseAuthorizedKey(in []byte) (out PublicKey, comment string, err error) {
92	in = bytes.TrimSpace(in)
93
94	i := bytes.IndexAny(in, " \t")
95	if i == -1 {
96		i = len(in)
97	}
98	base64Key := in[:i]
99
100	key := make([]byte, base64.StdEncoding.DecodedLen(len(base64Key)))
101	n, err := base64.StdEncoding.Decode(key, base64Key)
102	if err != nil {
103		return nil, "", err
104	}
105	key = key[:n]
106	out, err = ParsePublicKey(key)
107	if err != nil {
108		return nil, "", err
109	}
110	comment = string(bytes.TrimSpace(in[i:]))
111	return out, comment, nil
112}
113
114// ParseKnownHosts parses an entry in the format of the known_hosts file.
115//
116// The known_hosts format is documented in the sshd(8) manual page. This
117// function will parse a single entry from in. On successful return, marker
118// will contain the optional marker value (i.e. "cert-authority" or "revoked")
119// or else be empty, hosts will contain the hosts that this entry matches,
120// pubKey will contain the public key and comment will contain any trailing
121// comment at the end of the line. See the sshd(8) manual page for the various
122// forms that a host string can take.
123//
124// The unparsed remainder of the input will be returned in rest. This function
125// can be called repeatedly to parse multiple entries.
126//
127// If no entries were found in the input then err will be io.EOF. Otherwise a
128// non-nil err value indicates a parse error.
129func ParseKnownHosts(in []byte) (marker string, hosts []string, pubKey PublicKey, comment string, rest []byte, err error) {
130	for len(in) > 0 {
131		end := bytes.IndexByte(in, '\n')
132		if end != -1 {
133			rest = in[end+1:]
134			in = in[:end]
135		} else {
136			rest = nil
137		}
138
139		end = bytes.IndexByte(in, '\r')
140		if end != -1 {
141			in = in[:end]
142		}
143
144		in = bytes.TrimSpace(in)
145		if len(in) == 0 || in[0] == '#' {
146			in = rest
147			continue
148		}
149
150		i := bytes.IndexAny(in, " \t")
151		if i == -1 {
152			in = rest
153			continue
154		}
155
156		// Strip out the beginning of the known_host key.
157		// This is either an optional marker or a (set of) hostname(s).
158		keyFields := bytes.Fields(in)
159		if len(keyFields) < 3 || len(keyFields) > 5 {
160			return "", nil, nil, "", nil, errors.New("ssh: invalid entry in known_hosts data")
161		}
162
163		// keyFields[0] is either "@cert-authority", "@revoked" or a comma separated
164		// list of hosts
165		marker := ""
166		if keyFields[0][0] == '@' {
167			marker = string(keyFields[0][1:])
168			keyFields = keyFields[1:]
169		}
170
171		hosts := string(keyFields[0])
172		// keyFields[1] contains the key type (e.g. “ssh-rsa”).
173		// However, that information is duplicated inside the
174		// base64-encoded key and so is ignored here.
175
176		key := bytes.Join(keyFields[2:], []byte(" "))
177		if pubKey, comment, err = parseAuthorizedKey(key); err != nil {
178			return "", nil, nil, "", nil, err
179		}
180
181		return marker, strings.Split(hosts, ","), pubKey, comment, rest, nil
182	}
183
184	return "", nil, nil, "", nil, io.EOF
185}
186
187// ParseAuthorizedKeys parses a public key from an authorized_keys
188// file used in OpenSSH according to the sshd(8) manual page.
189func ParseAuthorizedKey(in []byte) (out PublicKey, comment string, options []string, rest []byte, err error) {
190	for len(in) > 0 {
191		end := bytes.IndexByte(in, '\n')
192		if end != -1 {
193			rest = in[end+1:]
194			in = in[:end]
195		} else {
196			rest = nil
197		}
198
199		end = bytes.IndexByte(in, '\r')
200		if end != -1 {
201			in = in[:end]
202		}
203
204		in = bytes.TrimSpace(in)
205		if len(in) == 0 || in[0] == '#' {
206			in = rest
207			continue
208		}
209
210		i := bytes.IndexAny(in, " \t")
211		if i == -1 {
212			in = rest
213			continue
214		}
215
216		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
217			return out, comment, options, rest, nil
218		}
219
220		// No key type recognised. Maybe there's an options field at
221		// the beginning.
222		var b byte
223		inQuote := false
224		var candidateOptions []string
225		optionStart := 0
226		for i, b = range in {
227			isEnd := !inQuote && (b == ' ' || b == '\t')
228			if (b == ',' && !inQuote) || isEnd {
229				if i-optionStart > 0 {
230					candidateOptions = append(candidateOptions, string(in[optionStart:i]))
231				}
232				optionStart = i + 1
233			}
234			if isEnd {
235				break
236			}
237			if b == '"' && (i == 0 || (i > 0 && in[i-1] != '\\')) {
238				inQuote = !inQuote
239			}
240		}
241		for i < len(in) && (in[i] == ' ' || in[i] == '\t') {
242			i++
243		}
244		if i == len(in) {
245			// Invalid line: unmatched quote
246			in = rest
247			continue
248		}
249
250		in = in[i:]
251		i = bytes.IndexAny(in, " \t")
252		if i == -1 {
253			in = rest
254			continue
255		}
256
257		if out, comment, err = parseAuthorizedKey(in[i:]); err == nil {
258			options = candidateOptions
259			return out, comment, options, rest, nil
260		}
261
262		in = rest
263		continue
264	}
265
266	return nil, "", nil, nil, errors.New("ssh: no key found")
267}
268
269// ParsePublicKey parses an SSH public key formatted for use in
270// the SSH wire protocol according to RFC 4253, section 6.6.
271func ParsePublicKey(in []byte) (out PublicKey, err error) {
272	algo, in, ok := parseString(in)
273	if !ok {
274		return nil, errShortRead
275	}
276	var rest []byte
277	out, rest, err = parsePubKey(in, string(algo))
278	if len(rest) > 0 {
279		return nil, errors.New("ssh: trailing junk in public key")
280	}
281
282	return out, err
283}
284
285// MarshalAuthorizedKey serializes key for inclusion in an OpenSSH
286// authorized_keys file. The return value ends with newline.
287func MarshalAuthorizedKey(key PublicKey) []byte {
288	b := &bytes.Buffer{}
289	b.WriteString(key.Type())
290	b.WriteByte(' ')
291	e := base64.NewEncoder(base64.StdEncoding, b)
292	e.Write(key.Marshal())
293	e.Close()
294	b.WriteByte('\n')
295	return b.Bytes()
296}
297
298// PublicKey represents a public key using an unspecified algorithm.
299//
300// Some PublicKeys provided by this package also implement CryptoPublicKey.
301type PublicKey interface {
302	// Type returns the key format name, e.g. "ssh-rsa".
303	Type() string
304
305	// Marshal returns the serialized key data in SSH wire format, with the name
306	// prefix. To unmarshal the returned data, use the ParsePublicKey function.
307	Marshal() []byte
308
309	// Verify that sig is a signature on the given data using this key. This
310	// method will hash the data appropriately first. sig.Format is allowed to
311	// be any signature algorithm compatible with the key type, the caller
312	// should check if it has more stringent requirements.
313	Verify(data []byte, sig *Signature) error
314}
315
316// CryptoPublicKey, if implemented by a PublicKey,
317// returns the underlying crypto.PublicKey form of the key.
318type CryptoPublicKey interface {
319	CryptoPublicKey() crypto.PublicKey
320}
321
322// A Signer can create signatures that verify against a public key.
323//
324// Some Signers provided by this package also implement AlgorithmSigner.
325type Signer interface {
326	// PublicKey returns the associated PublicKey.
327	PublicKey() PublicKey
328
329	// Sign returns a signature for the given data. This method will hash the
330	// data appropriately first. The signature algorithm is expected to match
331	// the key format returned by the PublicKey.Type method (and not to be any
332	// alternative algorithm supported by the key format).
333	Sign(rand io.Reader, data []byte) (*Signature, error)
334}
335
336// An AlgorithmSigner is a Signer that also supports specifying an algorithm to
337// use for signing.
338//
339// An AlgorithmSigner can't advertise the algorithms it supports, so it should
340// be prepared to be invoked with every algorithm supported by the public key
341// format.
342type AlgorithmSigner interface {
343	Signer
344
345	// SignWithAlgorithm is like Signer.Sign, but allows specifying a desired
346	// signing algorithm. Callers may pass an empty string for the algorithm in
347	// which case the AlgorithmSigner will use a default algorithm. This default
348	// doesn't currently control any behavior in this package.
349	SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error)
350}
351
352type rsaPublicKey rsa.PublicKey
353
354func (r *rsaPublicKey) Type() string {
355	return "ssh-rsa"
356}
357
358// parseRSA parses an RSA key according to RFC 4253, section 6.6.
359func parseRSA(in []byte) (out PublicKey, rest []byte, err error) {
360	var w struct {
361		E    *big.Int
362		N    *big.Int
363		Rest []byte `ssh:"rest"`
364	}
365	if err := Unmarshal(in, &w); err != nil {
366		return nil, nil, err
367	}
368
369	if w.E.BitLen() > 24 {
370		return nil, nil, errors.New("ssh: exponent too large")
371	}
372	e := w.E.Int64()
373	if e < 3 || e&1 == 0 {
374		return nil, nil, errors.New("ssh: incorrect exponent")
375	}
376
377	var key rsa.PublicKey
378	key.E = int(e)
379	key.N = w.N
380	return (*rsaPublicKey)(&key), w.Rest, nil
381}
382
383func (r *rsaPublicKey) Marshal() []byte {
384	e := new(big.Int).SetInt64(int64(r.E))
385	// RSA publickey struct layout should match the struct used by
386	// parseRSACert in the x/crypto/ssh/agent package.
387	wirekey := struct {
388		Name string
389		E    *big.Int
390		N    *big.Int
391	}{
392		KeyAlgoRSA,
393		e,
394		r.N,
395	}
396	return Marshal(&wirekey)
397}
398
399func (r *rsaPublicKey) Verify(data []byte, sig *Signature) error {
400	supportedAlgos := algorithmsForKeyFormat(r.Type())
401	if !contains(supportedAlgos, sig.Format) {
402		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, r.Type())
403	}
404	hash := hashFuncs[sig.Format]
405	h := hash.New()
406	h.Write(data)
407	digest := h.Sum(nil)
408	return rsa.VerifyPKCS1v15((*rsa.PublicKey)(r), hash, digest, sig.Blob)
409}
410
411func (r *rsaPublicKey) CryptoPublicKey() crypto.PublicKey {
412	return (*rsa.PublicKey)(r)
413}
414
415type dsaPublicKey dsa.PublicKey
416
417func (k *dsaPublicKey) Type() string {
418	return "ssh-dss"
419}
420
421func checkDSAParams(param *dsa.Parameters) error {
422	// SSH specifies FIPS 186-2, which only provided a single size
423	// (1024 bits) DSA key. FIPS 186-3 allows for larger key
424	// sizes, which would confuse SSH.
425	if l := param.P.BitLen(); l != 1024 {
426		return fmt.Errorf("ssh: unsupported DSA key size %d", l)
427	}
428
429	return nil
430}
431
432// parseDSA parses an DSA key according to RFC 4253, section 6.6.
433func parseDSA(in []byte) (out PublicKey, rest []byte, err error) {
434	var w struct {
435		P, Q, G, Y *big.Int
436		Rest       []byte `ssh:"rest"`
437	}
438	if err := Unmarshal(in, &w); err != nil {
439		return nil, nil, err
440	}
441
442	param := dsa.Parameters{
443		P: w.P,
444		Q: w.Q,
445		G: w.G,
446	}
447	if err := checkDSAParams(&param); err != nil {
448		return nil, nil, err
449	}
450
451	key := &dsaPublicKey{
452		Parameters: param,
453		Y:          w.Y,
454	}
455	return key, w.Rest, nil
456}
457
458func (k *dsaPublicKey) Marshal() []byte {
459	// DSA publickey struct layout should match the struct used by
460	// parseDSACert in the x/crypto/ssh/agent package.
461	w := struct {
462		Name       string
463		P, Q, G, Y *big.Int
464	}{
465		k.Type(),
466		k.P,
467		k.Q,
468		k.G,
469		k.Y,
470	}
471
472	return Marshal(&w)
473}
474
475func (k *dsaPublicKey) Verify(data []byte, sig *Signature) error {
476	if sig.Format != k.Type() {
477		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
478	}
479	h := hashFuncs[sig.Format].New()
480	h.Write(data)
481	digest := h.Sum(nil)
482
483	// Per RFC 4253, section 6.6,
484	// The value for 'dss_signature_blob' is encoded as a string containing
485	// r, followed by s (which are 160-bit integers, without lengths or
486	// padding, unsigned, and in network byte order).
487	// For DSS purposes, sig.Blob should be exactly 40 bytes in length.
488	if len(sig.Blob) != 40 {
489		return errors.New("ssh: DSA signature parse error")
490	}
491	r := new(big.Int).SetBytes(sig.Blob[:20])
492	s := new(big.Int).SetBytes(sig.Blob[20:])
493	if dsa.Verify((*dsa.PublicKey)(k), digest, r, s) {
494		return nil
495	}
496	return errors.New("ssh: signature did not verify")
497}
498
499func (k *dsaPublicKey) CryptoPublicKey() crypto.PublicKey {
500	return (*dsa.PublicKey)(k)
501}
502
503type dsaPrivateKey struct {
504	*dsa.PrivateKey
505}
506
507func (k *dsaPrivateKey) PublicKey() PublicKey {
508	return (*dsaPublicKey)(&k.PrivateKey.PublicKey)
509}
510
511func (k *dsaPrivateKey) Sign(rand io.Reader, data []byte) (*Signature, error) {
512	return k.SignWithAlgorithm(rand, data, k.PublicKey().Type())
513}
514
515func (k *dsaPrivateKey) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
516	if algorithm != "" && algorithm != k.PublicKey().Type() {
517		return nil, fmt.Errorf("ssh: unsupported signature algorithm %s", algorithm)
518	}
519
520	h := hashFuncs[k.PublicKey().Type()].New()
521	h.Write(data)
522	digest := h.Sum(nil)
523	r, s, err := dsa.Sign(rand, k.PrivateKey, digest)
524	if err != nil {
525		return nil, err
526	}
527
528	sig := make([]byte, 40)
529	rb := r.Bytes()
530	sb := s.Bytes()
531
532	copy(sig[20-len(rb):20], rb)
533	copy(sig[40-len(sb):], sb)
534
535	return &Signature{
536		Format: k.PublicKey().Type(),
537		Blob:   sig,
538	}, nil
539}
540
541type ecdsaPublicKey ecdsa.PublicKey
542
543func (k *ecdsaPublicKey) Type() string {
544	return "ecdsa-sha2-" + k.nistID()
545}
546
547func (k *ecdsaPublicKey) nistID() string {
548	switch k.Params().BitSize {
549	case 256:
550		return "nistp256"
551	case 384:
552		return "nistp384"
553	case 521:
554		return "nistp521"
555	}
556	panic("ssh: unsupported ecdsa key size")
557}
558
559type ed25519PublicKey ed25519.PublicKey
560
561func (k ed25519PublicKey) Type() string {
562	return KeyAlgoED25519
563}
564
565func parseED25519(in []byte) (out PublicKey, rest []byte, err error) {
566	var w struct {
567		KeyBytes []byte
568		Rest     []byte `ssh:"rest"`
569	}
570
571	if err := Unmarshal(in, &w); err != nil {
572		return nil, nil, err
573	}
574
575	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
576		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
577	}
578
579	return ed25519PublicKey(w.KeyBytes), w.Rest, nil
580}
581
582func (k ed25519PublicKey) Marshal() []byte {
583	w := struct {
584		Name     string
585		KeyBytes []byte
586	}{
587		KeyAlgoED25519,
588		[]byte(k),
589	}
590	return Marshal(&w)
591}
592
593func (k ed25519PublicKey) Verify(b []byte, sig *Signature) error {
594	if sig.Format != k.Type() {
595		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
596	}
597	if l := len(k); l != ed25519.PublicKeySize {
598		return fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
599	}
600
601	if ok := ed25519.Verify(ed25519.PublicKey(k), b, sig.Blob); !ok {
602		return errors.New("ssh: signature did not verify")
603	}
604
605	return nil
606}
607
608func (k ed25519PublicKey) CryptoPublicKey() crypto.PublicKey {
609	return ed25519.PublicKey(k)
610}
611
612func supportedEllipticCurve(curve elliptic.Curve) bool {
613	return curve == elliptic.P256() || curve == elliptic.P384() || curve == elliptic.P521()
614}
615
616// parseECDSA parses an ECDSA key according to RFC 5656, section 3.1.
617func parseECDSA(in []byte) (out PublicKey, rest []byte, err error) {
618	var w struct {
619		Curve    string
620		KeyBytes []byte
621		Rest     []byte `ssh:"rest"`
622	}
623
624	if err := Unmarshal(in, &w); err != nil {
625		return nil, nil, err
626	}
627
628	key := new(ecdsa.PublicKey)
629
630	switch w.Curve {
631	case "nistp256":
632		key.Curve = elliptic.P256()
633	case "nistp384":
634		key.Curve = elliptic.P384()
635	case "nistp521":
636		key.Curve = elliptic.P521()
637	default:
638		return nil, nil, errors.New("ssh: unsupported curve")
639	}
640
641	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
642	if key.X == nil || key.Y == nil {
643		return nil, nil, errors.New("ssh: invalid curve point")
644	}
645	return (*ecdsaPublicKey)(key), w.Rest, nil
646}
647
648func (k *ecdsaPublicKey) Marshal() []byte {
649	// See RFC 5656, section 3.1.
650	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
651	// ECDSA publickey struct layout should match the struct used by
652	// parseECDSACert in the x/crypto/ssh/agent package.
653	w := struct {
654		Name string
655		ID   string
656		Key  []byte
657	}{
658		k.Type(),
659		k.nistID(),
660		keyBytes,
661	}
662
663	return Marshal(&w)
664}
665
666func (k *ecdsaPublicKey) Verify(data []byte, sig *Signature) error {
667	if sig.Format != k.Type() {
668		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
669	}
670
671	h := hashFuncs[sig.Format].New()
672	h.Write(data)
673	digest := h.Sum(nil)
674
675	// Per RFC 5656, section 3.1.2,
676	// The ecdsa_signature_blob value has the following specific encoding:
677	//    mpint    r
678	//    mpint    s
679	var ecSig struct {
680		R *big.Int
681		S *big.Int
682	}
683
684	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
685		return err
686	}
687
688	if ecdsa.Verify((*ecdsa.PublicKey)(k), digest, ecSig.R, ecSig.S) {
689		return nil
690	}
691	return errors.New("ssh: signature did not verify")
692}
693
694func (k *ecdsaPublicKey) CryptoPublicKey() crypto.PublicKey {
695	return (*ecdsa.PublicKey)(k)
696}
697
698// skFields holds the additional fields present in U2F/FIDO2 signatures.
699// See openssh/PROTOCOL.u2f 'SSH U2F Signatures' for details.
700type skFields struct {
701	// Flags contains U2F/FIDO2 flags such as 'user present'
702	Flags byte
703	// Counter is a monotonic signature counter which can be
704	// used to detect concurrent use of a private key, should
705	// it be extracted from hardware.
706	Counter uint32
707}
708
709type skECDSAPublicKey struct {
710	// application is a URL-like string, typically "ssh:" for SSH.
711	// see openssh/PROTOCOL.u2f for details.
712	application string
713	ecdsa.PublicKey
714}
715
716func (k *skECDSAPublicKey) Type() string {
717	return KeyAlgoSKECDSA256
718}
719
720func (k *skECDSAPublicKey) nistID() string {
721	return "nistp256"
722}
723
724func parseSKECDSA(in []byte) (out PublicKey, rest []byte, err error) {
725	var w struct {
726		Curve       string
727		KeyBytes    []byte
728		Application string
729		Rest        []byte `ssh:"rest"`
730	}
731
732	if err := Unmarshal(in, &w); err != nil {
733		return nil, nil, err
734	}
735
736	key := new(skECDSAPublicKey)
737	key.application = w.Application
738
739	if w.Curve != "nistp256" {
740		return nil, nil, errors.New("ssh: unsupported curve")
741	}
742	key.Curve = elliptic.P256()
743
744	key.X, key.Y = elliptic.Unmarshal(key.Curve, w.KeyBytes)
745	if key.X == nil || key.Y == nil {
746		return nil, nil, errors.New("ssh: invalid curve point")
747	}
748
749	return key, w.Rest, nil
750}
751
752func (k *skECDSAPublicKey) Marshal() []byte {
753	// See RFC 5656, section 3.1.
754	keyBytes := elliptic.Marshal(k.Curve, k.X, k.Y)
755	w := struct {
756		Name        string
757		ID          string
758		Key         []byte
759		Application string
760	}{
761		k.Type(),
762		k.nistID(),
763		keyBytes,
764		k.application,
765	}
766
767	return Marshal(&w)
768}
769
770func (k *skECDSAPublicKey) Verify(data []byte, sig *Signature) error {
771	if sig.Format != k.Type() {
772		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
773	}
774
775	h := hashFuncs[sig.Format].New()
776	h.Write([]byte(k.application))
777	appDigest := h.Sum(nil)
778
779	h.Reset()
780	h.Write(data)
781	dataDigest := h.Sum(nil)
782
783	var ecSig struct {
784		R *big.Int
785		S *big.Int
786	}
787	if err := Unmarshal(sig.Blob, &ecSig); err != nil {
788		return err
789	}
790
791	var skf skFields
792	if err := Unmarshal(sig.Rest, &skf); err != nil {
793		return err
794	}
795
796	blob := struct {
797		ApplicationDigest []byte `ssh:"rest"`
798		Flags             byte
799		Counter           uint32
800		MessageDigest     []byte `ssh:"rest"`
801	}{
802		appDigest,
803		skf.Flags,
804		skf.Counter,
805		dataDigest,
806	}
807
808	original := Marshal(blob)
809
810	h.Reset()
811	h.Write(original)
812	digest := h.Sum(nil)
813
814	if ecdsa.Verify((*ecdsa.PublicKey)(&k.PublicKey), digest, ecSig.R, ecSig.S) {
815		return nil
816	}
817	return errors.New("ssh: signature did not verify")
818}
819
820type skEd25519PublicKey struct {
821	// application is a URL-like string, typically "ssh:" for SSH.
822	// see openssh/PROTOCOL.u2f for details.
823	application string
824	ed25519.PublicKey
825}
826
827func (k *skEd25519PublicKey) Type() string {
828	return KeyAlgoSKED25519
829}
830
831func parseSKEd25519(in []byte) (out PublicKey, rest []byte, err error) {
832	var w struct {
833		KeyBytes    []byte
834		Application string
835		Rest        []byte `ssh:"rest"`
836	}
837
838	if err := Unmarshal(in, &w); err != nil {
839		return nil, nil, err
840	}
841
842	if l := len(w.KeyBytes); l != ed25519.PublicKeySize {
843		return nil, nil, fmt.Errorf("invalid size %d for Ed25519 public key", l)
844	}
845
846	key := new(skEd25519PublicKey)
847	key.application = w.Application
848	key.PublicKey = ed25519.PublicKey(w.KeyBytes)
849
850	return key, w.Rest, nil
851}
852
853func (k *skEd25519PublicKey) Marshal() []byte {
854	w := struct {
855		Name        string
856		KeyBytes    []byte
857		Application string
858	}{
859		KeyAlgoSKED25519,
860		[]byte(k.PublicKey),
861		k.application,
862	}
863	return Marshal(&w)
864}
865
866func (k *skEd25519PublicKey) Verify(data []byte, sig *Signature) error {
867	if sig.Format != k.Type() {
868		return fmt.Errorf("ssh: signature type %s for key type %s", sig.Format, k.Type())
869	}
870	if l := len(k.PublicKey); l != ed25519.PublicKeySize {
871		return fmt.Errorf("invalid size %d for Ed25519 public key", l)
872	}
873
874	h := hashFuncs[sig.Format].New()
875	h.Write([]byte(k.application))
876	appDigest := h.Sum(nil)
877
878	h.Reset()
879	h.Write(data)
880	dataDigest := h.Sum(nil)
881
882	var edSig struct {
883		Signature []byte `ssh:"rest"`
884	}
885
886	if err := Unmarshal(sig.Blob, &edSig); err != nil {
887		return err
888	}
889
890	var skf skFields
891	if err := Unmarshal(sig.Rest, &skf); err != nil {
892		return err
893	}
894
895	blob := struct {
896		ApplicationDigest []byte `ssh:"rest"`
897		Flags             byte
898		Counter           uint32
899		MessageDigest     []byte `ssh:"rest"`
900	}{
901		appDigest,
902		skf.Flags,
903		skf.Counter,
904		dataDigest,
905	}
906
907	original := Marshal(blob)
908
909	if ok := ed25519.Verify(k.PublicKey, original, edSig.Signature); !ok {
910		return errors.New("ssh: signature did not verify")
911	}
912
913	return nil
914}
915
916// NewSignerFromKey takes an *rsa.PrivateKey, *dsa.PrivateKey,
917// *ecdsa.PrivateKey or any other crypto.Signer and returns a
918// corresponding Signer instance. ECDSA keys must use P-256, P-384 or
919// P-521. DSA keys must use parameter size L1024N160.
920func NewSignerFromKey(key interface{}) (Signer, error) {
921	switch key := key.(type) {
922	case crypto.Signer:
923		return NewSignerFromSigner(key)
924	case *dsa.PrivateKey:
925		return newDSAPrivateKey(key)
926	default:
927		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
928	}
929}
930
931func newDSAPrivateKey(key *dsa.PrivateKey) (Signer, error) {
932	if err := checkDSAParams(&key.PublicKey.Parameters); err != nil {
933		return nil, err
934	}
935
936	return &dsaPrivateKey{key}, nil
937}
938
939type wrappedSigner struct {
940	signer crypto.Signer
941	pubKey PublicKey
942}
943
944// NewSignerFromSigner takes any crypto.Signer implementation and
945// returns a corresponding Signer interface. This can be used, for
946// example, with keys kept in hardware modules.
947func NewSignerFromSigner(signer crypto.Signer) (Signer, error) {
948	pubKey, err := NewPublicKey(signer.Public())
949	if err != nil {
950		return nil, err
951	}
952
953	return &wrappedSigner{signer, pubKey}, nil
954}
955
956func (s *wrappedSigner) PublicKey() PublicKey {
957	return s.pubKey
958}
959
960func (s *wrappedSigner) Sign(rand io.Reader, data []byte) (*Signature, error) {
961	return s.SignWithAlgorithm(rand, data, s.pubKey.Type())
962}
963
964func (s *wrappedSigner) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
965	if algorithm == "" {
966		algorithm = s.pubKey.Type()
967	}
968
969	supportedAlgos := algorithmsForKeyFormat(s.pubKey.Type())
970	if !contains(supportedAlgos, algorithm) {
971		return nil, fmt.Errorf("ssh: unsupported signature algorithm %q for key format %q", algorithm, s.pubKey.Type())
972	}
973
974	hashFunc := hashFuncs[algorithm]
975	var digest []byte
976	if hashFunc != 0 {
977		h := hashFunc.New()
978		h.Write(data)
979		digest = h.Sum(nil)
980	} else {
981		digest = data
982	}
983
984	signature, err := s.signer.Sign(rand, digest, hashFunc)
985	if err != nil {
986		return nil, err
987	}
988
989	// crypto.Signer.Sign is expected to return an ASN.1-encoded signature
990	// for ECDSA and DSA, but that's not the encoding expected by SSH, so
991	// re-encode.
992	switch s.pubKey.(type) {
993	case *ecdsaPublicKey, *dsaPublicKey:
994		type asn1Signature struct {
995			R, S *big.Int
996		}
997		asn1Sig := new(asn1Signature)
998		_, err := asn1.Unmarshal(signature, asn1Sig)
999		if err != nil {
1000			return nil, err
1001		}
1002
1003		switch s.pubKey.(type) {
1004		case *ecdsaPublicKey:
1005			signature = Marshal(asn1Sig)
1006
1007		case *dsaPublicKey:
1008			signature = make([]byte, 40)
1009			r := asn1Sig.R.Bytes()
1010			s := asn1Sig.S.Bytes()
1011			copy(signature[20-len(r):20], r)
1012			copy(signature[40-len(s):40], s)
1013		}
1014	}
1015
1016	return &Signature{
1017		Format: algorithm,
1018		Blob:   signature,
1019	}, nil
1020}
1021
1022// NewPublicKey takes an *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
1023// or ed25519.PublicKey returns a corresponding PublicKey instance.
1024// ECDSA keys must use P-256, P-384 or P-521.
1025func NewPublicKey(key interface{}) (PublicKey, error) {
1026	switch key := key.(type) {
1027	case *rsa.PublicKey:
1028		return (*rsaPublicKey)(key), nil
1029	case *ecdsa.PublicKey:
1030		if !supportedEllipticCurve(key.Curve) {
1031			return nil, errors.New("ssh: only P-256, P-384 and P-521 EC keys are supported")
1032		}
1033		return (*ecdsaPublicKey)(key), nil
1034	case *dsa.PublicKey:
1035		return (*dsaPublicKey)(key), nil
1036	case ed25519.PublicKey:
1037		if l := len(key); l != ed25519.PublicKeySize {
1038			return nil, fmt.Errorf("ssh: invalid size %d for Ed25519 public key", l)
1039		}
1040		return ed25519PublicKey(key), nil
1041	default:
1042		return nil, fmt.Errorf("ssh: unsupported key type %T", key)
1043	}
1044}
1045
1046// ParsePrivateKey returns a Signer from a PEM encoded private key. It supports
1047// the same keys as ParseRawPrivateKey. If the private key is encrypted, it
1048// will return a PassphraseMissingError.
1049func ParsePrivateKey(pemBytes []byte) (Signer, error) {
1050	key, err := ParseRawPrivateKey(pemBytes)
1051	if err != nil {
1052		return nil, err
1053	}
1054
1055	return NewSignerFromKey(key)
1056}
1057
1058// ParsePrivateKeyWithPassphrase returns a Signer from a PEM encoded private
1059// key and passphrase. It supports the same keys as
1060// ParseRawPrivateKeyWithPassphrase.
1061func ParsePrivateKeyWithPassphrase(pemBytes, passphrase []byte) (Signer, error) {
1062	key, err := ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase)
1063	if err != nil {
1064		return nil, err
1065	}
1066
1067	return NewSignerFromKey(key)
1068}
1069
1070// encryptedBlock tells whether a private key is
1071// encrypted by examining its Proc-Type header
1072// for a mention of ENCRYPTED
1073// according to RFC 1421 Section 4.6.1.1.
1074func encryptedBlock(block *pem.Block) bool {
1075	return strings.Contains(block.Headers["Proc-Type"], "ENCRYPTED")
1076}
1077
1078// A PassphraseMissingError indicates that parsing this private key requires a
1079// passphrase. Use ParsePrivateKeyWithPassphrase.
1080type PassphraseMissingError struct {
1081	// PublicKey will be set if the private key format includes an unencrypted
1082	// public key along with the encrypted private key.
1083	PublicKey PublicKey
1084}
1085
1086func (*PassphraseMissingError) Error() string {
1087	return "ssh: this private key is passphrase protected"
1088}
1089
1090// ParseRawPrivateKey returns a private key from a PEM encoded private key. It
1091// supports RSA (PKCS#1), PKCS#8, DSA (OpenSSL), and ECDSA private keys. If the
1092// private key is encrypted, it will return a PassphraseMissingError.
1093func ParseRawPrivateKey(pemBytes []byte) (interface{}, error) {
1094	block, _ := pem.Decode(pemBytes)
1095	if block == nil {
1096		return nil, errors.New("ssh: no key found")
1097	}
1098
1099	if encryptedBlock(block) {
1100		return nil, &PassphraseMissingError{}
1101	}
1102
1103	switch block.Type {
1104	case "RSA PRIVATE KEY":
1105		return x509.ParsePKCS1PrivateKey(block.Bytes)
1106	// RFC5208 - https://tools.ietf.org/html/rfc5208
1107	case "PRIVATE KEY":
1108		return x509.ParsePKCS8PrivateKey(block.Bytes)
1109	case "EC PRIVATE KEY":
1110		return x509.ParseECPrivateKey(block.Bytes)
1111	case "DSA PRIVATE KEY":
1112		return ParseDSAPrivateKey(block.Bytes)
1113	case "OPENSSH PRIVATE KEY":
1114		return parseOpenSSHPrivateKey(block.Bytes, unencryptedOpenSSHKey)
1115	default:
1116		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
1117	}
1118}
1119
1120// ParseRawPrivateKeyWithPassphrase returns a private key decrypted with
1121// passphrase from a PEM encoded private key. If the passphrase is wrong, it
1122// will return x509.IncorrectPasswordError.
1123func ParseRawPrivateKeyWithPassphrase(pemBytes, passphrase []byte) (interface{}, error) {
1124	block, _ := pem.Decode(pemBytes)
1125	if block == nil {
1126		return nil, errors.New("ssh: no key found")
1127	}
1128
1129	if block.Type == "OPENSSH PRIVATE KEY" {
1130		return parseOpenSSHPrivateKey(block.Bytes, passphraseProtectedOpenSSHKey(passphrase))
1131	}
1132
1133	if !encryptedBlock(block) || !x509.IsEncryptedPEMBlock(block) {
1134		return nil, errors.New("ssh: not an encrypted key")
1135	}
1136
1137	buf, err := x509.DecryptPEMBlock(block, passphrase)
1138	if err != nil {
1139		if err == x509.IncorrectPasswordError {
1140			return nil, err
1141		}
1142		return nil, fmt.Errorf("ssh: cannot decode encrypted private keys: %v", err)
1143	}
1144
1145	switch block.Type {
1146	case "RSA PRIVATE KEY":
1147		return x509.ParsePKCS1PrivateKey(buf)
1148	case "EC PRIVATE KEY":
1149		return x509.ParseECPrivateKey(buf)
1150	case "DSA PRIVATE KEY":
1151		return ParseDSAPrivateKey(buf)
1152	default:
1153		return nil, fmt.Errorf("ssh: unsupported key type %q", block.Type)
1154	}
1155}
1156
1157// ParseDSAPrivateKey returns a DSA private key from its ASN.1 DER encoding, as
1158// specified by the OpenSSL DSA man page.
1159func ParseDSAPrivateKey(der []byte) (*dsa.PrivateKey, error) {
1160	var k struct {
1161		Version int
1162		P       *big.Int
1163		Q       *big.Int
1164		G       *big.Int
1165		Pub     *big.Int
1166		Priv    *big.Int
1167	}
1168	rest, err := asn1.Unmarshal(der, &k)
1169	if err != nil {
1170		return nil, errors.New("ssh: failed to parse DSA key: " + err.Error())
1171	}
1172	if len(rest) > 0 {
1173		return nil, errors.New("ssh: garbage after DSA key")
1174	}
1175
1176	return &dsa.PrivateKey{
1177		PublicKey: dsa.PublicKey{
1178			Parameters: dsa.Parameters{
1179				P: k.P,
1180				Q: k.Q,
1181				G: k.G,
1182			},
1183			Y: k.Pub,
1184		},
1185		X: k.Priv,
1186	}, nil
1187}
1188
1189func unencryptedOpenSSHKey(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
1190	if kdfName != "none" || cipherName != "none" {
1191		return nil, &PassphraseMissingError{}
1192	}
1193	if kdfOpts != "" {
1194		return nil, errors.New("ssh: invalid openssh private key")
1195	}
1196	return privKeyBlock, nil
1197}
1198
1199func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc {
1200	return func(cipherName, kdfName, kdfOpts string, privKeyBlock []byte) ([]byte, error) {
1201		if kdfName == "none" || cipherName == "none" {
1202			return nil, errors.New("ssh: key is not password protected")
1203		}
1204		if kdfName != "bcrypt" {
1205			return nil, fmt.Errorf("ssh: unknown KDF %q, only supports %q", kdfName, "bcrypt")
1206		}
1207
1208		var opts struct {
1209			Salt   string
1210			Rounds uint32
1211		}
1212		if err := Unmarshal([]byte(kdfOpts), &opts); err != nil {
1213			return nil, err
1214		}
1215
1216		k, err := bcrypt_pbkdf.Key(passphrase, []byte(opts.Salt), int(opts.Rounds), 32+16)
1217		if err != nil {
1218			return nil, err
1219		}
1220		key, iv := k[:32], k[32:]
1221
1222		c, err := aes.NewCipher(key)
1223		if err != nil {
1224			return nil, err
1225		}
1226		switch cipherName {
1227		case "aes256-ctr":
1228			ctr := cipher.NewCTR(c, iv)
1229			ctr.XORKeyStream(privKeyBlock, privKeyBlock)
1230		case "aes256-cbc":
1231			if len(privKeyBlock)%c.BlockSize() != 0 {
1232				return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size")
1233			}
1234			cbc := cipher.NewCBCDecrypter(c, iv)
1235			cbc.CryptBlocks(privKeyBlock, privKeyBlock)
1236		default:
1237			return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc")
1238		}
1239
1240		return privKeyBlock, nil
1241	}
1242}
1243
1244type openSSHDecryptFunc func(CipherName, KdfName, KdfOpts string, PrivKeyBlock []byte) ([]byte, error)
1245
1246// parseOpenSSHPrivateKey parses an OpenSSH private key, using the decrypt
1247// function to unwrap the encrypted portion. unencryptedOpenSSHKey can be used
1248// as the decrypt function to parse an unencrypted private key. See
1249// https://github.com/openssh/openssh-portable/blob/master/PROTOCOL.key.
1250func parseOpenSSHPrivateKey(key []byte, decrypt openSSHDecryptFunc) (crypto.PrivateKey, error) {
1251	const magic = "openssh-key-v1\x00"
1252	if len(key) < len(magic) || string(key[:len(magic)]) != magic {
1253		return nil, errors.New("ssh: invalid openssh private key format")
1254	}
1255	remaining := key[len(magic):]
1256
1257	var w struct {
1258		CipherName   string
1259		KdfName      string
1260		KdfOpts      string
1261		NumKeys      uint32
1262		PubKey       []byte
1263		PrivKeyBlock []byte
1264	}
1265
1266	if err := Unmarshal(remaining, &w); err != nil {
1267		return nil, err
1268	}
1269	if w.NumKeys != 1 {
1270		// We only support single key files, and so does OpenSSH.
1271		// https://github.com/openssh/openssh-portable/blob/4103a3ec7/sshkey.c#L4171
1272		return nil, errors.New("ssh: multi-key files are not supported")
1273	}
1274
1275	privKeyBlock, err := decrypt(w.CipherName, w.KdfName, w.KdfOpts, w.PrivKeyBlock)
1276	if err != nil {
1277		if err, ok := err.(*PassphraseMissingError); ok {
1278			pub, errPub := ParsePublicKey(w.PubKey)
1279			if errPub != nil {
1280				return nil, fmt.Errorf("ssh: failed to parse embedded public key: %v", errPub)
1281			}
1282			err.PublicKey = pub
1283		}
1284		return nil, err
1285	}
1286
1287	pk1 := struct {
1288		Check1  uint32
1289		Check2  uint32
1290		Keytype string
1291		Rest    []byte `ssh:"rest"`
1292	}{}
1293
1294	if err := Unmarshal(privKeyBlock, &pk1); err != nil || pk1.Check1 != pk1.Check2 {
1295		if w.CipherName != "none" {
1296			return nil, x509.IncorrectPasswordError
1297		}
1298		return nil, errors.New("ssh: malformed OpenSSH key")
1299	}
1300
1301	switch pk1.Keytype {
1302	case KeyAlgoRSA:
1303		// https://github.com/openssh/openssh-portable/blob/master/sshkey.c#L2760-L2773
1304		key := struct {
1305			N       *big.Int
1306			E       *big.Int
1307			D       *big.Int
1308			Iqmp    *big.Int
1309			P       *big.Int
1310			Q       *big.Int
1311			Comment string
1312			Pad     []byte `ssh:"rest"`
1313		}{}
1314
1315		if err := Unmarshal(pk1.Rest, &key); err != nil {
1316			return nil, err
1317		}
1318
1319		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1320			return nil, err
1321		}
1322
1323		pk := &rsa.PrivateKey{
1324			PublicKey: rsa.PublicKey{
1325				N: key.N,
1326				E: int(key.E.Int64()),
1327			},
1328			D:      key.D,
1329			Primes: []*big.Int{key.P, key.Q},
1330		}
1331
1332		if err := pk.Validate(); err != nil {
1333			return nil, err
1334		}
1335
1336		pk.Precompute()
1337
1338		return pk, nil
1339	case KeyAlgoED25519:
1340		key := struct {
1341			Pub     []byte
1342			Priv    []byte
1343			Comment string
1344			Pad     []byte `ssh:"rest"`
1345		}{}
1346
1347		if err := Unmarshal(pk1.Rest, &key); err != nil {
1348			return nil, err
1349		}
1350
1351		if len(key.Priv) != ed25519.PrivateKeySize {
1352			return nil, errors.New("ssh: private key unexpected length")
1353		}
1354
1355		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1356			return nil, err
1357		}
1358
1359		pk := ed25519.PrivateKey(make([]byte, ed25519.PrivateKeySize))
1360		copy(pk, key.Priv)
1361		return &pk, nil
1362	case KeyAlgoECDSA256, KeyAlgoECDSA384, KeyAlgoECDSA521:
1363		key := struct {
1364			Curve   string
1365			Pub     []byte
1366			D       *big.Int
1367			Comment string
1368			Pad     []byte `ssh:"rest"`
1369		}{}
1370
1371		if err := Unmarshal(pk1.Rest, &key); err != nil {
1372			return nil, err
1373		}
1374
1375		if err := checkOpenSSHKeyPadding(key.Pad); err != nil {
1376			return nil, err
1377		}
1378
1379		var curve elliptic.Curve
1380		switch key.Curve {
1381		case "nistp256":
1382			curve = elliptic.P256()
1383		case "nistp384":
1384			curve = elliptic.P384()
1385		case "nistp521":
1386			curve = elliptic.P521()
1387		default:
1388			return nil, errors.New("ssh: unhandled elliptic curve: " + key.Curve)
1389		}
1390
1391		X, Y := elliptic.Unmarshal(curve, key.Pub)
1392		if X == nil || Y == nil {
1393			return nil, errors.New("ssh: failed to unmarshal public key")
1394		}
1395
1396		if key.D.Cmp(curve.Params().N) >= 0 {
1397			return nil, errors.New("ssh: scalar is out of range")
1398		}
1399
1400		x, y := curve.ScalarBaseMult(key.D.Bytes())
1401		if x.Cmp(X) != 0 || y.Cmp(Y) != 0 {
1402			return nil, errors.New("ssh: public key does not match private key")
1403		}
1404
1405		return &ecdsa.PrivateKey{
1406			PublicKey: ecdsa.PublicKey{
1407				Curve: curve,
1408				X:     X,
1409				Y:     Y,
1410			},
1411			D: key.D,
1412		}, nil
1413	default:
1414		return nil, errors.New("ssh: unhandled key type")
1415	}
1416}
1417
1418func checkOpenSSHKeyPadding(pad []byte) error {
1419	for i, b := range pad {
1420		if int(b) != i+1 {
1421			return errors.New("ssh: padding not as expected")
1422		}
1423	}
1424	return nil
1425}
1426
1427// FingerprintLegacyMD5 returns the user presentation of the key's
1428// fingerprint as described by RFC 4716 section 4.
1429func FingerprintLegacyMD5(pubKey PublicKey) string {
1430	md5sum := md5.Sum(pubKey.Marshal())
1431	hexarray := make([]string, len(md5sum))
1432	for i, c := range md5sum {
1433		hexarray[i] = hex.EncodeToString([]byte{c})
1434	}
1435	return strings.Join(hexarray, ":")
1436}
1437
1438// FingerprintSHA256 returns the user presentation of the key's
1439// fingerprint as unpadded base64 encoded sha256 hash.
1440// This format was introduced from OpenSSH 6.8.
1441// https://www.openssh.com/txt/release-6.8
1442// https://tools.ietf.org/html/rfc4648#section-3.2 (unpadded base64 encoding)
1443func FingerprintSHA256(pubKey PublicKey) string {
1444	sha256sum := sha256.Sum256(pubKey.Marshal())
1445	hash := base64.RawStdEncoding.EncodeToString(sha256sum[:])
1446	return "SHA256:" + hash
1447}
1448