1package assert
2
3import (
4	"bufio"
5	"bytes"
6	"encoding/json"
7	"errors"
8	"fmt"
9	"math"
10	"os"
11	"reflect"
12	"regexp"
13	"runtime"
14	"runtime/debug"
15	"strings"
16	"time"
17	"unicode"
18	"unicode/utf8"
19
20	"github.com/davecgh/go-spew/spew"
21	"github.com/pmezard/go-difflib/difflib"
22	yaml "gopkg.in/yaml.v3"
23)
24
25//go:generate sh -c "cd ../_codegen && go build && cd - && ../_codegen/_codegen -output-package=assert -template=assertion_format.go.tmpl"
26
27// TestingT is an interface wrapper around *testing.T
28type TestingT interface {
29	Errorf(format string, args ...interface{})
30}
31
32// ComparisonAssertionFunc is a common function prototype when comparing two values.  Can be useful
33// for table driven tests.
34type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
35
36// ValueAssertionFunc is a common function prototype when validating a single value.  Can be useful
37// for table driven tests.
38type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
39
40// BoolAssertionFunc is a common function prototype when validating a bool value.  Can be useful
41// for table driven tests.
42type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
43
44// ErrorAssertionFunc is a common function prototype when validating an error value.  Can be useful
45// for table driven tests.
46type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
47
48// Comparison is a custom function that returns true on success and false on failure
49type Comparison func() (success bool)
50
51/*
52	Helper functions
53*/
54
55// ObjectsAreEqual determines if two objects are considered equal.
56//
57// This function does no assertion of any kind.
58func ObjectsAreEqual(expected, actual interface{}) bool {
59	if expected == nil || actual == nil {
60		return expected == actual
61	}
62
63	exp, ok := expected.([]byte)
64	if !ok {
65		return reflect.DeepEqual(expected, actual)
66	}
67
68	act, ok := actual.([]byte)
69	if !ok {
70		return false
71	}
72	if exp == nil || act == nil {
73		return exp == nil && act == nil
74	}
75	return bytes.Equal(exp, act)
76}
77
78// ObjectsAreEqualValues gets whether two objects are equal, or if their
79// values are equal.
80func ObjectsAreEqualValues(expected, actual interface{}) bool {
81	if ObjectsAreEqual(expected, actual) {
82		return true
83	}
84
85	actualType := reflect.TypeOf(actual)
86	if actualType == nil {
87		return false
88	}
89	expectedValue := reflect.ValueOf(expected)
90	if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
91		// Attempt comparison after type conversion
92		return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
93	}
94
95	return false
96}
97
98/* CallerInfo is necessary because the assert functions use the testing object
99internally, causing it to print the file:line of the assert method, rather than where
100the problem actually occurred in calling code.*/
101
102// CallerInfo returns an array of strings containing the file and line number
103// of each stack frame leading from the current test to the assert call that
104// failed.
105func CallerInfo() []string {
106
107	var pc uintptr
108	var ok bool
109	var file string
110	var line int
111	var name string
112
113	callers := []string{}
114	for i := 0; ; i++ {
115		pc, file, line, ok = runtime.Caller(i)
116		if !ok {
117			// The breaks below failed to terminate the loop, and we ran off the
118			// end of the call stack.
119			break
120		}
121
122		// This is a huge edge case, but it will panic if this is the case, see #180
123		if file == "<autogenerated>" {
124			break
125		}
126
127		f := runtime.FuncForPC(pc)
128		if f == nil {
129			break
130		}
131		name = f.Name()
132
133		// testing.tRunner is the standard library function that calls
134		// tests. Subtests are called directly by tRunner, without going through
135		// the Test/Benchmark/Example function that contains the t.Run calls, so
136		// with subtests we should break when we hit tRunner, without adding it
137		// to the list of callers.
138		if name == "testing.tRunner" {
139			break
140		}
141
142		parts := strings.Split(file, "/")
143		file = parts[len(parts)-1]
144		if len(parts) > 1 {
145			dir := parts[len(parts)-2]
146			if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
147				callers = append(callers, fmt.Sprintf("%s:%d", file, line))
148			}
149		}
150
151		// Drop the package
152		segments := strings.Split(name, ".")
153		name = segments[len(segments)-1]
154		if isTest(name, "Test") ||
155			isTest(name, "Benchmark") ||
156			isTest(name, "Example") {
157			break
158		}
159	}
160
161	return callers
162}
163
164// Stolen from the `go test` tool.
165// isTest tells whether name looks like a test (or benchmark, according to prefix).
166// It is a Test (say) if there is a character after Test that is not a lower-case letter.
167// We don't want TesticularCancer.
168func isTest(name, prefix string) bool {
169	if !strings.HasPrefix(name, prefix) {
170		return false
171	}
172	if len(name) == len(prefix) { // "Test" is ok
173		return true
174	}
175	r, _ := utf8.DecodeRuneInString(name[len(prefix):])
176	return !unicode.IsLower(r)
177}
178
179func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
180	if len(msgAndArgs) == 0 || msgAndArgs == nil {
181		return ""
182	}
183	if len(msgAndArgs) == 1 {
184		msg := msgAndArgs[0]
185		if msgAsStr, ok := msg.(string); ok {
186			return msgAsStr
187		}
188		return fmt.Sprintf("%+v", msg)
189	}
190	if len(msgAndArgs) > 1 {
191		return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
192	}
193	return ""
194}
195
196// Aligns the provided message so that all lines after the first line start at the same location as the first line.
197// Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
198// The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
199// basis on which the alignment occurs).
200func indentMessageLines(message string, longestLabelLen int) string {
201	outBuf := new(bytes.Buffer)
202
203	for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
204		// no need to align first line because it starts at the correct location (after the label)
205		if i != 0 {
206			// append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
207			outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
208		}
209		outBuf.WriteString(scanner.Text())
210	}
211
212	return outBuf.String()
213}
214
215type failNower interface {
216	FailNow()
217}
218
219// FailNow fails test
220func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
221	if h, ok := t.(tHelper); ok {
222		h.Helper()
223	}
224	Fail(t, failureMessage, msgAndArgs...)
225
226	// We cannot extend TestingT with FailNow() and
227	// maintain backwards compatibility, so we fallback
228	// to panicking when FailNow is not available in
229	// TestingT.
230	// See issue #263
231
232	if t, ok := t.(failNower); ok {
233		t.FailNow()
234	} else {
235		panic("test failed and t is missing `FailNow()`")
236	}
237	return false
238}
239
240// Fail reports a failure through
241func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
242	if h, ok := t.(tHelper); ok {
243		h.Helper()
244	}
245	content := []labeledContent{
246		{"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
247		{"Error", failureMessage},
248	}
249
250	// Add test name if the Go version supports it
251	if n, ok := t.(interface {
252		Name() string
253	}); ok {
254		content = append(content, labeledContent{"Test", n.Name()})
255	}
256
257	message := messageFromMsgAndArgs(msgAndArgs...)
258	if len(message) > 0 {
259		content = append(content, labeledContent{"Messages", message})
260	}
261
262	t.Errorf("\n%s", ""+labeledOutput(content...))
263
264	return false
265}
266
267type labeledContent struct {
268	label   string
269	content string
270}
271
272// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
273//
274//   \t{{label}}:{{align_spaces}}\t{{content}}\n
275//
276// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
277// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
278// alignment is achieved, "\t{{content}}\n" is added for the output.
279//
280// If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
281func labeledOutput(content ...labeledContent) string {
282	longestLabel := 0
283	for _, v := range content {
284		if len(v.label) > longestLabel {
285			longestLabel = len(v.label)
286		}
287	}
288	var output string
289	for _, v := range content {
290		output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
291	}
292	return output
293}
294
295// Implements asserts that an object is implemented by the specified interface.
296//
297//    assert.Implements(t, (*MyInterface)(nil), new(MyObject))
298func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
299	if h, ok := t.(tHelper); ok {
300		h.Helper()
301	}
302	interfaceType := reflect.TypeOf(interfaceObject).Elem()
303
304	if object == nil {
305		return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
306	}
307	if !reflect.TypeOf(object).Implements(interfaceType) {
308		return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
309	}
310
311	return true
312}
313
314// IsType asserts that the specified objects are of the same type.
315func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
316	if h, ok := t.(tHelper); ok {
317		h.Helper()
318	}
319
320	if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
321		return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
322	}
323
324	return true
325}
326
327// Equal asserts that two objects are equal.
328//
329//    assert.Equal(t, 123, 123)
330//
331// Pointer variable equality is determined based on the equality of the
332// referenced values (as opposed to the memory addresses). Function equality
333// cannot be determined and will always fail.
334func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
335	if h, ok := t.(tHelper); ok {
336		h.Helper()
337	}
338	if err := validateEqualArgs(expected, actual); err != nil {
339		return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
340			expected, actual, err), msgAndArgs...)
341	}
342
343	if !ObjectsAreEqual(expected, actual) {
344		diff := diff(expected, actual)
345		expected, actual = formatUnequalValues(expected, actual)
346		return Fail(t, fmt.Sprintf("Not equal: \n"+
347			"expected: %s\n"+
348			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
349	}
350
351	return true
352
353}
354
355// validateEqualArgs checks whether provided arguments can be safely used in the
356// Equal/NotEqual functions.
357func validateEqualArgs(expected, actual interface{}) error {
358	if expected == nil && actual == nil {
359		return nil
360	}
361
362	if isFunction(expected) || isFunction(actual) {
363		return errors.New("cannot take func type as argument")
364	}
365	return nil
366}
367
368// Same asserts that two pointers reference the same object.
369//
370//    assert.Same(t, ptr1, ptr2)
371//
372// Both arguments must be pointer variables. Pointer variable sameness is
373// determined based on the equality of both type and value.
374func Same(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
375	if h, ok := t.(tHelper); ok {
376		h.Helper()
377	}
378
379	if !samePointers(expected, actual) {
380		return Fail(t, fmt.Sprintf("Not same: \n"+
381			"expected: %p %#v\n"+
382			"actual  : %p %#v", expected, expected, actual, actual), msgAndArgs...)
383	}
384
385	return true
386}
387
388// NotSame asserts that two pointers do not reference the same object.
389//
390//    assert.NotSame(t, ptr1, ptr2)
391//
392// Both arguments must be pointer variables. Pointer variable sameness is
393// determined based on the equality of both type and value.
394func NotSame(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
395	if h, ok := t.(tHelper); ok {
396		h.Helper()
397	}
398
399	if samePointers(expected, actual) {
400		return Fail(t, fmt.Sprintf(
401			"Expected and actual point to the same object: %p %#v",
402			expected, expected), msgAndArgs...)
403	}
404	return true
405}
406
407// samePointers compares two generic interface objects and returns whether
408// they point to the same object
409func samePointers(first, second interface{}) bool {
410	firstPtr, secondPtr := reflect.ValueOf(first), reflect.ValueOf(second)
411	if firstPtr.Kind() != reflect.Ptr || secondPtr.Kind() != reflect.Ptr {
412		return false
413	}
414
415	firstType, secondType := reflect.TypeOf(first), reflect.TypeOf(second)
416	if firstType != secondType {
417		return false
418	}
419
420	// compare pointer addresses
421	return first == second
422}
423
424// formatUnequalValues takes two values of arbitrary types and returns string
425// representations appropriate to be presented to the user.
426//
427// If the values are not of like type, the returned strings will be prefixed
428// with the type name, and the value will be enclosed in parenthesis similar
429// to a type conversion in the Go grammar.
430func formatUnequalValues(expected, actual interface{}) (e string, a string) {
431	if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
432		return fmt.Sprintf("%T(%s)", expected, truncatingFormat(expected)),
433			fmt.Sprintf("%T(%s)", actual, truncatingFormat(actual))
434	}
435	switch expected.(type) {
436	case time.Duration:
437		return fmt.Sprintf("%v", expected), fmt.Sprintf("%v", actual)
438	}
439	return truncatingFormat(expected), truncatingFormat(actual)
440}
441
442// truncatingFormat formats the data and truncates it if it's too long.
443//
444// This helps keep formatted error messages lines from exceeding the
445// bufio.MaxScanTokenSize max line length that the go testing framework imposes.
446func truncatingFormat(data interface{}) string {
447	value := fmt.Sprintf("%#v", data)
448	max := bufio.MaxScanTokenSize - 100 // Give us some space the type info too if needed.
449	if len(value) > max {
450		value = value[0:max] + "<... truncated>"
451	}
452	return value
453}
454
455// EqualValues asserts that two objects are equal or convertable to the same types
456// and equal.
457//
458//    assert.EqualValues(t, uint32(123), int32(123))
459func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
460	if h, ok := t.(tHelper); ok {
461		h.Helper()
462	}
463
464	if !ObjectsAreEqualValues(expected, actual) {
465		diff := diff(expected, actual)
466		expected, actual = formatUnequalValues(expected, actual)
467		return Fail(t, fmt.Sprintf("Not equal: \n"+
468			"expected: %s\n"+
469			"actual  : %s%s", expected, actual, diff), msgAndArgs...)
470	}
471
472	return true
473
474}
475
476// Exactly asserts that two objects are equal in value and type.
477//
478//    assert.Exactly(t, int32(123), int64(123))
479func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
480	if h, ok := t.(tHelper); ok {
481		h.Helper()
482	}
483
484	aType := reflect.TypeOf(expected)
485	bType := reflect.TypeOf(actual)
486
487	if aType != bType {
488		return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
489	}
490
491	return Equal(t, expected, actual, msgAndArgs...)
492
493}
494
495// NotNil asserts that the specified object is not nil.
496//
497//    assert.NotNil(t, err)
498func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
499	if !isNil(object) {
500		return true
501	}
502	if h, ok := t.(tHelper); ok {
503		h.Helper()
504	}
505	return Fail(t, "Expected value not to be nil.", msgAndArgs...)
506}
507
508// containsKind checks if a specified kind in the slice of kinds.
509func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
510	for i := 0; i < len(kinds); i++ {
511		if kind == kinds[i] {
512			return true
513		}
514	}
515
516	return false
517}
518
519// isNil checks if a specified object is nil or not, without Failing.
520func isNil(object interface{}) bool {
521	if object == nil {
522		return true
523	}
524
525	value := reflect.ValueOf(object)
526	kind := value.Kind()
527	isNilableKind := containsKind(
528		[]reflect.Kind{
529			reflect.Chan, reflect.Func,
530			reflect.Interface, reflect.Map,
531			reflect.Ptr, reflect.Slice},
532		kind)
533
534	if isNilableKind && value.IsNil() {
535		return true
536	}
537
538	return false
539}
540
541// Nil asserts that the specified object is nil.
542//
543//    assert.Nil(t, err)
544func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
545	if isNil(object) {
546		return true
547	}
548	if h, ok := t.(tHelper); ok {
549		h.Helper()
550	}
551	return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
552}
553
554// isEmpty gets whether the specified object is considered empty or not.
555func isEmpty(object interface{}) bool {
556
557	// get nil case out of the way
558	if object == nil {
559		return true
560	}
561
562	objValue := reflect.ValueOf(object)
563
564	switch objValue.Kind() {
565	// collection types are empty when they have no element
566	case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
567		return objValue.Len() == 0
568		// pointers are empty if nil or if the value they point to is empty
569	case reflect.Ptr:
570		if objValue.IsNil() {
571			return true
572		}
573		deref := objValue.Elem().Interface()
574		return isEmpty(deref)
575		// for all other types, compare against the zero value
576	default:
577		zero := reflect.Zero(objValue.Type())
578		return reflect.DeepEqual(object, zero.Interface())
579	}
580}
581
582// Empty asserts that the specified object is empty.  I.e. nil, "", false, 0 or either
583// a slice or a channel with len == 0.
584//
585//  assert.Empty(t, obj)
586func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
587	pass := isEmpty(object)
588	if !pass {
589		if h, ok := t.(tHelper); ok {
590			h.Helper()
591		}
592		Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
593	}
594
595	return pass
596
597}
598
599// NotEmpty asserts that the specified object is NOT empty.  I.e. not nil, "", false, 0 or either
600// a slice or a channel with len == 0.
601//
602//  if assert.NotEmpty(t, obj) {
603//    assert.Equal(t, "two", obj[1])
604//  }
605func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
606	pass := !isEmpty(object)
607	if !pass {
608		if h, ok := t.(tHelper); ok {
609			h.Helper()
610		}
611		Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
612	}
613
614	return pass
615
616}
617
618// getLen try to get length of object.
619// return (false, 0) if impossible.
620func getLen(x interface{}) (ok bool, length int) {
621	v := reflect.ValueOf(x)
622	defer func() {
623		if e := recover(); e != nil {
624			ok = false
625		}
626	}()
627	return true, v.Len()
628}
629
630// Len asserts that the specified object has specific length.
631// Len also fails if the object has a type that len() not accept.
632//
633//    assert.Len(t, mySlice, 3)
634func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
635	if h, ok := t.(tHelper); ok {
636		h.Helper()
637	}
638	ok, l := getLen(object)
639	if !ok {
640		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
641	}
642
643	if l != length {
644		return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
645	}
646	return true
647}
648
649// True asserts that the specified value is true.
650//
651//    assert.True(t, myBool)
652func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
653	if !value {
654		if h, ok := t.(tHelper); ok {
655			h.Helper()
656		}
657		return Fail(t, "Should be true", msgAndArgs...)
658	}
659
660	return true
661
662}
663
664// False asserts that the specified value is false.
665//
666//    assert.False(t, myBool)
667func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
668	if value {
669		if h, ok := t.(tHelper); ok {
670			h.Helper()
671		}
672		return Fail(t, "Should be false", msgAndArgs...)
673	}
674
675	return true
676
677}
678
679// NotEqual asserts that the specified values are NOT equal.
680//
681//    assert.NotEqual(t, obj1, obj2)
682//
683// Pointer variable equality is determined based on the equality of the
684// referenced values (as opposed to the memory addresses).
685func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
686	if h, ok := t.(tHelper); ok {
687		h.Helper()
688	}
689	if err := validateEqualArgs(expected, actual); err != nil {
690		return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
691			expected, actual, err), msgAndArgs...)
692	}
693
694	if ObjectsAreEqual(expected, actual) {
695		return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
696	}
697
698	return true
699
700}
701
702// NotEqualValues asserts that two objects are not equal even when converted to the same type
703//
704//    assert.NotEqualValues(t, obj1, obj2)
705func NotEqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
706	if h, ok := t.(tHelper); ok {
707		h.Helper()
708	}
709
710	if ObjectsAreEqualValues(expected, actual) {
711		return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
712	}
713
714	return true
715}
716
717// containsElement try loop over the list check if the list includes the element.
718// return (false, false) if impossible.
719// return (true, false) if element was not found.
720// return (true, true) if element was found.
721func includeElement(list interface{}, element interface{}) (ok, found bool) {
722
723	listValue := reflect.ValueOf(list)
724	listKind := reflect.TypeOf(list).Kind()
725	defer func() {
726		if e := recover(); e != nil {
727			ok = false
728			found = false
729		}
730	}()
731
732	if listKind == reflect.String {
733		elementValue := reflect.ValueOf(element)
734		return true, strings.Contains(listValue.String(), elementValue.String())
735	}
736
737	if listKind == reflect.Map {
738		mapKeys := listValue.MapKeys()
739		for i := 0; i < len(mapKeys); i++ {
740			if ObjectsAreEqual(mapKeys[i].Interface(), element) {
741				return true, true
742			}
743		}
744		return true, false
745	}
746
747	for i := 0; i < listValue.Len(); i++ {
748		if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
749			return true, true
750		}
751	}
752	return true, false
753
754}
755
756// Contains asserts that the specified string, list(array, slice...) or map contains the
757// specified substring or element.
758//
759//    assert.Contains(t, "Hello World", "World")
760//    assert.Contains(t, ["Hello", "World"], "World")
761//    assert.Contains(t, {"Hello": "World"}, "Hello")
762func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
763	if h, ok := t.(tHelper); ok {
764		h.Helper()
765	}
766
767	ok, found := includeElement(s, contains)
768	if !ok {
769		return Fail(t, fmt.Sprintf("%#v could not be applied builtin len()", s), msgAndArgs...)
770	}
771	if !found {
772		return Fail(t, fmt.Sprintf("%#v does not contain %#v", s, contains), msgAndArgs...)
773	}
774
775	return true
776
777}
778
779// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
780// specified substring or element.
781//
782//    assert.NotContains(t, "Hello World", "Earth")
783//    assert.NotContains(t, ["Hello", "World"], "Earth")
784//    assert.NotContains(t, {"Hello": "World"}, "Earth")
785func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
786	if h, ok := t.(tHelper); ok {
787		h.Helper()
788	}
789
790	ok, found := includeElement(s, contains)
791	if !ok {
792		return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
793	}
794	if found {
795		return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
796	}
797
798	return true
799
800}
801
802// Subset asserts that the specified list(array, slice...) contains all
803// elements given in the specified subset(array, slice...).
804//
805//    assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
806func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
807	if h, ok := t.(tHelper); ok {
808		h.Helper()
809	}
810	if subset == nil {
811		return true // we consider nil to be equal to the nil set
812	}
813
814	subsetValue := reflect.ValueOf(subset)
815	defer func() {
816		if e := recover(); e != nil {
817			ok = false
818		}
819	}()
820
821	listKind := reflect.TypeOf(list).Kind()
822	subsetKind := reflect.TypeOf(subset).Kind()
823
824	if listKind != reflect.Array && listKind != reflect.Slice {
825		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
826	}
827
828	if subsetKind != reflect.Array && subsetKind != reflect.Slice {
829		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
830	}
831
832	for i := 0; i < subsetValue.Len(); i++ {
833		element := subsetValue.Index(i).Interface()
834		ok, found := includeElement(list, element)
835		if !ok {
836			return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
837		}
838		if !found {
839			return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", list, element), msgAndArgs...)
840		}
841	}
842
843	return true
844}
845
846// NotSubset asserts that the specified list(array, slice...) contains not all
847// elements given in the specified subset(array, slice...).
848//
849//    assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
850func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
851	if h, ok := t.(tHelper); ok {
852		h.Helper()
853	}
854	if subset == nil {
855		return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
856	}
857
858	subsetValue := reflect.ValueOf(subset)
859	defer func() {
860		if e := recover(); e != nil {
861			ok = false
862		}
863	}()
864
865	listKind := reflect.TypeOf(list).Kind()
866	subsetKind := reflect.TypeOf(subset).Kind()
867
868	if listKind != reflect.Array && listKind != reflect.Slice {
869		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
870	}
871
872	if subsetKind != reflect.Array && subsetKind != reflect.Slice {
873		return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
874	}
875
876	for i := 0; i < subsetValue.Len(); i++ {
877		element := subsetValue.Index(i).Interface()
878		ok, found := includeElement(list, element)
879		if !ok {
880			return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
881		}
882		if !found {
883			return true
884		}
885	}
886
887	return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
888}
889
890// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
891// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
892// the number of appearances of each of them in both lists should match.
893//
894// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
895func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
896	if h, ok := t.(tHelper); ok {
897		h.Helper()
898	}
899	if isEmpty(listA) && isEmpty(listB) {
900		return true
901	}
902
903	if !isList(t, listA, msgAndArgs...) || !isList(t, listB, msgAndArgs...) {
904		return false
905	}
906
907	extraA, extraB := diffLists(listA, listB)
908
909	if len(extraA) == 0 && len(extraB) == 0 {
910		return true
911	}
912
913	return Fail(t, formatListDiff(listA, listB, extraA, extraB), msgAndArgs...)
914}
915
916// isList checks that the provided value is array or slice.
917func isList(t TestingT, list interface{}, msgAndArgs ...interface{}) (ok bool) {
918	kind := reflect.TypeOf(list).Kind()
919	if kind != reflect.Array && kind != reflect.Slice {
920		return Fail(t, fmt.Sprintf("%q has an unsupported type %s, expecting array or slice", list, kind),
921			msgAndArgs...)
922	}
923	return true
924}
925
926// diffLists diffs two arrays/slices and returns slices of elements that are only in A and only in B.
927// If some element is present multiple times, each instance is counted separately (e.g. if something is 2x in A and
928// 5x in B, it will be 0x in extraA and 3x in extraB). The order of items in both lists is ignored.
929func diffLists(listA, listB interface{}) (extraA, extraB []interface{}) {
930	aValue := reflect.ValueOf(listA)
931	bValue := reflect.ValueOf(listB)
932
933	aLen := aValue.Len()
934	bLen := bValue.Len()
935
936	// Mark indexes in bValue that we already used
937	visited := make([]bool, bLen)
938	for i := 0; i < aLen; i++ {
939		element := aValue.Index(i).Interface()
940		found := false
941		for j := 0; j < bLen; j++ {
942			if visited[j] {
943				continue
944			}
945			if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
946				visited[j] = true
947				found = true
948				break
949			}
950		}
951		if !found {
952			extraA = append(extraA, element)
953		}
954	}
955
956	for j := 0; j < bLen; j++ {
957		if visited[j] {
958			continue
959		}
960		extraB = append(extraB, bValue.Index(j).Interface())
961	}
962
963	return
964}
965
966func formatListDiff(listA, listB interface{}, extraA, extraB []interface{}) string {
967	var msg bytes.Buffer
968
969	msg.WriteString("elements differ")
970	if len(extraA) > 0 {
971		msg.WriteString("\n\nextra elements in list A:\n")
972		msg.WriteString(spewConfig.Sdump(extraA))
973	}
974	if len(extraB) > 0 {
975		msg.WriteString("\n\nextra elements in list B:\n")
976		msg.WriteString(spewConfig.Sdump(extraB))
977	}
978	msg.WriteString("\n\nlistA:\n")
979	msg.WriteString(spewConfig.Sdump(listA))
980	msg.WriteString("\n\nlistB:\n")
981	msg.WriteString(spewConfig.Sdump(listB))
982
983	return msg.String()
984}
985
986// Condition uses a Comparison to assert a complex condition.
987func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
988	if h, ok := t.(tHelper); ok {
989		h.Helper()
990	}
991	result := comp()
992	if !result {
993		Fail(t, "Condition failed!", msgAndArgs...)
994	}
995	return result
996}
997
998// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
999// methods, and represents a simple func that takes no arguments, and returns nothing.
1000type PanicTestFunc func()
1001
1002// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
1003func didPanic(f PanicTestFunc) (bool, interface{}, string) {
1004
1005	didPanic := false
1006	var message interface{}
1007	var stack string
1008	func() {
1009
1010		defer func() {
1011			if message = recover(); message != nil {
1012				didPanic = true
1013				stack = string(debug.Stack())
1014			}
1015		}()
1016
1017		// call the target function
1018		f()
1019
1020	}()
1021
1022	return didPanic, message, stack
1023
1024}
1025
1026// Panics asserts that the code inside the specified PanicTestFunc panics.
1027//
1028//   assert.Panics(t, func(){ GoCrazy() })
1029func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1030	if h, ok := t.(tHelper); ok {
1031		h.Helper()
1032	}
1033
1034	if funcDidPanic, panicValue, _ := didPanic(f); !funcDidPanic {
1035		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
1036	}
1037
1038	return true
1039}
1040
1041// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
1042// the recovered panic value equals the expected panic value.
1043//
1044//   assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
1045func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1046	if h, ok := t.(tHelper); ok {
1047		h.Helper()
1048	}
1049
1050	funcDidPanic, panicValue, panickedStack := didPanic(f)
1051	if !funcDidPanic {
1052		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
1053	}
1054	if panicValue != expected {
1055		return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, expected, panicValue, panickedStack), msgAndArgs...)
1056	}
1057
1058	return true
1059}
1060
1061// PanicsWithError asserts that the code inside the specified PanicTestFunc
1062// panics, and that the recovered panic value is an error that satisfies the
1063// EqualError comparison.
1064//
1065//   assert.PanicsWithError(t, "crazy error", func(){ GoCrazy() })
1066func PanicsWithError(t TestingT, errString string, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1067	if h, ok := t.(tHelper); ok {
1068		h.Helper()
1069	}
1070
1071	funcDidPanic, panicValue, panickedStack := didPanic(f)
1072	if !funcDidPanic {
1073		return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
1074	}
1075	panicErr, ok := panicValue.(error)
1076	if !ok || panicErr.Error() != errString {
1077		return Fail(t, fmt.Sprintf("func %#v should panic with error message:\t%#v\n\tPanic value:\t%#v\n\tPanic stack:\t%s", f, errString, panicValue, panickedStack), msgAndArgs...)
1078	}
1079
1080	return true
1081}
1082
1083// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
1084//
1085//   assert.NotPanics(t, func(){ RemainCalm() })
1086func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
1087	if h, ok := t.(tHelper); ok {
1088		h.Helper()
1089	}
1090
1091	if funcDidPanic, panicValue, panickedStack := didPanic(f); funcDidPanic {
1092		return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v\n\tPanic stack:\t%s", f, panicValue, panickedStack), msgAndArgs...)
1093	}
1094
1095	return true
1096}
1097
1098// WithinDuration asserts that the two times are within duration delta of each other.
1099//
1100//   assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
1101func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
1102	if h, ok := t.(tHelper); ok {
1103		h.Helper()
1104	}
1105
1106	dt := expected.Sub(actual)
1107	if dt < -delta || dt > delta {
1108		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1109	}
1110
1111	return true
1112}
1113
1114func toFloat(x interface{}) (float64, bool) {
1115	var xf float64
1116	xok := true
1117
1118	switch xn := x.(type) {
1119	case uint:
1120		xf = float64(xn)
1121	case uint8:
1122		xf = float64(xn)
1123	case uint16:
1124		xf = float64(xn)
1125	case uint32:
1126		xf = float64(xn)
1127	case uint64:
1128		xf = float64(xn)
1129	case int:
1130		xf = float64(xn)
1131	case int8:
1132		xf = float64(xn)
1133	case int16:
1134		xf = float64(xn)
1135	case int32:
1136		xf = float64(xn)
1137	case int64:
1138		xf = float64(xn)
1139	case float32:
1140		xf = float64(xn)
1141	case float64:
1142		xf = xn
1143	case time.Duration:
1144		xf = float64(xn)
1145	default:
1146		xok = false
1147	}
1148
1149	return xf, xok
1150}
1151
1152// InDelta asserts that the two numerals are within delta of each other.
1153//
1154// 	 assert.InDelta(t, math.Pi, 22/7.0, 0.01)
1155func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1156	if h, ok := t.(tHelper); ok {
1157		h.Helper()
1158	}
1159
1160	af, aok := toFloat(expected)
1161	bf, bok := toFloat(actual)
1162
1163	if !aok || !bok {
1164		return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
1165	}
1166
1167	if math.IsNaN(af) {
1168		return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
1169	}
1170
1171	if math.IsNaN(bf) {
1172		return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
1173	}
1174
1175	dt := af - bf
1176	if dt < -delta || dt > delta {
1177		return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1178	}
1179
1180	return true
1181}
1182
1183// InDeltaSlice is the same as InDelta, except it compares two slices.
1184func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1185	if h, ok := t.(tHelper); ok {
1186		h.Helper()
1187	}
1188	if expected == nil || actual == nil ||
1189		reflect.TypeOf(actual).Kind() != reflect.Slice ||
1190		reflect.TypeOf(expected).Kind() != reflect.Slice {
1191		return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1192	}
1193
1194	actualSlice := reflect.ValueOf(actual)
1195	expectedSlice := reflect.ValueOf(expected)
1196
1197	for i := 0; i < actualSlice.Len(); i++ {
1198		result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
1199		if !result {
1200			return result
1201		}
1202	}
1203
1204	return true
1205}
1206
1207// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
1208func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1209	if h, ok := t.(tHelper); ok {
1210		h.Helper()
1211	}
1212	if expected == nil || actual == nil ||
1213		reflect.TypeOf(actual).Kind() != reflect.Map ||
1214		reflect.TypeOf(expected).Kind() != reflect.Map {
1215		return Fail(t, "Arguments must be maps", msgAndArgs...)
1216	}
1217
1218	expectedMap := reflect.ValueOf(expected)
1219	actualMap := reflect.ValueOf(actual)
1220
1221	if expectedMap.Len() != actualMap.Len() {
1222		return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
1223	}
1224
1225	for _, k := range expectedMap.MapKeys() {
1226		ev := expectedMap.MapIndex(k)
1227		av := actualMap.MapIndex(k)
1228
1229		if !ev.IsValid() {
1230			return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
1231		}
1232
1233		if !av.IsValid() {
1234			return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
1235		}
1236
1237		if !InDelta(
1238			t,
1239			ev.Interface(),
1240			av.Interface(),
1241			delta,
1242			msgAndArgs...,
1243		) {
1244			return false
1245		}
1246	}
1247
1248	return true
1249}
1250
1251func calcRelativeError(expected, actual interface{}) (float64, error) {
1252	af, aok := toFloat(expected)
1253	if !aok {
1254		return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
1255	}
1256	if math.IsNaN(af) {
1257		return 0, errors.New("expected value must not be NaN")
1258	}
1259	if af == 0 {
1260		return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
1261	}
1262	bf, bok := toFloat(actual)
1263	if !bok {
1264		return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
1265	}
1266	if math.IsNaN(bf) {
1267		return 0, errors.New("actual value must not be NaN")
1268	}
1269
1270	return math.Abs(af-bf) / math.Abs(af), nil
1271}
1272
1273// InEpsilon asserts that expected and actual have a relative error less than epsilon
1274func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1275	if h, ok := t.(tHelper); ok {
1276		h.Helper()
1277	}
1278	if math.IsNaN(epsilon) {
1279		return Fail(t, "epsilon must not be NaN")
1280	}
1281	actualEpsilon, err := calcRelativeError(expected, actual)
1282	if err != nil {
1283		return Fail(t, err.Error(), msgAndArgs...)
1284	}
1285	if actualEpsilon > epsilon {
1286		return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
1287			"        < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
1288	}
1289
1290	return true
1291}
1292
1293// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
1294func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1295	if h, ok := t.(tHelper); ok {
1296		h.Helper()
1297	}
1298	if expected == nil || actual == nil ||
1299		reflect.TypeOf(actual).Kind() != reflect.Slice ||
1300		reflect.TypeOf(expected).Kind() != reflect.Slice {
1301		return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1302	}
1303
1304	actualSlice := reflect.ValueOf(actual)
1305	expectedSlice := reflect.ValueOf(expected)
1306
1307	for i := 0; i < actualSlice.Len(); i++ {
1308		result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
1309		if !result {
1310			return result
1311		}
1312	}
1313
1314	return true
1315}
1316
1317/*
1318	Errors
1319*/
1320
1321// NoError asserts that a function returned no error (i.e. `nil`).
1322//
1323//   actualObj, err := SomeFunction()
1324//   if assert.NoError(t, err) {
1325//	   assert.Equal(t, expectedObj, actualObj)
1326//   }
1327func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
1328	if err != nil {
1329		if h, ok := t.(tHelper); ok {
1330			h.Helper()
1331		}
1332		return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
1333	}
1334
1335	return true
1336}
1337
1338// Error asserts that a function returned an error (i.e. not `nil`).
1339//
1340//   actualObj, err := SomeFunction()
1341//   if assert.Error(t, err) {
1342//	   assert.Equal(t, expectedError, err)
1343//   }
1344func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
1345	if err == nil {
1346		if h, ok := t.(tHelper); ok {
1347			h.Helper()
1348		}
1349		return Fail(t, "An error is expected but got nil.", msgAndArgs...)
1350	}
1351
1352	return true
1353}
1354
1355// EqualError asserts that a function returned an error (i.e. not `nil`)
1356// and that it is equal to the provided error.
1357//
1358//   actualObj, err := SomeFunction()
1359//   assert.EqualError(t, err,  expectedErrorString)
1360func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
1361	if h, ok := t.(tHelper); ok {
1362		h.Helper()
1363	}
1364	if !Error(t, theError, msgAndArgs...) {
1365		return false
1366	}
1367	expected := errString
1368	actual := theError.Error()
1369	// don't need to use deep equals here, we know they are both strings
1370	if expected != actual {
1371		return Fail(t, fmt.Sprintf("Error message not equal:\n"+
1372			"expected: %q\n"+
1373			"actual  : %q", expected, actual), msgAndArgs...)
1374	}
1375	return true
1376}
1377
1378// matchRegexp return true if a specified regexp matches a string.
1379func matchRegexp(rx interface{}, str interface{}) bool {
1380
1381	var r *regexp.Regexp
1382	if rr, ok := rx.(*regexp.Regexp); ok {
1383		r = rr
1384	} else {
1385		r = regexp.MustCompile(fmt.Sprint(rx))
1386	}
1387
1388	return (r.FindStringIndex(fmt.Sprint(str)) != nil)
1389
1390}
1391
1392// Regexp asserts that a specified regexp matches a string.
1393//
1394//  assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
1395//  assert.Regexp(t, "start...$", "it's not starting")
1396func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1397	if h, ok := t.(tHelper); ok {
1398		h.Helper()
1399	}
1400
1401	match := matchRegexp(rx, str)
1402
1403	if !match {
1404		Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
1405	}
1406
1407	return match
1408}
1409
1410// NotRegexp asserts that a specified regexp does not match a string.
1411//
1412//  assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
1413//  assert.NotRegexp(t, "^start", "it's not starting")
1414func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1415	if h, ok := t.(tHelper); ok {
1416		h.Helper()
1417	}
1418	match := matchRegexp(rx, str)
1419
1420	if match {
1421		Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
1422	}
1423
1424	return !match
1425
1426}
1427
1428// Zero asserts that i is the zero value for its type.
1429func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1430	if h, ok := t.(tHelper); ok {
1431		h.Helper()
1432	}
1433	if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1434		return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
1435	}
1436	return true
1437}
1438
1439// NotZero asserts that i is not the zero value for its type.
1440func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1441	if h, ok := t.(tHelper); ok {
1442		h.Helper()
1443	}
1444	if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1445		return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
1446	}
1447	return true
1448}
1449
1450// FileExists checks whether a file exists in the given path. It also fails if
1451// the path points to a directory or there is an error when trying to check the file.
1452func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1453	if h, ok := t.(tHelper); ok {
1454		h.Helper()
1455	}
1456	info, err := os.Lstat(path)
1457	if err != nil {
1458		if os.IsNotExist(err) {
1459			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1460		}
1461		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1462	}
1463	if info.IsDir() {
1464		return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
1465	}
1466	return true
1467}
1468
1469// NoFileExists checks whether a file does not exist in a given path. It fails
1470// if the path points to an existing _file_ only.
1471func NoFileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1472	if h, ok := t.(tHelper); ok {
1473		h.Helper()
1474	}
1475	info, err := os.Lstat(path)
1476	if err != nil {
1477		return true
1478	}
1479	if info.IsDir() {
1480		return true
1481	}
1482	return Fail(t, fmt.Sprintf("file %q exists", path), msgAndArgs...)
1483}
1484
1485// DirExists checks whether a directory exists in the given path. It also fails
1486// if the path is a file rather a directory or there is an error checking whether it exists.
1487func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1488	if h, ok := t.(tHelper); ok {
1489		h.Helper()
1490	}
1491	info, err := os.Lstat(path)
1492	if err != nil {
1493		if os.IsNotExist(err) {
1494			return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1495		}
1496		return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1497	}
1498	if !info.IsDir() {
1499		return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
1500	}
1501	return true
1502}
1503
1504// NoDirExists checks whether a directory does not exist in the given path.
1505// It fails if the path points to an existing _directory_ only.
1506func NoDirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1507	if h, ok := t.(tHelper); ok {
1508		h.Helper()
1509	}
1510	info, err := os.Lstat(path)
1511	if err != nil {
1512		if os.IsNotExist(err) {
1513			return true
1514		}
1515		return true
1516	}
1517	if !info.IsDir() {
1518		return true
1519	}
1520	return Fail(t, fmt.Sprintf("directory %q exists", path), msgAndArgs...)
1521}
1522
1523// JSONEq asserts that two JSON strings are equivalent.
1524//
1525//  assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
1526func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1527	if h, ok := t.(tHelper); ok {
1528		h.Helper()
1529	}
1530	var expectedJSONAsInterface, actualJSONAsInterface interface{}
1531
1532	if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
1533		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1534	}
1535
1536	if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
1537		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
1538	}
1539
1540	return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
1541}
1542
1543// YAMLEq asserts that two YAML strings are equivalent.
1544func YAMLEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1545	if h, ok := t.(tHelper); ok {
1546		h.Helper()
1547	}
1548	var expectedYAMLAsInterface, actualYAMLAsInterface interface{}
1549
1550	if err := yaml.Unmarshal([]byte(expected), &expectedYAMLAsInterface); err != nil {
1551		return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid yaml.\nYAML parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1552	}
1553
1554	if err := yaml.Unmarshal([]byte(actual), &actualYAMLAsInterface); err != nil {
1555		return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid yaml.\nYAML error: '%s'", actual, err.Error()), msgAndArgs...)
1556	}
1557
1558	return Equal(t, expectedYAMLAsInterface, actualYAMLAsInterface, msgAndArgs...)
1559}
1560
1561func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
1562	t := reflect.TypeOf(v)
1563	k := t.Kind()
1564
1565	if k == reflect.Ptr {
1566		t = t.Elem()
1567		k = t.Kind()
1568	}
1569	return t, k
1570}
1571
1572// diff returns a diff of both values as long as both are of the same type and
1573// are a struct, map, slice, array or string. Otherwise it returns an empty string.
1574func diff(expected interface{}, actual interface{}) string {
1575	if expected == nil || actual == nil {
1576		return ""
1577	}
1578
1579	et, ek := typeAndKind(expected)
1580	at, _ := typeAndKind(actual)
1581
1582	if et != at {
1583		return ""
1584	}
1585
1586	if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
1587		return ""
1588	}
1589
1590	var e, a string
1591	if et != reflect.TypeOf("") {
1592		e = spewConfig.Sdump(expected)
1593		a = spewConfig.Sdump(actual)
1594	} else {
1595		e = reflect.ValueOf(expected).String()
1596		a = reflect.ValueOf(actual).String()
1597	}
1598
1599	diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
1600		A:        difflib.SplitLines(e),
1601		B:        difflib.SplitLines(a),
1602		FromFile: "Expected",
1603		FromDate: "",
1604		ToFile:   "Actual",
1605		ToDate:   "",
1606		Context:  1,
1607	})
1608
1609	return "\n\nDiff:\n" + diff
1610}
1611
1612func isFunction(arg interface{}) bool {
1613	if arg == nil {
1614		return false
1615	}
1616	return reflect.TypeOf(arg).Kind() == reflect.Func
1617}
1618
1619var spewConfig = spew.ConfigState{
1620	Indent:                  " ",
1621	DisablePointerAddresses: true,
1622	DisableCapacities:       true,
1623	SortKeys:                true,
1624	DisableMethods:          true,
1625	MaxDepth:                10,
1626}
1627
1628type tHelper interface {
1629	Helper()
1630}
1631
1632// Eventually asserts that given condition will be met in waitFor time,
1633// periodically checking target function each tick.
1634//
1635//    assert.Eventually(t, func() bool { return true; }, time.Second, 10*time.Millisecond)
1636func Eventually(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1637	if h, ok := t.(tHelper); ok {
1638		h.Helper()
1639	}
1640
1641	ch := make(chan bool, 1)
1642
1643	timer := time.NewTimer(waitFor)
1644	defer timer.Stop()
1645
1646	ticker := time.NewTicker(tick)
1647	defer ticker.Stop()
1648
1649	for tick := ticker.C; ; {
1650		select {
1651		case <-timer.C:
1652			return Fail(t, "Condition never satisfied", msgAndArgs...)
1653		case <-tick:
1654			tick = nil
1655			go func() { ch <- condition() }()
1656		case v := <-ch:
1657			if v {
1658				return true
1659			}
1660			tick = ticker.C
1661		}
1662	}
1663}
1664
1665// Never asserts that the given condition doesn't satisfy in waitFor time,
1666// periodically checking the target function each tick.
1667//
1668//    assert.Never(t, func() bool { return false; }, time.Second, 10*time.Millisecond)
1669func Never(t TestingT, condition func() bool, waitFor time.Duration, tick time.Duration, msgAndArgs ...interface{}) bool {
1670	if h, ok := t.(tHelper); ok {
1671		h.Helper()
1672	}
1673
1674	ch := make(chan bool, 1)
1675
1676	timer := time.NewTimer(waitFor)
1677	defer timer.Stop()
1678
1679	ticker := time.NewTicker(tick)
1680	defer ticker.Stop()
1681
1682	for tick := ticker.C; ; {
1683		select {
1684		case <-timer.C:
1685			return true
1686		case <-tick:
1687			tick = nil
1688			go func() { ch <- condition() }()
1689		case v := <-ch:
1690			if v {
1691				return Fail(t, "Condition satisfied", msgAndArgs...)
1692			}
1693			tick = ticker.C
1694		}
1695	}
1696}
1697
1698// ErrorIs asserts that at least one of the errors in err's chain matches target.
1699// This is a wrapper for errors.Is.
1700func ErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool {
1701	if h, ok := t.(tHelper); ok {
1702		h.Helper()
1703	}
1704	if errors.Is(err, target) {
1705		return true
1706	}
1707
1708	var expectedText string
1709	if target != nil {
1710		expectedText = target.Error()
1711	}
1712
1713	chain := buildErrorChainString(err)
1714
1715	return Fail(t, fmt.Sprintf("Target error should be in err chain:\n"+
1716		"expected: %q\n"+
1717		"in chain: %s", expectedText, chain,
1718	), msgAndArgs...)
1719}
1720
1721// NotErrorIs asserts that at none of the errors in err's chain matches target.
1722// This is a wrapper for errors.Is.
1723func NotErrorIs(t TestingT, err, target error, msgAndArgs ...interface{}) bool {
1724	if h, ok := t.(tHelper); ok {
1725		h.Helper()
1726	}
1727	if !errors.Is(err, target) {
1728		return true
1729	}
1730
1731	var expectedText string
1732	if target != nil {
1733		expectedText = target.Error()
1734	}
1735
1736	chain := buildErrorChainString(err)
1737
1738	return Fail(t, fmt.Sprintf("Target error should not be in err chain:\n"+
1739		"found: %q\n"+
1740		"in chain: %s", expectedText, chain,
1741	), msgAndArgs...)
1742}
1743
1744// ErrorAs asserts that at least one of the errors in err's chain matches target, and if so, sets target to that error value.
1745// This is a wrapper for errors.As.
1746func ErrorAs(t TestingT, err error, target interface{}, msgAndArgs ...interface{}) bool {
1747	if h, ok := t.(tHelper); ok {
1748		h.Helper()
1749	}
1750	if errors.As(err, target) {
1751		return true
1752	}
1753
1754	chain := buildErrorChainString(err)
1755
1756	return Fail(t, fmt.Sprintf("Should be in error chain:\n"+
1757		"expected: %q\n"+
1758		"in chain: %s", target, chain,
1759	), msgAndArgs...)
1760}
1761
1762func buildErrorChainString(err error) string {
1763	if err == nil {
1764		return ""
1765	}
1766
1767	e := errors.Unwrap(err)
1768	chain := fmt.Sprintf("%q", err.Error())
1769	for e != nil {
1770		chain += fmt.Sprintf("\n\t%q", e.Error())
1771		e = errors.Unwrap(e)
1772	}
1773	return chain
1774}
1775