1 /*
2 ** Definitions for x86 and x64 CPUs.
3 ** Copyright (C) 2005-2017 Mike Pall. See Copyright Notice in luajit.h
4 */
5 
6 #ifndef _LJ_TARGET_X86_H
7 #define _LJ_TARGET_X86_H
8 
9 /* -- Registers IDs ------------------------------------------------------- */
10 
11 #if LJ_64
12 #define GPRDEF(_) \
13   _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI) \
14   _(R8D) _(R9D) _(R10D) _(R11D) _(R12D) _(R13D) _(R14D) _(R15D)
15 #define FPRDEF(_) \
16   _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7) \
17   _(XMM8) _(XMM9) _(XMM10) _(XMM11) _(XMM12) _(XMM13) _(XMM14) _(XMM15)
18 #else
19 #define GPRDEF(_) \
20   _(EAX) _(ECX) _(EDX) _(EBX) _(ESP) _(EBP) _(ESI) _(EDI)
21 #define FPRDEF(_) \
22   _(XMM0) _(XMM1) _(XMM2) _(XMM3) _(XMM4) _(XMM5) _(XMM6) _(XMM7)
23 #endif
24 #define VRIDDEF(_) \
25   _(MRM) _(RIP)
26 
27 #define RIDENUM(name)	RID_##name,
28 
29 enum {
30   GPRDEF(RIDENUM)		/* General-purpose registers (GPRs). */
31   FPRDEF(RIDENUM)		/* Floating-point registers (FPRs). */
32   RID_MAX,
33   RID_MRM = RID_MAX,		/* Pseudo-id for ModRM operand. */
34   RID_RIP = RID_MAX+5,		/* Pseudo-id for RIP (x64 only), rm bits = 5. */
35 
36   /* Calling conventions. */
37   RID_SP = RID_ESP,
38   RID_RET = RID_EAX,
39 #if LJ_64
40   RID_FPRET = RID_XMM0,
41 #else
42   RID_RETLO = RID_EAX,
43   RID_RETHI = RID_EDX,
44 #endif
45 
46   /* These definitions must match with the *.dasc file(s): */
47   RID_BASE = RID_EDX,		/* Interpreter BASE. */
48 #if LJ_64 && !LJ_ABI_WIN
49   RID_LPC = RID_EBX,		/* Interpreter PC. */
50   RID_DISPATCH = RID_R14D,	/* Interpreter DISPATCH table. */
51 #else
52   RID_LPC = RID_ESI,		/* Interpreter PC. */
53   RID_DISPATCH = RID_EBX,	/* Interpreter DISPATCH table. */
54 #endif
55 
56   /* Register ranges [min, max) and number of registers. */
57   RID_MIN_GPR = RID_EAX,
58   RID_MIN_FPR = RID_XMM0,
59   RID_MAX_GPR = RID_MIN_FPR,
60   RID_MAX_FPR = RID_MAX,
61   RID_NUM_GPR = RID_MAX_GPR - RID_MIN_GPR,
62   RID_NUM_FPR = RID_MAX_FPR - RID_MIN_FPR,
63 };
64 
65 /* -- Register sets ------------------------------------------------------- */
66 
67 /* Make use of all registers, except the stack pointer (and maybe DISPATCH). */
68 #define RSET_GPR	(RSET_RANGE(RID_MIN_GPR, RID_MAX_GPR) \
69 			 - RID2RSET(RID_ESP) \
70 			 - LJ_GC64*RID2RSET(RID_DISPATCH))
71 #define RSET_FPR	(RSET_RANGE(RID_MIN_FPR, RID_MAX_FPR))
72 #define RSET_ALL	(RSET_GPR|RSET_FPR)
73 #define RSET_INIT	RSET_ALL
74 
75 #if LJ_64
76 /* Note: this requires the use of FORCE_REX! */
77 #define RSET_GPR8	RSET_GPR
78 #else
79 #define RSET_GPR8	(RSET_RANGE(RID_EAX, RID_EBX+1))
80 #endif
81 
82 /* ABI-specific register sets. */
83 #define RSET_ACD	(RID2RSET(RID_EAX)|RID2RSET(RID_ECX)|RID2RSET(RID_EDX))
84 #if LJ_64
85 #if LJ_ABI_WIN
86 /* Windows x64 ABI. */
87 #define RSET_SCRATCH \
88   (RSET_ACD|RSET_RANGE(RID_R8D, RID_R11D+1)|RSET_RANGE(RID_XMM0, RID_XMM5+1))
89 #define REGARG_GPRS \
90   (RID_ECX|((RID_EDX|((RID_R8D|(RID_R9D<<5))<<5))<<5))
91 #define REGARG_NUMGPR	4
92 #define REGARG_NUMFPR	4
93 #define REGARG_FIRSTFPR	RID_XMM0
94 #define REGARG_LASTFPR	RID_XMM3
95 #define STACKARG_OFS	(4*8)
96 #else
97 /* The rest of the civilized x64 world has a common ABI. */
98 #define RSET_SCRATCH \
99   (RSET_ACD|RSET_RANGE(RID_ESI, RID_R11D+1)|RSET_FPR)
100 #define REGARG_GPRS \
101   (RID_EDI|((RID_ESI|((RID_EDX|((RID_ECX|((RID_R8D|(RID_R9D \
102    <<5))<<5))<<5))<<5))<<5))
103 #define REGARG_NUMGPR	6
104 #define REGARG_NUMFPR	8
105 #define REGARG_FIRSTFPR	RID_XMM0
106 #define REGARG_LASTFPR	RID_XMM7
107 #define STACKARG_OFS	0
108 #endif
109 #else
110 /* Common x86 ABI. */
111 #define RSET_SCRATCH	(RSET_ACD|RSET_FPR)
112 #define REGARG_GPRS	(RID_ECX|(RID_EDX<<5))  /* Fastcall only. */
113 #define REGARG_NUMGPR	2  /* Fastcall only. */
114 #define REGARG_NUMFPR	0
115 #define STACKARG_OFS	0
116 #endif
117 
118 #if LJ_64
119 /* Prefer the low 8 regs of each type to reduce REX prefixes. */
120 #undef rset_picktop
121 #define rset_picktop(rs)	(lj_fls(lj_bswap(rs)) ^ 0x18)
122 #endif
123 
124 /* -- Spill slots --------------------------------------------------------- */
125 
126 /* Spill slots are 32 bit wide. An even/odd pair is used for FPRs.
127 **
128 ** SPS_FIXED: Available fixed spill slots in interpreter frame.
129 ** This definition must match with the *.dasc file(s).
130 **
131 ** SPS_FIRST: First spill slot for general use. Reserve min. two 32 bit slots.
132 */
133 #if LJ_64
134 #if LJ_ABI_WIN
135 #define SPS_FIXED	(4*2)
136 #define SPS_FIRST	(4*2)	/* Don't use callee register save area. */
137 #else
138 #if LJ_GC64
139 #define SPS_FIXED	2
140 #else
141 #define SPS_FIXED	4
142 #endif
143 #define SPS_FIRST	2
144 #endif
145 #else
146 #define SPS_FIXED	6
147 #define SPS_FIRST	2
148 #endif
149 
150 #define SPOFS_TMP	0
151 
152 #define sps_scale(slot)		(4 * (int32_t)(slot))
153 #define sps_align(slot)		(((slot) - SPS_FIXED + 3) & ~3)
154 
155 /* -- Exit state ---------------------------------------------------------- */
156 
157 /* This definition must match with the *.dasc file(s). */
158 typedef struct {
159   lua_Number fpr[RID_NUM_FPR];	/* Floating-point registers. */
160   intptr_t gpr[RID_NUM_GPR];	/* General-purpose registers. */
161   int32_t spill[256];		/* Spill slots. */
162 } ExitState;
163 
164 /* Limited by the range of a short fwd jump (127): (2+2)*(32-1)-2 = 122. */
165 #define EXITSTUB_SPACING	(2+2)
166 #define EXITSTUBS_PER_GROUP	32
167 
168 /* -- x86 ModRM operand encoding ------------------------------------------ */
169 
170 typedef enum {
171   XM_OFS0 = 0x00, XM_OFS8 = 0x40, XM_OFS32 = 0x80, XM_REG = 0xc0,
172   XM_SCALE1 = 0x00, XM_SCALE2 = 0x40, XM_SCALE4 = 0x80, XM_SCALE8 = 0xc0,
173   XM_MASK = 0xc0
174 } x86Mode;
175 
176 /* Structure to hold variable ModRM operand. */
177 typedef struct {
178   int32_t ofs;		/* Offset. */
179   uint8_t base;		/* Base register or RID_NONE. */
180   uint8_t idx;		/* Index register or RID_NONE. */
181   uint8_t scale;	/* Index scale (XM_SCALE1 .. XM_SCALE8). */
182 } x86ModRM;
183 
184 /* -- Opcodes ------------------------------------------------------------- */
185 
186 /* Macros to construct variable-length x86 opcodes. -(len+1) is in LSB. */
187 #define XO_(o)		((uint32_t)(0x0000fe + (0x##o<<24)))
188 #define XO_FPU(a,b)	((uint32_t)(0x00fd + (0x##a<<16)+(0x##b<<24)))
189 #define XO_0f(o)	((uint32_t)(0x0f00fd + (0x##o<<24)))
190 #define XO_66(o)	((uint32_t)(0x6600fd + (0x##o<<24)))
191 #define XO_660f(o)	((uint32_t)(0x0f66fc + (0x##o<<24)))
192 #define XO_f20f(o)	((uint32_t)(0x0ff2fc + (0x##o<<24)))
193 #define XO_f30f(o)	((uint32_t)(0x0ff3fc + (0x##o<<24)))
194 
195 #define XV_660f38(o)	((uint32_t)(0x79e2c4 + (0x##o<<24)))
196 #define XV_f20f38(o)	((uint32_t)(0x7be2c4 + (0x##o<<24)))
197 #define XV_f20f3a(o)	((uint32_t)(0x7be3c4 + (0x##o<<24)))
198 #define XV_f30f38(o)	((uint32_t)(0x7ae2c4 + (0x##o<<24)))
199 
200 /* This list of x86 opcodes is not intended to be complete. Opcodes are only
201 ** included when needed. Take a look at DynASM or jit.dis_x86 to see the
202 ** whole mess.
203 */
204 typedef enum {
205   /* Fixed length opcodes. XI_* prefix. */
206   XI_O16 =	0x66,
207   XI_NOP =	0x90,
208   XI_XCHGa =	0x90,
209   XI_CALL =	0xe8,
210   XI_JMP =	0xe9,
211   XI_JMPs =	0xeb,
212   XI_PUSH =	0x50, /* Really 50+r. */
213   XI_JCCs =	0x70, /* Really 7x. */
214   XI_JCCn =	0x80, /* Really 0f8x. */
215   XI_LEA =	0x8d,
216   XI_MOVrib =	0xb0, /* Really b0+r. */
217   XI_MOVri =	0xb8, /* Really b8+r. */
218   XI_ARITHib =	0x80,
219   XI_ARITHi =	0x81,
220   XI_ARITHi8 =	0x83,
221   XI_PUSHi8 =	0x6a,
222   XI_TESTb =	0x84,
223   XI_TEST =	0x85,
224   XI_INT3 =	0xcc,
225   XI_MOVmi =	0xc7,
226   XI_GROUP5 =	0xff,
227 
228   /* Note: little-endian byte-order! */
229   XI_FLDZ =	0xeed9,
230   XI_FLD1 =	0xe8d9,
231   XI_FLDLG2 =	0xecd9,
232   XI_FLDLN2 =	0xedd9,
233   XI_FDUP =	0xc0d9,  /* Really fld st0. */
234   XI_FPOP =	0xd8dd,  /* Really fstp st0. */
235   XI_FPOP1 =	0xd9dd,  /* Really fstp st1. */
236   XI_FRNDINT =	0xfcd9,
237   XI_FSIN =	0xfed9,
238   XI_FCOS =	0xffd9,
239   XI_FPTAN =	0xf2d9,
240   XI_FPATAN =	0xf3d9,
241   XI_FSCALE =	0xfdd9,
242   XI_FYL2X =	0xf1d9,
243 
244   /* VEX-encoded instructions. XV_* prefix. */
245   XV_RORX =	XV_f20f3a(f0),
246   XV_SARX =	XV_f30f38(f7),
247   XV_SHLX =	XV_660f38(f7),
248   XV_SHRX =	XV_f20f38(f7),
249 
250   /* Variable-length opcodes. XO_* prefix. */
251   XO_OR =	XO_(0b),
252   XO_MOV =	XO_(8b),
253   XO_MOVto =	XO_(89),
254   XO_MOVtow =	XO_66(89),
255   XO_MOVtob =	XO_(88),
256   XO_MOVmi =	XO_(c7),
257   XO_MOVmib =	XO_(c6),
258   XO_LEA =	XO_(8d),
259   XO_ARITHib =	XO_(80),
260   XO_ARITHi =	XO_(81),
261   XO_ARITHi8 =	XO_(83),
262   XO_ARITHiw8 =	XO_66(83),
263   XO_SHIFTi =	XO_(c1),
264   XO_SHIFT1 =	XO_(d1),
265   XO_SHIFTcl =	XO_(d3),
266   XO_IMUL =	XO_0f(af),
267   XO_IMULi =	XO_(69),
268   XO_IMULi8 =	XO_(6b),
269   XO_CMP =	XO_(3b),
270   XO_TESTb =	XO_(84),
271   XO_TEST =	XO_(85),
272   XO_GROUP3b =	XO_(f6),
273   XO_GROUP3 =	XO_(f7),
274   XO_GROUP5b =	XO_(fe),
275   XO_GROUP5 =	XO_(ff),
276   XO_MOVZXb =	XO_0f(b6),
277   XO_MOVZXw =	XO_0f(b7),
278   XO_MOVSXb =	XO_0f(be),
279   XO_MOVSXw =	XO_0f(bf),
280   XO_MOVSXd =	XO_(63),
281   XO_BSWAP =	XO_0f(c8),
282   XO_CMOV =	XO_0f(40),
283 
284   XO_MOVSD =	XO_f20f(10),
285   XO_MOVSDto =	XO_f20f(11),
286   XO_MOVSS =	XO_f30f(10),
287   XO_MOVSSto =	XO_f30f(11),
288   XO_MOVLPD =	XO_660f(12),
289   XO_MOVAPS =	XO_0f(28),
290   XO_XORPS =	XO_0f(57),
291   XO_ANDPS =	XO_0f(54),
292   XO_ADDSD =	XO_f20f(58),
293   XO_SUBSD =	XO_f20f(5c),
294   XO_MULSD =	XO_f20f(59),
295   XO_DIVSD =	XO_f20f(5e),
296   XO_SQRTSD =	XO_f20f(51),
297   XO_MINSD =	XO_f20f(5d),
298   XO_MAXSD =	XO_f20f(5f),
299   XO_ROUNDSD =	0x0b3a0ffc,  /* Really 66 0f 3a 0b. See asm_fpmath. */
300   XO_UCOMISD =	XO_660f(2e),
301   XO_CVTSI2SD =	XO_f20f(2a),
302   XO_CVTTSD2SI=	XO_f20f(2c),
303   XO_CVTSI2SS =	XO_f30f(2a),
304   XO_CVTTSS2SI=	XO_f30f(2c),
305   XO_CVTSS2SD =	XO_f30f(5a),
306   XO_CVTSD2SS =	XO_f20f(5a),
307   XO_ADDSS =	XO_f30f(58),
308   XO_MOVD =	XO_660f(6e),
309   XO_MOVDto =	XO_660f(7e),
310 
311   XO_FLDd =	XO_(d9), XOg_FLDd = 0,
312   XO_FLDq =	XO_(dd), XOg_FLDq = 0,
313   XO_FILDd =	XO_(db), XOg_FILDd = 0,
314   XO_FILDq =	XO_(df), XOg_FILDq = 5,
315   XO_FSTPd =	XO_(d9), XOg_FSTPd = 3,
316   XO_FSTPq =	XO_(dd), XOg_FSTPq = 3,
317   XO_FISTPq =	XO_(df), XOg_FISTPq = 7,
318   XO_FISTTPq =	XO_(dd), XOg_FISTTPq = 1,
319   XO_FADDq =	XO_(dc), XOg_FADDq = 0,
320   XO_FLDCW =	XO_(d9), XOg_FLDCW = 5,
321   XO_FNSTCW =	XO_(d9), XOg_FNSTCW = 7
322 } x86Op;
323 
324 /* x86 opcode groups. */
325 typedef uint32_t x86Group;
326 
327 #define XG_(i8, i, g)	((x86Group)(((i8) << 16) + ((i) << 8) + (g)))
328 #define XG_ARITHi(g)	XG_(XI_ARITHi8, XI_ARITHi, g)
329 #define XG_TOXOi(xg)	((x86Op)(0x000000fe + (((xg)<<16) & 0xff000000)))
330 #define XG_TOXOi8(xg)	((x86Op)(0x000000fe + (((xg)<<8) & 0xff000000)))
331 
332 #define XO_ARITH(a)	((x86Op)(0x030000fe + ((a)<<27)))
333 #define XO_ARITHw(a)	((x86Op)(0x036600fd + ((a)<<27)))
334 
335 typedef enum {
336   XOg_ADD, XOg_OR, XOg_ADC, XOg_SBB, XOg_AND, XOg_SUB, XOg_XOR, XOg_CMP,
337   XOg_X_IMUL
338 } x86Arith;
339 
340 typedef enum {
341   XOg_ROL, XOg_ROR, XOg_RCL, XOg_RCR, XOg_SHL, XOg_SHR, XOg_SAL, XOg_SAR
342 } x86Shift;
343 
344 typedef enum {
345   XOg_TEST, XOg_TEST_, XOg_NOT, XOg_NEG, XOg_MUL, XOg_IMUL, XOg_DIV, XOg_IDIV
346 } x86Group3;
347 
348 typedef enum {
349   XOg_INC, XOg_DEC, XOg_CALL, XOg_CALLfar, XOg_JMP, XOg_JMPfar, XOg_PUSH
350 } x86Group5;
351 
352 /* x86 condition codes. */
353 typedef enum {
354   CC_O, CC_NO, CC_B, CC_NB, CC_E, CC_NE, CC_BE, CC_NBE,
355   CC_S, CC_NS, CC_P, CC_NP, CC_L, CC_NL, CC_LE, CC_NLE,
356   CC_C = CC_B, CC_NAE = CC_C, CC_NC = CC_NB, CC_AE = CC_NB,
357   CC_Z = CC_E, CC_NZ = CC_NE, CC_NA = CC_BE, CC_A = CC_NBE,
358   CC_PE = CC_P, CC_PO = CC_NP, CC_NGE = CC_L, CC_GE = CC_NL,
359   CC_NG = CC_LE, CC_G = CC_NLE
360 } x86CC;
361 
362 #endif
363