1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *   Copyright (C) 1997-2016, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 ******************************************************************************
8 *   Date        Name        Description
9 *   03/22/00    aliu        Adapted from original C++ ICU Hashtable.
10 *   07/06/01    aliu        Modified to support int32_t keys on
11 *                           platforms with sizeof(void*) < 32.
12 ******************************************************************************
13 */
14 
15 #include "uhash.h"
16 #include "unicode/ustring.h"
17 #include "cstring.h"
18 #include "cmemory.h"
19 #include "uassert.h"
20 #include "ustr_imp.h"
21 
22 /* This hashtable is implemented as a double hash.  All elements are
23  * stored in a single array with no secondary storage for collision
24  * resolution (no linked list, etc.).  When there is a hash collision
25  * (when two unequal keys have the same hashcode) we resolve this by
26  * using a secondary hash.  The secondary hash is an increment
27  * computed as a hash function (a different one) of the primary
28  * hashcode.  This increment is added to the initial hash value to
29  * obtain further slots assigned to the same hash code.  For this to
30  * work, the length of the array and the increment must be relatively
31  * prime.  The easiest way to achieve this is to have the length of
32  * the array be prime, and the increment be any value from
33  * 1..length-1.
34  *
35  * Hashcodes are 32-bit integers.  We make sure all hashcodes are
36  * non-negative by masking off the top bit.  This has two effects: (1)
37  * modulo arithmetic is simplified.  If we allowed negative hashcodes,
38  * then when we computed hashcode % length, we could get a negative
39  * result, which we would then have to adjust back into range.  It's
40  * simpler to just make hashcodes non-negative. (2) It makes it easy
41  * to check for empty vs. occupied slots in the table.  We just mark
42  * empty or deleted slots with a negative hashcode.
43  *
44  * The central function is _uhash_find().  This function looks for a
45  * slot matching the given key and hashcode.  If one is found, it
46  * returns a pointer to that slot.  If the table is full, and no match
47  * is found, it returns NULL -- in theory.  This would make the code
48  * more complicated, since all callers of _uhash_find() would then
49  * have to check for a NULL result.  To keep this from happening, we
50  * don't allow the table to fill.  When there is only one
51  * empty/deleted slot left, uhash_put() will refuse to increase the
52  * count, and fail.  This simplifies the code.  In practice, one will
53  * seldom encounter this using default UHashtables.  However, if a
54  * hashtable is set to a U_FIXED resize policy, or if memory is
55  * exhausted, then the table may fill.
56  *
57  * High and low water ratios control rehashing.  They establish levels
58  * of fullness (from 0 to 1) outside of which the data array is
59  * reallocated and repopulated.  Setting the low water ratio to zero
60  * means the table will never shrink.  Setting the high water ratio to
61  * one means the table will never grow.  The ratios should be
62  * coordinated with the ratio between successive elements of the
63  * PRIMES table, so that when the primeIndex is incremented or
64  * decremented during rehashing, it brings the ratio of count / length
65  * back into the desired range (between low and high water ratios).
66  */
67 
68 /********************************************************************
69  * PRIVATE Constants, Macros
70  ********************************************************************/
71 
72 /* This is a list of non-consecutive primes chosen such that
73  * PRIMES[i+1] ~ 2*PRIMES[i].  (Currently, the ratio ranges from 1.81
74  * to 2.18; the inverse ratio ranges from 0.459 to 0.552.)  If this
75  * ratio is changed, the low and high water ratios should also be
76  * adjusted to suit.
77  *
78  * These prime numbers were also chosen so that they are the largest
79  * prime number while being less than a power of two.
80  */
81 static const int32_t PRIMES[] = {
82     7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83     65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84     16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85     1073741789, 2147483647 /*, 4294967291 */
86 };
87 
88 #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89 #define DEFAULT_PRIME_INDEX 4
90 
91 /* These ratios are tuned to the PRIMES array such that a resize
92  * places the table back into the zone of non-resizing.  That is,
93  * after a call to _uhash_rehash(), a subsequent call to
94  * _uhash_rehash() should do nothing (should not churn).  This is only
95  * a potential problem with U_GROW_AND_SHRINK.
96  */
97 static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98     /* low, high water ratio */
99     0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100     0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101     0.0F, 1.0F  /* U_FIXED: Never change size */
102 };
103 
104 /*
105   Invariants for hashcode values:
106 
107   * DELETED < 0
108   * EMPTY < 0
109   * Real hashes >= 0
110 
111   Hashcodes may not start out this way, but internally they are
112   adjusted so that they are always positive.  We assume 32-bit
113   hashcodes; adjust these constants for other hashcode sizes.
114 */
115 #define HASH_DELETED    ((int32_t) 0x80000000)
116 #define HASH_EMPTY      ((int32_t) HASH_DELETED + 1)
117 
118 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119 
120 /* This macro expects a UHashTok.pointer as its keypointer and
121    valuepointer parameters */
122 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
123             if (hash->keyDeleter != NULL && keypointer != NULL) { \
124                 (*hash->keyDeleter)(keypointer); \
125             } \
126             if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127                 (*hash->valueDeleter)(valuepointer); \
128             }
129 
130 /*
131  * Constants for hinting whether a key or value is an integer
132  * or a pointer.  If a hint bit is zero, then the associated
133  * token is assumed to be an integer.
134  */
135 #define HINT_KEY_POINTER   (1)
136 #define HINT_VALUE_POINTER (2)
137 
138 /********************************************************************
139  * PRIVATE Implementation
140  ********************************************************************/
141 
142 static UHashTok
_uhash_setElement(UHashtable * hash,UHashElement * e,int32_t hashcode,UHashTok key,UHashTok value,int8_t hint)143 _uhash_setElement(UHashtable *hash, UHashElement* e,
144                   int32_t hashcode,
145                   UHashTok key, UHashTok value, int8_t hint) {
146 
147     UHashTok oldValue = e->value;
148     if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
149         e->key.pointer != key.pointer) { /* Avoid double deletion */
150         (*hash->keyDeleter)(e->key.pointer);
151     }
152     if (hash->valueDeleter != NULL) {
153         if (oldValue.pointer != NULL &&
154             oldValue.pointer != value.pointer) { /* Avoid double deletion */
155             (*hash->valueDeleter)(oldValue.pointer);
156         }
157         oldValue.pointer = NULL;
158     }
159     /* Compilers should copy the UHashTok union correctly, but even if
160      * they do, memory heap tools (e.g. BoundsChecker) can get
161      * confused when a pointer is cloaked in a union and then copied.
162      * TO ALLEVIATE THIS, we use hints (based on what API the user is
163      * calling) to copy pointers when we know the user thinks
164      * something is a pointer. */
165     if (hint & HINT_KEY_POINTER) {
166         e->key.pointer = key.pointer;
167     } else {
168         e->key = key;
169     }
170     if (hint & HINT_VALUE_POINTER) {
171         e->value.pointer = value.pointer;
172     } else {
173         e->value = value;
174     }
175     e->hashcode = hashcode;
176     return oldValue;
177 }
178 
179 /**
180  * Assumes that the given element is not empty or deleted.
181  */
182 static UHashTok
_uhash_internalRemoveElement(UHashtable * hash,UHashElement * e)183 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
184     UHashTok empty;
185     U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
186     --hash->count;
187     empty.pointer = NULL; empty.integer = 0;
188     return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
189 }
190 
191 static void
_uhash_internalSetResizePolicy(UHashtable * hash,enum UHashResizePolicy policy)192 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
193     U_ASSERT(hash != NULL);
194     U_ASSERT(((int32_t)policy) >= 0);
195     U_ASSERT(((int32_t)policy) < 3);
196     hash->lowWaterRatio  = RESIZE_POLICY_RATIO_TABLE[policy * 2];
197     hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
198 }
199 
200 /**
201  * Allocate internal data array of a size determined by the given
202  * prime index.  If the index is out of range it is pinned into range.
203  * If the allocation fails the status is set to
204  * U_MEMORY_ALLOCATION_ERROR and all array storage is freed.  In
205  * either case the previous array pointer is overwritten.
206  *
207  * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
208  */
209 static void
_uhash_allocate(UHashtable * hash,int32_t primeIndex,UErrorCode * status)210 _uhash_allocate(UHashtable *hash,
211                 int32_t primeIndex,
212                 UErrorCode *status) {
213 
214     UHashElement *p, *limit;
215     UHashTok emptytok;
216 
217     if (U_FAILURE(*status)) return;
218 
219     U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
220 
221     hash->primeIndex = static_cast<int8_t>(primeIndex);
222     hash->length = PRIMES[primeIndex];
223 
224     p = hash->elements = (UHashElement*)
225         uprv_malloc(sizeof(UHashElement) * hash->length);
226 
227     if (hash->elements == NULL) {
228         *status = U_MEMORY_ALLOCATION_ERROR;
229         return;
230     }
231 
232     emptytok.pointer = NULL; /* Only one of these two is needed */
233     emptytok.integer = 0;    /* but we don't know which one. */
234 
235     limit = p + hash->length;
236     while (p < limit) {
237         p->key = emptytok;
238         p->value = emptytok;
239         p->hashcode = HASH_EMPTY;
240         ++p;
241     }
242 
243     hash->count = 0;
244     hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
245     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
246 }
247 
248 static UHashtable*
_uhash_init(UHashtable * result,UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t primeIndex,UErrorCode * status)249 _uhash_init(UHashtable *result,
250               UHashFunction *keyHash,
251               UKeyComparator *keyComp,
252               UValueComparator *valueComp,
253               int32_t primeIndex,
254               UErrorCode *status)
255 {
256     if (U_FAILURE(*status)) return NULL;
257     U_ASSERT(keyHash != NULL);
258     U_ASSERT(keyComp != NULL);
259 
260     result->keyHasher       = keyHash;
261     result->keyComparator   = keyComp;
262     result->valueComparator = valueComp;
263     result->keyDeleter      = NULL;
264     result->valueDeleter    = NULL;
265     result->allocated       = FALSE;
266     _uhash_internalSetResizePolicy(result, U_GROW);
267 
268     _uhash_allocate(result, primeIndex, status);
269 
270     if (U_FAILURE(*status)) {
271         return NULL;
272     }
273 
274     return result;
275 }
276 
277 static UHashtable*
_uhash_create(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t primeIndex,UErrorCode * status)278 _uhash_create(UHashFunction *keyHash,
279               UKeyComparator *keyComp,
280               UValueComparator *valueComp,
281               int32_t primeIndex,
282               UErrorCode *status) {
283     UHashtable *result;
284 
285     if (U_FAILURE(*status)) return NULL;
286 
287     result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
288     if (result == NULL) {
289         *status = U_MEMORY_ALLOCATION_ERROR;
290         return NULL;
291     }
292 
293     _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
294     result->allocated       = TRUE;
295 
296     if (U_FAILURE(*status)) {
297         uprv_free(result);
298         return NULL;
299     }
300 
301     return result;
302 }
303 
304 /**
305  * Look for a key in the table, or if no such key exists, the first
306  * empty slot matching the given hashcode.  Keys are compared using
307  * the keyComparator function.
308  *
309  * First find the start position, which is the hashcode modulo
310  * the length.  Test it to see if it is:
311  *
312  * a. identical:  First check the hash values for a quick check,
313  *    then compare keys for equality using keyComparator.
314  * b. deleted
315  * c. empty
316  *
317  * Stop if it is identical or empty, otherwise continue by adding a
318  * "jump" value (moduloing by the length again to keep it within
319  * range) and retesting.  For efficiency, there need enough empty
320  * values so that the searchs stop within a reasonable amount of time.
321  * This can be changed by changing the high/low water marks.
322  *
323  * In theory, this function can return NULL, if it is full (no empty
324  * or deleted slots) and if no matching key is found.  In practice, we
325  * prevent this elsewhere (in uhash_put) by making sure the last slot
326  * in the table is never filled.
327  *
328  * The size of the table should be prime for this algorithm to work;
329  * otherwise we are not guaranteed that the jump value (the secondary
330  * hash) is relatively prime to the table length.
331  */
332 static UHashElement*
_uhash_find(const UHashtable * hash,UHashTok key,int32_t hashcode)333 _uhash_find(const UHashtable *hash, UHashTok key,
334             int32_t hashcode) {
335 
336     int32_t firstDeleted = -1;  /* assume invalid index */
337     int32_t theIndex, startIndex;
338     int32_t jump = 0; /* lazy evaluate */
339     int32_t tableHash;
340     UHashElement *elements = hash->elements;
341 
342     hashcode &= 0x7FFFFFFF; /* must be positive */
343     startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
344 
345     do {
346         tableHash = elements[theIndex].hashcode;
347         if (tableHash == hashcode) {          /* quick check */
348             if ((*hash->keyComparator)(key, elements[theIndex].key)) {
349                 return &(elements[theIndex]);
350             }
351         } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
352             /* We have hit a slot which contains a key-value pair,
353              * but for which the hash code does not match.  Keep
354              * looking.
355              */
356         } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
357             break;
358         } else if (firstDeleted < 0) { /* remember first deleted */
359             firstDeleted = theIndex;
360         }
361         if (jump == 0) { /* lazy compute jump */
362             /* The jump value must be relatively prime to the table
363              * length.  As long as the length is prime, then any value
364              * 1..length-1 will be relatively prime to it.
365              */
366             jump = (hashcode % (hash->length - 1)) + 1;
367         }
368         theIndex = (theIndex + jump) % hash->length;
369     } while (theIndex != startIndex);
370 
371     if (firstDeleted >= 0) {
372         theIndex = firstDeleted; /* reset if had deleted slot */
373     } else if (tableHash != HASH_EMPTY) {
374         /* We get to this point if the hashtable is full (no empty or
375          * deleted slots), and we've failed to find a match.  THIS
376          * WILL NEVER HAPPEN as long as uhash_put() makes sure that
377          * count is always < length.
378          */
379         UPRV_UNREACHABLE;
380     }
381     return &(elements[theIndex]);
382 }
383 
384 /**
385  * Attempt to grow or shrink the data arrays in order to make the
386  * count fit between the high and low water marks.  hash_put() and
387  * hash_remove() call this method when the count exceeds the high or
388  * low water marks.  This method may do nothing, if memory allocation
389  * fails, or if the count is already in range, or if the length is
390  * already at the low or high limit.  In any case, upon return the
391  * arrays will be valid.
392  */
393 static void
_uhash_rehash(UHashtable * hash,UErrorCode * status)394 _uhash_rehash(UHashtable *hash, UErrorCode *status) {
395 
396     UHashElement *old = hash->elements;
397     int32_t oldLength = hash->length;
398     int32_t newPrimeIndex = hash->primeIndex;
399     int32_t i;
400 
401     if (hash->count > hash->highWaterMark) {
402         if (++newPrimeIndex >= PRIMES_LENGTH) {
403             return;
404         }
405     } else if (hash->count < hash->lowWaterMark) {
406         if (--newPrimeIndex < 0) {
407             return;
408         }
409     } else {
410         return;
411     }
412 
413     _uhash_allocate(hash, newPrimeIndex, status);
414 
415     if (U_FAILURE(*status)) {
416         hash->elements = old;
417         hash->length = oldLength;
418         return;
419     }
420 
421     for (i = oldLength - 1; i >= 0; --i) {
422         if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
423             UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
424             U_ASSERT(e != NULL);
425             U_ASSERT(e->hashcode == HASH_EMPTY);
426             e->key = old[i].key;
427             e->value = old[i].value;
428             e->hashcode = old[i].hashcode;
429             ++hash->count;
430         }
431     }
432 
433     uprv_free(old);
434 }
435 
436 static UHashTok
_uhash_remove(UHashtable * hash,UHashTok key)437 _uhash_remove(UHashtable *hash,
438               UHashTok key) {
439     /* First find the position of the key in the table.  If the object
440      * has not been removed already, remove it.  If the user wanted
441      * keys deleted, then delete it also.  We have to put a special
442      * hashcode in that position that means that something has been
443      * deleted, since when we do a find, we have to continue PAST any
444      * deleted values.
445      */
446     UHashTok result;
447     UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
448     U_ASSERT(e != NULL);
449     result.pointer = NULL;
450     result.integer = 0;
451     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
452         result = _uhash_internalRemoveElement(hash, e);
453         if (hash->count < hash->lowWaterMark) {
454             UErrorCode status = U_ZERO_ERROR;
455             _uhash_rehash(hash, &status);
456         }
457     }
458     return result;
459 }
460 
461 static UHashTok
_uhash_put(UHashtable * hash,UHashTok key,UHashTok value,int8_t hint,UErrorCode * status)462 _uhash_put(UHashtable *hash,
463            UHashTok key,
464            UHashTok value,
465            int8_t hint,
466            UErrorCode *status) {
467 
468     /* Put finds the position in the table for the new value.  If the
469      * key is already in the table, it is deleted, if there is a
470      * non-NULL keyDeleter.  Then the key, the hash and the value are
471      * all put at the position in their respective arrays.
472      */
473     int32_t hashcode;
474     UHashElement* e;
475     UHashTok emptytok;
476 
477     if (U_FAILURE(*status)) {
478         goto err;
479     }
480     U_ASSERT(hash != NULL);
481     /* Cannot always check pointer here or iSeries sees NULL every time. */
482     if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
483         /* Disallow storage of NULL values, since NULL is returned by
484          * get() to indicate an absent key.  Storing NULL == removing.
485          */
486         return _uhash_remove(hash, key);
487     }
488     if (hash->count > hash->highWaterMark) {
489         _uhash_rehash(hash, status);
490         if (U_FAILURE(*status)) {
491             goto err;
492         }
493     }
494 
495     hashcode = (*hash->keyHasher)(key);
496     e = _uhash_find(hash, key, hashcode);
497     U_ASSERT(e != NULL);
498 
499     if (IS_EMPTY_OR_DELETED(e->hashcode)) {
500         /* Important: We must never actually fill the table up.  If we
501          * do so, then _uhash_find() will return NULL, and we'll have
502          * to check for NULL after every call to _uhash_find().  To
503          * avoid this we make sure there is always at least one empty
504          * or deleted slot in the table.  This only is a problem if we
505          * are out of memory and rehash isn't working.
506          */
507         ++hash->count;
508         if (hash->count == hash->length) {
509             /* Don't allow count to reach length */
510             --hash->count;
511             *status = U_MEMORY_ALLOCATION_ERROR;
512             goto err;
513         }
514     }
515 
516     /* We must in all cases handle storage properly.  If there was an
517      * old key, then it must be deleted (if the deleter != NULL).
518      * Make hashcodes stored in table positive.
519      */
520     return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
521 
522  err:
523     /* If the deleters are non-NULL, this method adopts its key and/or
524      * value arguments, and we must be sure to delete the key and/or
525      * value in all cases, even upon failure.
526      */
527     HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
528     emptytok.pointer = NULL; emptytok.integer = 0;
529     return emptytok;
530 }
531 
532 
533 /********************************************************************
534  * PUBLIC API
535  ********************************************************************/
536 
537 U_CAPI UHashtable* U_EXPORT2
uhash_open(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,UErrorCode * status)538 uhash_open(UHashFunction *keyHash,
539            UKeyComparator *keyComp,
540            UValueComparator *valueComp,
541            UErrorCode *status) {
542 
543     return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
544 }
545 
546 U_CAPI UHashtable* U_EXPORT2
uhash_openSize(UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t size,UErrorCode * status)547 uhash_openSize(UHashFunction *keyHash,
548                UKeyComparator *keyComp,
549                UValueComparator *valueComp,
550                int32_t size,
551                UErrorCode *status) {
552 
553     /* Find the smallest index i for which PRIMES[i] >= size. */
554     int32_t i = 0;
555     while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
556         ++i;
557     }
558 
559     return _uhash_create(keyHash, keyComp, valueComp, i, status);
560 }
561 
562 U_CAPI UHashtable* U_EXPORT2
uhash_init(UHashtable * fillinResult,UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,UErrorCode * status)563 uhash_init(UHashtable *fillinResult,
564            UHashFunction *keyHash,
565            UKeyComparator *keyComp,
566            UValueComparator *valueComp,
567            UErrorCode *status) {
568 
569     return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
570 }
571 
572 U_CAPI UHashtable* U_EXPORT2
uhash_initSize(UHashtable * fillinResult,UHashFunction * keyHash,UKeyComparator * keyComp,UValueComparator * valueComp,int32_t size,UErrorCode * status)573 uhash_initSize(UHashtable *fillinResult,
574                UHashFunction *keyHash,
575                UKeyComparator *keyComp,
576                UValueComparator *valueComp,
577                int32_t size,
578                UErrorCode *status) {
579 
580     // Find the smallest index i for which PRIMES[i] >= size.
581     int32_t i = 0;
582     while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
583         ++i;
584     }
585     return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
586 }
587 
588 U_CAPI void U_EXPORT2
uhash_close(UHashtable * hash)589 uhash_close(UHashtable *hash) {
590     if (hash == NULL) {
591         return;
592     }
593     if (hash->elements != NULL) {
594         if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
595             int32_t pos=UHASH_FIRST;
596             UHashElement *e;
597             while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
598                 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
599             }
600         }
601         uprv_free(hash->elements);
602         hash->elements = NULL;
603     }
604     if (hash->allocated) {
605         uprv_free(hash);
606     }
607 }
608 
609 U_CAPI UHashFunction *U_EXPORT2
uhash_setKeyHasher(UHashtable * hash,UHashFunction * fn)610 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
611     UHashFunction *result = hash->keyHasher;
612     hash->keyHasher = fn;
613     return result;
614 }
615 
616 U_CAPI UKeyComparator *U_EXPORT2
uhash_setKeyComparator(UHashtable * hash,UKeyComparator * fn)617 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
618     UKeyComparator *result = hash->keyComparator;
619     hash->keyComparator = fn;
620     return result;
621 }
622 U_CAPI UValueComparator *U_EXPORT2
uhash_setValueComparator(UHashtable * hash,UValueComparator * fn)623 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
624     UValueComparator *result = hash->valueComparator;
625     hash->valueComparator = fn;
626     return result;
627 }
628 
629 U_CAPI UObjectDeleter *U_EXPORT2
uhash_setKeyDeleter(UHashtable * hash,UObjectDeleter * fn)630 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
631     UObjectDeleter *result = hash->keyDeleter;
632     hash->keyDeleter = fn;
633     return result;
634 }
635 
636 U_CAPI UObjectDeleter *U_EXPORT2
uhash_setValueDeleter(UHashtable * hash,UObjectDeleter * fn)637 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
638     UObjectDeleter *result = hash->valueDeleter;
639     hash->valueDeleter = fn;
640     return result;
641 }
642 
643 U_CAPI void U_EXPORT2
uhash_setResizePolicy(UHashtable * hash,enum UHashResizePolicy policy)644 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
645     UErrorCode status = U_ZERO_ERROR;
646     _uhash_internalSetResizePolicy(hash, policy);
647     hash->lowWaterMark  = (int32_t)(hash->length * hash->lowWaterRatio);
648     hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
649     _uhash_rehash(hash, &status);
650 }
651 
652 U_CAPI int32_t U_EXPORT2
uhash_count(const UHashtable * hash)653 uhash_count(const UHashtable *hash) {
654     return hash->count;
655 }
656 
657 U_CAPI void* U_EXPORT2
uhash_get(const UHashtable * hash,const void * key)658 uhash_get(const UHashtable *hash,
659           const void* key) {
660     UHashTok keyholder;
661     keyholder.pointer = (void*) key;
662     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
663 }
664 
665 U_CAPI void* U_EXPORT2
uhash_iget(const UHashtable * hash,int32_t key)666 uhash_iget(const UHashtable *hash,
667            int32_t key) {
668     UHashTok keyholder;
669     keyholder.integer = key;
670     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
671 }
672 
673 U_CAPI int32_t U_EXPORT2
uhash_geti(const UHashtable * hash,const void * key)674 uhash_geti(const UHashtable *hash,
675            const void* key) {
676     UHashTok keyholder;
677     keyholder.pointer = (void*) key;
678     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
679 }
680 
681 U_CAPI int32_t U_EXPORT2
uhash_igeti(const UHashtable * hash,int32_t key)682 uhash_igeti(const UHashtable *hash,
683            int32_t key) {
684     UHashTok keyholder;
685     keyholder.integer = key;
686     return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
687 }
688 
689 U_CAPI void* U_EXPORT2
uhash_put(UHashtable * hash,void * key,void * value,UErrorCode * status)690 uhash_put(UHashtable *hash,
691           void* key,
692           void* value,
693           UErrorCode *status) {
694     UHashTok keyholder, valueholder;
695     keyholder.pointer = key;
696     valueholder.pointer = value;
697     return _uhash_put(hash, keyholder, valueholder,
698                       HINT_KEY_POINTER | HINT_VALUE_POINTER,
699                       status).pointer;
700 }
701 
702 U_CAPI void* U_EXPORT2
uhash_iput(UHashtable * hash,int32_t key,void * value,UErrorCode * status)703 uhash_iput(UHashtable *hash,
704            int32_t key,
705            void* value,
706            UErrorCode *status) {
707     UHashTok keyholder, valueholder;
708     keyholder.integer = key;
709     valueholder.pointer = value;
710     return _uhash_put(hash, keyholder, valueholder,
711                       HINT_VALUE_POINTER,
712                       status).pointer;
713 }
714 
715 U_CAPI int32_t U_EXPORT2
uhash_puti(UHashtable * hash,void * key,int32_t value,UErrorCode * status)716 uhash_puti(UHashtable *hash,
717            void* key,
718            int32_t value,
719            UErrorCode *status) {
720     UHashTok keyholder, valueholder;
721     keyholder.pointer = key;
722     valueholder.integer = value;
723     return _uhash_put(hash, keyholder, valueholder,
724                       HINT_KEY_POINTER,
725                       status).integer;
726 }
727 
728 
729 U_CAPI int32_t U_EXPORT2
uhash_iputi(UHashtable * hash,int32_t key,int32_t value,UErrorCode * status)730 uhash_iputi(UHashtable *hash,
731            int32_t key,
732            int32_t value,
733            UErrorCode *status) {
734     UHashTok keyholder, valueholder;
735     keyholder.integer = key;
736     valueholder.integer = value;
737     return _uhash_put(hash, keyholder, valueholder,
738                       0, /* neither is a ptr */
739                       status).integer;
740 }
741 
742 U_CAPI void* U_EXPORT2
uhash_remove(UHashtable * hash,const void * key)743 uhash_remove(UHashtable *hash,
744              const void* key) {
745     UHashTok keyholder;
746     keyholder.pointer = (void*) key;
747     return _uhash_remove(hash, keyholder).pointer;
748 }
749 
750 U_CAPI void* U_EXPORT2
uhash_iremove(UHashtable * hash,int32_t key)751 uhash_iremove(UHashtable *hash,
752               int32_t key) {
753     UHashTok keyholder;
754     keyholder.integer = key;
755     return _uhash_remove(hash, keyholder).pointer;
756 }
757 
758 U_CAPI int32_t U_EXPORT2
uhash_removei(UHashtable * hash,const void * key)759 uhash_removei(UHashtable *hash,
760               const void* key) {
761     UHashTok keyholder;
762     keyholder.pointer = (void*) key;
763     return _uhash_remove(hash, keyholder).integer;
764 }
765 
766 U_CAPI int32_t U_EXPORT2
uhash_iremovei(UHashtable * hash,int32_t key)767 uhash_iremovei(UHashtable *hash,
768                int32_t key) {
769     UHashTok keyholder;
770     keyholder.integer = key;
771     return _uhash_remove(hash, keyholder).integer;
772 }
773 
774 U_CAPI void U_EXPORT2
uhash_removeAll(UHashtable * hash)775 uhash_removeAll(UHashtable *hash) {
776     int32_t pos = UHASH_FIRST;
777     const UHashElement *e;
778     U_ASSERT(hash != NULL);
779     if (hash->count != 0) {
780         while ((e = uhash_nextElement(hash, &pos)) != NULL) {
781             uhash_removeElement(hash, e);
782         }
783     }
784     U_ASSERT(hash->count == 0);
785 }
786 
787 U_CAPI const UHashElement* U_EXPORT2
uhash_find(const UHashtable * hash,const void * key)788 uhash_find(const UHashtable *hash, const void* key) {
789     UHashTok keyholder;
790     const UHashElement *e;
791     keyholder.pointer = (void*) key;
792     e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
793     return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
794 }
795 
796 U_CAPI const UHashElement* U_EXPORT2
uhash_nextElement(const UHashtable * hash,int32_t * pos)797 uhash_nextElement(const UHashtable *hash, int32_t *pos) {
798     /* Walk through the array until we find an element that is not
799      * EMPTY and not DELETED.
800      */
801     int32_t i;
802     U_ASSERT(hash != NULL);
803     for (i = *pos + 1; i < hash->length; ++i) {
804         if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
805             *pos = i;
806             return &(hash->elements[i]);
807         }
808     }
809 
810     /* No more elements */
811     return NULL;
812 }
813 
814 U_CAPI void* U_EXPORT2
uhash_removeElement(UHashtable * hash,const UHashElement * e)815 uhash_removeElement(UHashtable *hash, const UHashElement* e) {
816     U_ASSERT(hash != NULL);
817     U_ASSERT(e != NULL);
818     if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
819         UHashElement *nce = (UHashElement *)e;
820         return _uhash_internalRemoveElement(hash, nce).pointer;
821     }
822     return NULL;
823 }
824 
825 /********************************************************************
826  * UHashTok convenience
827  ********************************************************************/
828 
829 /**
830  * Return a UHashTok for an integer.
831  */
832 /*U_CAPI UHashTok U_EXPORT2
833 uhash_toki(int32_t i) {
834     UHashTok tok;
835     tok.integer = i;
836     return tok;
837 }*/
838 
839 /**
840  * Return a UHashTok for a pointer.
841  */
842 /*U_CAPI UHashTok U_EXPORT2
843 uhash_tokp(void* p) {
844     UHashTok tok;
845     tok.pointer = p;
846     return tok;
847 }*/
848 
849 /********************************************************************
850  * PUBLIC Key Hash Functions
851  ********************************************************************/
852 
853 U_CAPI int32_t U_EXPORT2
uhash_hashUChars(const UHashTok key)854 uhash_hashUChars(const UHashTok key) {
855     const UChar *s = (const UChar *)key.pointer;
856     return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
857 }
858 
859 U_CAPI int32_t U_EXPORT2
uhash_hashChars(const UHashTok key)860 uhash_hashChars(const UHashTok key) {
861     const char *s = (const char *)key.pointer;
862     return s == NULL ? 0 : static_cast<int32_t>(ustr_hashCharsN(s, static_cast<int32_t>(uprv_strlen(s))));
863 }
864 
865 U_CAPI int32_t U_EXPORT2
uhash_hashIChars(const UHashTok key)866 uhash_hashIChars(const UHashTok key) {
867     const char *s = (const char *)key.pointer;
868     return s == NULL ? 0 : ustr_hashICharsN(s, static_cast<int32_t>(uprv_strlen(s)));
869 }
870 
871 U_CAPI UBool U_EXPORT2
uhash_equals(const UHashtable * hash1,const UHashtable * hash2)872 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
873     int32_t count1, count2, pos, i;
874 
875     if(hash1==hash2){
876         return TRUE;
877     }
878 
879     /*
880      * Make sure that we are comparing 2 valid hashes of the same type
881      * with valid comparison functions.
882      * Without valid comparison functions, a binary comparison
883      * of the hash values will yield random results on machines
884      * with 64-bit pointers and 32-bit integer hashes.
885      * A valueComparator is normally optional.
886      */
887     if (hash1==NULL || hash2==NULL ||
888         hash1->keyComparator != hash2->keyComparator ||
889         hash1->valueComparator != hash2->valueComparator ||
890         hash1->valueComparator == NULL)
891     {
892         /*
893         Normally we would return an error here about incompatible hash tables,
894         but we return FALSE instead.
895         */
896         return FALSE;
897     }
898 
899     count1 = uhash_count(hash1);
900     count2 = uhash_count(hash2);
901     if(count1!=count2){
902         return FALSE;
903     }
904 
905     pos=UHASH_FIRST;
906     for(i=0; i<count1; i++){
907         const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
908         const UHashTok key1 = elem1->key;
909         const UHashTok val1 = elem1->value;
910         /* here the keys are not compared, instead the key form hash1 is used to fetch
911          * value from hash2. If the hashes are equal then then both hashes should
912          * contain equal values for the same key!
913          */
914         const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
915         const UHashTok val2 = elem2->value;
916         if(hash1->valueComparator(val1, val2)==FALSE){
917             return FALSE;
918         }
919     }
920     return TRUE;
921 }
922 
923 /********************************************************************
924  * PUBLIC Comparator Functions
925  ********************************************************************/
926 
927 U_CAPI UBool U_EXPORT2
uhash_compareUChars(const UHashTok key1,const UHashTok key2)928 uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
929     const UChar *p1 = (const UChar*) key1.pointer;
930     const UChar *p2 = (const UChar*) key2.pointer;
931     if (p1 == p2) {
932         return TRUE;
933     }
934     if (p1 == NULL || p2 == NULL) {
935         return FALSE;
936     }
937     while (*p1 != 0 && *p1 == *p2) {
938         ++p1;
939         ++p2;
940     }
941     return (UBool)(*p1 == *p2);
942 }
943 
944 U_CAPI UBool U_EXPORT2
uhash_compareChars(const UHashTok key1,const UHashTok key2)945 uhash_compareChars(const UHashTok key1, const UHashTok key2) {
946     const char *p1 = (const char*) key1.pointer;
947     const char *p2 = (const char*) key2.pointer;
948     if (p1 == p2) {
949         return TRUE;
950     }
951     if (p1 == NULL || p2 == NULL) {
952         return FALSE;
953     }
954     while (*p1 != 0 && *p1 == *p2) {
955         ++p1;
956         ++p2;
957     }
958     return (UBool)(*p1 == *p2);
959 }
960 
961 U_CAPI UBool U_EXPORT2
uhash_compareIChars(const UHashTok key1,const UHashTok key2)962 uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
963     const char *p1 = (const char*) key1.pointer;
964     const char *p2 = (const char*) key2.pointer;
965     if (p1 == p2) {
966         return TRUE;
967     }
968     if (p1 == NULL || p2 == NULL) {
969         return FALSE;
970     }
971     while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
972         ++p1;
973         ++p2;
974     }
975     return (UBool)(*p1 == *p2);
976 }
977 
978 /********************************************************************
979  * PUBLIC int32_t Support Functions
980  ********************************************************************/
981 
982 U_CAPI int32_t U_EXPORT2
uhash_hashLong(const UHashTok key)983 uhash_hashLong(const UHashTok key) {
984     return key.integer;
985 }
986 
987 U_CAPI UBool U_EXPORT2
uhash_compareLong(const UHashTok key1,const UHashTok key2)988 uhash_compareLong(const UHashTok key1, const UHashTok key2) {
989     return (UBool)(key1.integer == key2.integer);
990 }
991