1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM
6 
7 #include "src/assembler-inl.h"
8 #include "src/code-factory.h"
9 #include "src/code-stubs.h"
10 #include "src/counters.h"
11 #include "src/debug/debug.h"
12 #include "src/deoptimizer.h"
13 #include "src/frame-constants.h"
14 #include "src/frames.h"
15 #include "src/objects-inl.h"
16 #include "src/runtime/runtime.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 #define __ ACCESS_MASM(masm)
22 
Generate_Adaptor(MacroAssembler * masm,Address address,ExitFrameType exit_frame_type)23 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
24                                 ExitFrameType exit_frame_type) {
25 #if defined(__thumb__)
26   // Thumb mode builtin.
27   DCHECK_EQ(1, reinterpret_cast<uintptr_t>(
28                    ExternalReference::Create(address).address()) &
29                    1);
30 #endif
31   __ Move(r5, ExternalReference::Create(address));
32   if (exit_frame_type == BUILTIN_EXIT) {
33     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
34             RelocInfo::CODE_TARGET);
35   } else {
36     DCHECK(exit_frame_type == EXIT);
37     __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
38             RelocInfo::CODE_TARGET);
39   }
40 }
41 
42 namespace {
43 
AdaptorWithExitFrameType(MacroAssembler * masm,Builtins::ExitFrameType exit_frame_type)44 void AdaptorWithExitFrameType(MacroAssembler* masm,
45                               Builtins::ExitFrameType exit_frame_type) {
46   // ----------- S t a t e -------------
47   //  -- r0                 : number of arguments excluding receiver
48   //  -- r1                 : target
49   //  -- r3                 : new.target
50   //  -- r5                 : entry point
51   //  -- sp[0]              : last argument
52   //  -- ...
53   //  -- sp[4 * (argc - 1)] : first argument
54   //  -- sp[4 * argc]       : receiver
55   // -----------------------------------
56   __ AssertFunction(r1);
57 
58   // Make sure we operate in the context of the called function (for example
59   // ConstructStubs implemented in C++ will be run in the context of the caller
60   // instead of the callee, due to the way that [[Construct]] is defined for
61   // ordinary functions).
62   __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
63 
64   // CEntry expects r0 to contain the number of arguments including the
65   // receiver and the extra arguments.
66   __ add(r0, r0, Operand(BuiltinExitFrameConstants::kNumExtraArgsWithReceiver));
67 
68   // Insert extra arguments.
69   __ PushRoot(Heap::kTheHoleValueRootIndex);  // Padding.
70   __ SmiTag(r0);
71   __ Push(r0, r1, r3);
72   __ SmiUntag(r0);
73 
74   // Jump to the C entry runtime stub directly here instead of using
75   // JumpToExternalReference. We have already loaded entry point to r5
76   // in Generate_adaptor.
77   __ mov(r1, r5);
78   Handle<Code> code =
79       CodeFactory::CEntry(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
80                           exit_frame_type == Builtins::BUILTIN_EXIT);
81   __ Jump(code, RelocInfo::CODE_TARGET);
82 }
83 }  // namespace
84 
Generate_AdaptorWithExitFrame(MacroAssembler * masm)85 void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) {
86   AdaptorWithExitFrameType(masm, EXIT);
87 }
88 
Generate_AdaptorWithBuiltinExitFrame(MacroAssembler * masm)89 void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) {
90   AdaptorWithExitFrameType(masm, BUILTIN_EXIT);
91 }
92 
Generate_InternalArrayConstructor(MacroAssembler * masm)93 void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
94   // ----------- S t a t e -------------
95   //  -- r0     : number of arguments
96   //  -- lr     : return address
97   //  -- sp[...]: constructor arguments
98   // -----------------------------------
99   Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
100 
101   if (FLAG_debug_code) {
102     // Initial map for the builtin InternalArray functions should be maps.
103     __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
104     __ SmiTst(r2);
105     __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
106     __ CompareObjectType(r2, r3, r4, MAP_TYPE);
107     __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
108   }
109 
110   // Run the native code for the InternalArray function called as a normal
111   // function.
112   // tail call a stub
113   __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
114   InternalArrayConstructorStub stub(masm->isolate());
115   __ TailCallStub(&stub);
116 }
117 
Generate_ArrayConstructor(MacroAssembler * masm)118 void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) {
119   // ----------- S t a t e -------------
120   //  -- r0     : number of arguments
121   //  -- r1     : array function
122   //  -- lr     : return address
123   //  -- sp[...]: constructor arguments
124   // -----------------------------------
125   Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
126 
127   if (FLAG_debug_code) {
128     // Initial map for the builtin Array functions should be maps.
129     __ ldr(r7, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
130     __ SmiTst(r7);
131     __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction);
132     __ CompareObjectType(r7, r8, r9, MAP_TYPE);
133     __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
134   }
135 
136   // r2 is the AllocationSite - here undefined.
137   __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
138   // If r3 (new target) is undefined, then this is the 'Call' case, so move
139   // r1 (the constructor) to r3.
140   __ cmp(r3, r2);
141   __ mov(r3, r1, LeaveCC, eq);
142 
143   // Run the native code for the Array function called as a normal function.
144   // tail call a stub
145   ArrayConstructorStub stub(masm->isolate());
146   __ TailCallStub(&stub);
147 }
148 
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)149 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
150                                            Runtime::FunctionId function_id) {
151   // ----------- S t a t e -------------
152   //  -- r0 : argument count (preserved for callee)
153   //  -- r1 : target function (preserved for callee)
154   //  -- r3 : new target (preserved for callee)
155   // -----------------------------------
156   {
157     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
158     // Push the number of arguments to the callee.
159     __ SmiTag(r0);
160     __ push(r0);
161     // Push a copy of the target function and the new target.
162     __ push(r1);
163     __ push(r3);
164     // Push function as parameter to the runtime call.
165     __ Push(r1);
166 
167     __ CallRuntime(function_id, 1);
168     __ mov(r2, r0);
169 
170     // Restore target function and new target.
171     __ pop(r3);
172     __ pop(r1);
173     __ pop(r0);
174     __ SmiUntag(r0, r0);
175   }
176   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
177   __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
178   __ Jump(r2);
179 }
180 
181 namespace {
182 
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)183 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
184   // ----------- S t a t e -------------
185   //  -- r0     : number of arguments
186   //  -- r1     : constructor function
187   //  -- r3     : new target
188   //  -- cp     : context
189   //  -- lr     : return address
190   //  -- sp[...]: constructor arguments
191   // -----------------------------------
192 
193   Register scratch = r2;
194 
195   // Enter a construct frame.
196   {
197     FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
198 
199     // Preserve the incoming parameters on the stack.
200     __ SmiTag(r0);
201     __ Push(cp, r0);
202     __ SmiUntag(r0);
203 
204     // The receiver for the builtin/api call.
205     __ PushRoot(Heap::kTheHoleValueRootIndex);
206 
207     // Set up pointer to last argument.
208     __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset));
209 
210     // Copy arguments and receiver to the expression stack.
211     Label loop, entry;
212     __ mov(r5, r0);
213     // ----------- S t a t e -------------
214     //  --                 r0: number of arguments (untagged)
215     //  --                 r1: constructor function
216     //  --                 r3: new target
217     //  --                 r4: pointer to last argument
218     //  --                 r5: counter
219     //  -- sp[0*kPointerSize]: the hole (receiver)
220     //  -- sp[1*kPointerSize]: number of arguments (tagged)
221     //  -- sp[2*kPointerSize]: context
222     // -----------------------------------
223     __ b(&entry);
224     __ bind(&loop);
225     __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2));
226     __ push(scratch);
227     __ bind(&entry);
228     __ sub(r5, r5, Operand(1), SetCC);
229     __ b(ge, &loop);
230 
231     // Call the function.
232     // r0: number of arguments (untagged)
233     // r1: constructor function
234     // r3: new target
235     ParameterCount actual(r0);
236     __ InvokeFunction(r1, r3, actual, CALL_FUNCTION);
237 
238     // Restore context from the frame.
239     __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
240     // Restore smi-tagged arguments count from the frame.
241     __ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
242     // Leave construct frame.
243   }
244 
245   // Remove caller arguments from the stack and return.
246   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
247   __ add(sp, sp, Operand(scratch, LSL, kPointerSizeLog2 - kSmiTagSize));
248   __ add(sp, sp, Operand(kPointerSize));
249   __ Jump(lr);
250 }
251 
252 }  // namespace
253 
254 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)255 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
256   // ----------- S t a t e -------------
257   //  --      r0: number of arguments (untagged)
258   //  --      r1: constructor function
259   //  --      r3: new target
260   //  --      cp: context
261   //  --      lr: return address
262   //  -- sp[...]: constructor arguments
263   // -----------------------------------
264 
265   // Enter a construct frame.
266   {
267     FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
268     Label post_instantiation_deopt_entry, not_create_implicit_receiver;
269 
270     // Preserve the incoming parameters on the stack.
271     __ LoadRoot(r4, Heap::kTheHoleValueRootIndex);
272     __ SmiTag(r0);
273     __ Push(cp, r0, r1, r4, r3);
274 
275     // ----------- S t a t e -------------
276     //  --        sp[0*kPointerSize]: new target
277     //  --        sp[1*kPointerSize]: padding
278     //  -- r1 and sp[2*kPointerSize]: constructor function
279     //  --        sp[3*kPointerSize]: number of arguments (tagged)
280     //  --        sp[4*kPointerSize]: context
281     // -----------------------------------
282 
283     __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
284     __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
285     __ tst(r4, Operand(SharedFunctionInfo::IsDerivedConstructorBit::kMask));
286     __ b(ne, &not_create_implicit_receiver);
287 
288     // If not derived class constructor: Allocate the new receiver object.
289     __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
290                         r4, r5);
291     __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
292             RelocInfo::CODE_TARGET);
293     __ b(&post_instantiation_deopt_entry);
294 
295     // Else: use TheHoleValue as receiver for constructor call
296     __ bind(&not_create_implicit_receiver);
297     __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
298 
299     // ----------- S t a t e -------------
300     //  --                          r0: receiver
301     //  -- Slot 3 / sp[0*kPointerSize]: new target
302     //  -- Slot 2 / sp[1*kPointerSize]: constructor function
303     //  -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged)
304     //  -- Slot 0 / sp[3*kPointerSize]: context
305     // -----------------------------------
306     // Deoptimizer enters here.
307     masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
308         masm->pc_offset());
309     __ bind(&post_instantiation_deopt_entry);
310 
311     // Restore new target.
312     __ Pop(r3);
313     // Push the allocated receiver to the stack. We need two copies
314     // because we may have to return the original one and the calling
315     // conventions dictate that the called function pops the receiver.
316     __ Push(r0, r0);
317 
318     // ----------- S t a t e -------------
319     //  --                 r3: new target
320     //  -- sp[0*kPointerSize]: implicit receiver
321     //  -- sp[1*kPointerSize]: implicit receiver
322     //  -- sp[2*kPointerSize]: padding
323     //  -- sp[3*kPointerSize]: constructor function
324     //  -- sp[4*kPointerSize]: number of arguments (tagged)
325     //  -- sp[5*kPointerSize]: context
326     // -----------------------------------
327 
328     // Restore constructor function and argument count.
329     __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
330     __ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
331     __ SmiUntag(r0);
332 
333     // Set up pointer to last argument.
334     __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset));
335 
336     // Copy arguments and receiver to the expression stack.
337     Label loop, entry;
338     __ mov(r5, r0);
339     // ----------- S t a t e -------------
340     //  --                        r0: number of arguments (untagged)
341     //  --                        r3: new target
342     //  --                        r4: pointer to last argument
343     //  --                        r5: counter
344     //  --        sp[0*kPointerSize]: implicit receiver
345     //  --        sp[1*kPointerSize]: implicit receiver
346     //  --        sp[2*kPointerSize]: padding
347     //  -- r1 and sp[3*kPointerSize]: constructor function
348     //  --        sp[4*kPointerSize]: number of arguments (tagged)
349     //  --        sp[5*kPointerSize]: context
350     // -----------------------------------
351     __ b(&entry);
352 
353     __ bind(&loop);
354     __ ldr(r6, MemOperand(r4, r5, LSL, kPointerSizeLog2));
355     __ push(r6);
356     __ bind(&entry);
357     __ sub(r5, r5, Operand(1), SetCC);
358     __ b(ge, &loop);
359 
360     // Call the function.
361     ParameterCount actual(r0);
362     __ InvokeFunction(r1, r3, actual, CALL_FUNCTION);
363 
364     // ----------- S t a t e -------------
365     //  --                 r0: constructor result
366     //  -- sp[0*kPointerSize]: implicit receiver
367     //  -- sp[1*kPointerSize]: padding
368     //  -- sp[2*kPointerSize]: constructor function
369     //  -- sp[3*kPointerSize]: number of arguments
370     //  -- sp[4*kPointerSize]: context
371     // -----------------------------------
372 
373     // Store offset of return address for deoptimizer.
374     masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
375         masm->pc_offset());
376 
377     // Restore the context from the frame.
378     __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
379 
380     // If the result is an object (in the ECMA sense), we should get rid
381     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
382     // on page 74.
383     Label use_receiver, do_throw, leave_frame;
384 
385     // If the result is undefined, we jump out to using the implicit receiver.
386     __ JumpIfRoot(r0, Heap::kUndefinedValueRootIndex, &use_receiver);
387 
388     // Otherwise we do a smi check and fall through to check if the return value
389     // is a valid receiver.
390 
391     // If the result is a smi, it is *not* an object in the ECMA sense.
392     __ JumpIfSmi(r0, &use_receiver);
393 
394     // If the type of the result (stored in its map) is less than
395     // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
396     STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
397     __ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE);
398     __ b(ge, &leave_frame);
399     __ b(&use_receiver);
400 
401     __ bind(&do_throw);
402     __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
403 
404     // Throw away the result of the constructor invocation and use the
405     // on-stack receiver as the result.
406     __ bind(&use_receiver);
407     __ ldr(r0, MemOperand(sp, 0 * kPointerSize));
408     __ JumpIfRoot(r0, Heap::kTheHoleValueRootIndex, &do_throw);
409 
410     __ bind(&leave_frame);
411     // Restore smi-tagged arguments count from the frame.
412     __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
413     // Leave construct frame.
414   }
415   // Remove caller arguments from the stack and return.
416   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
417   __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize));
418   __ add(sp, sp, Operand(kPointerSize));
419   __ Jump(lr);
420 }
421 
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)422 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
423   Generate_JSBuiltinsConstructStubHelper(masm);
424 }
425 
GetSharedFunctionInfoBytecode(MacroAssembler * masm,Register sfi_data,Register scratch1)426 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
427                                           Register sfi_data,
428                                           Register scratch1) {
429   Label done;
430 
431   __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
432   __ b(ne, &done);
433   __ ldr(sfi_data,
434          FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
435 
436   __ bind(&done);
437 }
438 
439 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)440 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
441   // ----------- S t a t e -------------
442   //  -- r0 : the value to pass to the generator
443   //  -- r1 : the JSGeneratorObject to resume
444   //  -- lr : return address
445   // -----------------------------------
446   __ AssertGeneratorObject(r1);
447 
448   // Store input value into generator object.
449   __ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset));
450   __ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, r3,
451                       kLRHasNotBeenSaved, kDontSaveFPRegs);
452 
453   // Load suspended function and context.
454   __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
455   __ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
456 
457   Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
458   Label stepping_prepared;
459   Register scratch = r5;
460 
461   // Flood function if we are stepping.
462   ExternalReference debug_hook =
463       ExternalReference::debug_hook_on_function_call_address(masm->isolate());
464   __ Move(scratch, debug_hook);
465   __ ldrsb(scratch, MemOperand(scratch));
466   __ cmp(scratch, Operand(0));
467   __ b(ne, &prepare_step_in_if_stepping);
468 
469   // Flood function if we need to continue stepping in the suspended
470   // generator.
471   ExternalReference debug_suspended_generator =
472       ExternalReference::debug_suspended_generator_address(masm->isolate());
473   __ Move(scratch, debug_suspended_generator);
474   __ ldr(scratch, MemOperand(scratch));
475   __ cmp(scratch, Operand(r1));
476   __ b(eq, &prepare_step_in_suspended_generator);
477   __ bind(&stepping_prepared);
478 
479   // Check the stack for overflow. We are not trying to catch interruptions
480   // (i.e. debug break and preemption) here, so check the "real stack limit".
481   Label stack_overflow;
482   __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
483   __ b(lo, &stack_overflow);
484 
485   // Push receiver.
486   __ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
487   __ Push(scratch);
488 
489   // ----------- S t a t e -------------
490   //  -- r1    : the JSGeneratorObject to resume
491   //  -- r4    : generator function
492   //  -- cp    : generator context
493   //  -- lr    : return address
494   //  -- sp[0] : generator receiver
495   // -----------------------------------
496 
497   // Push holes for arguments to generator function. Since the parser forced
498   // context allocation for any variables in generators, the actual argument
499   // values have already been copied into the context and these dummy values
500   // will never be used.
501   __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
502   __ ldr(r3,
503          FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
504   {
505     Label done_loop, loop;
506     __ bind(&loop);
507     __ sub(r3, r3, Operand(1), SetCC);
508     __ b(mi, &done_loop);
509     __ PushRoot(Heap::kTheHoleValueRootIndex);
510     __ b(&loop);
511     __ bind(&done_loop);
512   }
513 
514   // Underlying function needs to have bytecode available.
515   if (FLAG_debug_code) {
516     __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
517     __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
518     GetSharedFunctionInfoBytecode(masm, r3, r0);
519     __ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE);
520     __ Assert(eq, AbortReason::kMissingBytecodeArray);
521   }
522 
523   // Resume (Ignition/TurboFan) generator object.
524   {
525     __ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
526     __ ldr(r0, FieldMemOperand(
527                    r0, SharedFunctionInfo::kFormalParameterCountOffset));
528     // We abuse new.target both to indicate that this is a resume call and to
529     // pass in the generator object.  In ordinary calls, new.target is always
530     // undefined because generator functions are non-constructable.
531     __ Move(r3, r1);
532     __ Move(r1, r4);
533     static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
534     __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
535     __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
536     __ Jump(r2);
537   }
538 
539   __ bind(&prepare_step_in_if_stepping);
540   {
541     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
542     __ Push(r1, r4);
543     // Push hole as receiver since we do not use it for stepping.
544     __ PushRoot(Heap::kTheHoleValueRootIndex);
545     __ CallRuntime(Runtime::kDebugOnFunctionCall);
546     __ Pop(r1);
547     __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
548   }
549   __ b(&stepping_prepared);
550 
551   __ bind(&prepare_step_in_suspended_generator);
552   {
553     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
554     __ Push(r1);
555     __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
556     __ Pop(r1);
557     __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
558   }
559   __ b(&stepping_prepared);
560 
561   __ bind(&stack_overflow);
562   {
563     FrameScope scope(masm, StackFrame::INTERNAL);
564     __ CallRuntime(Runtime::kThrowStackOverflow);
565     __ bkpt(0);  // This should be unreachable.
566   }
567 }
568 
Generate_ConstructedNonConstructable(MacroAssembler * masm)569 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
570   FrameScope scope(masm, StackFrame::INTERNAL);
571   __ push(r1);
572   __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
573 }
574 
Generate_StackOverflowCheck(MacroAssembler * masm,Register num_args,Register scratch,Label * stack_overflow)575 static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
576                                         Register scratch,
577                                         Label* stack_overflow) {
578   // Check the stack for overflow. We are not trying to catch
579   // interruptions (e.g. debug break and preemption) here, so the "real stack
580   // limit" is checked.
581   __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
582   // Make scratch the space we have left. The stack might already be overflowed
583   // here which will cause scratch to become negative.
584   __ sub(scratch, sp, scratch);
585   // Check if the arguments will overflow the stack.
586   __ cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2));
587   __ b(le, stack_overflow);  // Signed comparison.
588 }
589 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)590 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
591                                              bool is_construct) {
592   // Called from Generate_JS_Entry
593   // r0: new.target
594   // r1: function
595   // r2: receiver
596   // r3: argc
597   // r4: argv
598   // r5-r6, r8 and cp may be clobbered
599   ProfileEntryHookStub::MaybeCallEntryHook(masm);
600 
601   // Enter an internal frame.
602   {
603     FrameScope scope(masm, StackFrame::INTERNAL);
604 
605     // Setup the context (we need to use the caller context from the isolate).
606     ExternalReference context_address = ExternalReference::Create(
607         IsolateAddressId::kContextAddress, masm->isolate());
608     __ Move(cp, context_address);
609     __ ldr(cp, MemOperand(cp));
610 
611     // Push the function and the receiver onto the stack.
612     __ Push(r1, r2);
613 
614     // Check if we have enough stack space to push all arguments.
615     // Clobbers r2.
616     Label enough_stack_space, stack_overflow;
617     Generate_StackOverflowCheck(masm, r3, r2, &stack_overflow);
618     __ b(&enough_stack_space);
619     __ bind(&stack_overflow);
620     __ CallRuntime(Runtime::kThrowStackOverflow);
621     // Unreachable code.
622     __ bkpt(0);
623 
624     __ bind(&enough_stack_space);
625 
626     // Remember new.target.
627     __ mov(r5, r0);
628 
629     // Copy arguments to the stack in a loop.
630     // r1: function
631     // r3: argc
632     // r4: argv, i.e. points to first arg
633     Label loop, entry;
634     __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
635     // r2 points past last arg.
636     __ b(&entry);
637     __ bind(&loop);
638     __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex));  // read next parameter
639     __ ldr(r0, MemOperand(r0));                           // dereference handle
640     __ push(r0);                                          // push parameter
641     __ bind(&entry);
642     __ cmp(r4, r2);
643     __ b(ne, &loop);
644 
645     // Setup new.target and argc.
646     __ mov(r0, Operand(r3));
647     __ mov(r3, Operand(r5));
648 
649     // Initialize all JavaScript callee-saved registers, since they will be seen
650     // by the garbage collector as part of handlers.
651     __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
652     __ mov(r5, Operand(r4));
653     __ mov(r6, Operand(r4));
654     __ mov(r8, Operand(r4));
655     if (kR9Available == 1) {
656       __ mov(r9, Operand(r4));
657     }
658 
659     // Invoke the code.
660     Handle<Code> builtin = is_construct
661                                ? BUILTIN_CODE(masm->isolate(), Construct)
662                                : masm->isolate()->builtins()->Call();
663     __ Call(builtin, RelocInfo::CODE_TARGET);
664 
665     // Exit the JS frame and remove the parameters (except function), and
666     // return.
667     // Respect ABI stack constraint.
668   }
669   __ Jump(lr);
670 
671   // r0: result
672 }
673 
Generate_JSEntryTrampoline(MacroAssembler * masm)674 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
675   Generate_JSEntryTrampolineHelper(masm, false);
676 }
677 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)678 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
679   Generate_JSEntryTrampolineHelper(masm, true);
680 }
681 
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure,Register scratch1,Register scratch2,Register scratch3)682 static void ReplaceClosureCodeWithOptimizedCode(
683     MacroAssembler* masm, Register optimized_code, Register closure,
684     Register scratch1, Register scratch2, Register scratch3) {
685   // Store code entry in the closure.
686   __ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
687   __ mov(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
688   __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
689                       kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
690                       OMIT_SMI_CHECK);
691 }
692 
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch)693 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
694   Register args_count = scratch;
695 
696   // Get the arguments + receiver count.
697   __ ldr(args_count,
698          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
699   __ ldr(args_count,
700          FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
701 
702   // Leave the frame (also dropping the register file).
703   __ LeaveFrame(StackFrame::INTERPRETED);
704 
705   // Drop receiver + arguments.
706   __ add(sp, sp, args_count, LeaveCC);
707 }
708 
709 // Tail-call |function_id| if |smi_entry| == |marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register smi_entry,OptimizationMarker marker,Runtime::FunctionId function_id)710 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
711                                           Register smi_entry,
712                                           OptimizationMarker marker,
713                                           Runtime::FunctionId function_id) {
714   Label no_match;
715   __ cmp(smi_entry, Operand(Smi::FromEnum(marker)));
716   __ b(ne, &no_match);
717   GenerateTailCallToReturnedCode(masm, function_id);
718   __ bind(&no_match);
719 }
720 
MaybeTailCallOptimizedCodeSlot(MacroAssembler * masm,Register feedback_vector,Register scratch1,Register scratch2,Register scratch3)721 static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
722                                            Register feedback_vector,
723                                            Register scratch1, Register scratch2,
724                                            Register scratch3) {
725   // ----------- S t a t e -------------
726   //  -- r0 : argument count (preserved for callee if needed, and caller)
727   //  -- r3 : new target (preserved for callee if needed, and caller)
728   //  -- r1 : target function (preserved for callee if needed, and caller)
729   //  -- feedback vector (preserved for caller if needed)
730   // -----------------------------------
731   DCHECK(
732       !AreAliased(feedback_vector, r0, r1, r3, scratch1, scratch2, scratch3));
733 
734   Label optimized_code_slot_is_weak_ref, fallthrough;
735 
736   Register closure = r1;
737   Register optimized_code_entry = scratch1;
738 
739   __ ldr(
740       optimized_code_entry,
741       FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
742 
743   // Check if the code entry is a Smi. If yes, we interpret it as an
744   // optimisation marker. Otherwise, interpret it as a weak reference to a code
745   // object.
746   __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref);
747 
748   {
749     // Optimized code slot is a Smi optimization marker.
750 
751     // Fall through if no optimization trigger.
752     __ cmp(optimized_code_entry,
753            Operand(Smi::FromEnum(OptimizationMarker::kNone)));
754     __ b(eq, &fallthrough);
755 
756     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
757                                   OptimizationMarker::kLogFirstExecution,
758                                   Runtime::kFunctionFirstExecution);
759     TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
760                                   OptimizationMarker::kCompileOptimized,
761                                   Runtime::kCompileOptimized_NotConcurrent);
762     TailCallRuntimeIfMarkerEquals(
763         masm, optimized_code_entry,
764         OptimizationMarker::kCompileOptimizedConcurrent,
765         Runtime::kCompileOptimized_Concurrent);
766 
767     {
768       // Otherwise, the marker is InOptimizationQueue, so fall through hoping
769       // that an interrupt will eventually update the slot with optimized code.
770       if (FLAG_debug_code) {
771         __ cmp(
772             optimized_code_entry,
773             Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
774         __ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
775       }
776       __ jmp(&fallthrough);
777     }
778   }
779 
780   {
781     // Optimized code slot is a weak reference.
782     __ bind(&optimized_code_slot_is_weak_ref);
783 
784     __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough);
785 
786     // Check if the optimized code is marked for deopt. If it is, call the
787     // runtime to clear it.
788     Label found_deoptimized_code;
789     __ ldr(scratch2, FieldMemOperand(optimized_code_entry,
790                                      Code::kCodeDataContainerOffset));
791     __ ldr(
792         scratch2,
793         FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
794     __ tst(scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit));
795     __ b(ne, &found_deoptimized_code);
796 
797     // Optimized code is good, get it into the closure and link the closure into
798     // the optimized functions list, then tail call the optimized code.
799     // The feedback vector is no longer used, so re-use it as a scratch
800     // register.
801     ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
802                                         scratch2, scratch3, feedback_vector);
803     static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
804     __ add(r2, optimized_code_entry,
805            Operand(Code::kHeaderSize - kHeapObjectTag));
806     __ Jump(r2);
807 
808     // Optimized code slot contains deoptimized code, evict it and re-enter the
809     // closure's code.
810     __ bind(&found_deoptimized_code);
811     GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
812   }
813 
814   // Fall-through if the optimized code cell is clear and there is no
815   // optimization marker.
816   __ bind(&fallthrough);
817 }
818 
819 // Advance the current bytecode offset. This simulates what all bytecode
820 // handlers do upon completion of the underlying operation. Will bail out to a
821 // label if the bytecode (without prefix) is a return bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register bytecode,Register scratch1,Label * if_return)822 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
823                                           Register bytecode_array,
824                                           Register bytecode_offset,
825                                           Register bytecode, Register scratch1,
826                                           Label* if_return) {
827   Register bytecode_size_table = scratch1;
828   DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
829                      bytecode));
830 
831   __ Move(bytecode_size_table,
832           ExternalReference::bytecode_size_table_address());
833 
834   // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
835   Label process_bytecode, extra_wide;
836   STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
837   STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
838   STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
839   STATIC_ASSERT(3 ==
840                 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
841   __ cmp(bytecode, Operand(0x3));
842   __ b(hi, &process_bytecode);
843   __ tst(bytecode, Operand(0x1));
844   __ b(ne, &extra_wide);
845 
846   // Load the next bytecode and update table to the wide scaled table.
847   __ add(bytecode_offset, bytecode_offset, Operand(1));
848   __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
849   __ add(bytecode_size_table, bytecode_size_table,
850          Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
851   __ jmp(&process_bytecode);
852 
853   __ bind(&extra_wide);
854   // Load the next bytecode and update table to the extra wide scaled table.
855   __ add(bytecode_offset, bytecode_offset, Operand(1));
856   __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
857   __ add(bytecode_size_table, bytecode_size_table,
858          Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
859 
860   __ bind(&process_bytecode);
861 
862 // Bailout to the return label if this is a return bytecode.
863 #define JUMP_IF_EQUAL(NAME)                                                    \
864   __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
865   __ b(if_return, eq);
866   RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
867 #undef JUMP_IF_EQUAL
868 
869   // Otherwise, load the size of the current bytecode and advance the offset.
870   __ ldr(scratch1, MemOperand(bytecode_size_table, bytecode, LSL, 2));
871   __ add(bytecode_offset, bytecode_offset, scratch1);
872 }
873 
874 // Generate code for entering a JS function with the interpreter.
875 // On entry to the function the receiver and arguments have been pushed on the
876 // stack left to right.  The actual argument count matches the formal parameter
877 // count expected by the function.
878 //
879 // The live registers are:
880 //   o r1: the JS function object being called.
881 //   o r3: the incoming new target or generator object
882 //   o cp: our context
883 //   o fp: the caller's frame pointer
884 //   o sp: stack pointer
885 //   o lr: return address
886 //
887 // The function builds an interpreter frame.  See InterpreterFrameConstants in
888 // frames.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)889 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
890   ProfileEntryHookStub::MaybeCallEntryHook(masm);
891 
892   Register closure = r1;
893   Register feedback_vector = r2;
894 
895   // Load the feedback vector from the closure.
896   __ ldr(feedback_vector,
897          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
898   __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
899   // Read off the optimized code slot in the feedback vector, and if there
900   // is optimized code or an optimization marker, call that instead.
901   MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5);
902 
903   // Open a frame scope to indicate that there is a frame on the stack.  The
904   // MANUAL indicates that the scope shouldn't actually generate code to set up
905   // the frame (that is done below).
906   FrameScope frame_scope(masm, StackFrame::MANUAL);
907   __ PushStandardFrame(closure);
908 
909   // Get the bytecode array from the function object (or from the DebugInfo if
910   // it is present) and load it into kInterpreterBytecodeArrayRegister.
911   Label maybe_load_debug_bytecode_array, bytecode_array_loaded;
912   __ ldr(r0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
913   __ ldr(kInterpreterBytecodeArrayRegister,
914          FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset));
915   GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, r4);
916   __ ldr(r4, FieldMemOperand(r0, SharedFunctionInfo::kDebugInfoOffset));
917   __ SmiTst(r4);
918   __ b(ne, &maybe_load_debug_bytecode_array);
919   __ bind(&bytecode_array_loaded);
920 
921   // Increment invocation count for the function.
922   __ ldr(r9, FieldMemOperand(feedback_vector,
923                              FeedbackVector::kInvocationCountOffset));
924   __ add(r9, r9, Operand(1));
925   __ str(r9, FieldMemOperand(feedback_vector,
926                              FeedbackVector::kInvocationCountOffset));
927 
928   // Check function data field is actually a BytecodeArray object.
929   if (FLAG_debug_code) {
930     __ SmiTst(kInterpreterBytecodeArrayRegister);
931     __ Assert(
932         ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
933     __ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg,
934                          BYTECODE_ARRAY_TYPE);
935     __ Assert(
936         eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
937   }
938 
939   // Reset code age.
940   __ mov(r9, Operand(BytecodeArray::kNoAgeBytecodeAge));
941   __ strb(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister,
942                               BytecodeArray::kBytecodeAgeOffset));
943 
944   // Load the initial bytecode offset.
945   __ mov(kInterpreterBytecodeOffsetRegister,
946          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
947 
948   // Push bytecode array and Smi tagged bytecode array offset.
949   __ SmiTag(r0, kInterpreterBytecodeOffsetRegister);
950   __ Push(kInterpreterBytecodeArrayRegister, r0);
951 
952   // Allocate the local and temporary register file on the stack.
953   {
954     // Load frame size from the BytecodeArray object.
955     __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
956                                BytecodeArray::kFrameSizeOffset));
957 
958     // Do a stack check to ensure we don't go over the limit.
959     Label ok;
960     __ sub(r9, sp, Operand(r4));
961     __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
962     __ cmp(r9, Operand(r2));
963     __ b(hs, &ok);
964     __ CallRuntime(Runtime::kThrowStackOverflow);
965     __ bind(&ok);
966 
967     // If ok, push undefined as the initial value for all register file entries.
968     Label loop_header;
969     Label loop_check;
970     __ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
971     __ b(&loop_check, al);
972     __ bind(&loop_header);
973     // TODO(rmcilroy): Consider doing more than one push per loop iteration.
974     __ push(r9);
975     // Continue loop if not done.
976     __ bind(&loop_check);
977     __ sub(r4, r4, Operand(kPointerSize), SetCC);
978     __ b(&loop_header, ge);
979   }
980 
981   // If the bytecode array has a valid incoming new target or generator object
982   // register, initialize it with incoming value which was passed in r3.
983   __ ldr(r9, FieldMemOperand(
984                  kInterpreterBytecodeArrayRegister,
985                  BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
986   __ cmp(r9, Operand::Zero());
987   __ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne);
988 
989   // Load accumulator with undefined.
990   __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
991 
992   // Load the dispatch table into a register and dispatch to the bytecode
993   // handler at the current bytecode offset.
994   Label do_dispatch;
995   __ bind(&do_dispatch);
996   __ mov(kInterpreterDispatchTableRegister,
997          Operand(ExternalReference::interpreter_dispatch_table_address(
998              masm->isolate())));
999   __ ldrb(r4, MemOperand(kInterpreterBytecodeArrayRegister,
1000                          kInterpreterBytecodeOffsetRegister));
1001   __ ldr(
1002       kJavaScriptCallCodeStartRegister,
1003       MemOperand(kInterpreterDispatchTableRegister, r4, LSL, kPointerSizeLog2));
1004   __ Call(kJavaScriptCallCodeStartRegister);
1005   masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
1006 
1007   // Any returns to the entry trampoline are either due to the return bytecode
1008   // or the interpreter tail calling a builtin and then a dispatch.
1009 
1010   // Get bytecode array and bytecode offset from the stack frame.
1011   __ ldr(kInterpreterBytecodeArrayRegister,
1012          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1013   __ ldr(kInterpreterBytecodeOffsetRegister,
1014          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1015   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1016 
1017   // Either return, or advance to the next bytecode and dispatch.
1018   Label do_return;
1019   __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
1020                          kInterpreterBytecodeOffsetRegister));
1021   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1022                                 kInterpreterBytecodeOffsetRegister, r1, r2,
1023                                 &do_return);
1024   __ jmp(&do_dispatch);
1025 
1026   __ bind(&do_return);
1027   // The return value is in r0.
1028   LeaveInterpreterFrame(masm, r2);
1029   __ Jump(lr);
1030 
1031   // Load debug copy of the bytecode array if it exists.
1032   // kInterpreterBytecodeArrayRegister is already loaded with
1033   // SharedFunctionInfo::kFunctionDataOffset.
1034   __ bind(&maybe_load_debug_bytecode_array);
1035   __ ldr(r9, FieldMemOperand(r4, DebugInfo::kDebugBytecodeArrayOffset), ne);
1036   __ JumpIfRoot(r9, Heap::kUndefinedValueRootIndex, &bytecode_array_loaded);
1037 
1038   __ mov(kInterpreterBytecodeArrayRegister, r9);
1039   __ ldr(r9, FieldMemOperand(r4, DebugInfo::kFlagsOffset));
1040   __ SmiUntag(r9);
1041   __ And(r9, r9, Operand(DebugInfo::kDebugExecutionMode));
1042 
1043   ExternalReference debug_execution_mode =
1044       ExternalReference::debug_execution_mode_address(masm->isolate());
1045   __ mov(r4, Operand(debug_execution_mode));
1046   __ ldrsb(r4, MemOperand(r4));
1047   STATIC_ASSERT(static_cast<int>(DebugInfo::kDebugExecutionMode) ==
1048                 static_cast<int>(DebugInfo::kSideEffects));
1049   __ cmp(r4, r9);
1050   __ b(eq, &bytecode_array_loaded);
1051 
1052   __ push(closure);
1053   __ push(feedback_vector);
1054   __ push(kInterpreterBytecodeArrayRegister);
1055   __ push(closure);
1056   __ CallRuntime(Runtime::kDebugApplyInstrumentation);
1057   __ pop(kInterpreterBytecodeArrayRegister);
1058   __ pop(feedback_vector);
1059   __ pop(closure);
1060   __ b(&bytecode_array_loaded);
1061 }
1062 
Generate_InterpreterPushArgs(MacroAssembler * masm,Register num_args,Register index,Register limit,Register scratch)1063 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
1064                                          Register num_args, Register index,
1065                                          Register limit, Register scratch) {
1066   // Find the address of the last argument.
1067   __ mov(limit, num_args);
1068   __ mov(limit, Operand(limit, LSL, kPointerSizeLog2));
1069   __ sub(limit, index, limit);
1070 
1071   Label loop_header, loop_check;
1072   __ b(al, &loop_check);
1073   __ bind(&loop_header);
1074   __ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex));
1075   __ push(scratch);
1076   __ bind(&loop_check);
1077   __ cmp(index, limit);
1078   __ b(gt, &loop_header);
1079 }
1080 
1081 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)1082 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1083     MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1084     InterpreterPushArgsMode mode) {
1085   DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1086   // ----------- S t a t e -------------
1087   //  -- r0 : the number of arguments (not including the receiver)
1088   //  -- r2 : the address of the first argument to be pushed. Subsequent
1089   //          arguments should be consecutive above this, in the same order as
1090   //          they are to be pushed onto the stack.
1091   //  -- r1 : the target to call (can be any Object).
1092   // -----------------------------------
1093   Label stack_overflow;
1094 
1095   __ add(r3, r0, Operand(1));  // Add one for receiver.
1096 
1097   Generate_StackOverflowCheck(masm, r3, r4, &stack_overflow);
1098 
1099   // Push "undefined" as the receiver arg if we need to.
1100   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1101     __ PushRoot(Heap::kUndefinedValueRootIndex);
1102     __ mov(r3, r0);  // Argument count is correct.
1103   }
1104 
1105   // Push the arguments. r2, r4, r5 will be modified.
1106   Generate_InterpreterPushArgs(masm, r3, r2, r4, r5);
1107 
1108   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1109     __ Pop(r2);                  // Pass the spread in a register
1110     __ sub(r0, r0, Operand(1));  // Subtract one for spread
1111   }
1112 
1113   // Call the target.
1114   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1115     __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1116             RelocInfo::CODE_TARGET);
1117   } else {
1118     __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1119             RelocInfo::CODE_TARGET);
1120   }
1121 
1122   __ bind(&stack_overflow);
1123   {
1124     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1125     // Unreachable code.
1126     __ bkpt(0);
1127   }
1128 }
1129 
1130 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1131 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1132     MacroAssembler* masm, InterpreterPushArgsMode mode) {
1133   // ----------- S t a t e -------------
1134   // -- r0 : argument count (not including receiver)
1135   // -- r3 : new target
1136   // -- r1 : constructor to call
1137   // -- r2 : allocation site feedback if available, undefined otherwise.
1138   // -- r4 : address of the first argument
1139   // -----------------------------------
1140   Label stack_overflow;
1141 
1142   // Push a slot for the receiver to be constructed.
1143   __ mov(r5, Operand::Zero());
1144   __ push(r5);
1145 
1146   Generate_StackOverflowCheck(masm, r0, r5, &stack_overflow);
1147 
1148   // Push the arguments. r5, r4, r6 will be modified.
1149   Generate_InterpreterPushArgs(masm, r0, r4, r5, r6);
1150 
1151   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1152     __ Pop(r2);                  // Pass the spread in a register
1153     __ sub(r0, r0, Operand(1));  // Subtract one for spread
1154   } else {
1155     __ AssertUndefinedOrAllocationSite(r2, r5);
1156   }
1157 
1158   if (mode == InterpreterPushArgsMode::kArrayFunction) {
1159     __ AssertFunction(r1);
1160 
1161     // Tail call to the array construct stub (still in the caller
1162     // context at this point).
1163     ArrayConstructorStub array_constructor_stub(masm->isolate());
1164     __ Jump(array_constructor_stub.GetCode(), RelocInfo::CODE_TARGET);
1165   } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1166     // Call the constructor with r0, r1, and r3 unmodified.
1167     __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1168             RelocInfo::CODE_TARGET);
1169   } else {
1170     DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1171     // Call the constructor with r0, r1, and r3 unmodified.
1172     __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1173   }
1174 
1175   __ bind(&stack_overflow);
1176   {
1177     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1178     // Unreachable code.
1179     __ bkpt(0);
1180   }
1181 }
1182 
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1183 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1184   // Set the return address to the correct point in the interpreter entry
1185   // trampoline.
1186   Label builtin_trampoline, trampoline_loaded;
1187   Smi* interpreter_entry_return_pc_offset(
1188       masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1189   DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
1190 
1191   // If the SFI function_data is an InterpreterData, get the trampoline stored
1192   // in it, otherwise get the trampoline from the builtins list.
1193   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
1194   __ ldr(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset));
1195   __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
1196   __ CompareObjectType(r2, kInterpreterDispatchTableRegister,
1197                        kInterpreterDispatchTableRegister,
1198                        INTERPRETER_DATA_TYPE);
1199   __ b(ne, &builtin_trampoline);
1200 
1201   __ ldr(r2,
1202          FieldMemOperand(r2, InterpreterData::kInterpreterTrampolineOffset));
1203   __ b(&trampoline_loaded);
1204 
1205   __ bind(&builtin_trampoline);
1206   __ Move(r2, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
1207 
1208   __ bind(&trampoline_loaded);
1209   __ add(lr, r2, Operand(interpreter_entry_return_pc_offset->value() +
1210                          Code::kHeaderSize - kHeapObjectTag));
1211 
1212   // Initialize the dispatch table register.
1213   __ Move(
1214       kInterpreterDispatchTableRegister,
1215       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1216 
1217   // Get the bytecode array pointer from the frame.
1218   __ ldr(kInterpreterBytecodeArrayRegister,
1219          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1220 
1221   if (FLAG_debug_code) {
1222     // Check function data field is actually a BytecodeArray object.
1223     __ SmiTst(kInterpreterBytecodeArrayRegister);
1224     __ Assert(
1225         ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1226     __ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg,
1227                          BYTECODE_ARRAY_TYPE);
1228     __ Assert(
1229         eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1230   }
1231 
1232   // Get the target bytecode offset from the frame.
1233   __ ldr(kInterpreterBytecodeOffsetRegister,
1234          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1235   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1236 
1237   // Dispatch to the target bytecode.
1238   UseScratchRegisterScope temps(masm);
1239   Register scratch = temps.Acquire();
1240   __ ldrb(scratch, MemOperand(kInterpreterBytecodeArrayRegister,
1241                               kInterpreterBytecodeOffsetRegister));
1242   __ ldr(kJavaScriptCallCodeStartRegister,
1243          MemOperand(kInterpreterDispatchTableRegister, scratch, LSL,
1244                     kPointerSizeLog2));
1245   __ Jump(kJavaScriptCallCodeStartRegister);
1246 }
1247 
Generate_InterpreterEnterBytecodeAdvance(MacroAssembler * masm)1248 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1249   // Get bytecode array and bytecode offset from the stack frame.
1250   __ ldr(kInterpreterBytecodeArrayRegister,
1251          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1252   __ ldr(kInterpreterBytecodeOffsetRegister,
1253          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1254   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1255 
1256   // Load the current bytecode.
1257   __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
1258                          kInterpreterBytecodeOffsetRegister));
1259 
1260   // Advance to the next bytecode.
1261   Label if_return;
1262   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1263                                 kInterpreterBytecodeOffsetRegister, r1, r2,
1264                                 &if_return);
1265 
1266   // Convert new bytecode offset to a Smi and save in the stackframe.
1267   __ SmiTag(r2, kInterpreterBytecodeOffsetRegister);
1268   __ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1269 
1270   Generate_InterpreterEnterBytecode(masm);
1271 
1272   // We should never take the if_return path.
1273   __ bind(&if_return);
1274   __ Abort(AbortReason::kInvalidBytecodeAdvance);
1275 }
1276 
Generate_InterpreterEnterBytecodeDispatch(MacroAssembler * masm)1277 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1278   Generate_InterpreterEnterBytecode(masm);
1279 }
1280 
Generate_CompileLazyDeoptimizedCode(MacroAssembler * masm)1281 void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) {
1282   // Set the code slot inside the JSFunction to CompileLazy.
1283   __ Move(r2, BUILTIN_CODE(masm->isolate(), CompileLazy));
1284   __ str(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
1285   __ RecordWriteField(r1, JSFunction::kCodeOffset, r2, r4, kLRHasNotBeenSaved,
1286                       kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1287   // Jump to compile lazy.
1288   Generate_CompileLazy(masm);
1289 }
1290 
GetSharedFunctionInfoCode(MacroAssembler * masm,Register sfi_data,Register scratch1)1291 static void GetSharedFunctionInfoCode(MacroAssembler* masm, Register sfi_data,
1292                                       Register scratch1) {
1293   // Figure out the SFI's code object.
1294   Label done;
1295   Label check_is_bytecode_array;
1296   Label check_is_exported_function_data;
1297   Label check_is_fixed_array;
1298   Label check_is_pre_parsed_scope_data;
1299   Label check_is_function_template_info;
1300   Label check_is_interpreter_data;
1301 
1302   Register data_type = scratch1;
1303 
1304   // IsSmi: Is builtin
1305   __ JumpIfNotSmi(sfi_data, &check_is_bytecode_array);
1306   __ Move(scratch1, ExternalReference::builtins_address(masm->isolate()));
1307   __ ldr(sfi_data, MemOperand::PointerAddressFromSmiKey(scratch1, sfi_data));
1308   __ b(&done);
1309 
1310   // Get map for subsequent checks.
1311   __ bind(&check_is_bytecode_array);
1312   __ ldr(data_type, FieldMemOperand(sfi_data, HeapObject::kMapOffset));
1313   __ ldrh(data_type, FieldMemOperand(data_type, Map::kInstanceTypeOffset));
1314 
1315   // IsBytecodeArray: Interpret bytecode
1316   __ cmp(data_type, Operand(BYTECODE_ARRAY_TYPE));
1317   __ b(ne, &check_is_exported_function_data);
1318   __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
1319   __ b(&done);
1320 
1321   // IsWasmExportedFunctionData: Use the wrapper code
1322   __ bind(&check_is_exported_function_data);
1323   __ cmp(data_type, Operand(WASM_EXPORTED_FUNCTION_DATA_TYPE));
1324   __ b(ne, &check_is_fixed_array);
1325   __ ldr(sfi_data, FieldMemOperand(
1326                        sfi_data, WasmExportedFunctionData::kWrapperCodeOffset));
1327   __ b(&done);
1328 
1329   // IsFixedArray: Instantiate using AsmWasmData
1330   __ bind(&check_is_fixed_array);
1331   __ cmp(data_type, Operand(FIXED_ARRAY_TYPE));
1332   __ b(ne, &check_is_pre_parsed_scope_data);
1333   __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), InstantiateAsmJs));
1334   __ b(&done);
1335 
1336   // IsPreParsedScopeData: Compile lazy
1337   __ bind(&check_is_pre_parsed_scope_data);
1338   __ cmp(data_type, Operand(TUPLE2_TYPE));
1339   __ b(ne, &check_is_function_template_info);
1340   __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), CompileLazy));
1341   __ b(&done);
1342 
1343   // IsFunctionTemplateInfo: API call
1344   __ bind(&check_is_function_template_info);
1345   __ cmp(data_type, Operand(FUNCTION_TEMPLATE_INFO_TYPE));
1346   __ b(ne, &check_is_interpreter_data);
1347   __ Move(sfi_data, BUILTIN_CODE(masm->isolate(), HandleApiCall));
1348   __ b(&done);
1349 
1350   // IsInterpreterData: Interpret bytecode
1351   __ bind(&check_is_interpreter_data);
1352   if (FLAG_debug_code) {
1353     __ cmp(data_type, Operand(INTERPRETER_DATA_TYPE));
1354     __ Assert(eq, AbortReason::kInvalidSharedFunctionInfoData);
1355   }
1356   __ ldr(
1357       sfi_data,
1358       FieldMemOperand(sfi_data, InterpreterData::kInterpreterTrampolineOffset));
1359 
1360   __ bind(&done);
1361 }
1362 
Generate_CompileLazy(MacroAssembler * masm)1363 void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
1364   // ----------- S t a t e -------------
1365   //  -- r0 : argument count (preserved for callee)
1366   //  -- r3 : new target (preserved for callee)
1367   //  -- r1 : target function (preserved for callee)
1368   // -----------------------------------
1369   // First lookup code, maybe we don't need to compile!
1370   Label gotta_call_runtime;
1371 
1372   Register closure = r1;
1373   Register feedback_vector = r2;
1374 
1375   // Do we have a valid feedback vector?
1376   __ ldr(feedback_vector,
1377          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1378   __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
1379   __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex,
1380                 &gotta_call_runtime);
1381 
1382   // Is there an optimization marker or optimized code in the feedback vector?
1383   MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5);
1384 
1385   // We found no optimized code. Infer the code object needed for the SFI.
1386   Register entry = r4;
1387   __ ldr(entry,
1388          FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1389   __ ldr(entry,
1390          FieldMemOperand(entry, SharedFunctionInfo::kFunctionDataOffset));
1391   GetSharedFunctionInfoCode(masm, entry, r5);
1392 
1393   // If code entry points to anything other than CompileLazy, install that.
1394   __ Move(r5, masm->CodeObject());
1395   __ cmp(entry, r5);
1396   __ b(eq, &gotta_call_runtime);
1397 
1398   // Install the SFI's code entry.
1399   __ str(entry, FieldMemOperand(closure, JSFunction::kCodeOffset));
1400   __ mov(r9, entry);  // Write barrier clobbers r9 below.
1401   __ RecordWriteField(closure, JSFunction::kCodeOffset, r9, r5,
1402                       kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
1403                       OMIT_SMI_CHECK);
1404   __ add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
1405   __ Jump(entry);
1406 
1407   __ bind(&gotta_call_runtime);
1408   GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1409 }
1410 
1411 // Lazy deserialization design doc: http://goo.gl/dxkYDZ.
Generate_DeserializeLazy(MacroAssembler * masm)1412 void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) {
1413   // ----------- S t a t e -------------
1414   //  -- r0 : argument count (preserved for callee)
1415   //  -- r3 : new target (preserved for callee)
1416   //  -- r1 : target function (preserved for callee)
1417   // -----------------------------------
1418 
1419   Label deserialize_in_runtime;
1420 
1421   Register target = r1;  // Must be preserved
1422   Register scratch0 = r2;
1423   Register scratch1 = r4;
1424 
1425   CHECK(scratch0 != r0 && scratch0 != r3 && scratch0 != r1);
1426   CHECK(scratch1 != r0 && scratch1 != r3 && scratch1 != r1);
1427   CHECK(scratch0 != scratch1);
1428 
1429   // Load the builtin id for lazy deserialization from SharedFunctionInfo.
1430 
1431   __ AssertFunction(target);
1432   __ ldr(scratch0,
1433          FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset));
1434 
1435   __ ldr(scratch1,
1436          FieldMemOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset));
1437   __ AssertSmi(scratch1);
1438 
1439   // The builtin may already have been deserialized. If that is the case, it is
1440   // stored in the builtins table, and we can copy to correct code object to
1441   // both the shared function info and function without calling into runtime.
1442   //
1443   // Otherwise, we need to call into runtime to deserialize.
1444 
1445   {
1446     // Load the code object at builtins_table[builtin_id] into scratch1.
1447 
1448     __ SmiUntag(scratch1);
1449     __ Move(scratch0, ExternalReference::builtins_address(masm->isolate()));
1450     __ ldr(scratch1, MemOperand(scratch0, scratch1, LSL, kPointerSizeLog2));
1451 
1452     // Check if the loaded code object has already been deserialized. This is
1453     // the case iff it does not equal DeserializeLazy.
1454 
1455     __ Move(scratch0, masm->CodeObject());
1456     __ cmp(scratch1, scratch0);
1457     __ b(eq, &deserialize_in_runtime);
1458   }
1459 
1460   {
1461     // If we've reached this spot, the target builtin has been deserialized and
1462     // we simply need to copy it over to the target function.
1463 
1464     Register target_builtin = scratch1;
1465 
1466     __ str(target_builtin, FieldMemOperand(target, JSFunction::kCodeOffset));
1467     __ mov(r9, target_builtin);  // Write barrier clobbers r9 below.
1468     __ RecordWriteField(target, JSFunction::kCodeOffset, r9, r5,
1469                         kLRHasNotBeenSaved, kDontSaveFPRegs,
1470                         OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
1471 
1472     // All copying is done. Jump to the deserialized code object.
1473 
1474     __ add(target_builtin, target_builtin,
1475            Operand(Code::kHeaderSize - kHeapObjectTag));
1476     __ Jump(target_builtin);
1477   }
1478 
1479   __ bind(&deserialize_in_runtime);
1480   GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy);
1481 }
1482 
Generate_InstantiateAsmJs(MacroAssembler * masm)1483 void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
1484   // ----------- S t a t e -------------
1485   //  -- r0 : argument count (preserved for callee)
1486   //  -- r1 : new target (preserved for callee)
1487   //  -- r3 : target function (preserved for callee)
1488   // -----------------------------------
1489   Label failed;
1490   {
1491     FrameScope scope(masm, StackFrame::INTERNAL);
1492     // Preserve argument count for later compare.
1493     __ Move(r4, r0);
1494     // Push the number of arguments to the callee.
1495     __ SmiTag(r0);
1496     __ push(r0);
1497     // Push a copy of the target function and the new target.
1498     __ push(r1);
1499     __ push(r3);
1500 
1501     // The function.
1502     __ push(r1);
1503     // Copy arguments from caller (stdlib, foreign, heap).
1504     Label args_done;
1505     for (int j = 0; j < 4; ++j) {
1506       Label over;
1507       if (j < 3) {
1508         __ cmp(r4, Operand(j));
1509         __ b(ne, &over);
1510       }
1511       for (int i = j - 1; i >= 0; --i) {
1512         __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
1513                                       i * kPointerSize));
1514         __ push(r4);
1515       }
1516       for (int i = 0; i < 3 - j; ++i) {
1517         __ PushRoot(Heap::kUndefinedValueRootIndex);
1518       }
1519       if (j < 3) {
1520         __ jmp(&args_done);
1521         __ bind(&over);
1522       }
1523     }
1524     __ bind(&args_done);
1525 
1526     // Call runtime, on success unwind frame, and parent frame.
1527     __ CallRuntime(Runtime::kInstantiateAsmJs, 4);
1528     // A smi 0 is returned on failure, an object on success.
1529     __ JumpIfSmi(r0, &failed);
1530 
1531     __ Drop(2);
1532     __ pop(r4);
1533     __ SmiUntag(r4);
1534     scope.GenerateLeaveFrame();
1535 
1536     __ add(r4, r4, Operand(1));
1537     __ Drop(r4);
1538     __ Ret();
1539 
1540     __ bind(&failed);
1541     // Restore target function and new target.
1542     __ pop(r3);
1543     __ pop(r1);
1544     __ pop(r0);
1545     __ SmiUntag(r0);
1546   }
1547   // On failure, tail call back to regular js by re-calling the function
1548   // which has be reset to the compile lazy builtin.
1549   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
1550   __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
1551   __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
1552   __ Jump(r2);
1553 }
1554 
1555 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1556 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1557                                       bool java_script_builtin,
1558                                       bool with_result) {
1559   const RegisterConfiguration* config(RegisterConfiguration::Default());
1560   int allocatable_register_count = config->num_allocatable_general_registers();
1561   if (with_result) {
1562     // Overwrite the hole inserted by the deoptimizer with the return value from
1563     // the LAZY deopt point.
1564     __ str(r0,
1565            MemOperand(
1566                sp, config->num_allocatable_general_registers() * kPointerSize +
1567                        BuiltinContinuationFrameConstants::kFixedFrameSize));
1568   }
1569   for (int i = allocatable_register_count - 1; i >= 0; --i) {
1570     int code = config->GetAllocatableGeneralCode(i);
1571     __ Pop(Register::from_code(code));
1572     if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1573       __ SmiUntag(Register::from_code(code));
1574     }
1575   }
1576   __ ldr(fp, MemOperand(
1577                  sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1578 
1579   UseScratchRegisterScope temps(masm);
1580   Register scratch = temps.Acquire();
1581   __ Pop(scratch);
1582   __ add(sp, sp,
1583          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1584   __ Pop(lr);
1585   __ add(pc, scratch, Operand(Code::kHeaderSize - kHeapObjectTag));
1586 }
1587 }  // namespace
1588 
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1589 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1590   Generate_ContinueToBuiltinHelper(masm, false, false);
1591 }
1592 
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1593 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1594     MacroAssembler* masm) {
1595   Generate_ContinueToBuiltinHelper(masm, false, true);
1596 }
1597 
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1598 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1599   Generate_ContinueToBuiltinHelper(masm, true, false);
1600 }
1601 
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1602 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1603     MacroAssembler* masm) {
1604   Generate_ContinueToBuiltinHelper(masm, true, true);
1605 }
1606 
Generate_NotifyDeoptimized(MacroAssembler * masm)1607 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1608   {
1609     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1610     __ CallRuntime(Runtime::kNotifyDeoptimized);
1611   }
1612 
1613   DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code());
1614   __ pop(r0);
1615   __ Ret();
1616 }
1617 
Generate_OnStackReplacementHelper(MacroAssembler * masm,bool has_handler_frame)1618 static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
1619                                               bool has_handler_frame) {
1620   // Lookup the function in the JavaScript frame.
1621   if (has_handler_frame) {
1622     __ ldr(r0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1623     __ ldr(r0, MemOperand(r0, JavaScriptFrameConstants::kFunctionOffset));
1624   } else {
1625     __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1626   }
1627 
1628   {
1629     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1630     // Pass function as argument.
1631     __ push(r0);
1632     __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1633   }
1634 
1635   // If the code object is null, just return to the caller.
1636   Label skip;
1637   __ cmp(r0, Operand(Smi::kZero));
1638   __ b(ne, &skip);
1639   __ Ret();
1640 
1641   __ bind(&skip);
1642 
1643   // Drop any potential handler frame that is be sitting on top of the actual
1644   // JavaScript frame. This is the case then OSR is triggered from bytecode.
1645   if (has_handler_frame) {
1646     __ LeaveFrame(StackFrame::STUB);
1647   }
1648 
1649   // Load deoptimization data from the code object.
1650   // <deopt_data> = <code>[#deoptimization_data_offset]
1651   __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset));
1652 
1653   {
1654     ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1655     __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1656 
1657     // Load the OSR entrypoint offset from the deoptimization data.
1658     // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1659     __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(
1660                                        DeoptimizationData::kOsrPcOffsetIndex)));
1661 
1662     // Compute the target address = code start + osr_offset
1663     __ add(lr, r0, Operand::SmiUntag(r1));
1664 
1665     // And "return" to the OSR entry point of the function.
1666     __ Ret();
1667   }
1668 }
1669 
Generate_OnStackReplacement(MacroAssembler * masm)1670 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1671   Generate_OnStackReplacementHelper(masm, false);
1672 }
1673 
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)1674 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1675   Generate_OnStackReplacementHelper(masm, true);
1676 }
1677 
1678 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1679 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1680   // ----------- S t a t e -------------
1681   //  -- r0    : argc
1682   //  -- sp[0] : argArray
1683   //  -- sp[4] : thisArg
1684   //  -- sp[8] : receiver
1685   // -----------------------------------
1686 
1687   // 1. Load receiver into r1, argArray into r2 (if present), remove all
1688   // arguments from the stack (including the receiver), and push thisArg (if
1689   // present) instead.
1690   {
1691     __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
1692     __ mov(r2, r5);
1693     __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));  // receiver
1694     __ sub(r4, r0, Operand(1), SetCC);
1695     __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // thisArg
1696     __ sub(r4, r4, Operand(1), SetCC, ge);
1697     __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // argArray
1698     __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
1699     __ str(r5, MemOperand(sp, 0));
1700   }
1701 
1702   // ----------- S t a t e -------------
1703   //  -- r2    : argArray
1704   //  -- r1    : receiver
1705   //  -- sp[0] : thisArg
1706   // -----------------------------------
1707 
1708   // 2. We don't need to check explicitly for callable receiver here,
1709   // since that's the first thing the Call/CallWithArrayLike builtins
1710   // will do.
1711 
1712   // 3. Tail call with no arguments if argArray is null or undefined.
1713   Label no_arguments;
1714   __ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments);
1715   __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments);
1716 
1717   // 4a. Apply the receiver to the given argArray.
1718   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1719           RelocInfo::CODE_TARGET);
1720 
1721   // 4b. The argArray is either null or undefined, so we tail call without any
1722   // arguments to the receiver.
1723   __ bind(&no_arguments);
1724   {
1725     __ mov(r0, Operand(0));
1726     __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1727   }
1728 }
1729 
1730 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1731 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1732   // 1. Make sure we have at least one argument.
1733   // r0: actual number of arguments
1734   {
1735     Label done;
1736     __ cmp(r0, Operand::Zero());
1737     __ b(ne, &done);
1738     __ PushRoot(Heap::kUndefinedValueRootIndex);
1739     __ add(r0, r0, Operand(1));
1740     __ bind(&done);
1741   }
1742 
1743   // 2. Get the callable to call (passed as receiver) from the stack.
1744   // r0: actual number of arguments
1745   __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1746 
1747   // 3. Shift arguments and return address one slot down on the stack
1748   //    (overwriting the original receiver).  Adjust argument count to make
1749   //    the original first argument the new receiver.
1750   // r0: actual number of arguments
1751   // r1: callable
1752   {
1753     Register scratch = r3;
1754     Label loop;
1755     // Calculate the copy start address (destination). Copy end address is sp.
1756     __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
1757 
1758     __ bind(&loop);
1759     __ ldr(scratch, MemOperand(r2, -kPointerSize));
1760     __ str(scratch, MemOperand(r2));
1761     __ sub(r2, r2, Operand(kPointerSize));
1762     __ cmp(r2, sp);
1763     __ b(ne, &loop);
1764     // Adjust the actual number of arguments and remove the top element
1765     // (which is a copy of the last argument).
1766     __ sub(r0, r0, Operand(1));
1767     __ pop();
1768   }
1769 
1770   // 4. Call the callable.
1771   __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1772 }
1773 
Generate_ReflectApply(MacroAssembler * masm)1774 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1775   // ----------- S t a t e -------------
1776   //  -- r0     : argc
1777   //  -- sp[0]  : argumentsList
1778   //  -- sp[4]  : thisArgument
1779   //  -- sp[8]  : target
1780   //  -- sp[12] : receiver
1781   // -----------------------------------
1782 
1783   // 1. Load target into r1 (if present), argumentsList into r2 (if present),
1784   // remove all arguments from the stack (including the receiver), and push
1785   // thisArgument (if present) instead.
1786   {
1787     __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1788     __ mov(r5, r1);
1789     __ mov(r2, r1);
1790     __ sub(r4, r0, Operand(1), SetCC);
1791     __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // target
1792     __ sub(r4, r4, Operand(1), SetCC, ge);
1793     __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // thisArgument
1794     __ sub(r4, r4, Operand(1), SetCC, ge);
1795     __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // argumentsList
1796     __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
1797     __ str(r5, MemOperand(sp, 0));
1798   }
1799 
1800   // ----------- S t a t e -------------
1801   //  -- r2    : argumentsList
1802   //  -- r1    : target
1803   //  -- sp[0] : thisArgument
1804   // -----------------------------------
1805 
1806   // 2. We don't need to check explicitly for callable target here,
1807   // since that's the first thing the Call/CallWithArrayLike builtins
1808   // will do.
1809 
1810   // 3. Apply the target to the given argumentsList.
1811   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1812           RelocInfo::CODE_TARGET);
1813 }
1814 
Generate_ReflectConstruct(MacroAssembler * masm)1815 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1816   // ----------- S t a t e -------------
1817   //  -- r0     : argc
1818   //  -- sp[0]  : new.target (optional)
1819   //  -- sp[4]  : argumentsList
1820   //  -- sp[8]  : target
1821   //  -- sp[12] : receiver
1822   // -----------------------------------
1823 
1824   // 1. Load target into r1 (if present), argumentsList into r2 (if present),
1825   // new.target into r3 (if present, otherwise use target), remove all
1826   // arguments from the stack (including the receiver), and push thisArgument
1827   // (if present) instead.
1828   {
1829     __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
1830     __ mov(r2, r1);
1831     __ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2));  // receiver
1832     __ sub(r4, r0, Operand(1), SetCC);
1833     __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // target
1834     __ mov(r3, r1);  // new.target defaults to target
1835     __ sub(r4, r4, Operand(1), SetCC, ge);
1836     __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // argumentsList
1837     __ sub(r4, r4, Operand(1), SetCC, ge);
1838     __ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge);  // new.target
1839     __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2));
1840   }
1841 
1842   // ----------- S t a t e -------------
1843   //  -- r2    : argumentsList
1844   //  -- r3    : new.target
1845   //  -- r1    : target
1846   //  -- sp[0] : receiver (undefined)
1847   // -----------------------------------
1848 
1849   // 2. We don't need to check explicitly for constructor target here,
1850   // since that's the first thing the Construct/ConstructWithArrayLike
1851   // builtins will do.
1852 
1853   // 3. We don't need to check explicitly for constructor new.target here,
1854   // since that's the second thing the Construct/ConstructWithArrayLike
1855   // builtins will do.
1856 
1857   // 4. Construct the target with the given new.target and argumentsList.
1858   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1859           RelocInfo::CODE_TARGET);
1860 }
1861 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1862 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1863   __ SmiTag(r0);
1864   __ mov(r4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1865   __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() |
1866                        fp.bit() | lr.bit());
1867   __ Push(Smi::kZero);  // Padding.
1868   __ add(fp, sp,
1869          Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp));
1870 }
1871 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1872 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1873   // ----------- S t a t e -------------
1874   //  -- r0 : result being passed through
1875   // -----------------------------------
1876   // Get the number of arguments passed (as a smi), tear down the frame and
1877   // then tear down the parameters.
1878   __ ldr(r1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1879 
1880   __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR);
1881   __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1));
1882   __ add(sp, sp, Operand(kPointerSize));  // adjust for receiver
1883 }
1884 
1885 // static
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)1886 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
1887                                                Handle<Code> code) {
1888   // ----------- S t a t e -------------
1889   //  -- r1 : target
1890   //  -- r0 : number of parameters on the stack (not including the receiver)
1891   //  -- r2 : arguments list (a FixedArray)
1892   //  -- r4 : len (number of elements to push from args)
1893   //  -- r3 : new.target (for [[Construct]])
1894   // -----------------------------------
1895   __ AssertFixedArray(r2);
1896 
1897   Register scratch = r8;
1898 
1899   // Check for stack overflow.
1900   {
1901     // Check the stack for overflow. We are not trying to catch interruptions
1902     // (i.e. debug break and preemption) here, so check the "real stack limit".
1903     Label done;
1904     __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
1905     // The stack might already be overflowed here which will cause 'scratch' to
1906     // become negative.
1907     __ sub(scratch, sp, scratch);
1908     // Check if the arguments will overflow the stack.
1909     __ cmp(scratch, Operand(r4, LSL, kPointerSizeLog2));
1910     __ b(gt, &done);  // Signed comparison.
1911     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1912     __ bind(&done);
1913   }
1914 
1915   // Push arguments onto the stack (thisArgument is already on the stack).
1916   {
1917     __ mov(r6, Operand(0));
1918     __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
1919     Label done, loop;
1920     __ bind(&loop);
1921     __ cmp(r6, r4);
1922     __ b(eq, &done);
1923     __ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2));
1924     __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
1925     __ cmp(scratch, r5);
1926     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq);
1927     __ Push(scratch);
1928     __ add(r6, r6, Operand(1));
1929     __ b(&loop);
1930     __ bind(&done);
1931     __ add(r0, r0, r6);
1932   }
1933 
1934   // Tail-call to the actual Call or Construct builtin.
1935   __ Jump(code, RelocInfo::CODE_TARGET);
1936 }
1937 
1938 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)1939 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
1940                                                       CallOrConstructMode mode,
1941                                                       Handle<Code> code) {
1942   // ----------- S t a t e -------------
1943   //  -- r0 : the number of arguments (not including the receiver)
1944   //  -- r3 : the new.target (for [[Construct]] calls)
1945   //  -- r1 : the target to call (can be any Object)
1946   //  -- r2 : start index (to support rest parameters)
1947   // -----------------------------------
1948 
1949   Register scratch = r6;
1950 
1951   // Check if new.target has a [[Construct]] internal method.
1952   if (mode == CallOrConstructMode::kConstruct) {
1953     Label new_target_constructor, new_target_not_constructor;
1954     __ JumpIfSmi(r3, &new_target_not_constructor);
1955     __ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset));
1956     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
1957     __ tst(scratch, Operand(Map::IsConstructorBit::kMask));
1958     __ b(ne, &new_target_constructor);
1959     __ bind(&new_target_not_constructor);
1960     {
1961       FrameScope scope(masm, StackFrame::MANUAL);
1962       __ EnterFrame(StackFrame::INTERNAL);
1963       __ Push(r3);
1964       __ CallRuntime(Runtime::kThrowNotConstructor);
1965     }
1966     __ bind(&new_target_constructor);
1967   }
1968 
1969   // Check if we have an arguments adaptor frame below the function frame.
1970   Label arguments_adaptor, arguments_done;
1971   __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1972   __ ldr(scratch,
1973          MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset));
1974   __ cmp(scratch,
1975          Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1976   __ b(eq, &arguments_adaptor);
1977   {
1978     __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1979     __ ldr(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset));
1980     __ ldr(r5, FieldMemOperand(
1981                    r5, SharedFunctionInfo::kFormalParameterCountOffset));
1982     __ mov(r4, fp);
1983   }
1984   __ b(&arguments_done);
1985   __ bind(&arguments_adaptor);
1986   {
1987     // Load the length from the ArgumentsAdaptorFrame.
1988     __ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset));
1989     __ SmiUntag(r5);
1990   }
1991   __ bind(&arguments_done);
1992 
1993   Label stack_done, stack_overflow;
1994   __ sub(r5, r5, r2, SetCC);
1995   __ b(le, &stack_done);
1996   {
1997     // Check for stack overflow.
1998     Generate_StackOverflowCheck(masm, r5, r2, &stack_overflow);
1999 
2000     // Forward the arguments from the caller frame.
2001     {
2002       Label loop;
2003       __ add(r4, r4, Operand(kPointerSize));
2004       __ add(r0, r0, r5);
2005       __ bind(&loop);
2006       {
2007         __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2));
2008         __ push(scratch);
2009         __ sub(r5, r5, Operand(1), SetCC);
2010         __ b(ne, &loop);
2011       }
2012     }
2013   }
2014   __ b(&stack_done);
2015   __ bind(&stack_overflow);
2016   __ TailCallRuntime(Runtime::kThrowStackOverflow);
2017   __ bind(&stack_done);
2018 
2019   // Tail-call to the {code} handler.
2020   __ Jump(code, RelocInfo::CODE_TARGET);
2021 }
2022 
2023 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)2024 void Builtins::Generate_CallFunction(MacroAssembler* masm,
2025                                      ConvertReceiverMode mode) {
2026   // ----------- S t a t e -------------
2027   //  -- r0 : the number of arguments (not including the receiver)
2028   //  -- r1 : the function to call (checked to be a JSFunction)
2029   // -----------------------------------
2030   __ AssertFunction(r1);
2031 
2032   // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2033   // Check that the function is not a "classConstructor".
2034   Label class_constructor;
2035   __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2036   __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset));
2037   __ tst(r3, Operand(SharedFunctionInfo::IsClassConstructorBit::kMask));
2038   __ b(ne, &class_constructor);
2039 
2040   // Enter the context of the function; ToObject has to run in the function
2041   // context, and we also need to take the global proxy from the function
2042   // context in case of conversion.
2043   __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
2044   // We need to convert the receiver for non-native sloppy mode functions.
2045   Label done_convert;
2046   __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset));
2047   __ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask |
2048                      SharedFunctionInfo::IsStrictBit::kMask));
2049   __ b(ne, &done_convert);
2050   {
2051     // ----------- S t a t e -------------
2052     //  -- r0 : the number of arguments (not including the receiver)
2053     //  -- r1 : the function to call (checked to be a JSFunction)
2054     //  -- r2 : the shared function info.
2055     //  -- cp : the function context.
2056     // -----------------------------------
2057 
2058     if (mode == ConvertReceiverMode::kNullOrUndefined) {
2059       // Patch receiver to global proxy.
2060       __ LoadGlobalProxy(r3);
2061     } else {
2062       Label convert_to_object, convert_receiver;
2063       __ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2064       __ JumpIfSmi(r3, &convert_to_object);
2065       STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2066       __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
2067       __ b(hs, &done_convert);
2068       if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2069         Label convert_global_proxy;
2070         __ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex,
2071                       &convert_global_proxy);
2072         __ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object);
2073         __ bind(&convert_global_proxy);
2074         {
2075           // Patch receiver to global proxy.
2076           __ LoadGlobalProxy(r3);
2077         }
2078         __ b(&convert_receiver);
2079       }
2080       __ bind(&convert_to_object);
2081       {
2082         // Convert receiver using ToObject.
2083         // TODO(bmeurer): Inline the allocation here to avoid building the frame
2084         // in the fast case? (fall back to AllocateInNewSpace?)
2085         FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2086         __ SmiTag(r0);
2087         __ Push(r0, r1);
2088         __ mov(r0, r3);
2089         __ Push(cp);
2090         __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2091                 RelocInfo::CODE_TARGET);
2092         __ Pop(cp);
2093         __ mov(r3, r0);
2094         __ Pop(r0, r1);
2095         __ SmiUntag(r0);
2096       }
2097       __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2098       __ bind(&convert_receiver);
2099     }
2100     __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2101   }
2102   __ bind(&done_convert);
2103 
2104   // ----------- S t a t e -------------
2105   //  -- r0 : the number of arguments (not including the receiver)
2106   //  -- r1 : the function to call (checked to be a JSFunction)
2107   //  -- r2 : the shared function info.
2108   //  -- cp : the function context.
2109   // -----------------------------------
2110 
2111   __ ldr(r2,
2112          FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
2113   ParameterCount actual(r0);
2114   ParameterCount expected(r2);
2115   __ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION);
2116 
2117   // The function is a "classConstructor", need to raise an exception.
2118   __ bind(&class_constructor);
2119   {
2120     FrameScope frame(masm, StackFrame::INTERNAL);
2121     __ push(r1);
2122     __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2123   }
2124 }
2125 
2126 namespace {
2127 
Generate_PushBoundArguments(MacroAssembler * masm)2128 void Generate_PushBoundArguments(MacroAssembler* masm) {
2129   // ----------- S t a t e -------------
2130   //  -- r0 : the number of arguments (not including the receiver)
2131   //  -- r1 : target (checked to be a JSBoundFunction)
2132   //  -- r3 : new.target (only in case of [[Construct]])
2133   // -----------------------------------
2134 
2135   // Load [[BoundArguments]] into r2 and length of that into r4.
2136   Label no_bound_arguments;
2137   __ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset));
2138   __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
2139   __ SmiUntag(r4);
2140   __ cmp(r4, Operand(0));
2141   __ b(eq, &no_bound_arguments);
2142   {
2143     // ----------- S t a t e -------------
2144     //  -- r0 : the number of arguments (not including the receiver)
2145     //  -- r1 : target (checked to be a JSBoundFunction)
2146     //  -- r2 : the [[BoundArguments]] (implemented as FixedArray)
2147     //  -- r3 : new.target (only in case of [[Construct]])
2148     //  -- r4 : the number of [[BoundArguments]]
2149     // -----------------------------------
2150 
2151     // Reserve stack space for the [[BoundArguments]].
2152     {
2153       Label done;
2154       __ sub(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
2155       // Check the stack for overflow. We are not trying to catch interruptions
2156       // (i.e. debug break and preemption) here, so check the "real stack
2157       // limit".
2158       __ CompareRoot(sp, Heap::kRealStackLimitRootIndex);
2159       __ b(gt, &done);  // Signed comparison.
2160       // Restore the stack pointer.
2161       __ add(sp, sp, Operand(r4, LSL, kPointerSizeLog2));
2162       {
2163         FrameScope scope(masm, StackFrame::MANUAL);
2164         __ EnterFrame(StackFrame::INTERNAL);
2165         __ CallRuntime(Runtime::kThrowStackOverflow);
2166       }
2167       __ bind(&done);
2168     }
2169 
2170     Register scratch = r6;
2171 
2172     // Relocate arguments down the stack.
2173     {
2174       Label loop, done_loop;
2175       __ mov(r5, Operand(0));
2176       __ bind(&loop);
2177       __ cmp(r5, r0);
2178       __ b(gt, &done_loop);
2179       __ ldr(scratch, MemOperand(sp, r4, LSL, kPointerSizeLog2));
2180       __ str(scratch, MemOperand(sp, r5, LSL, kPointerSizeLog2));
2181       __ add(r4, r4, Operand(1));
2182       __ add(r5, r5, Operand(1));
2183       __ b(&loop);
2184       __ bind(&done_loop);
2185     }
2186 
2187     // Copy [[BoundArguments]] to the stack (below the arguments).
2188     {
2189       Label loop;
2190       __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
2191       __ SmiUntag(r4);
2192       __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2193       __ bind(&loop);
2194       __ sub(r4, r4, Operand(1), SetCC);
2195       __ ldr(scratch, MemOperand(r2, r4, LSL, kPointerSizeLog2));
2196       __ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2197       __ add(r0, r0, Operand(1));
2198       __ b(gt, &loop);
2199     }
2200   }
2201   __ bind(&no_bound_arguments);
2202 }
2203 
2204 }  // namespace
2205 
2206 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)2207 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2208   // ----------- S t a t e -------------
2209   //  -- r0 : the number of arguments (not including the receiver)
2210   //  -- r1 : the function to call (checked to be a JSBoundFunction)
2211   // -----------------------------------
2212   __ AssertBoundFunction(r1);
2213 
2214   // Patch the receiver to [[BoundThis]].
2215   __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset));
2216   __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2217 
2218   // Push the [[BoundArguments]] onto the stack.
2219   Generate_PushBoundArguments(masm);
2220 
2221   // Call the [[BoundTargetFunction]] via the Call builtin.
2222   __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
2223   __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2224           RelocInfo::CODE_TARGET);
2225 }
2226 
2227 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2228 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2229   // ----------- S t a t e -------------
2230   //  -- r0 : the number of arguments (not including the receiver)
2231   //  -- r1 : the target to call (can be any Object).
2232   // -----------------------------------
2233 
2234   Label non_callable, non_function, non_smi;
2235   __ JumpIfSmi(r1, &non_callable);
2236   __ bind(&non_smi);
2237   __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE);
2238   __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2239           RelocInfo::CODE_TARGET, eq);
2240   __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
2241   __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2242           RelocInfo::CODE_TARGET, eq);
2243 
2244   // Check if target has a [[Call]] internal method.
2245   __ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
2246   __ tst(r4, Operand(Map::IsCallableBit::kMask));
2247   __ b(eq, &non_callable);
2248 
2249   // Check if target is a proxy and call CallProxy external builtin
2250   __ cmp(r5, Operand(JS_PROXY_TYPE));
2251   __ b(ne, &non_function);
2252   __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2253 
2254   // 2. Call to something else, which might have a [[Call]] internal method (if
2255   // not we raise an exception).
2256   __ bind(&non_function);
2257   // Overwrite the original receiver the (original) target.
2258   __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2259   // Let the "call_as_function_delegate" take care of the rest.
2260   __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1);
2261   __ Jump(masm->isolate()->builtins()->CallFunction(
2262               ConvertReceiverMode::kNotNullOrUndefined),
2263           RelocInfo::CODE_TARGET);
2264 
2265   // 3. Call to something that is not callable.
2266   __ bind(&non_callable);
2267   {
2268     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2269     __ Push(r1);
2270     __ CallRuntime(Runtime::kThrowCalledNonCallable);
2271   }
2272 }
2273 
2274 // static
Generate_ConstructFunction(MacroAssembler * masm)2275 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2276   // ----------- S t a t e -------------
2277   //  -- r0 : the number of arguments (not including the receiver)
2278   //  -- r1 : the constructor to call (checked to be a JSFunction)
2279   //  -- r3 : the new target (checked to be a constructor)
2280   // -----------------------------------
2281   __ AssertConstructor(r1);
2282   __ AssertFunction(r1);
2283 
2284   // Calling convention for function specific ConstructStubs require
2285   // r2 to contain either an AllocationSite or undefined.
2286   __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2287 
2288   Label call_generic_stub;
2289 
2290   // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2291   __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2292   __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
2293   __ tst(r4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2294   __ b(eq, &call_generic_stub);
2295 
2296   __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2297           RelocInfo::CODE_TARGET);
2298 
2299   __ bind(&call_generic_stub);
2300   __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2301           RelocInfo::CODE_TARGET);
2302 }
2303 
2304 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2305 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2306   // ----------- S t a t e -------------
2307   //  -- r0 : the number of arguments (not including the receiver)
2308   //  -- r1 : the function to call (checked to be a JSBoundFunction)
2309   //  -- r3 : the new target (checked to be a constructor)
2310   // -----------------------------------
2311   __ AssertConstructor(r1);
2312   __ AssertBoundFunction(r1);
2313 
2314   // Push the [[BoundArguments]] onto the stack.
2315   Generate_PushBoundArguments(masm);
2316 
2317   // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2318   __ cmp(r1, r3);
2319   __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset),
2320          eq);
2321 
2322   // Construct the [[BoundTargetFunction]] via the Construct builtin.
2323   __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
2324   __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2325 }
2326 
2327 // static
Generate_Construct(MacroAssembler * masm)2328 void Builtins::Generate_Construct(MacroAssembler* masm) {
2329   // ----------- S t a t e -------------
2330   //  -- r0 : the number of arguments (not including the receiver)
2331   //  -- r1 : the constructor to call (can be any Object)
2332   //  -- r3 : the new target (either the same as the constructor or
2333   //          the JSFunction on which new was invoked initially)
2334   // -----------------------------------
2335 
2336   // Check if target is a Smi.
2337   Label non_constructor, non_proxy;
2338   __ JumpIfSmi(r1, &non_constructor);
2339 
2340   // Check if target has a [[Construct]] internal method.
2341   __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
2342   __ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset));
2343   __ tst(r2, Operand(Map::IsConstructorBit::kMask));
2344   __ b(eq, &non_constructor);
2345 
2346   // Dispatch based on instance type.
2347   __ CompareInstanceType(r4, r5, JS_FUNCTION_TYPE);
2348   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2349           RelocInfo::CODE_TARGET, eq);
2350 
2351   // Only dispatch to bound functions after checking whether they are
2352   // constructors.
2353   __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE));
2354   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2355           RelocInfo::CODE_TARGET, eq);
2356 
2357   // Only dispatch to proxies after checking whether they are constructors.
2358   __ cmp(r5, Operand(JS_PROXY_TYPE));
2359   __ b(ne, &non_proxy);
2360   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
2361           RelocInfo::CODE_TARGET);
2362 
2363   // Called Construct on an exotic Object with a [[Construct]] internal method.
2364   __ bind(&non_proxy);
2365   {
2366     // Overwrite the original receiver with the (original) target.
2367     __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
2368     // Let the "call_as_constructor_delegate" take care of the rest.
2369     __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1);
2370     __ Jump(masm->isolate()->builtins()->CallFunction(),
2371             RelocInfo::CODE_TARGET);
2372   }
2373 
2374   // Called Construct on an Object that doesn't have a [[Construct]] internal
2375   // method.
2376   __ bind(&non_constructor);
2377   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2378           RelocInfo::CODE_TARGET);
2379 }
2380 
2381 // static
Generate_AllocateInNewSpace(MacroAssembler * masm)2382 void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
2383   // ----------- S t a t e -------------
2384   //  -- r1 : requested object size (untagged)
2385   //  -- lr : return address
2386   // -----------------------------------
2387   __ SmiTag(r1);
2388   __ Push(r1);
2389   __ Move(cp, Smi::kZero);
2390   __ TailCallRuntime(Runtime::kAllocateInNewSpace);
2391 }
2392 
2393 // static
Generate_AllocateInOldSpace(MacroAssembler * masm)2394 void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
2395   // ----------- S t a t e -------------
2396   //  -- r1 : requested object size (untagged)
2397   //  -- lr : return address
2398   // -----------------------------------
2399   __ SmiTag(r1);
2400   __ Move(r2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
2401   __ Push(r1, r2);
2402   __ Move(cp, Smi::kZero);
2403   __ TailCallRuntime(Runtime::kAllocateInTargetSpace);
2404 }
2405 
2406 // static
Generate_Abort(MacroAssembler * masm)2407 void Builtins::Generate_Abort(MacroAssembler* masm) {
2408   // ----------- S t a t e -------------
2409   //  -- r1 : message_id as Smi
2410   //  -- lr : return address
2411   // -----------------------------------
2412   __ Push(r1);
2413   __ Move(cp, Smi::kZero);
2414   __ TailCallRuntime(Runtime::kAbort);
2415 }
2416 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)2417 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
2418   // ----------- S t a t e -------------
2419   //  -- r0 : actual number of arguments
2420   //  -- r1 : function (passed through to callee)
2421   //  -- r2 : expected number of arguments
2422   //  -- r3 : new target (passed through to callee)
2423   // -----------------------------------
2424 
2425   Label invoke, dont_adapt_arguments, stack_overflow;
2426 
2427   Label enough, too_few;
2428   __ cmp(r0, r2);
2429   __ b(lt, &too_few);
2430   __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
2431   __ b(eq, &dont_adapt_arguments);
2432 
2433   Register scratch = r5;
2434 
2435   {  // Enough parameters: actual >= expected
2436     __ bind(&enough);
2437     EnterArgumentsAdaptorFrame(masm);
2438     Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow);
2439 
2440     // Calculate copy start address into r0 and copy end address into r4.
2441     // r0: actual number of arguments as a smi
2442     // r1: function
2443     // r2: expected number of arguments
2444     // r3: new target (passed through to callee)
2445     __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
2446     // adjust for return address and receiver
2447     __ add(r0, r0, Operand(2 * kPointerSize));
2448     __ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2));
2449 
2450     // Copy the arguments (including the receiver) to the new stack frame.
2451     // r0: copy start address
2452     // r1: function
2453     // r2: expected number of arguments
2454     // r3: new target (passed through to callee)
2455     // r4: copy end address
2456 
2457     Label copy;
2458     __ bind(&copy);
2459     __ ldr(scratch, MemOperand(r0, 0));
2460     __ push(scratch);
2461     __ cmp(r0, r4);  // Compare before moving to next argument.
2462     __ sub(r0, r0, Operand(kPointerSize));
2463     __ b(ne, &copy);
2464 
2465     __ b(&invoke);
2466   }
2467 
2468   {  // Too few parameters: Actual < expected
2469     __ bind(&too_few);
2470     EnterArgumentsAdaptorFrame(masm);
2471     Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow);
2472 
2473     // Calculate copy start address into r0 and copy end address is fp.
2474     // r0: actual number of arguments as a smi
2475     // r1: function
2476     // r2: expected number of arguments
2477     // r3: new target (passed through to callee)
2478     __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
2479 
2480     // Copy the arguments (including the receiver) to the new stack frame.
2481     // r0: copy start address
2482     // r1: function
2483     // r2: expected number of arguments
2484     // r3: new target (passed through to callee)
2485     Label copy;
2486     __ bind(&copy);
2487 
2488     // Adjust load for return address and receiver.
2489     __ ldr(scratch, MemOperand(r0, 2 * kPointerSize));
2490     __ push(scratch);
2491 
2492     __ cmp(r0, fp);  // Compare before moving to next argument.
2493     __ sub(r0, r0, Operand(kPointerSize));
2494     __ b(ne, &copy);
2495 
2496     // Fill the remaining expected arguments with undefined.
2497     // r1: function
2498     // r2: expected number of arguments
2499     // r3: new target (passed through to callee)
2500     __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
2501     __ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2));
2502     // Adjust for frame.
2503     __ sub(r4, r4,
2504            Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp +
2505                    kPointerSize));
2506 
2507     Label fill;
2508     __ bind(&fill);
2509     __ push(scratch);
2510     __ cmp(sp, r4);
2511     __ b(ne, &fill);
2512   }
2513 
2514   // Call the entry point.
2515   __ bind(&invoke);
2516   __ mov(r0, r2);
2517   // r0 : expected number of arguments
2518   // r1 : function (passed through to callee)
2519   // r3 : new target (passed through to callee)
2520   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
2521   __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
2522   __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
2523   __ Call(r2);
2524 
2525   // Store offset of return address for deoptimizer.
2526   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
2527 
2528   // Exit frame and return.
2529   LeaveArgumentsAdaptorFrame(masm);
2530   __ Jump(lr);
2531 
2532   // -------------------------------------------
2533   // Dont adapt arguments.
2534   // -------------------------------------------
2535   __ bind(&dont_adapt_arguments);
2536   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
2537   __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
2538   __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
2539   __ Jump(r2);
2540 
2541   __ bind(&stack_overflow);
2542   {
2543     FrameScope frame(masm, StackFrame::MANUAL);
2544     __ CallRuntime(Runtime::kThrowStackOverflow);
2545     __ bkpt(0);
2546   }
2547 }
2548 
Generate_WasmCompileLazy(MacroAssembler * masm)2549 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2550   {
2551     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2552 
2553     // Save all parameter registers (see wasm-linkage.cc). They might be
2554     // overwritten in the runtime call below. We don't have any callee-saved
2555     // registers in wasm, so no need to store anything else.
2556     constexpr RegList gp_regs = Register::ListOf<r0, r1, r2>();
2557     constexpr DwVfpRegister lowest_fp_reg = d0;
2558     constexpr DwVfpRegister highest_fp_reg = d7;
2559 
2560     __ stm(db_w, sp, gp_regs);
2561     __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg);
2562 
2563     // Pass the WASM instance as an explicit argument to WasmCompileLazy.
2564     __ push(kWasmInstanceRegister);
2565     // Initialize the JavaScript context with 0. CEntry will use it to
2566     // set the current context on the isolate.
2567     __ Move(cp, Smi::kZero);
2568     __ CallRuntime(Runtime::kWasmCompileLazy);
2569     // The entrypoint address is the first return value.
2570     __ mov(r8, kReturnRegister0);
2571     // The WASM instance is the second return value.
2572     __ mov(kWasmInstanceRegister, kReturnRegister1);
2573 
2574     // Restore registers.
2575     __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg);
2576     __ ldm(ia_w, sp, gp_regs);
2577   }
2578   // Finally, jump to the entrypoint.
2579   __ Jump(r8);
2580 }
2581 
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2582 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2583                                SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2584                                bool builtin_exit_frame) {
2585   // Called from JavaScript; parameters are on stack as if calling JS function.
2586   // r0: number of arguments including receiver
2587   // r1: pointer to builtin function
2588   // fp: frame pointer  (restored after C call)
2589   // sp: stack pointer  (restored as callee's sp after C call)
2590   // cp: current context  (C callee-saved)
2591   //
2592   // If argv_mode == kArgvInRegister:
2593   // r2: pointer to the first argument
2594   ProfileEntryHookStub::MaybeCallEntryHook(masm);
2595 
2596   __ mov(r5, Operand(r1));
2597 
2598   if (argv_mode == kArgvInRegister) {
2599     // Move argv into the correct register.
2600     __ mov(r1, Operand(r2));
2601   } else {
2602     // Compute the argv pointer in a callee-saved register.
2603     __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
2604     __ sub(r1, r1, Operand(kPointerSize));
2605   }
2606 
2607   // Enter the exit frame that transitions from JavaScript to C++.
2608   FrameScope scope(masm, StackFrame::MANUAL);
2609   __ EnterExitFrame(
2610       save_doubles == kSaveFPRegs, 0,
2611       builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2612 
2613   // Store a copy of argc in callee-saved registers for later.
2614   __ mov(r4, Operand(r0));
2615 
2616 // r0, r4: number of arguments including receiver  (C callee-saved)
2617 // r1: pointer to the first argument (C callee-saved)
2618 // r5: pointer to builtin function  (C callee-saved)
2619 
2620 #if V8_HOST_ARCH_ARM
2621   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
2622   int frame_alignment_mask = frame_alignment - 1;
2623   if (FLAG_debug_code) {
2624     if (frame_alignment > kPointerSize) {
2625       Label alignment_as_expected;
2626       DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
2627       __ tst(sp, Operand(frame_alignment_mask));
2628       __ b(eq, &alignment_as_expected);
2629       // Don't use Check here, as it will call Runtime_Abort re-entering here.
2630       __ stop("Unexpected alignment");
2631       __ bind(&alignment_as_expected);
2632     }
2633   }
2634 #endif
2635 
2636   // Call C built-in.
2637   // r0 = argc, r1 = argv, r2 = isolate
2638   __ Move(r2, ExternalReference::isolate_address(masm->isolate()));
2639 
2640   // To let the GC traverse the return address of the exit frames, we need to
2641   // know where the return address is. CEntry is unmovable, so
2642   // we can store the address on the stack to be able to find it again and
2643   // we never have to restore it, because it will not change.
2644   // Compute the return address in lr to return to after the jump below. Pc is
2645   // already at '+ 8' from the current instruction but return is after three
2646   // instructions so add another 4 to pc to get the return address.
2647   {
2648     // Prevent literal pool emission before return address.
2649     Assembler::BlockConstPoolScope block_const_pool(masm);
2650     __ add(lr, pc, Operand(4));
2651     __ str(lr, MemOperand(sp));
2652     __ Call(r5);
2653   }
2654 
2655   // Result returned in r0 or r1:r0 - do not destroy these registers!
2656 
2657   // Check result for exception sentinel.
2658   Label exception_returned;
2659   __ CompareRoot(r0, Heap::kExceptionRootIndex);
2660   __ b(eq, &exception_returned);
2661 
2662   // Check that there is no pending exception, otherwise we
2663   // should have returned the exception sentinel.
2664   if (FLAG_debug_code) {
2665     Label okay;
2666     ExternalReference pending_exception_address = ExternalReference::Create(
2667         IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2668     __ Move(r3, pending_exception_address);
2669     __ ldr(r3, MemOperand(r3));
2670     __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
2671     // Cannot use check here as it attempts to generate call into runtime.
2672     __ b(eq, &okay);
2673     __ stop("Unexpected pending exception");
2674     __ bind(&okay);
2675   }
2676 
2677   // Exit C frame and return.
2678   // r0:r1: result
2679   // sp: stack pointer
2680   // fp: frame pointer
2681   Register argc = argv_mode == kArgvInRegister
2682                       // We don't want to pop arguments so set argc to no_reg.
2683                       ? no_reg
2684                       // Callee-saved register r4 still holds argc.
2685                       : r4;
2686   __ LeaveExitFrame(save_doubles == kSaveFPRegs, argc);
2687   __ mov(pc, lr);
2688 
2689   // Handling of exception.
2690   __ bind(&exception_returned);
2691 
2692   ExternalReference pending_handler_context_address = ExternalReference::Create(
2693       IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2694   ExternalReference pending_handler_entrypoint_address =
2695       ExternalReference::Create(
2696           IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2697   ExternalReference pending_handler_fp_address = ExternalReference::Create(
2698       IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2699   ExternalReference pending_handler_sp_address = ExternalReference::Create(
2700       IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2701 
2702   // Ask the runtime for help to determine the handler. This will set r0 to
2703   // contain the current pending exception, don't clobber it.
2704   ExternalReference find_handler =
2705       ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2706   {
2707     FrameScope scope(masm, StackFrame::MANUAL);
2708     __ PrepareCallCFunction(3, 0);
2709     __ mov(r0, Operand(0));
2710     __ mov(r1, Operand(0));
2711     __ Move(r2, ExternalReference::isolate_address(masm->isolate()));
2712     __ CallCFunction(find_handler, 3);
2713   }
2714 
2715   // Retrieve the handler context, SP and FP.
2716   __ Move(cp, pending_handler_context_address);
2717   __ ldr(cp, MemOperand(cp));
2718   __ Move(sp, pending_handler_sp_address);
2719   __ ldr(sp, MemOperand(sp));
2720   __ Move(fp, pending_handler_fp_address);
2721   __ ldr(fp, MemOperand(fp));
2722 
2723   // If the handler is a JS frame, restore the context to the frame. Note that
2724   // the context will be set to (cp == 0) for non-JS frames.
2725   __ cmp(cp, Operand(0));
2726   __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
2727 
2728   // Reset the masking register. This is done independent of the underlying
2729   // feature flag {FLAG_branch_load_poisoning} to make the snapshot work with
2730   // both configurations. It is safe to always do this, because the underlying
2731   // register is caller-saved and can be arbitrarily clobbered.
2732   __ ResetSpeculationPoisonRegister();
2733 
2734   // Compute the handler entry address and jump to it.
2735   ConstantPoolUnavailableScope constant_pool_unavailable(masm);
2736   __ Move(r1, pending_handler_entrypoint_address);
2737   __ ldr(r1, MemOperand(r1));
2738   __ Jump(r1);
2739 }
2740 
Generate_DoubleToI(MacroAssembler * masm)2741 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2742   Label negate, done;
2743 
2744   UseScratchRegisterScope temps(masm);
2745   Register result_reg = r7;
2746   Register double_low = GetRegisterThatIsNotOneOf(result_reg);
2747   Register double_high = GetRegisterThatIsNotOneOf(result_reg, double_low);
2748   LowDwVfpRegister double_scratch = temps.AcquireLowD();
2749 
2750   // Save the old values from these temporary registers on the stack.
2751   __ Push(result_reg, double_high, double_low);
2752 
2753   // Account for saved regs.
2754   const int kArgumentOffset = 3 * kPointerSize;
2755 
2756   MemOperand input_operand(sp, kArgumentOffset);
2757   MemOperand result_operand = input_operand;
2758 
2759   // Load double input.
2760   __ vldr(double_scratch, input_operand);
2761   __ vmov(double_low, double_high, double_scratch);
2762   // Try to convert with a FPU convert instruction. This handles all
2763   // non-saturating cases.
2764   __ TryInlineTruncateDoubleToI(result_reg, double_scratch, &done);
2765 
2766   Register scratch = temps.Acquire();
2767   __ Ubfx(scratch, double_high, HeapNumber::kExponentShift,
2768           HeapNumber::kExponentBits);
2769   // Load scratch with exponent - 1. This is faster than loading
2770   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
2771   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
2772   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
2773   // If exponent is greater than or equal to 84, the 32 less significant
2774   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
2775   // the result is 0.
2776   // Compare exponent with 84 (compare exponent - 1 with 83). If the exponent is
2777   // greater than this, the conversion is out of range, so return zero.
2778   __ cmp(scratch, Operand(83));
2779   __ mov(result_reg, Operand::Zero(), LeaveCC, ge);
2780   __ b(ge, &done);
2781 
2782   // If we reach this code, 30 <= exponent <= 83.
2783   // `TryInlineTruncateDoubleToI` above will have truncated any double with an
2784   // exponent lower than 30.
2785   if (masm->emit_debug_code()) {
2786     // Scratch is exponent - 1.
2787     __ cmp(scratch, Operand(30 - 1));
2788     __ Check(ge, AbortReason::kUnexpectedValue);
2789   }
2790 
2791   // We don't have to handle cases where 0 <= exponent <= 20 for which we would
2792   // need to shift right the high part of the mantissa.
2793   // Scratch contains exponent - 1.
2794   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
2795   __ rsb(scratch, scratch, Operand(51), SetCC);
2796 
2797   // 52 <= exponent <= 83, shift only double_low.
2798   // On entry, scratch contains: 52 - exponent.
2799   __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, ls);
2800   __ mov(result_reg, Operand(double_low, LSL, scratch), LeaveCC, ls);
2801   __ b(ls, &negate);
2802 
2803   // 21 <= exponent <= 51, shift double_low and double_high
2804   // to generate the result.
2805   __ mov(double_low, Operand(double_low, LSR, scratch));
2806   // Scratch contains: 52 - exponent.
2807   // We needs: exponent - 20.
2808   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
2809   __ rsb(scratch, scratch, Operand(32));
2810   __ Ubfx(result_reg, double_high, 0, HeapNumber::kMantissaBitsInTopWord);
2811   // Set the implicit 1 before the mantissa part in double_high.
2812   __ orr(result_reg, result_reg,
2813          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
2814   __ orr(result_reg, double_low, Operand(result_reg, LSL, scratch));
2815 
2816   __ bind(&negate);
2817   // If input was positive, double_high ASR 31 equals 0 and
2818   // double_high LSR 31 equals zero.
2819   // New result = (result eor 0) + 0 = result.
2820   // If the input was negative, we have to negate the result.
2821   // Input_high ASR 31 equals 0xFFFFFFFF and double_high LSR 31 equals 1.
2822   // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
2823   __ eor(result_reg, result_reg, Operand(double_high, ASR, 31));
2824   __ add(result_reg, result_reg, Operand(double_high, LSR, 31));
2825 
2826   __ bind(&done);
2827   __ str(result_reg, result_operand);
2828 
2829   // Restore registers corrupted in this routine and return.
2830   __ Pop(result_reg, double_high, double_low);
2831   __ Ret();
2832 }
2833 
Generate_MathPowInternal(MacroAssembler * masm)2834 void Builtins::Generate_MathPowInternal(MacroAssembler* masm) {
2835   const Register exponent = MathPowTaggedDescriptor::exponent();
2836   DCHECK(exponent == r2);
2837   const LowDwVfpRegister double_base = d0;
2838   const LowDwVfpRegister double_exponent = d1;
2839   const LowDwVfpRegister double_result = d2;
2840   const LowDwVfpRegister double_scratch = d3;
2841   const SwVfpRegister single_scratch = s6;
2842   const Register scratch = r9;
2843   const Register scratch2 = r4;
2844 
2845   Label call_runtime, done, int_exponent;
2846 
2847   // Detect integer exponents stored as double.
2848   __ TryDoubleToInt32Exact(scratch, double_exponent, double_scratch);
2849   __ b(eq, &int_exponent);
2850 
2851   __ push(lr);
2852   {
2853     AllowExternalCallThatCantCauseGC scope(masm);
2854     __ PrepareCallCFunction(0, 2);
2855     __ MovToFloatParameters(double_base, double_exponent);
2856     __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2857   }
2858   __ pop(lr);
2859   __ MovFromFloatResult(double_result);
2860   __ b(&done);
2861 
2862   // Calculate power with integer exponent.
2863   __ bind(&int_exponent);
2864 
2865   // Get two copies of exponent in the registers scratch and exponent.
2866   // Exponent has previously been stored into scratch as untagged integer.
2867   __ mov(exponent, scratch);
2868 
2869   __ vmov(double_scratch, double_base);  // Back up base.
2870   __ vmov(double_result, Double(1.0), scratch2);
2871 
2872   // Get absolute value of exponent.
2873   __ cmp(scratch, Operand::Zero());
2874   __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, mi);
2875 
2876   Label while_true;
2877   __ bind(&while_true);
2878   __ mov(scratch, Operand(scratch, LSR, 1), SetCC);
2879   __ vmul(double_result, double_result, double_scratch, cs);
2880   __ vmul(double_scratch, double_scratch, double_scratch, ne);
2881   __ b(ne, &while_true);
2882 
2883   __ cmp(exponent, Operand::Zero());
2884   __ b(ge, &done);
2885   __ vmov(double_scratch, Double(1.0), scratch);
2886   __ vdiv(double_result, double_scratch, double_result);
2887   // Test whether result is zero.  Bail out to check for subnormal result.
2888   // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
2889   __ VFPCompareAndSetFlags(double_result, 0.0);
2890   __ b(ne, &done);
2891   // double_exponent may not containe the exponent value if the input was a
2892   // smi.  We set it with exponent value before bailing out.
2893   __ vmov(single_scratch, exponent);
2894   __ vcvt_f64_s32(double_exponent, single_scratch);
2895 
2896   // Returning or bailing out.
2897   __ push(lr);
2898   {
2899     AllowExternalCallThatCantCauseGC scope(masm);
2900     __ PrepareCallCFunction(0, 2);
2901     __ MovToFloatParameters(double_base, double_exponent);
2902     __ CallCFunction(ExternalReference::power_double_double_function(), 0, 2);
2903   }
2904   __ pop(lr);
2905   __ MovFromFloatResult(double_result);
2906 
2907   __ bind(&done);
2908   __ Ret();
2909 }
2910 
2911 #undef __
2912 
2913 }  // namespace internal
2914 }  // namespace v8
2915 
2916 #endif  // V8_TARGET_ARCH_ARM
2917