1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_COMPILER_REGISTER_ALLOCATOR_H_
6 #define V8_COMPILER_REGISTER_ALLOCATOR_H_
7 
8 #include "src/base/bits.h"
9 #include "src/base/compiler-specific.h"
10 #include "src/compiler/instruction.h"
11 #include "src/globals.h"
12 #include "src/ostreams.h"
13 #include "src/register-configuration.h"
14 #include "src/zone/zone-containers.h"
15 
16 namespace v8 {
17 namespace internal {
18 namespace compiler {
19 
20 enum RegisterKind { GENERAL_REGISTERS, FP_REGISTERS };
21 
22 // This class represents a single point of a InstructionOperand's lifetime. For
23 // each instruction there are four lifetime positions:
24 //
25 //   [[START, END], [START, END]]
26 //
27 // Where the first half position corresponds to
28 //
29 //  [GapPosition::START, GapPosition::END]
30 //
31 // and the second half position corresponds to
32 //
33 //  [Lifetime::USED_AT_START, Lifetime::USED_AT_END]
34 //
35 class LifetimePosition final {
36  public:
37   // Return the lifetime position that corresponds to the beginning of
38   // the gap with the given index.
GapFromInstructionIndex(int index)39   static LifetimePosition GapFromInstructionIndex(int index) {
40     return LifetimePosition(index * kStep);
41   }
42   // Return the lifetime position that corresponds to the beginning of
43   // the instruction with the given index.
InstructionFromInstructionIndex(int index)44   static LifetimePosition InstructionFromInstructionIndex(int index) {
45     return LifetimePosition(index * kStep + kHalfStep);
46   }
47 
ExistsGapPositionBetween(LifetimePosition pos1,LifetimePosition pos2)48   static bool ExistsGapPositionBetween(LifetimePosition pos1,
49                                        LifetimePosition pos2) {
50     if (pos1 > pos2) std::swap(pos1, pos2);
51     LifetimePosition next(pos1.value_ + 1);
52     if (next.IsGapPosition()) return next < pos2;
53     return next.NextFullStart() < pos2;
54   }
55 
56   // Returns a numeric representation of this lifetime position.
value()57   int value() const { return value_; }
58 
59   // Returns the index of the instruction to which this lifetime position
60   // corresponds.
ToInstructionIndex()61   int ToInstructionIndex() const {
62     DCHECK(IsValid());
63     return value_ / kStep;
64   }
65 
66   // Returns true if this lifetime position corresponds to a START value
IsStart()67   bool IsStart() const { return (value_ & (kHalfStep - 1)) == 0; }
68   // Returns true if this lifetime position corresponds to an END value
IsEnd()69   bool IsEnd() const { return (value_ & (kHalfStep - 1)) == 1; }
70   // Returns true if this lifetime position corresponds to a gap START value
IsFullStart()71   bool IsFullStart() const { return (value_ & (kStep - 1)) == 0; }
72 
IsGapPosition()73   bool IsGapPosition() const { return (value_ & 0x2) == 0; }
IsInstructionPosition()74   bool IsInstructionPosition() const { return !IsGapPosition(); }
75 
76   // Returns the lifetime position for the current START.
Start()77   LifetimePosition Start() const {
78     DCHECK(IsValid());
79     return LifetimePosition(value_ & ~(kHalfStep - 1));
80   }
81 
82   // Returns the lifetime position for the current gap START.
FullStart()83   LifetimePosition FullStart() const {
84     DCHECK(IsValid());
85     return LifetimePosition(value_ & ~(kStep - 1));
86   }
87 
88   // Returns the lifetime position for the current END.
End()89   LifetimePosition End() const {
90     DCHECK(IsValid());
91     return LifetimePosition(Start().value_ + kHalfStep / 2);
92   }
93 
94   // Returns the lifetime position for the beginning of the next START.
NextStart()95   LifetimePosition NextStart() const {
96     DCHECK(IsValid());
97     return LifetimePosition(Start().value_ + kHalfStep);
98   }
99 
100   // Returns the lifetime position for the beginning of the next gap START.
NextFullStart()101   LifetimePosition NextFullStart() const {
102     DCHECK(IsValid());
103     return LifetimePosition(FullStart().value_ + kStep);
104   }
105 
106   // Returns the lifetime position for the beginning of the previous START.
PrevStart()107   LifetimePosition PrevStart() const {
108     DCHECK(IsValid());
109     DCHECK_LE(kHalfStep, value_);
110     return LifetimePosition(Start().value_ - kHalfStep);
111   }
112 
113   // Constructs the lifetime position which does not correspond to any
114   // instruction.
LifetimePosition()115   LifetimePosition() : value_(-1) {}
116 
117   // Returns true if this lifetime positions corrensponds to some
118   // instruction.
IsValid()119   bool IsValid() const { return value_ != -1; }
120 
121   bool operator<(const LifetimePosition& that) const {
122     return this->value_ < that.value_;
123   }
124 
125   bool operator<=(const LifetimePosition& that) const {
126     return this->value_ <= that.value_;
127   }
128 
129   bool operator==(const LifetimePosition& that) const {
130     return this->value_ == that.value_;
131   }
132 
133   bool operator!=(const LifetimePosition& that) const {
134     return this->value_ != that.value_;
135   }
136 
137   bool operator>(const LifetimePosition& that) const {
138     return this->value_ > that.value_;
139   }
140 
141   bool operator>=(const LifetimePosition& that) const {
142     return this->value_ >= that.value_;
143   }
144 
145   void Print() const;
146 
Invalid()147   static inline LifetimePosition Invalid() { return LifetimePosition(); }
148 
MaxPosition()149   static inline LifetimePosition MaxPosition() {
150     // We have to use this kind of getter instead of static member due to
151     // crash bug in GDB.
152     return LifetimePosition(kMaxInt);
153   }
154 
FromInt(int value)155   static inline LifetimePosition FromInt(int value) {
156     return LifetimePosition(value);
157   }
158 
159  private:
160   static const int kHalfStep = 2;
161   static const int kStep = 2 * kHalfStep;
162 
163   static_assert(base::bits::IsPowerOfTwo(kHalfStep),
164                 "Code relies on kStep and kHalfStep being a power of two");
165 
LifetimePosition(int value)166   explicit LifetimePosition(int value) : value_(value) {}
167 
168   int value_;
169 };
170 
171 
172 std::ostream& operator<<(std::ostream& os, const LifetimePosition pos);
173 
174 
175 // Representation of the non-empty interval [start,end[.
176 class UseInterval final : public ZoneObject {
177  public:
UseInterval(LifetimePosition start,LifetimePosition end)178   UseInterval(LifetimePosition start, LifetimePosition end)
179       : start_(start), end_(end), next_(nullptr) {
180     DCHECK(start < end);
181   }
182 
start()183   LifetimePosition start() const { return start_; }
set_start(LifetimePosition start)184   void set_start(LifetimePosition start) { start_ = start; }
end()185   LifetimePosition end() const { return end_; }
set_end(LifetimePosition end)186   void set_end(LifetimePosition end) { end_ = end; }
next()187   UseInterval* next() const { return next_; }
set_next(UseInterval * next)188   void set_next(UseInterval* next) { next_ = next; }
189 
190   // Split this interval at the given position without effecting the
191   // live range that owns it. The interval must contain the position.
192   UseInterval* SplitAt(LifetimePosition pos, Zone* zone);
193 
194   // If this interval intersects with other return smallest position
195   // that belongs to both of them.
Intersect(const UseInterval * other)196   LifetimePosition Intersect(const UseInterval* other) const {
197     if (other->start() < start_) return other->Intersect(this);
198     if (other->start() < end_) return other->start();
199     return LifetimePosition::Invalid();
200   }
201 
Contains(LifetimePosition point)202   bool Contains(LifetimePosition point) const {
203     return start_ <= point && point < end_;
204   }
205 
206   // Returns the index of the first gap covered by this interval.
FirstGapIndex()207   int FirstGapIndex() const {
208     int ret = start_.ToInstructionIndex();
209     if (start_.IsInstructionPosition()) {
210       ++ret;
211     }
212     return ret;
213   }
214 
215   // Returns the index of the last gap covered by this interval.
LastGapIndex()216   int LastGapIndex() const {
217     int ret = end_.ToInstructionIndex();
218     if (end_.IsGapPosition() && end_.IsStart()) {
219       --ret;
220     }
221     return ret;
222   }
223 
224  private:
225   LifetimePosition start_;
226   LifetimePosition end_;
227   UseInterval* next_;
228 
229   DISALLOW_COPY_AND_ASSIGN(UseInterval);
230 };
231 
232 enum class UsePositionType : uint8_t {
233   kRegisterOrSlot,
234   kRegisterOrSlotOrConstant,
235   kRequiresRegister,
236   kRequiresSlot
237 };
238 
239 enum class UsePositionHintType : uint8_t {
240   kNone,
241   kOperand,
242   kUsePos,
243   kPhi,
244   kUnresolved
245 };
246 
247 
248 static const int32_t kUnassignedRegister =
249     RegisterConfiguration::kMaxGeneralRegisters;
250 
251 static_assert(kUnassignedRegister <= RegisterConfiguration::kMaxFPRegisters,
252               "kUnassignedRegister too small");
253 
254 // Representation of a use position.
255 class V8_EXPORT_PRIVATE UsePosition final
NON_EXPORTED_BASE(ZoneObject)256     : public NON_EXPORTED_BASE(ZoneObject) {
257  public:
258   UsePosition(LifetimePosition pos, InstructionOperand* operand, void* hint,
259               UsePositionHintType hint_type);
260 
261   InstructionOperand* operand() const { return operand_; }
262   bool HasOperand() const { return operand_ != nullptr; }
263 
264   bool RegisterIsBeneficial() const {
265     return RegisterBeneficialField::decode(flags_);
266   }
267   UsePositionType type() const { return TypeField::decode(flags_); }
268   void set_type(UsePositionType type, bool register_beneficial);
269 
270   LifetimePosition pos() const { return pos_; }
271 
272   UsePosition* next() const { return next_; }
273   void set_next(UsePosition* next) { next_ = next; }
274 
275   // For hinting only.
276   void set_assigned_register(int register_code) {
277     flags_ = AssignedRegisterField::update(flags_, register_code);
278   }
279 
280   UsePositionHintType hint_type() const {
281     return HintTypeField::decode(flags_);
282   }
283   bool HasHint() const;
284   bool HintRegister(int* register_code) const;
285   void SetHint(UsePosition* use_pos);
286   void ResolveHint(UsePosition* use_pos);
287   bool IsResolved() const {
288     return hint_type() != UsePositionHintType::kUnresolved;
289   }
290   static UsePositionHintType HintTypeForOperand(const InstructionOperand& op);
291 
292  private:
293   typedef BitField<UsePositionType, 0, 2> TypeField;
294   typedef BitField<UsePositionHintType, 2, 3> HintTypeField;
295   typedef BitField<bool, 5, 1> RegisterBeneficialField;
296   typedef BitField<int32_t, 6, 6> AssignedRegisterField;
297 
298   InstructionOperand* const operand_;
299   void* hint_;
300   UsePosition* next_;
301   LifetimePosition const pos_;
302   uint32_t flags_;
303 
304   DISALLOW_COPY_AND_ASSIGN(UsePosition);
305 };
306 
307 
308 class SpillRange;
309 class RegisterAllocationData;
310 class TopLevelLiveRange;
311 class LiveRangeGroup;
312 
313 // Representation of SSA values' live ranges as a collection of (continuous)
314 // intervals over the instruction ordering.
NON_EXPORTED_BASE(ZoneObject)315 class V8_EXPORT_PRIVATE LiveRange : public NON_EXPORTED_BASE(ZoneObject) {
316  public:
317   UseInterval* first_interval() const { return first_interval_; }
318   UsePosition* first_pos() const { return first_pos_; }
319   TopLevelLiveRange* TopLevel() { return top_level_; }
320   const TopLevelLiveRange* TopLevel() const { return top_level_; }
321 
322   bool IsTopLevel() const;
323 
324   LiveRange* next() const { return next_; }
325 
326   int relative_id() const { return relative_id_; }
327 
328   bool IsEmpty() const { return first_interval() == nullptr; }
329 
330   InstructionOperand GetAssignedOperand() const;
331 
332   MachineRepresentation representation() const {
333     return RepresentationField::decode(bits_);
334   }
335 
336   int assigned_register() const { return AssignedRegisterField::decode(bits_); }
337   bool HasRegisterAssigned() const {
338     return assigned_register() != kUnassignedRegister;
339   }
340   void set_assigned_register(int reg);
341   void UnsetAssignedRegister();
342 
343   bool spilled() const { return SpilledField::decode(bits_); }
344   void Spill();
345 
346   RegisterKind kind() const;
347 
348   // Returns use position in this live range that follows both start
349   // and last processed use position.
350   UsePosition* NextUsePosition(LifetimePosition start) const;
351 
352   // Returns use position for which register is required in this live
353   // range and which follows both start and last processed use position
354   UsePosition* NextRegisterPosition(LifetimePosition start) const;
355 
356   // Returns the first use position requiring stack slot, or nullptr.
357   UsePosition* NextSlotPosition(LifetimePosition start) const;
358 
359   // Returns use position for which register is beneficial in this live
360   // range and which follows both start and last processed use position
361   UsePosition* NextUsePositionRegisterIsBeneficial(
362       LifetimePosition start) const;
363 
364   // Returns lifetime position for which register is beneficial in this live
365   // range and which follows both start and last processed use position.
366   LifetimePosition NextLifetimePositionRegisterIsBeneficial(
367       const LifetimePosition& start) const;
368 
369   // Returns use position for which register is beneficial in this live
370   // range and which precedes start.
371   UsePosition* PreviousUsePositionRegisterIsBeneficial(
372       LifetimePosition start) const;
373 
374   // Can this live range be spilled at this position.
375   bool CanBeSpilled(LifetimePosition pos) const;
376 
377   // Splitting primitive used by both splitting and splintering members.
378   // Performs the split, but does not link the resulting ranges.
379   // The given position must follow the start of the range.
380   // All uses following the given position will be moved from this
381   // live range to the result live range.
382   // The current range will terminate at position, while result will start from
383   // position.
384   enum HintConnectionOption : bool {
385     DoNotConnectHints = false,
386     ConnectHints = true
387   };
388   UsePosition* DetachAt(LifetimePosition position, LiveRange* result,
389                         Zone* zone, HintConnectionOption connect_hints);
390 
391   // Detaches at position, and then links the resulting ranges. Returns the
392   // child, which starts at position.
393   LiveRange* SplitAt(LifetimePosition position, Zone* zone);
394 
395   // Returns nullptr when no register is hinted, otherwise sets register_index.
396   UsePosition* FirstHintPosition(int* register_index) const;
397   UsePosition* FirstHintPosition() const {
398     int register_index;
399     return FirstHintPosition(&register_index);
400   }
401 
402   UsePosition* current_hint_position() const {
403     DCHECK(current_hint_position_ == FirstHintPosition());
404     return current_hint_position_;
405   }
406 
407   LifetimePosition Start() const {
408     DCHECK(!IsEmpty());
409     return first_interval()->start();
410   }
411 
412   LifetimePosition End() const {
413     DCHECK(!IsEmpty());
414     return last_interval_->end();
415   }
416 
417   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
418   bool CanCover(LifetimePosition position) const;
419   bool Covers(LifetimePosition position) const;
420   LifetimePosition FirstIntersection(LiveRange* other) const;
421 
422   void VerifyChildStructure() const {
423     VerifyIntervals();
424     VerifyPositions();
425   }
426 
427   void ConvertUsesToOperand(const InstructionOperand& op,
428                             const InstructionOperand& spill_op);
429   void SetUseHints(int register_index);
430   void UnsetUseHints() { SetUseHints(kUnassignedRegister); }
431 
432   void Print(const RegisterConfiguration* config, bool with_children) const;
433   void Print(bool with_children) const;
434 
435  private:
436   friend class TopLevelLiveRange;
437   explicit LiveRange(int relative_id, MachineRepresentation rep,
438                      TopLevelLiveRange* top_level);
439 
440   void UpdateParentForAllChildren(TopLevelLiveRange* new_top_level);
441 
442   void set_spilled(bool value) { bits_ = SpilledField::update(bits_, value); }
443 
444   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
445   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
446                                   LifetimePosition but_not_past) const;
447 
448   void VerifyPositions() const;
449   void VerifyIntervals() const;
450 
451   typedef BitField<bool, 0, 1> SpilledField;
452   typedef BitField<int32_t, 6, 6> AssignedRegisterField;
453   typedef BitField<MachineRepresentation, 12, 8> RepresentationField;
454 
455   // Unique among children and splinters of the same virtual register.
456   int relative_id_;
457   uint32_t bits_;
458   UseInterval* last_interval_;
459   UseInterval* first_interval_;
460   UsePosition* first_pos_;
461   TopLevelLiveRange* top_level_;
462   LiveRange* next_;
463   // This is used as a cache, it doesn't affect correctness.
464   mutable UseInterval* current_interval_;
465   // This is used as a cache, it doesn't affect correctness.
466   mutable UsePosition* last_processed_use_;
467   // This is used as a cache, it's invalid outside of BuildLiveRanges.
468   mutable UsePosition* current_hint_position_;
469   // Cache the last position splintering stopped at.
470   mutable UsePosition* splitting_pointer_;
471 
472   DISALLOW_COPY_AND_ASSIGN(LiveRange);
473 };
474 
475 
476 class LiveRangeGroup final : public ZoneObject {
477  public:
LiveRangeGroup(Zone * zone)478   explicit LiveRangeGroup(Zone* zone) : ranges_(zone) {}
ranges()479   ZoneVector<LiveRange*>& ranges() { return ranges_; }
ranges()480   const ZoneVector<LiveRange*>& ranges() const { return ranges_; }
481 
assigned_register()482   int assigned_register() const { return assigned_register_; }
set_assigned_register(int reg)483   void set_assigned_register(int reg) { assigned_register_ = reg; }
484 
485  private:
486   ZoneVector<LiveRange*> ranges_;
487   int assigned_register_;
488   DISALLOW_COPY_AND_ASSIGN(LiveRangeGroup);
489 };
490 
491 class V8_EXPORT_PRIVATE TopLevelLiveRange final : public LiveRange {
492  public:
493   explicit TopLevelLiveRange(int vreg, MachineRepresentation rep);
spill_start_index()494   int spill_start_index() const { return spill_start_index_; }
495 
IsFixed()496   bool IsFixed() const { return vreg_ < 0; }
497 
is_phi()498   bool is_phi() const { return IsPhiField::decode(bits_); }
set_is_phi(bool value)499   void set_is_phi(bool value) { bits_ = IsPhiField::update(bits_, value); }
500 
is_non_loop_phi()501   bool is_non_loop_phi() const { return IsNonLoopPhiField::decode(bits_); }
set_is_non_loop_phi(bool value)502   void set_is_non_loop_phi(bool value) {
503     bits_ = IsNonLoopPhiField::update(bits_, value);
504   }
505 
has_slot_use()506   bool has_slot_use() const { return HasSlotUseField::decode(bits_); }
set_has_slot_use(bool value)507   void set_has_slot_use(bool value) {
508     bits_ = HasSlotUseField::update(bits_, value);
509   }
510 
511   // Add a new interval or a new use position to this live range.
512   void EnsureInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
513   void AddUseInterval(LifetimePosition start, LifetimePosition end, Zone* zone);
514   void AddUsePosition(UsePosition* pos);
515 
516   // Shorten the most recently added interval by setting a new start.
517   void ShortenTo(LifetimePosition start);
518 
519   // Detaches between start and end, and attributes the resulting range to
520   // result.
521   // The current range is pointed to as "splintered_from". No parent/child
522   // relationship is established between this and result.
523   void Splinter(LifetimePosition start, LifetimePosition end, Zone* zone);
524 
525   // Assuming other was splintered from this range, embeds other and its
526   // children as part of the children sequence of this range.
527   void Merge(TopLevelLiveRange* other, Zone* zone);
528 
529   // Spill range management.
530   void SetSpillRange(SpillRange* spill_range);
531   enum class SpillType { kNoSpillType, kSpillOperand, kSpillRange };
set_spill_type(SpillType value)532   void set_spill_type(SpillType value) {
533     bits_ = SpillTypeField::update(bits_, value);
534   }
spill_type()535   SpillType spill_type() const { return SpillTypeField::decode(bits_); }
GetSpillOperand()536   InstructionOperand* GetSpillOperand() const {
537     DCHECK_EQ(SpillType::kSpillOperand, spill_type());
538     return spill_operand_;
539   }
540 
GetAllocatedSpillRange()541   SpillRange* GetAllocatedSpillRange() const {
542     DCHECK_NE(SpillType::kSpillOperand, spill_type());
543     return spill_range_;
544   }
545 
GetSpillRange()546   SpillRange* GetSpillRange() const {
547     DCHECK_EQ(SpillType::kSpillRange, spill_type());
548     return spill_range_;
549   }
HasNoSpillType()550   bool HasNoSpillType() const {
551     return spill_type() == SpillType::kNoSpillType;
552   }
HasSpillOperand()553   bool HasSpillOperand() const {
554     return spill_type() == SpillType::kSpillOperand;
555   }
HasSpillRange()556   bool HasSpillRange() const { return spill_type() == SpillType::kSpillRange; }
557 
558   AllocatedOperand GetSpillRangeOperand() const;
559 
560   void RecordSpillLocation(Zone* zone, int gap_index,
561                            InstructionOperand* operand);
562   void SetSpillOperand(InstructionOperand* operand);
SetSpillStartIndex(int start)563   void SetSpillStartIndex(int start) {
564     spill_start_index_ = Min(start, spill_start_index_);
565   }
566 
567   void CommitSpillMoves(InstructionSequence* sequence,
568                         const InstructionOperand& operand,
569                         bool might_be_duplicated);
570 
571   // If all the children of this range are spilled in deferred blocks, and if
572   // for any non-spilled child with a use position requiring a slot, that range
573   // is contained in a deferred block, mark the range as
574   // IsSpilledOnlyInDeferredBlocks, so that we avoid spilling at definition,
575   // and instead let the LiveRangeConnector perform the spills within the
576   // deferred blocks. If so, we insert here spills for non-spilled ranges
577   // with slot use positions.
TreatAsSpilledInDeferredBlock(Zone * zone,int total_block_count)578   void TreatAsSpilledInDeferredBlock(Zone* zone, int total_block_count) {
579     spill_start_index_ = -1;
580     spilled_in_deferred_blocks_ = true;
581     spill_move_insertion_locations_ = nullptr;
582     list_of_blocks_requiring_spill_operands_ =
583         new (zone) BitVector(total_block_count, zone);
584   }
585 
586   void CommitSpillInDeferredBlocks(RegisterAllocationData* data,
587                                    const InstructionOperand& spill_operand,
588                                    BitVector* necessary_spill_points);
589 
splintered_from()590   TopLevelLiveRange* splintered_from() const { return splintered_from_; }
IsSplinter()591   bool IsSplinter() const { return splintered_from_ != nullptr; }
MayRequireSpillRange()592   bool MayRequireSpillRange() const {
593     DCHECK(!IsSplinter());
594     return !HasSpillOperand() && spill_range_ == nullptr;
595   }
596   void UpdateSpillRangePostMerge(TopLevelLiveRange* merged);
vreg()597   int vreg() const { return vreg_; }
598 
599 #if DEBUG
600   int debug_virt_reg() const;
601 #endif
602 
603   void Verify() const;
604   void VerifyChildrenInOrder() const;
605 
GetNextChildId()606   int GetNextChildId() {
607     return IsSplinter() ? splintered_from()->GetNextChildId()
608                         : ++last_child_id_;
609   }
610 
GetChildCount()611   int GetChildCount() const { return last_child_id_ + 1; }
612 
IsSpilledOnlyInDeferredBlocks()613   bool IsSpilledOnlyInDeferredBlocks() const {
614     return spilled_in_deferred_blocks_;
615   }
616 
617   struct SpillMoveInsertionList;
618 
GetSpillMoveInsertionLocations()619   SpillMoveInsertionList* GetSpillMoveInsertionLocations() const {
620     DCHECK(!IsSpilledOnlyInDeferredBlocks());
621     return spill_move_insertion_locations_;
622   }
splinter()623   TopLevelLiveRange* splinter() const { return splinter_; }
SetSplinter(TopLevelLiveRange * splinter)624   void SetSplinter(TopLevelLiveRange* splinter) {
625     DCHECK_NULL(splinter_);
626     DCHECK_NOT_NULL(splinter);
627 
628     splinter_ = splinter;
629     splinter->relative_id_ = GetNextChildId();
630     splinter->set_spill_type(spill_type());
631     splinter->SetSplinteredFrom(this);
632   }
633 
MarkHasPreassignedSlot()634   void MarkHasPreassignedSlot() { has_preassigned_slot_ = true; }
has_preassigned_slot()635   bool has_preassigned_slot() const { return has_preassigned_slot_; }
636 
AddBlockRequiringSpillOperand(RpoNumber block_id)637   void AddBlockRequiringSpillOperand(RpoNumber block_id) {
638     DCHECK(IsSpilledOnlyInDeferredBlocks());
639     GetListOfBlocksRequiringSpillOperands()->Add(block_id.ToInt());
640   }
641 
GetListOfBlocksRequiringSpillOperands()642   BitVector* GetListOfBlocksRequiringSpillOperands() const {
643     DCHECK(IsSpilledOnlyInDeferredBlocks());
644     return list_of_blocks_requiring_spill_operands_;
645   }
646 
647  private:
648   void SetSplinteredFrom(TopLevelLiveRange* splinter_parent);
649 
650   typedef BitField<bool, 1, 1> HasSlotUseField;
651   typedef BitField<bool, 2, 1> IsPhiField;
652   typedef BitField<bool, 3, 1> IsNonLoopPhiField;
653   typedef BitField<SpillType, 4, 2> SpillTypeField;
654 
655   int vreg_;
656   int last_child_id_;
657   TopLevelLiveRange* splintered_from_;
658   union {
659     // Correct value determined by spill_type()
660     InstructionOperand* spill_operand_;
661     SpillRange* spill_range_;
662   };
663 
664   union {
665     SpillMoveInsertionList* spill_move_insertion_locations_;
666     BitVector* list_of_blocks_requiring_spill_operands_;
667   };
668 
669   // TODO(mtrofin): generalize spilling after definition, currently specialized
670   // just for spill in a single deferred block.
671   bool spilled_in_deferred_blocks_;
672   int spill_start_index_;
673   UsePosition* last_pos_;
674   TopLevelLiveRange* splinter_;
675   bool has_preassigned_slot_;
676 
677   DISALLOW_COPY_AND_ASSIGN(TopLevelLiveRange);
678 };
679 
680 
681 struct PrintableLiveRange {
682   const RegisterConfiguration* register_configuration_;
683   const LiveRange* range_;
684 };
685 
686 
687 std::ostream& operator<<(std::ostream& os,
688                          const PrintableLiveRange& printable_range);
689 
690 
691 class SpillRange final : public ZoneObject {
692  public:
693   static const int kUnassignedSlot = -1;
694   SpillRange(TopLevelLiveRange* range, Zone* zone);
695 
interval()696   UseInterval* interval() const { return use_interval_; }
697 
IsEmpty()698   bool IsEmpty() const { return live_ranges_.empty(); }
699   bool TryMerge(SpillRange* other);
HasSlot()700   bool HasSlot() const { return assigned_slot_ != kUnassignedSlot; }
701 
set_assigned_slot(int index)702   void set_assigned_slot(int index) {
703     DCHECK_EQ(kUnassignedSlot, assigned_slot_);
704     assigned_slot_ = index;
705   }
assigned_slot()706   int assigned_slot() {
707     DCHECK_NE(kUnassignedSlot, assigned_slot_);
708     return assigned_slot_;
709   }
live_ranges()710   const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
711     return live_ranges_;
712   }
live_ranges()713   ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
714   // Spill slots can be 4, 8, or 16 bytes wide.
byte_width()715   int byte_width() const { return byte_width_; }
716   void Print() const;
717 
718  private:
End()719   LifetimePosition End() const { return end_position_; }
720   bool IsIntersectingWith(SpillRange* other) const;
721   // Merge intervals, making sure the use intervals are sorted
722   void MergeDisjointIntervals(UseInterval* other);
723 
724   ZoneVector<TopLevelLiveRange*> live_ranges_;
725   UseInterval* use_interval_;
726   LifetimePosition end_position_;
727   int assigned_slot_;
728   int byte_width_;
729 
730   DISALLOW_COPY_AND_ASSIGN(SpillRange);
731 };
732 
733 
734 class RegisterAllocationData final : public ZoneObject {
735  public:
736   class PhiMapValue : public ZoneObject {
737    public:
738     PhiMapValue(PhiInstruction* phi, const InstructionBlock* block, Zone* zone);
739 
phi()740     const PhiInstruction* phi() const { return phi_; }
block()741     const InstructionBlock* block() const { return block_; }
742 
743     // For hinting.
assigned_register()744     int assigned_register() const { return assigned_register_; }
set_assigned_register(int register_code)745     void set_assigned_register(int register_code) {
746       DCHECK_EQ(assigned_register_, kUnassignedRegister);
747       assigned_register_ = register_code;
748     }
UnsetAssignedRegister()749     void UnsetAssignedRegister() { assigned_register_ = kUnassignedRegister; }
750 
751     void AddOperand(InstructionOperand* operand);
752     void CommitAssignment(const InstructionOperand& operand);
753 
754    private:
755     PhiInstruction* const phi_;
756     const InstructionBlock* const block_;
757     ZoneVector<InstructionOperand*> incoming_operands_;
758     int assigned_register_;
759   };
760   typedef ZoneMap<int, PhiMapValue*> PhiMap;
761 
762   struct DelayedReference {
763     ReferenceMap* map;
764     InstructionOperand* operand;
765   };
766   typedef ZoneVector<DelayedReference> DelayedReferences;
767   typedef ZoneVector<std::pair<TopLevelLiveRange*, int>>
768       RangesWithPreassignedSlots;
769 
770   RegisterAllocationData(const RegisterConfiguration* config,
771                          Zone* allocation_zone, Frame* frame,
772                          InstructionSequence* code,
773                          const char* debug_name = nullptr);
774 
live_ranges()775   const ZoneVector<TopLevelLiveRange*>& live_ranges() const {
776     return live_ranges_;
777   }
live_ranges()778   ZoneVector<TopLevelLiveRange*>& live_ranges() { return live_ranges_; }
fixed_live_ranges()779   const ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() const {
780     return fixed_live_ranges_;
781   }
fixed_live_ranges()782   ZoneVector<TopLevelLiveRange*>& fixed_live_ranges() {
783     return fixed_live_ranges_;
784   }
fixed_float_live_ranges()785   ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() {
786     return fixed_float_live_ranges_;
787   }
fixed_float_live_ranges()788   const ZoneVector<TopLevelLiveRange*>& fixed_float_live_ranges() const {
789     return fixed_float_live_ranges_;
790   }
fixed_double_live_ranges()791   ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() {
792     return fixed_double_live_ranges_;
793   }
fixed_double_live_ranges()794   const ZoneVector<TopLevelLiveRange*>& fixed_double_live_ranges() const {
795     return fixed_double_live_ranges_;
796   }
fixed_simd128_live_ranges()797   ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() {
798     return fixed_simd128_live_ranges_;
799   }
fixed_simd128_live_ranges()800   const ZoneVector<TopLevelLiveRange*>& fixed_simd128_live_ranges() const {
801     return fixed_simd128_live_ranges_;
802   }
live_in_sets()803   ZoneVector<BitVector*>& live_in_sets() { return live_in_sets_; }
live_out_sets()804   ZoneVector<BitVector*>& live_out_sets() { return live_out_sets_; }
spill_ranges()805   ZoneVector<SpillRange*>& spill_ranges() { return spill_ranges_; }
delayed_references()806   DelayedReferences& delayed_references() { return delayed_references_; }
code()807   InstructionSequence* code() const { return code_; }
808   // This zone is for data structures only needed during register allocation
809   // phases.
allocation_zone()810   Zone* allocation_zone() const { return allocation_zone_; }
811   // This zone is for InstructionOperands and moves that live beyond register
812   // allocation.
code_zone()813   Zone* code_zone() const { return code()->zone(); }
frame()814   Frame* frame() const { return frame_; }
debug_name()815   const char* debug_name() const { return debug_name_; }
config()816   const RegisterConfiguration* config() const { return config_; }
817 
818   MachineRepresentation RepresentationFor(int virtual_register);
819 
820   TopLevelLiveRange* GetOrCreateLiveRangeFor(int index);
821   // Creates a new live range.
822   TopLevelLiveRange* NewLiveRange(int index, MachineRepresentation rep);
823   TopLevelLiveRange* NextLiveRange(MachineRepresentation rep);
824 
825   SpillRange* AssignSpillRangeToLiveRange(TopLevelLiveRange* range);
826   SpillRange* CreateSpillRangeForLiveRange(TopLevelLiveRange* range);
827 
828   MoveOperands* AddGapMove(int index, Instruction::GapPosition position,
829                            const InstructionOperand& from,
830                            const InstructionOperand& to);
831 
IsReference(TopLevelLiveRange * top_range)832   bool IsReference(TopLevelLiveRange* top_range) const {
833     return code()->IsReference(top_range->vreg());
834   }
835 
836   bool ExistsUseWithoutDefinition();
837   bool RangesDefinedInDeferredStayInDeferred();
838 
839   void MarkAllocated(MachineRepresentation rep, int index);
840 
841   PhiMapValue* InitializePhiMap(const InstructionBlock* block,
842                                 PhiInstruction* phi);
843   PhiMapValue* GetPhiMapValueFor(TopLevelLiveRange* top_range);
844   PhiMapValue* GetPhiMapValueFor(int virtual_register);
845   bool IsBlockBoundary(LifetimePosition pos) const;
846 
preassigned_slot_ranges()847   RangesWithPreassignedSlots& preassigned_slot_ranges() {
848     return preassigned_slot_ranges_;
849   }
850 
851  private:
852   int GetNextLiveRangeId();
853 
854   Zone* const allocation_zone_;
855   Frame* const frame_;
856   InstructionSequence* const code_;
857   const char* const debug_name_;
858   const RegisterConfiguration* const config_;
859   PhiMap phi_map_;
860   ZoneVector<BitVector*> live_in_sets_;
861   ZoneVector<BitVector*> live_out_sets_;
862   ZoneVector<TopLevelLiveRange*> live_ranges_;
863   ZoneVector<TopLevelLiveRange*> fixed_live_ranges_;
864   ZoneVector<TopLevelLiveRange*> fixed_float_live_ranges_;
865   ZoneVector<TopLevelLiveRange*> fixed_double_live_ranges_;
866   ZoneVector<TopLevelLiveRange*> fixed_simd128_live_ranges_;
867   ZoneVector<SpillRange*> spill_ranges_;
868   DelayedReferences delayed_references_;
869   BitVector* assigned_registers_;
870   BitVector* assigned_double_registers_;
871   int virtual_register_count_;
872   RangesWithPreassignedSlots preassigned_slot_ranges_;
873 
874   DISALLOW_COPY_AND_ASSIGN(RegisterAllocationData);
875 };
876 
877 
878 class ConstraintBuilder final : public ZoneObject {
879  public:
880   explicit ConstraintBuilder(RegisterAllocationData* data);
881 
882   // Phase 1 : insert moves to account for fixed register operands.
883   void MeetRegisterConstraints();
884 
885   // Phase 2: deconstruct SSA by inserting moves in successors and the headers
886   // of blocks containing phis.
887   void ResolvePhis();
888 
889  private:
data()890   RegisterAllocationData* data() const { return data_; }
code()891   InstructionSequence* code() const { return data()->code(); }
allocation_zone()892   Zone* allocation_zone() const { return data()->allocation_zone(); }
893 
894   InstructionOperand* AllocateFixed(UnallocatedOperand* operand, int pos,
895                                     bool is_tagged);
896   void MeetRegisterConstraints(const InstructionBlock* block);
897   void MeetConstraintsBefore(int index);
898   void MeetConstraintsAfter(int index);
899   void MeetRegisterConstraintsForLastInstructionInBlock(
900       const InstructionBlock* block);
901   void ResolvePhis(const InstructionBlock* block);
902 
903   RegisterAllocationData* const data_;
904 
905   DISALLOW_COPY_AND_ASSIGN(ConstraintBuilder);
906 };
907 
908 
909 class LiveRangeBuilder final : public ZoneObject {
910  public:
911   explicit LiveRangeBuilder(RegisterAllocationData* data, Zone* local_zone);
912 
913   // Phase 3: compute liveness of all virtual register.
914   void BuildLiveRanges();
915   static BitVector* ComputeLiveOut(const InstructionBlock* block,
916                                    RegisterAllocationData* data);
917 
918  private:
data()919   RegisterAllocationData* data() const { return data_; }
code()920   InstructionSequence* code() const { return data()->code(); }
allocation_zone()921   Zone* allocation_zone() const { return data()->allocation_zone(); }
code_zone()922   Zone* code_zone() const { return code()->zone(); }
config()923   const RegisterConfiguration* config() const { return data()->config(); }
live_in_sets()924   ZoneVector<BitVector*>& live_in_sets() const {
925     return data()->live_in_sets();
926   }
927 
928   // Verification.
929   void Verify() const;
930   bool IntervalStartsAtBlockBoundary(const UseInterval* interval) const;
931   bool IntervalPredecessorsCoveredByRange(const UseInterval* interval,
932                                           const TopLevelLiveRange* range) const;
933   bool NextIntervalStartsInDifferentBlocks(const UseInterval* interval) const;
934 
935   // Liveness analysis support.
936   void AddInitialIntervals(const InstructionBlock* block, BitVector* live_out);
937   void ProcessInstructions(const InstructionBlock* block, BitVector* live);
938   void ProcessPhis(const InstructionBlock* block, BitVector* live);
939   void ProcessLoopHeader(const InstructionBlock* block, BitVector* live);
940 
FixedLiveRangeID(int index)941   static int FixedLiveRangeID(int index) { return -index - 1; }
942   int FixedFPLiveRangeID(int index, MachineRepresentation rep);
943   TopLevelLiveRange* FixedLiveRangeFor(int index);
944   TopLevelLiveRange* FixedFPLiveRangeFor(int index, MachineRepresentation rep);
945 
946   void MapPhiHint(InstructionOperand* operand, UsePosition* use_pos);
947   void ResolvePhiHint(InstructionOperand* operand, UsePosition* use_pos);
948 
949   UsePosition* NewUsePosition(LifetimePosition pos, InstructionOperand* operand,
950                               void* hint, UsePositionHintType hint_type);
NewUsePosition(LifetimePosition pos)951   UsePosition* NewUsePosition(LifetimePosition pos) {
952     return NewUsePosition(pos, nullptr, nullptr, UsePositionHintType::kNone);
953   }
954   TopLevelLiveRange* LiveRangeFor(InstructionOperand* operand);
955   // Helper methods for building intervals.
956   UsePosition* Define(LifetimePosition position, InstructionOperand* operand,
957                       void* hint, UsePositionHintType hint_type);
Define(LifetimePosition position,InstructionOperand * operand)958   void Define(LifetimePosition position, InstructionOperand* operand) {
959     Define(position, operand, nullptr, UsePositionHintType::kNone);
960   }
961   UsePosition* Use(LifetimePosition block_start, LifetimePosition position,
962                    InstructionOperand* operand, void* hint,
963                    UsePositionHintType hint_type);
Use(LifetimePosition block_start,LifetimePosition position,InstructionOperand * operand)964   void Use(LifetimePosition block_start, LifetimePosition position,
965            InstructionOperand* operand) {
966     Use(block_start, position, operand, nullptr, UsePositionHintType::kNone);
967   }
968 
969   RegisterAllocationData* const data_;
970   ZoneMap<InstructionOperand*, UsePosition*> phi_hints_;
971 
972   DISALLOW_COPY_AND_ASSIGN(LiveRangeBuilder);
973 };
974 
975 
976 class RegisterAllocator : public ZoneObject {
977  public:
978   RegisterAllocator(RegisterAllocationData* data, RegisterKind kind);
979 
980  protected:
data()981   RegisterAllocationData* data() const { return data_; }
code()982   InstructionSequence* code() const { return data()->code(); }
mode()983   RegisterKind mode() const { return mode_; }
num_registers()984   int num_registers() const { return num_registers_; }
num_allocatable_registers()985   int num_allocatable_registers() const { return num_allocatable_registers_; }
allocatable_register_codes()986   const int* allocatable_register_codes() const {
987     return allocatable_register_codes_;
988   }
989   // Returns true iff. we must check float register aliasing.
check_fp_aliasing()990   bool check_fp_aliasing() const { return check_fp_aliasing_; }
991 
992   // TODO(mtrofin): explain why splitting in gap START is always OK.
993   LifetimePosition GetSplitPositionForInstruction(const LiveRange* range,
994                                                   int instruction_index);
995 
allocation_zone()996   Zone* allocation_zone() const { return data()->allocation_zone(); }
997 
998   // Find the optimal split for ranges defined by a memory operand, e.g.
999   // constants or function parameters passed on the stack.
1000   void SplitAndSpillRangesDefinedByMemoryOperand();
1001 
1002   // Split the given range at the given position.
1003   // If range starts at or after the given position then the
1004   // original range is returned.
1005   // Otherwise returns the live range that starts at pos and contains
1006   // all uses from the original range that follow pos. Uses at pos will
1007   // still be owned by the original range after splitting.
1008   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
1009 
CanProcessRange(LiveRange * range)1010   bool CanProcessRange(LiveRange* range) const {
1011     return range != nullptr && !range->IsEmpty() && range->kind() == mode();
1012   }
1013 
1014 
1015   // Split the given range in a position from the interval [start, end].
1016   LiveRange* SplitBetween(LiveRange* range, LifetimePosition start,
1017                           LifetimePosition end);
1018 
1019   // Find a lifetime position in the interval [start, end] which
1020   // is optimal for splitting: it is either header of the outermost
1021   // loop covered by this interval or the latest possible position.
1022   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
1023                                        LifetimePosition end);
1024 
1025   void Spill(LiveRange* range);
1026 
1027   // If we are trying to spill a range inside the loop try to
1028   // hoist spill position out to the point just before the loop.
1029   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
1030                                           LifetimePosition pos);
1031 
1032   const ZoneVector<TopLevelLiveRange*>& GetFixedRegisters() const;
1033   const char* RegisterName(int allocation_index) const;
1034 
1035  private:
1036   RegisterAllocationData* const data_;
1037   const RegisterKind mode_;
1038   const int num_registers_;
1039   int num_allocatable_registers_;
1040   const int* allocatable_register_codes_;
1041   bool check_fp_aliasing_;
1042 
1043  private:
1044   bool no_combining_;
1045 
1046   DISALLOW_COPY_AND_ASSIGN(RegisterAllocator);
1047 };
1048 
1049 
1050 class LinearScanAllocator final : public RegisterAllocator {
1051  public:
1052   LinearScanAllocator(RegisterAllocationData* data, RegisterKind kind,
1053                       Zone* local_zone);
1054 
1055   // Phase 4: compute register assignments.
1056   void AllocateRegisters();
1057 
1058  private:
unhandled_live_ranges()1059   ZoneVector<LiveRange*>& unhandled_live_ranges() {
1060     return unhandled_live_ranges_;
1061   }
active_live_ranges()1062   ZoneVector<LiveRange*>& active_live_ranges() { return active_live_ranges_; }
inactive_live_ranges()1063   ZoneVector<LiveRange*>& inactive_live_ranges() {
1064     return inactive_live_ranges_;
1065   }
1066 
1067   void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
1068 
1069   // Helper methods for updating the life range lists.
1070   void AddToActive(LiveRange* range);
1071   void AddToInactive(LiveRange* range);
1072   void AddToUnhandledSorted(LiveRange* range);
1073   void AddToUnhandledUnsorted(LiveRange* range);
1074   void SortUnhandled();
1075   bool UnhandledIsSorted();
1076   void ActiveToHandled(LiveRange* range);
1077   void ActiveToInactive(LiveRange* range);
1078   void InactiveToHandled(LiveRange* range);
1079   void InactiveToActive(LiveRange* range);
1080 
1081   // Helper methods for allocating registers.
1082   bool TryReuseSpillForPhi(TopLevelLiveRange* range);
1083   bool TryAllocateFreeReg(LiveRange* range,
1084                           const Vector<LifetimePosition>& free_until_pos);
1085   bool TryAllocatePreferredReg(LiveRange* range,
1086                                const Vector<LifetimePosition>& free_until_pos);
1087   void GetFPRegisterSet(MachineRepresentation rep, int* num_regs,
1088                         int* num_codes, const int** codes) const;
1089   void FindFreeRegistersForRange(LiveRange* range,
1090                                  Vector<LifetimePosition> free_until_pos);
1091   void ProcessCurrentRange(LiveRange* current);
1092   void AllocateBlockedReg(LiveRange* range);
1093   bool TrySplitAndSpillSplinter(LiveRange* range);
1094 
1095   // Spill the given life range after position pos.
1096   void SpillAfter(LiveRange* range, LifetimePosition pos);
1097 
1098   // Spill the given life range after position [start] and up to position [end].
1099   void SpillBetween(LiveRange* range, LifetimePosition start,
1100                     LifetimePosition end);
1101 
1102   // Spill the given life range after position [start] and up to position [end].
1103   // Range is guaranteed to be spilled at least until position [until].
1104   void SpillBetweenUntil(LiveRange* range, LifetimePosition start,
1105                          LifetimePosition until, LifetimePosition end);
1106 
1107   void SplitAndSpillIntersecting(LiveRange* range);
1108 
1109   ZoneVector<LiveRange*> unhandled_live_ranges_;
1110   ZoneVector<LiveRange*> active_live_ranges_;
1111   ZoneVector<LiveRange*> inactive_live_ranges_;
1112 
1113 #ifdef DEBUG
1114   LifetimePosition allocation_finger_;
1115 #endif
1116 
1117   DISALLOW_COPY_AND_ASSIGN(LinearScanAllocator);
1118 };
1119 
1120 
1121 class SpillSlotLocator final : public ZoneObject {
1122  public:
1123   explicit SpillSlotLocator(RegisterAllocationData* data);
1124 
1125   void LocateSpillSlots();
1126 
1127  private:
data()1128   RegisterAllocationData* data() const { return data_; }
1129 
1130   RegisterAllocationData* const data_;
1131 
1132   DISALLOW_COPY_AND_ASSIGN(SpillSlotLocator);
1133 };
1134 
1135 
1136 class OperandAssigner final : public ZoneObject {
1137  public:
1138   explicit OperandAssigner(RegisterAllocationData* data);
1139 
1140   // Phase 5: assign spill splots.
1141   void AssignSpillSlots();
1142 
1143   // Phase 6: commit assignment.
1144   void CommitAssignment();
1145 
1146  private:
data()1147   RegisterAllocationData* data() const { return data_; }
1148 
1149   RegisterAllocationData* const data_;
1150 
1151   DISALLOW_COPY_AND_ASSIGN(OperandAssigner);
1152 };
1153 
1154 
1155 class ReferenceMapPopulator final : public ZoneObject {
1156  public:
1157   explicit ReferenceMapPopulator(RegisterAllocationData* data);
1158 
1159   // Phase 7: compute values for pointer maps.
1160   void PopulateReferenceMaps();
1161 
1162  private:
data()1163   RegisterAllocationData* data() const { return data_; }
1164 
1165   bool SafePointsAreInOrder() const;
1166 
1167   RegisterAllocationData* const data_;
1168 
1169   DISALLOW_COPY_AND_ASSIGN(ReferenceMapPopulator);
1170 };
1171 
1172 
1173 class LiveRangeBoundArray;
1174 // Insert moves of the form
1175 //
1176 //          Operand(child_(k+1)) = Operand(child_k)
1177 //
1178 // where child_k and child_(k+1) are consecutive children of a range (so
1179 // child_k->next() == child_(k+1)), and Operand(...) refers to the
1180 // assigned operand, be it a register or a slot.
1181 class LiveRangeConnector final : public ZoneObject {
1182  public:
1183   explicit LiveRangeConnector(RegisterAllocationData* data);
1184 
1185   // Phase 8: reconnect split ranges with moves, when the control flow
1186   // between the ranges is trivial (no branches).
1187   void ConnectRanges(Zone* local_zone);
1188 
1189   // Phase 9: insert moves to connect ranges across basic blocks, when the
1190   // control flow between them cannot be trivially resolved, such as joining
1191   // branches.
1192   void ResolveControlFlow(Zone* local_zone);
1193 
1194  private:
data()1195   RegisterAllocationData* data() const { return data_; }
code()1196   InstructionSequence* code() const { return data()->code(); }
code_zone()1197   Zone* code_zone() const { return code()->zone(); }
1198 
1199   bool CanEagerlyResolveControlFlow(const InstructionBlock* block) const;
1200 
1201   int ResolveControlFlow(const InstructionBlock* block,
1202                          const InstructionOperand& cur_op,
1203                          const InstructionBlock* pred,
1204                          const InstructionOperand& pred_op);
1205 
1206   void CommitSpillsInDeferredBlocks(TopLevelLiveRange* range,
1207                                     LiveRangeBoundArray* array,
1208                                     Zone* temp_zone);
1209 
1210   RegisterAllocationData* const data_;
1211 
1212   DISALLOW_COPY_AND_ASSIGN(LiveRangeConnector);
1213 };
1214 
1215 }  // namespace compiler
1216 }  // namespace internal
1217 }  // namespace v8
1218 
1219 #endif  // V8_COMPILER_REGISTER_ALLOCATOR_H_
1220