1 /*
2  * Copyright 2017 Google Inc. All rights reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef FLATBUFFERS_FLEXBUFFERS_H_
18 #define FLATBUFFERS_FLEXBUFFERS_H_
19 
20 #include <map>
21 // Used to select STL variant.
22 #include "flatbuffers/base.h"
23 // We use the basic binary writing functions from the regular FlatBuffers.
24 #include "flatbuffers/util.h"
25 
26 #ifdef _MSC_VER
27 #  include <intrin.h>
28 #endif
29 
30 #if defined(_MSC_VER)
31 #  pragma warning(push)
32 #  pragma warning(disable : 4127)  // C4127: conditional expression is constant
33 #endif
34 
35 namespace flexbuffers {
36 
37 class Reference;
38 class Map;
39 
40 // These are used in the lower 2 bits of a type field to determine the size of
41 // the elements (and or size field) of the item pointed to (e.g. vector).
42 enum BitWidth {
43   BIT_WIDTH_8 = 0,
44   BIT_WIDTH_16 = 1,
45   BIT_WIDTH_32 = 2,
46   BIT_WIDTH_64 = 3,
47 };
48 
49 // These are used as the upper 6 bits of a type field to indicate the actual
50 // type.
51 enum Type {
52   FBT_NULL = 0,
53   FBT_INT = 1,
54   FBT_UINT = 2,
55   FBT_FLOAT = 3,
56   // Types above stored inline, types below store an offset.
57   FBT_KEY = 4,
58   FBT_STRING = 5,
59   FBT_INDIRECT_INT = 6,
60   FBT_INDIRECT_UINT = 7,
61   FBT_INDIRECT_FLOAT = 8,
62   FBT_MAP = 9,
63   FBT_VECTOR = 10,      // Untyped.
64   FBT_VECTOR_INT = 11,  // Typed any size (stores no type table).
65   FBT_VECTOR_UINT = 12,
66   FBT_VECTOR_FLOAT = 13,
67   FBT_VECTOR_KEY = 14,
68   FBT_VECTOR_STRING = 15,
69   FBT_VECTOR_INT2 = 16,  // Typed tuple (no type table, no size field).
70   FBT_VECTOR_UINT2 = 17,
71   FBT_VECTOR_FLOAT2 = 18,
72   FBT_VECTOR_INT3 = 19,  // Typed triple (no type table, no size field).
73   FBT_VECTOR_UINT3 = 20,
74   FBT_VECTOR_FLOAT3 = 21,
75   FBT_VECTOR_INT4 = 22,  // Typed quad (no type table, no size field).
76   FBT_VECTOR_UINT4 = 23,
77   FBT_VECTOR_FLOAT4 = 24,
78   FBT_BLOB = 25,
79   FBT_BOOL = 26,
80   FBT_VECTOR_BOOL =
81       36,  // To Allow the same type of conversion of type to vector type
82 };
83 
IsInline(Type t)84 inline bool IsInline(Type t) { return t <= FBT_FLOAT || t == FBT_BOOL; }
85 
IsTypedVectorElementType(Type t)86 inline bool IsTypedVectorElementType(Type t) {
87   return (t >= FBT_INT && t <= FBT_STRING) || t == FBT_BOOL;
88 }
89 
IsTypedVector(Type t)90 inline bool IsTypedVector(Type t) {
91   return (t >= FBT_VECTOR_INT && t <= FBT_VECTOR_STRING) ||
92          t == FBT_VECTOR_BOOL;
93 }
94 
IsFixedTypedVector(Type t)95 inline bool IsFixedTypedVector(Type t) {
96   return t >= FBT_VECTOR_INT2 && t <= FBT_VECTOR_FLOAT4;
97 }
98 
99 inline Type ToTypedVector(Type t, size_t fixed_len = 0) {
100   FLATBUFFERS_ASSERT(IsTypedVectorElementType(t));
101   switch (fixed_len) {
102     case 0: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT);
103     case 2: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT2);
104     case 3: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT3);
105     case 4: return static_cast<Type>(t - FBT_INT + FBT_VECTOR_INT4);
106     default: FLATBUFFERS_ASSERT(0); return FBT_NULL;
107   }
108 }
109 
ToTypedVectorElementType(Type t)110 inline Type ToTypedVectorElementType(Type t) {
111   FLATBUFFERS_ASSERT(IsTypedVector(t));
112   return static_cast<Type>(t - FBT_VECTOR_INT + FBT_INT);
113 }
114 
ToFixedTypedVectorElementType(Type t,uint8_t * len)115 inline Type ToFixedTypedVectorElementType(Type t, uint8_t *len) {
116   FLATBUFFERS_ASSERT(IsFixedTypedVector(t));
117   auto fixed_type = t - FBT_VECTOR_INT2;
118   *len = static_cast<uint8_t>(fixed_type / 3 +
119                               2);  // 3 types each, starting from length 2.
120   return static_cast<Type>(fixed_type % 3 + FBT_INT);
121 }
122 
123 // TODO: implement proper support for 8/16bit floats, or decide not to
124 // support them.
125 typedef int16_t half;
126 typedef int8_t quarter;
127 
128 // TODO: can we do this without conditionals using intrinsics or inline asm
129 // on some platforms? Given branch prediction the method below should be
130 // decently quick, but it is the most frequently executed function.
131 // We could do an (unaligned) 64-bit read if we ifdef out the platforms for
132 // which that doesn't work (or where we'd read into un-owned memory).
133 template<typename R, typename T1, typename T2, typename T4, typename T8>
ReadSizedScalar(const uint8_t * data,uint8_t byte_width)134 R ReadSizedScalar(const uint8_t *data, uint8_t byte_width) {
135   return byte_width < 4
136              ? (byte_width < 2
137                     ? static_cast<R>(flatbuffers::ReadScalar<T1>(data))
138                     : static_cast<R>(flatbuffers::ReadScalar<T2>(data)))
139              : (byte_width < 8
140                     ? static_cast<R>(flatbuffers::ReadScalar<T4>(data))
141                     : static_cast<R>(flatbuffers::ReadScalar<T8>(data)));
142 }
143 
ReadInt64(const uint8_t * data,uint8_t byte_width)144 inline int64_t ReadInt64(const uint8_t *data, uint8_t byte_width) {
145   return ReadSizedScalar<int64_t, int8_t, int16_t, int32_t, int64_t>(
146       data, byte_width);
147 }
148 
ReadUInt64(const uint8_t * data,uint8_t byte_width)149 inline uint64_t ReadUInt64(const uint8_t *data, uint8_t byte_width) {
150   // This is the "hottest" function (all offset lookups use this), so worth
151   // optimizing if possible.
152   // TODO: GCC apparently replaces memcpy by a rep movsb, but only if count is a
153   // constant, which here it isn't. Test if memcpy is still faster than
154   // the conditionals in ReadSizedScalar. Can also use inline asm.
155   // clang-format off
156   #if defined(_MSC_VER) && (defined(_M_X64) || defined _M_IX86)
157     uint64_t u = 0;
158     __movsb(reinterpret_cast<uint8_t *>(&u),
159             reinterpret_cast<const uint8_t *>(data), byte_width);
160     return flatbuffers::EndianScalar(u);
161   #else
162     return ReadSizedScalar<uint64_t, uint8_t, uint16_t, uint32_t, uint64_t>(
163              data, byte_width);
164   #endif
165   // clang-format on
166 }
167 
ReadDouble(const uint8_t * data,uint8_t byte_width)168 inline double ReadDouble(const uint8_t *data, uint8_t byte_width) {
169   return ReadSizedScalar<double, quarter, half, float, double>(data,
170                                                                byte_width);
171 }
172 
Indirect(const uint8_t * offset,uint8_t byte_width)173 inline const uint8_t *Indirect(const uint8_t *offset, uint8_t byte_width) {
174   return offset - ReadUInt64(offset, byte_width);
175 }
176 
Indirect(const uint8_t * offset)177 template<typename T> const uint8_t *Indirect(const uint8_t *offset) {
178   return offset - flatbuffers::ReadScalar<T>(offset);
179 }
180 
WidthU(uint64_t u)181 inline BitWidth WidthU(uint64_t u) {
182 #define FLATBUFFERS_GET_FIELD_BIT_WIDTH(value, width)                   \
183   {                                                                     \
184     if (!((u) & ~((1ULL << (width)) - 1ULL))) return BIT_WIDTH_##width; \
185   }
186   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 8);
187   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 16);
188   FLATBUFFERS_GET_FIELD_BIT_WIDTH(u, 32);
189 #undef FLATBUFFERS_GET_FIELD_BIT_WIDTH
190   return BIT_WIDTH_64;
191 }
192 
WidthI(int64_t i)193 inline BitWidth WidthI(int64_t i) {
194   auto u = static_cast<uint64_t>(i) << 1;
195   return WidthU(i >= 0 ? u : ~u);
196 }
197 
WidthF(double f)198 inline BitWidth WidthF(double f) {
199   return static_cast<double>(static_cast<float>(f)) == f ? BIT_WIDTH_32
200                                                          : BIT_WIDTH_64;
201 }
202 
203 // Base class of all types below.
204 // Points into the data buffer and allows access to one type.
205 class Object {
206  public:
Object(const uint8_t * data,uint8_t byte_width)207   Object(const uint8_t *data, uint8_t byte_width)
208       : data_(data), byte_width_(byte_width) {}
209 
210  protected:
211   const uint8_t *data_;
212   uint8_t byte_width_;
213 };
214 
215 // Stores size in `byte_width_` bytes before data_ pointer.
216 class Sized : public Object {
217  public:
Sized(const uint8_t * data,uint8_t byte_width)218   Sized(const uint8_t *data, uint8_t byte_width) : Object(data, byte_width) {}
size()219   size_t size() const {
220     return static_cast<size_t>(ReadUInt64(data_ - byte_width_, byte_width_));
221   }
222 };
223 
224 class String : public Sized {
225  public:
String(const uint8_t * data,uint8_t byte_width)226   String(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
227 
length()228   size_t length() const { return size(); }
c_str()229   const char *c_str() const { return reinterpret_cast<const char *>(data_); }
str()230   std::string str() const { return std::string(c_str(), length()); }
231 
EmptyString()232   static String EmptyString() {
233     static const uint8_t empty_string[] = { 0 /*len*/, 0 /*terminator*/ };
234     return String(empty_string + 1, 1);
235   }
IsTheEmptyString()236   bool IsTheEmptyString() const { return data_ == EmptyString().data_; }
237 };
238 
239 class Blob : public Sized {
240  public:
Blob(const uint8_t * data_buf,uint8_t byte_width)241   Blob(const uint8_t *data_buf, uint8_t byte_width)
242       : Sized(data_buf, byte_width) {}
243 
EmptyBlob()244   static Blob EmptyBlob() {
245     static const uint8_t empty_blob[] = { 0 /*len*/ };
246     return Blob(empty_blob + 1, 1);
247   }
IsTheEmptyBlob()248   bool IsTheEmptyBlob() const { return data_ == EmptyBlob().data_; }
data()249   const uint8_t *data() const { return data_; }
250 };
251 
252 class Vector : public Sized {
253  public:
Vector(const uint8_t * data,uint8_t byte_width)254   Vector(const uint8_t *data, uint8_t byte_width) : Sized(data, byte_width) {}
255 
256   Reference operator[](size_t i) const;
257 
EmptyVector()258   static Vector EmptyVector() {
259     static const uint8_t empty_vector[] = { 0 /*len*/ };
260     return Vector(empty_vector + 1, 1);
261   }
IsTheEmptyVector()262   bool IsTheEmptyVector() const { return data_ == EmptyVector().data_; }
263 };
264 
265 class TypedVector : public Sized {
266  public:
TypedVector(const uint8_t * data,uint8_t byte_width,Type element_type)267   TypedVector(const uint8_t *data, uint8_t byte_width, Type element_type)
268       : Sized(data, byte_width), type_(element_type) {}
269 
270   Reference operator[](size_t i) const;
271 
EmptyTypedVector()272   static TypedVector EmptyTypedVector() {
273     static const uint8_t empty_typed_vector[] = { 0 /*len*/ };
274     return TypedVector(empty_typed_vector + 1, 1, FBT_INT);
275   }
IsTheEmptyVector()276   bool IsTheEmptyVector() const {
277     return data_ == TypedVector::EmptyTypedVector().data_;
278   }
279 
ElementType()280   Type ElementType() { return type_; }
281 
282  private:
283   Type type_;
284 
285   friend Map;
286 };
287 
288 class FixedTypedVector : public Object {
289  public:
FixedTypedVector(const uint8_t * data,uint8_t byte_width,Type element_type,uint8_t len)290   FixedTypedVector(const uint8_t *data, uint8_t byte_width, Type element_type,
291                    uint8_t len)
292       : Object(data, byte_width), type_(element_type), len_(len) {}
293 
294   Reference operator[](size_t i) const;
295 
EmptyFixedTypedVector()296   static FixedTypedVector EmptyFixedTypedVector() {
297     static const uint8_t fixed_empty_vector[] = { 0 /* unused */ };
298     return FixedTypedVector(fixed_empty_vector, 1, FBT_INT, 0);
299   }
IsTheEmptyFixedTypedVector()300   bool IsTheEmptyFixedTypedVector() const {
301     return data_ == FixedTypedVector::EmptyFixedTypedVector().data_;
302   }
303 
ElementType()304   Type ElementType() { return type_; }
size()305   uint8_t size() { return len_; }
306 
307  private:
308   Type type_;
309   uint8_t len_;
310 };
311 
312 class Map : public Vector {
313  public:
Map(const uint8_t * data,uint8_t byte_width)314   Map(const uint8_t *data, uint8_t byte_width) : Vector(data, byte_width) {}
315 
316   Reference operator[](const char *key) const;
317   Reference operator[](const std::string &key) const;
318 
Values()319   Vector Values() const { return Vector(data_, byte_width_); }
320 
Keys()321   TypedVector Keys() const {
322     const size_t num_prefixed_fields = 3;
323     auto keys_offset = data_ - byte_width_ * num_prefixed_fields;
324     return TypedVector(Indirect(keys_offset, byte_width_),
325                        static_cast<uint8_t>(
326                            ReadUInt64(keys_offset + byte_width_, byte_width_)),
327                        FBT_KEY);
328   }
329 
EmptyMap()330   static Map EmptyMap() {
331     static const uint8_t empty_map[] = {
332       0 /*keys_len*/, 0 /*keys_offset*/, 1 /*keys_width*/, 0 /*len*/
333     };
334     return Map(empty_map + 4, 1);
335   }
336 
IsTheEmptyMap()337   bool IsTheEmptyMap() const { return data_ == EmptyMap().data_; }
338 };
339 
340 template<typename T>
AppendToString(std::string & s,T && v,bool keys_quoted)341 void AppendToString(std::string &s, T &&v, bool keys_quoted) {
342     s += "[ ";
343     for (size_t i = 0; i < v.size(); i++) {
344       if (i) s += ", ";
345       v[i].ToString(true, keys_quoted, s);
346     }
347     s += " ]";
348 }
349 
350 class Reference {
351  public:
Reference(const uint8_t * data,uint8_t parent_width,uint8_t byte_width,Type type)352   Reference(const uint8_t *data, uint8_t parent_width, uint8_t byte_width,
353             Type type)
354       : data_(data),
355         parent_width_(parent_width),
356         byte_width_(byte_width),
357         type_(type) {}
358 
Reference(const uint8_t * data,uint8_t parent_width,uint8_t packed_type)359   Reference(const uint8_t *data, uint8_t parent_width, uint8_t packed_type)
360       : data_(data), parent_width_(parent_width) {
361     byte_width_ = 1U << static_cast<BitWidth>(packed_type & 3);
362     type_ = static_cast<Type>(packed_type >> 2);
363   }
364 
GetType()365   Type GetType() const { return type_; }
366 
IsNull()367   bool IsNull() const { return type_ == FBT_NULL; }
IsBool()368   bool IsBool() const { return type_ == FBT_BOOL; }
IsInt()369   bool IsInt() const { return type_ == FBT_INT || type_ == FBT_INDIRECT_INT; }
IsUInt()370   bool IsUInt() const {
371     return type_ == FBT_UINT || type_ == FBT_INDIRECT_UINT;
372   }
IsIntOrUint()373   bool IsIntOrUint() const { return IsInt() || IsUInt(); }
IsFloat()374   bool IsFloat() const {
375     return type_ == FBT_FLOAT || type_ == FBT_INDIRECT_FLOAT;
376   }
IsNumeric()377   bool IsNumeric() const { return IsIntOrUint() || IsFloat(); }
IsString()378   bool IsString() const { return type_ == FBT_STRING; }
IsKey()379   bool IsKey() const { return type_ == FBT_KEY; }
IsVector()380   bool IsVector() const { return type_ == FBT_VECTOR || type_ == FBT_MAP; }
IsTypedVector()381   bool IsTypedVector() const { return flexbuffers::IsTypedVector(type_); }
IsFixedTypedVector()382   bool IsFixedTypedVector() const { return flexbuffers::IsFixedTypedVector(type_); }
IsAnyVector()383   bool IsAnyVector() const { return (IsTypedVector() || IsFixedTypedVector() || IsVector());}
IsMap()384   bool IsMap() const { return type_ == FBT_MAP; }
IsBlob()385   bool IsBlob() const { return type_ == FBT_BLOB; }
386 
AsBool()387   bool AsBool() const {
388     return (type_ == FBT_BOOL ? ReadUInt64(data_, parent_width_)
389                                : AsUInt64()) != 0;
390   }
391 
392   // Reads any type as a int64_t. Never fails, does most sensible conversion.
393   // Truncates floats, strings are attempted to be parsed for a number,
394   // vectors/maps return their size. Returns 0 if all else fails.
AsInt64()395   int64_t AsInt64() const {
396     if (type_ == FBT_INT) {
397       // A fast path for the common case.
398       return ReadInt64(data_, parent_width_);
399     } else
400       switch (type_) {
401         case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
402         case FBT_UINT: return ReadUInt64(data_, parent_width_);
403         case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
404         case FBT_FLOAT:
405           return static_cast<int64_t>(ReadDouble(data_, parent_width_));
406         case FBT_INDIRECT_FLOAT:
407           return static_cast<int64_t>(ReadDouble(Indirect(), byte_width_));
408         case FBT_NULL: return 0;
409         case FBT_STRING: return flatbuffers::StringToInt(AsString().c_str());
410         case FBT_VECTOR: return static_cast<int64_t>(AsVector().size());
411         case FBT_BOOL: return ReadInt64(data_, parent_width_);
412         default:
413           // Convert other things to int.
414           return 0;
415       }
416   }
417 
418   // TODO: could specialize these to not use AsInt64() if that saves
419   // extension ops in generated code, and use a faster op than ReadInt64.
AsInt32()420   int32_t AsInt32() const { return static_cast<int32_t>(AsInt64()); }
AsInt16()421   int16_t AsInt16() const { return static_cast<int16_t>(AsInt64()); }
AsInt8()422   int8_t AsInt8() const { return static_cast<int8_t>(AsInt64()); }
423 
AsUInt64()424   uint64_t AsUInt64() const {
425     if (type_ == FBT_UINT) {
426       // A fast path for the common case.
427       return ReadUInt64(data_, parent_width_);
428     } else
429       switch (type_) {
430         case FBT_INDIRECT_UINT: return ReadUInt64(Indirect(), byte_width_);
431         case FBT_INT: return ReadInt64(data_, parent_width_);
432         case FBT_INDIRECT_INT: return ReadInt64(Indirect(), byte_width_);
433         case FBT_FLOAT:
434           return static_cast<uint64_t>(ReadDouble(data_, parent_width_));
435         case FBT_INDIRECT_FLOAT:
436           return static_cast<uint64_t>(ReadDouble(Indirect(), byte_width_));
437         case FBT_NULL: return 0;
438         case FBT_STRING: return flatbuffers::StringToUInt(AsString().c_str());
439         case FBT_VECTOR: return static_cast<uint64_t>(AsVector().size());
440         case FBT_BOOL: return ReadUInt64(data_, parent_width_);
441         default:
442           // Convert other things to uint.
443           return 0;
444       }
445   }
446 
AsUInt32()447   uint32_t AsUInt32() const { return static_cast<uint32_t>(AsUInt64()); }
AsUInt16()448   uint16_t AsUInt16() const { return static_cast<uint16_t>(AsUInt64()); }
AsUInt8()449   uint8_t AsUInt8() const { return static_cast<uint8_t>(AsUInt64()); }
450 
AsDouble()451   double AsDouble() const {
452     if (type_ == FBT_FLOAT) {
453       // A fast path for the common case.
454       return ReadDouble(data_, parent_width_);
455     } else
456       switch (type_) {
457         case FBT_INDIRECT_FLOAT: return ReadDouble(Indirect(), byte_width_);
458         case FBT_INT:
459           return static_cast<double>(ReadInt64(data_, parent_width_));
460         case FBT_UINT:
461           return static_cast<double>(ReadUInt64(data_, parent_width_));
462         case FBT_INDIRECT_INT:
463           return static_cast<double>(ReadInt64(Indirect(), byte_width_));
464         case FBT_INDIRECT_UINT:
465           return static_cast<double>(ReadUInt64(Indirect(), byte_width_));
466         case FBT_NULL: return 0.0;
467         case FBT_STRING: return strtod(AsString().c_str(), nullptr);
468         case FBT_VECTOR: return static_cast<double>(AsVector().size());
469         case FBT_BOOL:
470           return static_cast<double>(ReadUInt64(data_, parent_width_));
471         default:
472           // Convert strings and other things to float.
473           return 0;
474       }
475   }
476 
AsFloat()477   float AsFloat() const { return static_cast<float>(AsDouble()); }
478 
AsKey()479   const char *AsKey() const {
480     if (type_ == FBT_KEY) {
481       return reinterpret_cast<const char *>(Indirect());
482     } else {
483       return "";
484     }
485   }
486 
487   // This function returns the empty string if you try to read a not-string.
AsString()488   String AsString() const {
489     if (type_ == FBT_STRING) {
490       return String(Indirect(), byte_width_);
491     } else {
492       return String::EmptyString();
493     }
494   }
495 
496   // Unlike AsString(), this will convert any type to a std::string.
ToString()497   std::string ToString() const {
498     std::string s;
499     ToString(false, false, s);
500     return s;
501   }
502 
503   // Convert any type to a JSON-like string. strings_quoted determines if
504   // string values at the top level receive "" quotes (inside other values
505   // they always do). keys_quoted determines if keys are quoted, at any level.
506   // TODO(wvo): add further options to have indentation/newlines.
ToString(bool strings_quoted,bool keys_quoted,std::string & s)507   void ToString(bool strings_quoted, bool keys_quoted, std::string &s) const {
508     if (type_ == FBT_STRING) {
509       String str(Indirect(), byte_width_);
510       if (strings_quoted) {
511         flatbuffers::EscapeString(str.c_str(), str.length(), &s, true, false);
512       } else {
513         s.append(str.c_str(), str.length());
514       }
515     } else if (IsKey()) {
516       auto str = AsKey();
517       if (keys_quoted) {
518         flatbuffers::EscapeString(str, strlen(str), &s, true, false);
519       } else {
520         s += str;
521       }
522     } else if (IsInt()) {
523       s += flatbuffers::NumToString(AsInt64());
524     } else if (IsUInt()) {
525       s += flatbuffers::NumToString(AsUInt64());
526     } else if (IsFloat()) {
527       s += flatbuffers::NumToString(AsDouble());
528     } else if (IsNull()) {
529       s += "null";
530     } else if (IsBool()) {
531       s += AsBool() ? "true" : "false";
532     } else if (IsMap()) {
533       s += "{ ";
534       auto m = AsMap();
535       auto keys = m.Keys();
536       auto vals = m.Values();
537       for (size_t i = 0; i < keys.size(); i++) {
538         keys[i].ToString(true, keys_quoted, s);
539         s += ": ";
540         vals[i].ToString(true, keys_quoted, s);
541         if (i < keys.size() - 1) s += ", ";
542       }
543       s += " }";
544     } else if (IsVector()) {
545       AppendToString<Vector>(s, AsVector(), keys_quoted);
546     } else if (IsTypedVector()) {
547       AppendToString<TypedVector>(s, AsTypedVector(), keys_quoted);
548     } else if (IsFixedTypedVector()) {
549       AppendToString<FixedTypedVector>(s, AsFixedTypedVector(), keys_quoted);
550     } else if (IsBlob()) {
551       auto blob = AsBlob();
552       flatbuffers::EscapeString(reinterpret_cast<const char*>(blob.data()), blob.size(), &s, true, false);
553     } else {
554       s += "(?)";
555     }
556   }
557 
558   // This function returns the empty blob if you try to read a not-blob.
559   // Strings can be viewed as blobs too.
AsBlob()560   Blob AsBlob() const {
561     if (type_ == FBT_BLOB || type_ == FBT_STRING) {
562       return Blob(Indirect(), byte_width_);
563     } else {
564       return Blob::EmptyBlob();
565     }
566   }
567 
568   // This function returns the empty vector if you try to read a not-vector.
569   // Maps can be viewed as vectors too.
AsVector()570   Vector AsVector() const {
571     if (type_ == FBT_VECTOR || type_ == FBT_MAP) {
572       return Vector(Indirect(), byte_width_);
573     } else {
574       return Vector::EmptyVector();
575     }
576   }
577 
AsTypedVector()578   TypedVector AsTypedVector() const {
579     if (IsTypedVector()) {
580       return TypedVector(Indirect(), byte_width_,
581                          ToTypedVectorElementType(type_));
582     } else {
583       return TypedVector::EmptyTypedVector();
584     }
585   }
586 
AsFixedTypedVector()587   FixedTypedVector AsFixedTypedVector() const {
588     if (IsFixedTypedVector()) {
589       uint8_t len = 0;
590       auto vtype = ToFixedTypedVectorElementType(type_, &len);
591       return FixedTypedVector(Indirect(), byte_width_, vtype, len);
592     } else {
593       return FixedTypedVector::EmptyFixedTypedVector();
594     }
595   }
596 
AsMap()597   Map AsMap() const {
598     if (type_ == FBT_MAP) {
599       return Map(Indirect(), byte_width_);
600     } else {
601       return Map::EmptyMap();
602     }
603   }
604 
605   template<typename T> T As() const;
606 
607   // Experimental: Mutation functions.
608   // These allow scalars in an already created buffer to be updated in-place.
609   // Since by default scalars are stored in the smallest possible space,
610   // the new value may not fit, in which case these functions return false.
611   // To avoid this, you can construct the values you intend to mutate using
612   // Builder::ForceMinimumBitWidth.
MutateInt(int64_t i)613   bool MutateInt(int64_t i) {
614     if (type_ == FBT_INT) {
615       return Mutate(data_, i, parent_width_, WidthI(i));
616     } else if (type_ == FBT_INDIRECT_INT) {
617       return Mutate(Indirect(), i, byte_width_, WidthI(i));
618     } else if (type_ == FBT_UINT) {
619       auto u = static_cast<uint64_t>(i);
620       return Mutate(data_, u, parent_width_, WidthU(u));
621     } else if (type_ == FBT_INDIRECT_UINT) {
622       auto u = static_cast<uint64_t>(i);
623       return Mutate(Indirect(), u, byte_width_, WidthU(u));
624     } else {
625       return false;
626     }
627   }
628 
MutateBool(bool b)629   bool MutateBool(bool b) {
630     return type_ == FBT_BOOL && Mutate(data_, b, parent_width_, BIT_WIDTH_8);
631   }
632 
MutateUInt(uint64_t u)633   bool MutateUInt(uint64_t u) {
634     if (type_ == FBT_UINT) {
635       return Mutate(data_, u, parent_width_, WidthU(u));
636     } else if (type_ == FBT_INDIRECT_UINT) {
637       return Mutate(Indirect(), u, byte_width_, WidthU(u));
638     } else if (type_ == FBT_INT) {
639       auto i = static_cast<int64_t>(u);
640       return Mutate(data_, i, parent_width_, WidthI(i));
641     } else if (type_ == FBT_INDIRECT_INT) {
642       auto i = static_cast<int64_t>(u);
643       return Mutate(Indirect(), i, byte_width_, WidthI(i));
644     } else {
645       return false;
646     }
647   }
648 
MutateFloat(float f)649   bool MutateFloat(float f) {
650     if (type_ == FBT_FLOAT) {
651       return MutateF(data_, f, parent_width_, BIT_WIDTH_32);
652     } else if (type_ == FBT_INDIRECT_FLOAT) {
653       return MutateF(Indirect(), f, byte_width_, BIT_WIDTH_32);
654     } else {
655       return false;
656     }
657   }
658 
MutateFloat(double d)659   bool MutateFloat(double d) {
660     if (type_ == FBT_FLOAT) {
661       return MutateF(data_, d, parent_width_, WidthF(d));
662     } else if (type_ == FBT_INDIRECT_FLOAT) {
663       return MutateF(Indirect(), d, byte_width_, WidthF(d));
664     } else {
665       return false;
666     }
667   }
668 
MutateString(const char * str,size_t len)669   bool MutateString(const char *str, size_t len) {
670     auto s = AsString();
671     if (s.IsTheEmptyString()) return false;
672     // This is very strict, could allow shorter strings, but that creates
673     // garbage.
674     if (s.length() != len) return false;
675     memcpy(const_cast<char *>(s.c_str()), str, len);
676     return true;
677   }
MutateString(const char * str)678   bool MutateString(const char *str) { return MutateString(str, strlen(str)); }
MutateString(const std::string & str)679   bool MutateString(const std::string &str) {
680     return MutateString(str.data(), str.length());
681   }
682 
683  private:
Indirect()684   const uint8_t *Indirect() const {
685     return flexbuffers::Indirect(data_, parent_width_);
686   }
687 
688   template<typename T>
Mutate(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)689   bool Mutate(const uint8_t *dest, T t, size_t byte_width,
690               BitWidth value_width) {
691     auto fits = static_cast<size_t>(static_cast<size_t>(1U) << value_width) <=
692                 byte_width;
693     if (fits) {
694       t = flatbuffers::EndianScalar(t);
695       memcpy(const_cast<uint8_t *>(dest), &t, byte_width);
696     }
697     return fits;
698   }
699 
700   template<typename T>
MutateF(const uint8_t * dest,T t,size_t byte_width,BitWidth value_width)701   bool MutateF(const uint8_t *dest, T t, size_t byte_width,
702                BitWidth value_width) {
703     if (byte_width == sizeof(double))
704       return Mutate(dest, static_cast<double>(t), byte_width, value_width);
705     if (byte_width == sizeof(float))
706       return Mutate(dest, static_cast<float>(t), byte_width, value_width);
707     FLATBUFFERS_ASSERT(false);
708     return false;
709   }
710 
711   const uint8_t *data_;
712   uint8_t parent_width_;
713   uint8_t byte_width_;
714   Type type_;
715 };
716 
717 // Template specialization for As().
718 template<> inline bool Reference::As<bool>() const { return AsBool(); }
719 
720 template<> inline int8_t Reference::As<int8_t>() const { return AsInt8(); }
721 template<> inline int16_t Reference::As<int16_t>() const { return AsInt16(); }
722 template<> inline int32_t Reference::As<int32_t>() const { return AsInt32(); }
723 template<> inline int64_t Reference::As<int64_t>() const { return AsInt64(); }
724 
725 template<> inline uint8_t Reference::As<uint8_t>() const { return AsUInt8(); }
726 template<> inline uint16_t Reference::As<uint16_t>() const { return AsUInt16(); }
727 template<> inline uint32_t Reference::As<uint32_t>() const { return AsUInt32(); }
728 template<> inline uint64_t Reference::As<uint64_t>() const { return AsUInt64(); }
729 
730 template<> inline double Reference::As<double>() const { return AsDouble(); }
731 template<> inline float Reference::As<float>() const { return AsFloat(); }
732 
733 template<> inline String Reference::As<String>() const { return AsString(); }
734 template<> inline std::string Reference::As<std::string>() const {
735   return AsString().str();
736 }
737 
738 template<> inline Blob Reference::As<Blob>() const { return AsBlob(); }
739 template<> inline Vector Reference::As<Vector>() const { return AsVector(); }
740 template<> inline TypedVector Reference::As<TypedVector>() const {
741   return AsTypedVector();
742 }
743 template<> inline FixedTypedVector Reference::As<FixedTypedVector>() const {
744   return AsFixedTypedVector();
745 }
746 template<> inline Map Reference::As<Map>() const { return AsMap(); }
747 
PackedType(BitWidth bit_width,Type type)748 inline uint8_t PackedType(BitWidth bit_width, Type type) {
749   return static_cast<uint8_t>(bit_width | (type << 2));
750 }
751 
NullPackedType()752 inline uint8_t NullPackedType() { return PackedType(BIT_WIDTH_8, FBT_NULL); }
753 
754 // Vector accessors.
755 // Note: if you try to access outside of bounds, you get a Null value back
756 // instead. Normally this would be an assert, but since this is "dynamically
757 // typed" data, you may not want that (someone sends you a 2d vector and you
758 // wanted 3d).
759 // The Null converts seamlessly into a default value for any other type.
760 // TODO(wvo): Could introduce an #ifdef that makes this into an assert?
761 inline Reference Vector::operator[](size_t i) const {
762   auto len = size();
763   if (i >= len) return Reference(nullptr, 1, NullPackedType());
764   auto packed_type = (data_ + len * byte_width_)[i];
765   auto elem = data_ + i * byte_width_;
766   return Reference(elem, byte_width_, packed_type);
767 }
768 
769 inline Reference TypedVector::operator[](size_t i) const {
770   auto len = size();
771   if (i >= len) return Reference(nullptr, 1, NullPackedType());
772   auto elem = data_ + i * byte_width_;
773   return Reference(elem, byte_width_, 1, type_);
774 }
775 
776 inline Reference FixedTypedVector::operator[](size_t i) const {
777   if (i >= len_) return Reference(nullptr, 1, NullPackedType());
778   auto elem = data_ + i * byte_width_;
779   return Reference(elem, byte_width_, 1, type_);
780 }
781 
KeyCompare(const void * key,const void * elem)782 template<typename T> int KeyCompare(const void *key, const void *elem) {
783   auto str_elem = reinterpret_cast<const char *>(
784       Indirect<T>(reinterpret_cast<const uint8_t *>(elem)));
785   auto skey = reinterpret_cast<const char *>(key);
786   return strcmp(skey, str_elem);
787 }
788 
789 inline Reference Map::operator[](const char *key) const {
790   auto keys = Keys();
791   // We can't pass keys.byte_width_ to the comparison function, so we have
792   // to pick the right one ahead of time.
793   int (*comp)(const void *, const void *) = nullptr;
794   switch (keys.byte_width_) {
795     case 1: comp = KeyCompare<uint8_t>; break;
796     case 2: comp = KeyCompare<uint16_t>; break;
797     case 4: comp = KeyCompare<uint32_t>; break;
798     case 8: comp = KeyCompare<uint64_t>; break;
799   }
800   auto res = std::bsearch(key, keys.data_, keys.size(), keys.byte_width_, comp);
801   if (!res) return Reference(nullptr, 1, NullPackedType());
802   auto i = (reinterpret_cast<uint8_t *>(res) - keys.data_) / keys.byte_width_;
803   return (*static_cast<const Vector *>(this))[i];
804 }
805 
806 inline Reference Map::operator[](const std::string &key) const {
807   return (*this)[key.c_str()];
808 }
809 
GetRoot(const uint8_t * buffer,size_t size)810 inline Reference GetRoot(const uint8_t *buffer, size_t size) {
811   // See Finish() below for the serialization counterpart of this.
812   // The root starts at the end of the buffer, so we parse backwards from there.
813   auto end = buffer + size;
814   auto byte_width = *--end;
815   auto packed_type = *--end;
816   end -= byte_width;  // The root data item.
817   return Reference(end, byte_width, packed_type);
818 }
819 
GetRoot(const std::vector<uint8_t> & buffer)820 inline Reference GetRoot(const std::vector<uint8_t> &buffer) {
821   return GetRoot(flatbuffers::vector_data(buffer), buffer.size());
822 }
823 
824 // Flags that configure how the Builder behaves.
825 // The "Share" flags determine if the Builder automatically tries to pool
826 // this type. Pooling can reduce the size of serialized data if there are
827 // multiple maps of the same kind, at the expense of slightly slower
828 // serialization (the cost of lookups) and more memory use (std::set).
829 // By default this is on for keys, but off for strings.
830 // Turn keys off if you have e.g. only one map.
831 // Turn strings on if you expect many non-unique string values.
832 // Additionally, sharing key vectors can save space if you have maps with
833 // identical field populations.
834 enum BuilderFlag {
835   BUILDER_FLAG_NONE = 0,
836   BUILDER_FLAG_SHARE_KEYS = 1,
837   BUILDER_FLAG_SHARE_STRINGS = 2,
838   BUILDER_FLAG_SHARE_KEYS_AND_STRINGS = 3,
839   BUILDER_FLAG_SHARE_KEY_VECTORS = 4,
840   BUILDER_FLAG_SHARE_ALL = 7,
841 };
842 
843 class Builder FLATBUFFERS_FINAL_CLASS {
844  public:
845   Builder(size_t initial_size = 256,
846           BuilderFlag flags = BUILDER_FLAG_SHARE_KEYS)
buf_(initial_size)847       : buf_(initial_size),
848         finished_(false),
849         flags_(flags),
850         force_min_bit_width_(BIT_WIDTH_8),
851         key_pool(KeyOffsetCompare(buf_)),
852         string_pool(StringOffsetCompare(buf_)) {
853     buf_.clear();
854   }
855 
856   /// @brief Get the serialized buffer (after you call `Finish()`).
857   /// @return Returns a vector owned by this class.
GetBuffer()858   const std::vector<uint8_t> &GetBuffer() const {
859     Finished();
860     return buf_;
861   }
862 
863   // Size of the buffer. Does not include unfinished values.
GetSize()864   size_t GetSize() const { return buf_.size(); }
865 
866   // Reset all state so we can re-use the buffer.
Clear()867   void Clear() {
868     buf_.clear();
869     stack_.clear();
870     finished_ = false;
871     // flags_ remains as-is;
872     force_min_bit_width_ = BIT_WIDTH_8;
873     key_pool.clear();
874     string_pool.clear();
875   }
876 
877   // All value constructing functions below have two versions: one that
878   // takes a key (for placement inside a map) and one that doesn't (for inside
879   // vectors and elsewhere).
880 
Null()881   void Null() { stack_.push_back(Value()); }
Null(const char * key)882   void Null(const char *key) {
883     Key(key);
884     Null();
885   }
886 
Int(int64_t i)887   void Int(int64_t i) { stack_.push_back(Value(i, FBT_INT, WidthI(i))); }
Int(const char * key,int64_t i)888   void Int(const char *key, int64_t i) {
889     Key(key);
890     Int(i);
891   }
892 
UInt(uint64_t u)893   void UInt(uint64_t u) { stack_.push_back(Value(u, FBT_UINT, WidthU(u))); }
UInt(const char * key,uint64_t u)894   void UInt(const char *key, uint64_t u) {
895     Key(key);
896     UInt(u);
897   }
898 
Float(float f)899   void Float(float f) { stack_.push_back(Value(f)); }
Float(const char * key,float f)900   void Float(const char *key, float f) {
901     Key(key);
902     Float(f);
903   }
904 
Double(double f)905   void Double(double f) { stack_.push_back(Value(f)); }
Double(const char * key,double d)906   void Double(const char *key, double d) {
907     Key(key);
908     Double(d);
909   }
910 
Bool(bool b)911   void Bool(bool b) { stack_.push_back(Value(b)); }
Bool(const char * key,bool b)912   void Bool(const char *key, bool b) {
913     Key(key);
914     Bool(b);
915   }
916 
IndirectInt(int64_t i)917   void IndirectInt(int64_t i) { PushIndirect(i, FBT_INDIRECT_INT, WidthI(i)); }
IndirectInt(const char * key,int64_t i)918   void IndirectInt(const char *key, int64_t i) {
919     Key(key);
920     IndirectInt(i);
921   }
922 
IndirectUInt(uint64_t u)923   void IndirectUInt(uint64_t u) {
924     PushIndirect(u, FBT_INDIRECT_UINT, WidthU(u));
925   }
IndirectUInt(const char * key,uint64_t u)926   void IndirectUInt(const char *key, uint64_t u) {
927     Key(key);
928     IndirectUInt(u);
929   }
930 
IndirectFloat(float f)931   void IndirectFloat(float f) {
932     PushIndirect(f, FBT_INDIRECT_FLOAT, BIT_WIDTH_32);
933   }
IndirectFloat(const char * key,float f)934   void IndirectFloat(const char *key, float f) {
935     Key(key);
936     IndirectFloat(f);
937   }
938 
IndirectDouble(double f)939   void IndirectDouble(double f) {
940     PushIndirect(f, FBT_INDIRECT_FLOAT, WidthF(f));
941   }
IndirectDouble(const char * key,double d)942   void IndirectDouble(const char *key, double d) {
943     Key(key);
944     IndirectDouble(d);
945   }
946 
Key(const char * str,size_t len)947   size_t Key(const char *str, size_t len) {
948     auto sloc = buf_.size();
949     WriteBytes(str, len + 1);
950     if (flags_ & BUILDER_FLAG_SHARE_KEYS) {
951       auto it = key_pool.find(sloc);
952       if (it != key_pool.end()) {
953         // Already in the buffer. Remove key we just serialized, and use
954         // existing offset instead.
955         buf_.resize(sloc);
956         sloc = *it;
957       } else {
958         key_pool.insert(sloc);
959       }
960     }
961     stack_.push_back(Value(static_cast<uint64_t>(sloc), FBT_KEY, BIT_WIDTH_8));
962     return sloc;
963   }
964 
Key(const char * str)965   size_t Key(const char *str) { return Key(str, strlen(str)); }
Key(const std::string & str)966   size_t Key(const std::string &str) { return Key(str.c_str(), str.size()); }
967 
String(const char * str,size_t len)968   size_t String(const char *str, size_t len) {
969     auto reset_to = buf_.size();
970     auto sloc = CreateBlob(str, len, 1, FBT_STRING);
971     if (flags_ & BUILDER_FLAG_SHARE_STRINGS) {
972       StringOffset so(sloc, len);
973       auto it = string_pool.find(so);
974       if (it != string_pool.end()) {
975         // Already in the buffer. Remove string we just serialized, and use
976         // existing offset instead.
977         buf_.resize(reset_to);
978         sloc = it->first;
979         stack_.back().u_ = sloc;
980       } else {
981         string_pool.insert(so);
982       }
983     }
984     return sloc;
985   }
String(const char * str)986   size_t String(const char *str) { return String(str, strlen(str)); }
String(const std::string & str)987   size_t String(const std::string &str) {
988     return String(str.c_str(), str.size());
989   }
String(const flexbuffers::String & str)990   void String(const flexbuffers::String &str) {
991     String(str.c_str(), str.length());
992   }
993 
String(const char * key,const char * str)994   void String(const char *key, const char *str) {
995     Key(key);
996     String(str);
997   }
String(const char * key,const std::string & str)998   void String(const char *key, const std::string &str) {
999     Key(key);
1000     String(str);
1001   }
String(const char * key,const flexbuffers::String & str)1002   void String(const char *key, const flexbuffers::String &str) {
1003     Key(key);
1004     String(str);
1005   }
1006 
Blob(const void * data,size_t len)1007   size_t Blob(const void *data, size_t len) {
1008     return CreateBlob(data, len, 0, FBT_BLOB);
1009   }
Blob(const std::vector<uint8_t> & v)1010   size_t Blob(const std::vector<uint8_t> &v) {
1011     return CreateBlob(flatbuffers::vector_data(v), v.size(), 0, FBT_BLOB);
1012   }
1013 
1014   // TODO(wvo): support all the FlexBuffer types (like flexbuffers::String),
1015   // e.g. Vector etc. Also in overloaded versions.
1016   // Also some FlatBuffers types?
1017 
StartVector()1018   size_t StartVector() { return stack_.size(); }
StartVector(const char * key)1019   size_t StartVector(const char *key) {
1020     Key(key);
1021     return stack_.size();
1022   }
StartMap()1023   size_t StartMap() { return stack_.size(); }
StartMap(const char * key)1024   size_t StartMap(const char *key) {
1025     Key(key);
1026     return stack_.size();
1027   }
1028 
1029   // TODO(wvo): allow this to specify an aligment greater than the natural
1030   // alignment.
EndVector(size_t start,bool typed,bool fixed)1031   size_t EndVector(size_t start, bool typed, bool fixed) {
1032     auto vec = CreateVector(start, stack_.size() - start, 1, typed, fixed);
1033     // Remove temp elements and return vector.
1034     stack_.resize(start);
1035     stack_.push_back(vec);
1036     return static_cast<size_t>(vec.u_);
1037   }
1038 
EndMap(size_t start)1039   size_t EndMap(size_t start) {
1040     // We should have interleaved keys and values on the stack.
1041     // Make sure it is an even number:
1042     auto len = stack_.size() - start;
1043     FLATBUFFERS_ASSERT(!(len & 1));
1044     len /= 2;
1045     // Make sure keys are all strings:
1046     for (auto key = start; key < stack_.size(); key += 2) {
1047       FLATBUFFERS_ASSERT(stack_[key].type_ == FBT_KEY);
1048     }
1049     // Now sort values, so later we can do a binary seach lookup.
1050     // We want to sort 2 array elements at a time.
1051     struct TwoValue {
1052       Value key;
1053       Value val;
1054     };
1055     // TODO(wvo): strict aliasing?
1056     // TODO(wvo): allow the caller to indicate the data is already sorted
1057     // for maximum efficiency? With an assert to check sortedness to make sure
1058     // we're not breaking binary search.
1059     // Or, we can track if the map is sorted as keys are added which would be
1060     // be quite cheap (cheaper than checking it here), so we can skip this
1061     // step automatically when appliccable, and encourage people to write in
1062     // sorted fashion.
1063     // std::sort is typically already a lot faster on sorted data though.
1064     auto dict =
1065         reinterpret_cast<TwoValue *>(flatbuffers::vector_data(stack_) + start);
1066     std::sort(dict, dict + len,
1067               [&](const TwoValue &a, const TwoValue &b) -> bool {
1068                 auto as = reinterpret_cast<const char *>(
1069                     flatbuffers::vector_data(buf_) + a.key.u_);
1070                 auto bs = reinterpret_cast<const char *>(
1071                     flatbuffers::vector_data(buf_) + b.key.u_);
1072                 auto comp = strcmp(as, bs);
1073                 // If this assertion hits, you've added two keys with the same
1074                 // value to this map.
1075                 // TODO: Have to check for pointer equality, as some sort
1076                 // implementation apparently call this function with the same
1077                 // element?? Why?
1078                 FLATBUFFERS_ASSERT(comp || &a == &b);
1079                 return comp < 0;
1080               });
1081     // First create a vector out of all keys.
1082     // TODO(wvo): if kBuilderFlagShareKeyVectors is true, see if we can share
1083     // the first vector.
1084     auto keys = CreateVector(start, len, 2, true, false);
1085     auto vec = CreateVector(start + 1, len, 2, false, false, &keys);
1086     // Remove temp elements and return map.
1087     stack_.resize(start);
1088     stack_.push_back(vec);
1089     return static_cast<size_t>(vec.u_);
1090   }
1091 
Vector(F f)1092   template<typename F> size_t Vector(F f) {
1093     auto start = StartVector();
1094     f();
1095     return EndVector(start, false, false);
1096   }
Vector(F f,T & state)1097   template<typename F, typename T> size_t Vector(F f, T &state) {
1098     auto start = StartVector();
1099     f(state);
1100     return EndVector(start, false, false);
1101   }
Vector(const char * key,F f)1102   template<typename F> size_t Vector(const char *key, F f) {
1103     auto start = StartVector(key);
1104     f();
1105     return EndVector(start, false, false);
1106   }
1107   template<typename F, typename T>
Vector(const char * key,F f,T & state)1108   size_t Vector(const char *key, F f, T &state) {
1109     auto start = StartVector(key);
1110     f(state);
1111     return EndVector(start, false, false);
1112   }
1113 
Vector(const T * elems,size_t len)1114   template<typename T> void Vector(const T *elems, size_t len) {
1115     if (flatbuffers::is_scalar<T>::value) {
1116       // This path should be a lot quicker and use less space.
1117       ScalarVector(elems, len, false);
1118     } else {
1119       auto start = StartVector();
1120       for (size_t i = 0; i < len; i++) Add(elems[i]);
1121       EndVector(start, false, false);
1122     }
1123   }
1124   template<typename T>
Vector(const char * key,const T * elems,size_t len)1125   void Vector(const char *key, const T *elems, size_t len) {
1126     Key(key);
1127     Vector(elems, len);
1128   }
Vector(const std::vector<T> & vec)1129   template<typename T> void Vector(const std::vector<T> &vec) {
1130     Vector(flatbuffers::vector_data(vec), vec.size());
1131   }
1132 
TypedVector(F f)1133   template<typename F> size_t TypedVector(F f) {
1134     auto start = StartVector();
1135     f();
1136     return EndVector(start, true, false);
1137   }
TypedVector(F f,T & state)1138   template<typename F, typename T> size_t TypedVector(F f, T &state) {
1139     auto start = StartVector();
1140     f(state);
1141     return EndVector(start, true, false);
1142   }
TypedVector(const char * key,F f)1143   template<typename F> size_t TypedVector(const char *key, F f) {
1144     auto start = StartVector(key);
1145     f();
1146     return EndVector(start, true, false);
1147   }
1148   template<typename F, typename T>
TypedVector(const char * key,F f,T & state)1149   size_t TypedVector(const char *key, F f, T &state) {
1150     auto start = StartVector(key);
1151     f(state);
1152     return EndVector(start, true, false);
1153   }
1154 
FixedTypedVector(const T * elems,size_t len)1155   template<typename T> size_t FixedTypedVector(const T *elems, size_t len) {
1156     // We only support a few fixed vector lengths. Anything bigger use a
1157     // regular typed vector.
1158     FLATBUFFERS_ASSERT(len >= 2 && len <= 4);
1159     // And only scalar values.
1160     static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
1161     return ScalarVector(elems, len, true);
1162   }
1163 
1164   template<typename T>
FixedTypedVector(const char * key,const T * elems,size_t len)1165   size_t FixedTypedVector(const char *key, const T *elems, size_t len) {
1166     Key(key);
1167     return FixedTypedVector(elems, len);
1168   }
1169 
Map(F f)1170   template<typename F> size_t Map(F f) {
1171     auto start = StartMap();
1172     f();
1173     return EndMap(start);
1174   }
Map(F f,T & state)1175   template<typename F, typename T> size_t Map(F f, T &state) {
1176     auto start = StartMap();
1177     f(state);
1178     return EndMap(start);
1179   }
Map(const char * key,F f)1180   template<typename F> size_t Map(const char *key, F f) {
1181     auto start = StartMap(key);
1182     f();
1183     return EndMap(start);
1184   }
Map(const char * key,F f,T & state)1185   template<typename F, typename T> size_t Map(const char *key, F f, T &state) {
1186     auto start = StartMap(key);
1187     f(state);
1188     return EndMap(start);
1189   }
Map(const std::map<std::string,T> & map)1190   template<typename T> void Map(const std::map<std::string, T> &map) {
1191     auto start = StartMap();
1192     for (auto it = map.begin(); it != map.end(); ++it)
1193       Add(it->first.c_str(), it->second);
1194     EndMap(start);
1195   }
1196 
1197   // Overloaded Add that tries to call the correct function above.
Add(int8_t i)1198   void Add(int8_t i) { Int(i); }
Add(int16_t i)1199   void Add(int16_t i) { Int(i); }
Add(int32_t i)1200   void Add(int32_t i) { Int(i); }
Add(int64_t i)1201   void Add(int64_t i) { Int(i); }
Add(uint8_t u)1202   void Add(uint8_t u) { UInt(u); }
Add(uint16_t u)1203   void Add(uint16_t u) { UInt(u); }
Add(uint32_t u)1204   void Add(uint32_t u) { UInt(u); }
Add(uint64_t u)1205   void Add(uint64_t u) { UInt(u); }
Add(float f)1206   void Add(float f) { Float(f); }
Add(double d)1207   void Add(double d) { Double(d); }
Add(bool b)1208   void Add(bool b) { Bool(b); }
Add(const char * str)1209   void Add(const char *str) { String(str); }
Add(const std::string & str)1210   void Add(const std::string &str) { String(str); }
Add(const flexbuffers::String & str)1211   void Add(const flexbuffers::String &str) { String(str); }
1212 
Add(const std::vector<T> & vec)1213   template<typename T> void Add(const std::vector<T> &vec) { Vector(vec); }
1214 
Add(const char * key,const T & t)1215   template<typename T> void Add(const char *key, const T &t) {
1216     Key(key);
1217     Add(t);
1218   }
1219 
Add(const std::map<std::string,T> & map)1220   template<typename T> void Add(const std::map<std::string, T> &map) {
1221     Map(map);
1222   }
1223 
1224   template<typename T> void operator+=(const T &t) { Add(t); }
1225 
1226   // This function is useful in combination with the Mutate* functions above.
1227   // It forces elements of vectors and maps to have a minimum size, such that
1228   // they can later be updated without failing.
1229   // Call with no arguments to reset.
1230   void ForceMinimumBitWidth(BitWidth bw = BIT_WIDTH_8) {
1231     force_min_bit_width_ = bw;
1232   }
1233 
Finish()1234   void Finish() {
1235     // If you hit this assert, you likely have objects that were never included
1236     // in a parent. You need to have exactly one root to finish a buffer.
1237     // Check your Start/End calls are matched, and all objects are inside
1238     // some other object.
1239     FLATBUFFERS_ASSERT(stack_.size() == 1);
1240 
1241     // Write root value.
1242     auto byte_width = Align(stack_[0].ElemWidth(buf_.size(), 0));
1243     WriteAny(stack_[0], byte_width);
1244     // Write root type.
1245     Write(stack_[0].StoredPackedType(), 1);
1246     // Write root size. Normally determined by parent, but root has no parent :)
1247     Write(byte_width, 1);
1248 
1249     finished_ = true;
1250   }
1251 
1252  private:
Finished()1253   void Finished() const {
1254     // If you get this assert, you're attempting to get access a buffer
1255     // which hasn't been finished yet. Be sure to call
1256     // Builder::Finish with your root object.
1257     FLATBUFFERS_ASSERT(finished_);
1258   }
1259 
1260   // Align to prepare for writing a scalar with a certain size.
Align(BitWidth alignment)1261   uint8_t Align(BitWidth alignment) {
1262     auto byte_width = 1U << alignment;
1263     buf_.insert(buf_.end(), flatbuffers::PaddingBytes(buf_.size(), byte_width),
1264                 0);
1265     return static_cast<uint8_t>(byte_width);
1266   }
1267 
WriteBytes(const void * val,size_t size)1268   void WriteBytes(const void *val, size_t size) {
1269     buf_.insert(buf_.end(), reinterpret_cast<const uint8_t *>(val),
1270                 reinterpret_cast<const uint8_t *>(val) + size);
1271   }
1272 
Write(T val,size_t byte_width)1273   template<typename T> void Write(T val, size_t byte_width) {
1274     FLATBUFFERS_ASSERT(sizeof(T) >= byte_width);
1275     val = flatbuffers::EndianScalar(val);
1276     WriteBytes(&val, byte_width);
1277   }
1278 
WriteDouble(double f,uint8_t byte_width)1279   void WriteDouble(double f, uint8_t byte_width) {
1280     switch (byte_width) {
1281       case 8: Write(f, byte_width); break;
1282       case 4: Write(static_cast<float>(f), byte_width); break;
1283       // case 2: Write(static_cast<half>(f), byte_width); break;
1284       // case 1: Write(static_cast<quarter>(f), byte_width); break;
1285       default: FLATBUFFERS_ASSERT(0);
1286     }
1287   }
1288 
WriteOffset(uint64_t o,uint8_t byte_width)1289   void WriteOffset(uint64_t o, uint8_t byte_width) {
1290     auto reloff = buf_.size() - o;
1291     FLATBUFFERS_ASSERT(byte_width == 8 || reloff < 1ULL << (byte_width * 8));
1292     Write(reloff, byte_width);
1293   }
1294 
PushIndirect(T val,Type type,BitWidth bit_width)1295   template<typename T> void PushIndirect(T val, Type type, BitWidth bit_width) {
1296     auto byte_width = Align(bit_width);
1297     auto iloc = buf_.size();
1298     Write(val, byte_width);
1299     stack_.push_back(Value(static_cast<uint64_t>(iloc), type, bit_width));
1300   }
1301 
WidthB(size_t byte_width)1302   static BitWidth WidthB(size_t byte_width) {
1303     switch (byte_width) {
1304       case 1: return BIT_WIDTH_8;
1305       case 2: return BIT_WIDTH_16;
1306       case 4: return BIT_WIDTH_32;
1307       case 8: return BIT_WIDTH_64;
1308       default: FLATBUFFERS_ASSERT(false); return BIT_WIDTH_64;
1309     }
1310   }
1311 
GetScalarType()1312   template<typename T> static Type GetScalarType() {
1313     static_assert(flatbuffers::is_scalar<T>::value, "Unrelated types");
1314     return flatbuffers::is_floating_point<T>::value
1315                ? FBT_FLOAT
1316                : flatbuffers::is_same<T, bool>::value
1317                      ? FBT_BOOL
1318                      : (flatbuffers::is_unsigned<T>::value ? FBT_UINT
1319                                                            : FBT_INT);
1320   }
1321 
1322   struct Value {
1323     union {
1324       int64_t i_;
1325       uint64_t u_;
1326       double f_;
1327     };
1328 
1329     Type type_;
1330 
1331     // For scalars: of itself, for vector: of its elements, for string: length.
1332     BitWidth min_bit_width_;
1333 
ValueValue1334     Value() : i_(0), type_(FBT_NULL), min_bit_width_(BIT_WIDTH_8) {}
1335 
ValueValue1336     Value(bool b)
1337         : u_(static_cast<uint64_t>(b)),
1338           type_(FBT_BOOL),
1339           min_bit_width_(BIT_WIDTH_8) {}
1340 
ValueValue1341     Value(int64_t i, Type t, BitWidth bw)
1342         : i_(i), type_(t), min_bit_width_(bw) {}
ValueValue1343     Value(uint64_t u, Type t, BitWidth bw)
1344         : u_(u), type_(t), min_bit_width_(bw) {}
1345 
ValueValue1346     Value(float f) : f_(f), type_(FBT_FLOAT), min_bit_width_(BIT_WIDTH_32) {}
ValueValue1347     Value(double f) : f_(f), type_(FBT_FLOAT), min_bit_width_(WidthF(f)) {}
1348 
1349     uint8_t StoredPackedType(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
1350       return PackedType(StoredWidth(parent_bit_width_), type_);
1351     }
1352 
ElemWidthValue1353     BitWidth ElemWidth(size_t buf_size, size_t elem_index) const {
1354       if (IsInline(type_)) {
1355         return min_bit_width_;
1356       } else {
1357         // We have an absolute offset, but want to store a relative offset
1358         // elem_index elements beyond the current buffer end. Since whether
1359         // the relative offset fits in a certain byte_width depends on
1360         // the size of the elements before it (and their alignment), we have
1361         // to test for each size in turn.
1362         for (size_t byte_width = 1;
1363              byte_width <= sizeof(flatbuffers::largest_scalar_t);
1364              byte_width *= 2) {
1365           // Where are we going to write this offset?
1366           auto offset_loc = buf_size +
1367                             flatbuffers::PaddingBytes(buf_size, byte_width) +
1368                             elem_index * byte_width;
1369           // Compute relative offset.
1370           auto offset = offset_loc - u_;
1371           // Does it fit?
1372           auto bit_width = WidthU(offset);
1373           if (static_cast<size_t>(static_cast<size_t>(1U) << bit_width) ==
1374               byte_width)
1375             return bit_width;
1376         }
1377         FLATBUFFERS_ASSERT(false);  // Must match one of the sizes above.
1378         return BIT_WIDTH_64;
1379       }
1380     }
1381 
1382     BitWidth StoredWidth(BitWidth parent_bit_width_ = BIT_WIDTH_8) const {
1383       if (IsInline(type_)) {
1384         return (std::max)(min_bit_width_, parent_bit_width_);
1385       } else {
1386         return min_bit_width_;
1387       }
1388     }
1389   };
1390 
WriteAny(const Value & val,uint8_t byte_width)1391   void WriteAny(const Value &val, uint8_t byte_width) {
1392     switch (val.type_) {
1393       case FBT_NULL:
1394       case FBT_INT: Write(val.i_, byte_width); break;
1395       case FBT_BOOL:
1396       case FBT_UINT: Write(val.u_, byte_width); break;
1397       case FBT_FLOAT: WriteDouble(val.f_, byte_width); break;
1398       default: WriteOffset(val.u_, byte_width); break;
1399     }
1400   }
1401 
CreateBlob(const void * data,size_t len,size_t trailing,Type type)1402   size_t CreateBlob(const void *data, size_t len, size_t trailing, Type type) {
1403     auto bit_width = WidthU(len);
1404     auto byte_width = Align(bit_width);
1405     Write<uint64_t>(len, byte_width);
1406     auto sloc = buf_.size();
1407     WriteBytes(data, len + trailing);
1408     stack_.push_back(Value(static_cast<uint64_t>(sloc), type, bit_width));
1409     return sloc;
1410   }
1411 
1412   template<typename T>
ScalarVector(const T * elems,size_t len,bool fixed)1413   size_t ScalarVector(const T *elems, size_t len, bool fixed) {
1414     auto vector_type = GetScalarType<T>();
1415     auto byte_width = sizeof(T);
1416     auto bit_width = WidthB(byte_width);
1417     // If you get this assert, you're trying to write a vector with a size
1418     // field that is bigger than the scalars you're trying to write (e.g. a
1419     // byte vector > 255 elements). For such types, write a "blob" instead.
1420     // TODO: instead of asserting, could write vector with larger elements
1421     // instead, though that would be wasteful.
1422     FLATBUFFERS_ASSERT(WidthU(len) <= bit_width);
1423     if (!fixed) Write<uint64_t>(len, byte_width);
1424     auto vloc = buf_.size();
1425     for (size_t i = 0; i < len; i++) Write(elems[i], byte_width);
1426     stack_.push_back(Value(static_cast<uint64_t>(vloc),
1427                            ToTypedVector(vector_type, fixed ? len : 0),
1428                            bit_width));
1429     return vloc;
1430   }
1431 
1432   Value CreateVector(size_t start, size_t vec_len, size_t step, bool typed,
1433                      bool fixed, const Value *keys = nullptr) {
1434     FLATBUFFERS_ASSERT(!fixed || typed); // typed=false, fixed=true combination is not supported.
1435     // Figure out smallest bit width we can store this vector with.
1436     auto bit_width = (std::max)(force_min_bit_width_, WidthU(vec_len));
1437     auto prefix_elems = 1;
1438     if (keys) {
1439       // If this vector is part of a map, we will pre-fix an offset to the keys
1440       // to this vector.
1441       bit_width = (std::max)(bit_width, keys->ElemWidth(buf_.size(), 0));
1442       prefix_elems += 2;
1443     }
1444     Type vector_type = FBT_KEY;
1445     // Check bit widths and types for all elements.
1446     for (size_t i = start; i < stack_.size(); i += step) {
1447       auto elem_width = stack_[i].ElemWidth(buf_.size(), i + prefix_elems);
1448       bit_width = (std::max)(bit_width, elem_width);
1449       if (typed) {
1450         if (i == start) {
1451           vector_type = stack_[i].type_;
1452         } else {
1453           // If you get this assert, you are writing a typed vector with
1454           // elements that are not all the same type.
1455           FLATBUFFERS_ASSERT(vector_type == stack_[i].type_);
1456         }
1457       }
1458     }
1459     // If you get this assert, your fixed types are not one of:
1460     // Int / UInt / Float / Key.
1461     FLATBUFFERS_ASSERT(!fixed || IsTypedVectorElementType(vector_type));
1462     auto byte_width = Align(bit_width);
1463     // Write vector. First the keys width/offset if available, and size.
1464     if (keys) {
1465       WriteOffset(keys->u_, byte_width);
1466       Write<uint64_t>(1ULL << keys->min_bit_width_, byte_width);
1467     }
1468     if (!fixed) Write<uint64_t>(vec_len, byte_width);
1469     // Then the actual data.
1470     auto vloc = buf_.size();
1471     for (size_t i = start; i < stack_.size(); i += step) {
1472       WriteAny(stack_[i], byte_width);
1473     }
1474     // Then the types.
1475     if (!typed) {
1476       for (size_t i = start; i < stack_.size(); i += step) {
1477         buf_.push_back(stack_[i].StoredPackedType(bit_width));
1478       }
1479     }
1480     return Value(static_cast<uint64_t>(vloc),
1481                  keys ? FBT_MAP
1482                       : (typed ? ToTypedVector(vector_type, fixed ? vec_len : 0)
1483                                : FBT_VECTOR),
1484                  bit_width);
1485   }
1486 
1487   // You shouldn't really be copying instances of this class.
1488   Builder(const Builder &);
1489   Builder &operator=(const Builder &);
1490 
1491   std::vector<uint8_t> buf_;
1492   std::vector<Value> stack_;
1493 
1494   bool finished_;
1495 
1496   BuilderFlag flags_;
1497 
1498   BitWidth force_min_bit_width_;
1499 
1500   struct KeyOffsetCompare {
KeyOffsetCompareKeyOffsetCompare1501     explicit KeyOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
operatorKeyOffsetCompare1502     bool operator()(size_t a, size_t b) const {
1503       auto stra =
1504           reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) + a);
1505       auto strb =
1506           reinterpret_cast<const char *>(flatbuffers::vector_data(*buf_) + b);
1507       return strcmp(stra, strb) < 0;
1508     }
1509     const std::vector<uint8_t> *buf_;
1510   };
1511 
1512   typedef std::pair<size_t, size_t> StringOffset;
1513   struct StringOffsetCompare {
StringOffsetCompareStringOffsetCompare1514     explicit StringOffsetCompare(const std::vector<uint8_t> &buf) : buf_(&buf) {}
operatorStringOffsetCompare1515     bool operator()(const StringOffset &a, const StringOffset &b) const {
1516       auto stra = reinterpret_cast<const char *>(
1517           flatbuffers::vector_data(*buf_) + a.first);
1518       auto strb = reinterpret_cast<const char *>(
1519           flatbuffers::vector_data(*buf_) + b.first);
1520       return strncmp(stra, strb, (std::min)(a.second, b.second) + 1) < 0;
1521     }
1522     const std::vector<uint8_t> *buf_;
1523   };
1524 
1525   typedef std::set<size_t, KeyOffsetCompare> KeyOffsetMap;
1526   typedef std::set<StringOffset, StringOffsetCompare> StringOffsetMap;
1527 
1528   KeyOffsetMap key_pool;
1529   StringOffsetMap string_pool;
1530 };
1531 
1532 }  // namespace flexbuffers
1533 
1534 #  if defined(_MSC_VER)
1535 #    pragma warning(pop)
1536 #  endif
1537 
1538 #endif  // FLATBUFFERS_FLEXBUFFERS_H_
1539