1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Time represents an absolute point in coordinated universal time (UTC),
6 // internally represented as microseconds (s/1,000,000) since the Windows epoch
7 // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
8 // defined in time_PLATFORM.cc. Note that values for Time may skew and jump
9 // around as the operating system makes adjustments to synchronize (e.g., with
10 // NTP servers). Thus, client code that uses the Time class must account for
11 // this.
12 //
13 // TimeDelta represents a duration of time, internally represented in
14 // microseconds.
15 //
16 // TimeTicks and ThreadTicks represent an abstract time that is most of the time
17 // incrementing, for use in measuring time durations. Internally, they are
18 // represented in microseconds. They cannot be converted to a human-readable
19 // time, but are guaranteed not to decrease (unlike the Time class). Note that
20 // TimeTicks may "stand still" (e.g., if the computer is suspended), and
21 // ThreadTicks will "stand still" whenever the thread has been de-scheduled by
22 // the operating system.
23 //
24 // All time classes are copyable, assignable, and occupy 64-bits per instance.
25 // As a result, prefer passing them by value:
26 //   void MyFunction(TimeDelta arg);
27 // If circumstances require, you may also pass by const reference:
28 //   void MyFunction(const TimeDelta& arg);  // Not preferred.
29 //
30 // Definitions of operator<< are provided to make these types work with
31 // DCHECK_EQ() and other log macros. For human-readable formatting, see
32 // "base/i18n/time_formatting.h".
33 //
34 // So many choices!  Which time class should you use?  Examples:
35 //
36 //   Time:        Interpreting the wall-clock time provided by a remote system.
37 //                Detecting whether cached resources have expired. Providing the
38 //                user with a display of the current date and time. Determining
39 //                the amount of time between events across re-boots of the
40 //                machine.
41 //
42 //   TimeTicks:   Tracking the amount of time a task runs. Executing delayed
43 //                tasks at the right time. Computing presentation timestamps.
44 //                Synchronizing audio and video using TimeTicks as a common
45 //                reference clock (lip-sync). Measuring network round-trip
46 //                latency.
47 //
48 //   ThreadTicks: Benchmarking how long the current thread has been doing actual
49 //                work.
50 
51 #ifndef BASE_TIME_TIME_H_
52 #define BASE_TIME_TIME_H_
53 
54 #include <stdint.h>
55 #include <time.h>
56 
57 #include <iosfwd>
58 #include <limits>
59 
60 #include "base/base_export.h"
61 #include "base/compiler_specific.h"
62 #include "base/logging.h"
63 #include "base/numerics/safe_math.h"
64 #include "build/build_config.h"
65 
66 #if defined(OS_FUCHSIA)
67 #include <zircon/types.h>
68 #endif
69 
70 #if defined(OS_MACOSX)
71 #include <CoreFoundation/CoreFoundation.h>
72 // Avoid Mac system header macro leak.
73 #undef TYPE_BOOL
74 #endif
75 
76 #if defined(OS_ANDROID)
77 #include <jni.h>
78 #endif
79 
80 #if defined(OS_POSIX) || defined(OS_FUCHSIA)
81 #include <unistd.h>
82 #include <sys/time.h>
83 #endif
84 
85 #if defined(OS_WIN)
86 #include "base/gtest_prod_util.h"
87 #include "base/win/windows_types.h"
88 #endif
89 
90 namespace ABI {
91 namespace Windows {
92 namespace Foundation {
93 struct DateTime;
94 }  // namespace Foundation
95 }  // namespace Windows
96 }  // namespace ABI
97 
98 namespace base {
99 
100 class PlatformThreadHandle;
101 class TimeDelta;
102 
103 // The functions in the time_internal namespace are meant to be used only by the
104 // time classes and functions.  Please use the math operators defined in the
105 // time classes instead.
106 namespace time_internal {
107 
108 // Add or subtract a TimeDelta from |value|. TimeDelta::Min()/Max() are treated
109 // as infinity and will always saturate the return value (infinity math applies
110 // if |value| also is at either limit of its spectrum). The int64_t argument and
111 // return value are in terms of a microsecond timebase.
112 BASE_EXPORT constexpr int64_t SaturatedAdd(int64_t value, TimeDelta delta);
113 BASE_EXPORT constexpr int64_t SaturatedSub(int64_t value, TimeDelta delta);
114 
115 }  // namespace time_internal
116 
117 // TimeDelta ------------------------------------------------------------------
118 
119 class BASE_EXPORT TimeDelta {
120  public:
TimeDelta()121   constexpr TimeDelta() : delta_(0) {}
122 
123   // Converts units of time to TimeDeltas.
124   // These conversions treat minimum argument values as min type values or -inf,
125   // and maximum ones as max type values or +inf; and their results will produce
126   // an is_min() or is_max() TimeDelta. WARNING: Floating point arithmetic is
127   // such that FromXXXD(t.InXXXF()) may not precisely equal |t|. Hence, floating
128   // point values should not be used for storage.
129   static constexpr TimeDelta FromDays(int days);
130   static constexpr TimeDelta FromHours(int hours);
131   static constexpr TimeDelta FromMinutes(int minutes);
132   static constexpr TimeDelta FromSeconds(int64_t secs);
133   static constexpr TimeDelta FromMilliseconds(int64_t ms);
134   static constexpr TimeDelta FromMicroseconds(int64_t us);
135   static constexpr TimeDelta FromNanoseconds(int64_t ns);
136   static constexpr TimeDelta FromSecondsD(double secs);
137   static constexpr TimeDelta FromMillisecondsD(double ms);
138   static constexpr TimeDelta FromMicrosecondsD(double us);
139   static constexpr TimeDelta FromNanosecondsD(double ns);
140 #if defined(OS_WIN)
141   static TimeDelta FromQPCValue(LONGLONG qpc_value);
142   // TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
143   // based on absolute time
144   static TimeDelta FromFileTime(FILETIME ft);
145   static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
146 #elif defined(OS_POSIX) || defined(OS_FUCHSIA)
147   static TimeDelta FromTimeSpec(const timespec& ts);
148 #endif
149 #if defined(OS_FUCHSIA)
150   static TimeDelta FromZxDuration(zx_duration_t nanos);
151 #endif
152 
153   // Converts an integer value representing TimeDelta to a class. This is used
154   // when deserializing a |TimeDelta| structure, using a value known to be
155   // compatible. It is not provided as a constructor because the integer type
156   // may be unclear from the perspective of a caller.
157   //
158   // DEPRECATED - Do not use in new code. http://crbug.com/634507
FromInternalValue(int64_t delta)159   static constexpr TimeDelta FromInternalValue(int64_t delta) {
160     return TimeDelta(delta);
161   }
162 
163   // Returns the maximum time delta, which should be greater than any reasonable
164   // time delta we might compare it to. Adding or subtracting the maximum time
165   // delta to a time or another time delta has an undefined result.
166   static constexpr TimeDelta Max();
167 
168   // Returns the minimum time delta, which should be less than than any
169   // reasonable time delta we might compare it to. Adding or subtracting the
170   // minimum time delta to a time or another time delta has an undefined result.
171   static constexpr TimeDelta Min();
172 
173   // Returns the internal numeric value of the TimeDelta object. Please don't
174   // use this and do arithmetic on it, as it is more error prone than using the
175   // provided operators.
176   // For serializing, use FromInternalValue to reconstitute.
177   //
178   // DEPRECATED - Do not use in new code. http://crbug.com/634507
ToInternalValue()179   constexpr int64_t ToInternalValue() const { return delta_; }
180 
181   // Returns the magnitude (absolute value) of this TimeDelta.
magnitude()182   constexpr TimeDelta magnitude() const {
183     // Some toolchains provide an incomplete C++11 implementation and lack an
184     // int64_t overload for std::abs().  The following is a simple branchless
185     // implementation:
186     const int64_t mask = delta_ >> (sizeof(delta_) * 8 - 1);
187     return TimeDelta((delta_ + mask) ^ mask);
188   }
189 
190   // Returns true if the time delta is zero.
is_zero()191   constexpr bool is_zero() const { return delta_ == 0; }
192 
193   // Returns true if the time delta is the maximum/minimum time delta.
is_max()194   constexpr bool is_max() const {
195     return delta_ == std::numeric_limits<int64_t>::max();
196   }
is_min()197   constexpr bool is_min() const {
198     return delta_ == std::numeric_limits<int64_t>::min();
199   }
200 
201 #if defined(OS_POSIX) || defined(OS_FUCHSIA)
202   struct timespec ToTimeSpec() const;
203 #endif
204 #if defined(OS_FUCHSIA)
205   zx_duration_t ToZxDuration() const;
206 #endif
207 #if defined(OS_WIN)
208   ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
209 #endif
210 
211   // Returns the time delta in some unit. Minimum argument values return as
212   // -inf for doubles and min type values otherwise. Maximum ones are treated as
213   // +inf for doubles and max type values otherwise. Their results will produce
214   // an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
215   // point value. The InXYZ versions return a truncated value (aka rounded
216   // towards zero, std::trunc() behavior). The InXYZFloored() versions round to
217   // lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
218   // up to greater integers (std::ceil() behavior). WARNING: Floating point
219   // arithmetic is such that FromXXXD(t.InXXXF()) may not precisely equal |t|.
220   // Hence, floating point values should not be used for storage.
221   int InDays() const;
222   int InDaysFloored() const;
223   int InHours() const;
224   int InMinutes() const;
225   double InSecondsF() const;
226   int64_t InSeconds() const;
227   double InMillisecondsF() const;
228   int64_t InMilliseconds() const;
229   int64_t InMillisecondsRoundedUp() const;
InMicroseconds()230   constexpr int64_t InMicroseconds() const { return delta_; }
231   double InMicrosecondsF() const;
232   int64_t InNanoseconds() const;
233 
234   // Computations with other deltas.
235   constexpr TimeDelta operator+(TimeDelta other) const {
236     return TimeDelta(time_internal::SaturatedAdd(delta_, other));
237   }
238   constexpr TimeDelta operator-(TimeDelta other) const {
239     return TimeDelta(time_internal::SaturatedSub(delta_, other));
240   }
241 
242   constexpr TimeDelta& operator+=(TimeDelta other) {
243     return *this = (*this + other);
244   }
245   constexpr TimeDelta& operator-=(TimeDelta other) {
246     return *this = (*this - other);
247   }
248   constexpr TimeDelta operator-() const {
249     if (is_max()) {
250       return Min();
251     }
252     if (is_min()) {
253       return Max();
254     }
255     return TimeDelta(-delta_);
256   }
257 
258   // Computations with numeric types.
259   template <typename T>
260   constexpr TimeDelta operator*(T a) const {
261     CheckedNumeric<int64_t> rv(delta_);
262     rv *= a;
263     if (rv.IsValid())
264       return TimeDelta(rv.ValueOrDie());
265     // Matched sign overflows. Mismatched sign underflows.
266     if ((delta_ < 0) ^ (a < 0))
267       return TimeDelta(std::numeric_limits<int64_t>::min());
268     return TimeDelta(std::numeric_limits<int64_t>::max());
269   }
270   template <typename T>
271   constexpr TimeDelta operator/(T a) const {
272     CheckedNumeric<int64_t> rv(delta_);
273     rv /= a;
274     if (rv.IsValid())
275       return TimeDelta(rv.ValueOrDie());
276     // Matched sign overflows. Mismatched sign underflows.
277     // Special case to catch divide by zero.
278     if ((delta_ < 0) ^ (a <= 0))
279       return TimeDelta(std::numeric_limits<int64_t>::min());
280     return TimeDelta(std::numeric_limits<int64_t>::max());
281   }
282   template <typename T>
283   constexpr TimeDelta& operator*=(T a) {
284     return *this = (*this * a);
285   }
286   template <typename T>
287   constexpr TimeDelta& operator/=(T a) {
288     return *this = (*this / a);
289   }
290 
291   constexpr int64_t operator/(TimeDelta a) const {
292     if (a.delta_ == 0) {
293       return delta_ < 0 ? std::numeric_limits<int64_t>::min()
294                         : std::numeric_limits<int64_t>::max();
295     }
296     if (is_max()) {
297       if (a.delta_ < 0) {
298         return std::numeric_limits<int64_t>::min();
299       }
300       return std::numeric_limits<int64_t>::max();
301     }
302     if (is_min()) {
303       if (a.delta_ > 0) {
304         return std::numeric_limits<int64_t>::min();
305       }
306       return std::numeric_limits<int64_t>::max();
307     }
308     if (a.is_max()) {
309       return 0;
310     }
311     return delta_ / a.delta_;
312   }
313 
314   constexpr TimeDelta operator%(TimeDelta a) const {
315     if (a.is_min() || a.is_max()) {
316       return TimeDelta(delta_);
317     }
318     return TimeDelta(delta_ % a.delta_);
319   }
320   TimeDelta& operator%=(TimeDelta other) { return *this = (*this % other); }
321 
322   // Comparison operators.
323   constexpr bool operator==(TimeDelta other) const {
324     return delta_ == other.delta_;
325   }
326   constexpr bool operator!=(TimeDelta other) const {
327     return delta_ != other.delta_;
328   }
329   constexpr bool operator<(TimeDelta other) const {
330     return delta_ < other.delta_;
331   }
332   constexpr bool operator<=(TimeDelta other) const {
333     return delta_ <= other.delta_;
334   }
335   constexpr bool operator>(TimeDelta other) const {
336     return delta_ > other.delta_;
337   }
338   constexpr bool operator>=(TimeDelta other) const {
339     return delta_ >= other.delta_;
340   }
341 
342  private:
343   friend constexpr int64_t time_internal::SaturatedAdd(int64_t value,
344                                                        TimeDelta delta);
345   friend constexpr int64_t time_internal::SaturatedSub(int64_t value,
346                                                        TimeDelta delta);
347 
348   // Constructs a delta given the duration in microseconds. This is private
349   // to avoid confusion by callers with an integer constructor. Use
350   // FromSeconds, FromMilliseconds, etc. instead.
TimeDelta(int64_t delta_us)351   constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
352 
353   // Private method to build a delta from a double.
354   static constexpr TimeDelta FromDouble(double value);
355 
356   // Private method to build a delta from the product of a user-provided value
357   // and a known-positive value.
358   static constexpr TimeDelta FromProduct(int64_t value, int64_t positive_value);
359 
360   // Delta in microseconds.
361   int64_t delta_;
362 };
363 
364 template <typename T>
365 constexpr TimeDelta operator*(T a, TimeDelta td) {
366   return td * a;
367 }
368 
369 // For logging use only.
370 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
371 
372 // Do not reference the time_internal::TimeBase template class directly.  Please
373 // use one of the time subclasses instead, and only reference the public
374 // TimeBase members via those classes.
375 namespace time_internal {
376 
SaturatedAdd(int64_t value,TimeDelta delta)377 constexpr int64_t SaturatedAdd(int64_t value, TimeDelta delta) {
378   // Treat Min/Max() as +/- infinity (additions involving two infinities are
379   // only valid if signs match).
380   if (delta.is_max()) {
381 //    CHECK_GT(value, std::numeric_limits<int64_t>::min());
382     return std::numeric_limits<int64_t>::max();
383   } else if (delta.is_min()) {
384 //    CHECK_LT(value, std::numeric_limits<int64_t>::max());
385     return std::numeric_limits<int64_t>::min();
386   }
387 
388   return base::ClampAdd(value, delta.delta_);
389 }
390 
SaturatedSub(int64_t value,TimeDelta delta)391 constexpr int64_t SaturatedSub(int64_t value, TimeDelta delta) {
392   // Treat Min/Max() as +/- infinity (subtractions involving two infinities are
393   // only valid if signs are opposite).
394   if (delta.is_max()) {
395 //    CHECK_LT(value, std::numeric_limits<int64_t>::max());
396     return std::numeric_limits<int64_t>::min();
397   } else if (delta.is_min()) {
398 //    CHECK_GT(value, std::numeric_limits<int64_t>::min());
399     return std::numeric_limits<int64_t>::max();
400   }
401 
402   return base::ClampSub(value, delta.delta_);
403 }
404 
405 // TimeBase--------------------------------------------------------------------
406 
407 // Provides value storage and comparison/math operations common to all time
408 // classes. Each subclass provides for strong type-checking to ensure
409 // semantically meaningful comparison/math of time values from the same clock
410 // source or timeline.
411 template<class TimeClass>
412 class TimeBase {
413  public:
414   static constexpr int64_t kHoursPerDay = 24;
415   static constexpr int64_t kSecondsPerMinute = 60;
416   static constexpr int64_t kSecondsPerHour = 60 * kSecondsPerMinute;
417   static constexpr int64_t kMillisecondsPerSecond = 1000;
418   static constexpr int64_t kMillisecondsPerDay =
419       kMillisecondsPerSecond * 60 * 60 * kHoursPerDay;
420   static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
421   static constexpr int64_t kMicrosecondsPerSecond =
422       kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
423   static constexpr int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60;
424   static constexpr int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60;
425   static constexpr int64_t kMicrosecondsPerDay =
426       kMicrosecondsPerHour * kHoursPerDay;
427   static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
428   static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
429   static constexpr int64_t kNanosecondsPerSecond =
430       kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
431 
432   // Returns true if this object has not been initialized.
433   //
434   // Warning: Be careful when writing code that performs math on time values,
435   // since it's possible to produce a valid "zero" result that should not be
436   // interpreted as a "null" value.
is_null()437   constexpr bool is_null() const { return us_ == 0; }
438 
439   // Returns true if this object represents the maximum/minimum time.
is_max()440   constexpr bool is_max() const {
441     return us_ == std::numeric_limits<int64_t>::max();
442   }
is_min()443   constexpr bool is_min() const {
444     return us_ == std::numeric_limits<int64_t>::min();
445   }
446 
447   // Returns the maximum/minimum times, which should be greater/less than than
448   // any reasonable time with which we might compare it.
Max()449   static constexpr TimeClass Max() {
450     return TimeClass(std::numeric_limits<int64_t>::max());
451   }
452 
Min()453   static constexpr TimeClass Min() {
454     return TimeClass(std::numeric_limits<int64_t>::min());
455   }
456 
457   // For serializing only. Use FromInternalValue() to reconstitute. Please don't
458   // use this and do arithmetic on it, as it is more error prone than using the
459   // provided operators.
460   //
461   // DEPRECATED - Do not use in new code. For serializing Time values, prefer
462   // Time::ToDeltaSinceWindowsEpoch().InMicroseconds(). http://crbug.com/634507
ToInternalValue()463   constexpr int64_t ToInternalValue() const { return us_; }
464 
465   // The amount of time since the origin (or "zero") point. This is a syntactic
466   // convenience to aid in code readability, mainly for debugging/testing use
467   // cases.
468   //
469   // Warning: While the Time subclass has a fixed origin point, the origin for
470   // the other subclasses can vary each time the application is restarted.
since_origin()471   constexpr TimeDelta since_origin() const {
472     return TimeDelta::FromMicroseconds(us_);
473   }
474 
475   constexpr TimeClass& operator=(TimeClass other) {
476     us_ = other.us_;
477     return *(static_cast<TimeClass*>(this));
478   }
479 
480   // Compute the difference between two times.
481   constexpr TimeDelta operator-(TimeClass other) const {
482     return TimeDelta::FromMicroseconds(us_ - other.us_);
483   }
484 
485   // Return a new time modified by some delta.
486   constexpr TimeClass operator+(TimeDelta delta) const {
487     return TimeClass(time_internal::SaturatedAdd(us_, delta));
488   }
489   constexpr TimeClass operator-(TimeDelta delta) const {
490     return TimeClass(time_internal::SaturatedSub(us_, delta));
491   }
492 
493   // Modify by some time delta.
494   constexpr TimeClass& operator+=(TimeDelta delta) {
495     return static_cast<TimeClass&>(*this = (*this + delta));
496   }
497   constexpr TimeClass& operator-=(TimeDelta delta) {
498     return static_cast<TimeClass&>(*this = (*this - delta));
499   }
500 
501   // Comparison operators
502   constexpr bool operator==(TimeClass other) const { return us_ == other.us_; }
503   constexpr bool operator!=(TimeClass other) const { return us_ != other.us_; }
504   constexpr bool operator<(TimeClass other) const { return us_ < other.us_; }
505   constexpr bool operator<=(TimeClass other) const { return us_ <= other.us_; }
506   constexpr bool operator>(TimeClass other) const { return us_ > other.us_; }
507   constexpr bool operator>=(TimeClass other) const { return us_ >= other.us_; }
508 
509  protected:
TimeBase(int64_t us)510   constexpr explicit TimeBase(int64_t us) : us_(us) {}
511 
512   // Time value in a microsecond timebase.
513   int64_t us_;
514 };
515 
516 }  // namespace time_internal
517 
518 template <class TimeClass>
519 inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
520   return t + delta;
521 }
522 
523 // Time -----------------------------------------------------------------------
524 
525 // Represents a wall clock time in UTC. Values are not guaranteed to be
526 // monotonically non-decreasing and are subject to large amounts of skew.
527 // Time is stored internally as microseconds since the Windows epoch (1601).
528 class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
529  public:
530   // Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
531   // (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
532   // following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
533   // of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
534   // 1800, and 1900.
535   static constexpr int64_t kTimeTToMicrosecondsOffset =
536       INT64_C(11644473600000000);
537 
538 #if defined(OS_WIN)
539   // To avoid overflow in QPC to Microseconds calculations, since we multiply
540   // by kMicrosecondsPerSecond, then the QPC value should not exceed
541   // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
542   static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
543 #endif
544 
545 // kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
546 // for values passed to FromUTCExploded() and FromLocalExploded(). Those
547 // functions will return false if passed values outside these limits. The limits
548 // are inclusive, meaning that the API should support all dates within a given
549 // limit year.
550 #if defined(OS_WIN)
551   static constexpr int kExplodedMinYear = 1601;
552   static constexpr int kExplodedMaxYear = 30827;
553 #elif defined(OS_IOS) && !__LP64__
554   static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
555   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
556 #elif defined(OS_MACOSX)
557   static constexpr int kExplodedMinYear = 1902;
558   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
559 #elif defined(OS_ANDROID)
560   // Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
561   // versions like KitKat (ARM but not x86 emulator) can't handle some early
562   // dates (e.g. before 1170). So we set min conservatively here.
563   static constexpr int kExplodedMinYear = 1902;
564   static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
565 #else
566   static constexpr int kExplodedMinYear =
567       (sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
568   static constexpr int kExplodedMaxYear =
569       (sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
570 #endif
571 
572   // Represents an exploded time that can be formatted nicely. This is kind of
573   // like the Win32 SYSTEMTIME structure or the Unix "struct tm" with a few
574   // additions and changes to prevent errors.
575   struct BASE_EXPORT Exploded {
576     int year;          // Four digit year "2007"
577     int month;         // 1-based month (values 1 = January, etc.)
578     int day_of_week;   // 0-based day of week (0 = Sunday, etc.)
579     int day_of_month;  // 1-based day of month (1-31)
580     int hour;          // Hour within the current day (0-23)
581     int minute;        // Minute within the current hour (0-59)
582     int second;        // Second within the current minute (0-59 plus leap
583                        //   seconds which may take it up to 60).
584     int millisecond;   // Milliseconds within the current second (0-999)
585 
586     // A cursory test for whether the data members are within their
587     // respective ranges. A 'true' return value does not guarantee the
588     // Exploded value can be successfully converted to a Time value.
589     bool HasValidValues() const;
590   };
591 
592   // Contains the NULL time. Use Time::Now() to get the current time.
Time()593   constexpr Time() : TimeBase(0) {}
594 
595   // Returns the time for epoch in Unix-like system (Jan 1, 1970).
596   static Time UnixEpoch();
597 
598   // Returns the current time. Watch out, the system might adjust its clock
599   // in which case time will actually go backwards. We don't guarantee that
600   // times are increasing, or that two calls to Now() won't be the same.
601   static Time Now();
602 
603   // Returns the current time. Same as Now() except that this function always
604   // uses system time so that there are no discrepancies between the returned
605   // time and system time even on virtual environments including our test bot.
606   // For timing sensitive unittests, this function should be used.
607   static Time NowFromSystemTime();
608 
609   // Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
610   // 00:00:00 UTC). Prefer these methods for opaque serialization and
611   // deserialization of time values, e.g.
612   //
613   //   // Serialization:
614   //   base::Time last_updated = ...;
615   //   SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
616   //
617   //   // Deserialization:
618   //   base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
619   //       base::TimeDelta::FromMicroseconds(LoadFromDatabase()));
620   static Time FromDeltaSinceWindowsEpoch(TimeDelta delta);
621   TimeDelta ToDeltaSinceWindowsEpoch() const;
622 
623   // Converts to/from time_t in UTC and a Time class.
624   static Time FromTimeT(time_t tt);
625   time_t ToTimeT() const;
626 
627   // Converts time to/from a double which is the number of seconds since epoch
628   // (Jan 1, 1970).  Webkit uses this format to represent time.
629   // Because WebKit initializes double time value to 0 to indicate "not
630   // initialized", we map it to empty Time object that also means "not
631   // initialized".
632   static Time FromDoubleT(double dt);
633   double ToDoubleT() const;
634 
635 #if defined(OS_POSIX) || defined(OS_FUCHSIA)
636   // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
637   // earlier versions) will have the |ts|'s tv_nsec component zeroed out,
638   // having a 1 second resolution, which agrees with
639   // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
640   static Time FromTimeSpec(const timespec& ts);
641 #endif
642 
643   // Converts to/from the Javascript convention for times, a number of
644   // milliseconds since the epoch:
645   // https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/getTime.
646   //
647   // Don't use ToJsTime() in new code, since it contains a subtle hack (only
648   // exactly 1601-01-01 00:00 UTC is represented as 1970-01-01 00:00 UTC), and
649   // that is not appropriate for general use. Try to use ToJsTimeIgnoringNull()
650   // unless you have a very good reason to use ToJsTime().
651   static Time FromJsTime(double ms_since_epoch);
652   double ToJsTime() const;
653   double ToJsTimeIgnoringNull() const;
654 
655   // Converts to/from Java convention for times, a number of milliseconds since
656   // the epoch. Because the Java format has less resolution, converting to Java
657   // time is a lossy operation.
658   static Time FromJavaTime(int64_t ms_since_epoch);
659   int64_t ToJavaTime() const;
660 
661 #if defined(OS_POSIX) || defined(OS_FUCHSIA)
662   static Time FromTimeVal(struct timeval t);
663   struct timeval ToTimeVal() const;
664 #endif
665 
666 #if defined(OS_FUCHSIA)
667   static Time FromZxTime(zx_time_t time);
668   zx_time_t ToZxTime() const;
669 #endif
670 
671 #if defined(OS_MACOSX)
672   static Time FromCFAbsoluteTime(CFAbsoluteTime t);
673   CFAbsoluteTime ToCFAbsoluteTime() const;
674 #endif
675 
676 #if defined(OS_WIN)
677   static Time FromFileTime(FILETIME ft);
678   FILETIME ToFileTime() const;
679 
680   // The minimum time of a low resolution timer.  This is basically a windows
681   // constant of ~15.6ms.  While it does vary on some older OS versions, we'll
682   // treat it as static across all windows versions.
683   static const int kMinLowResolutionThresholdMs = 16;
684 
685   // Enable or disable Windows high resolution timer.
686   static void EnableHighResolutionTimer(bool enable);
687 
688   // Read the minimum timer interval from the feature list. This should be
689   // called once after the feature list is initialized. This is needed for
690   // an experiment - see https://crbug.com/927165
691   static void ReadMinTimerIntervalLowResMs();
692 
693   // Activates or deactivates the high resolution timer based on the |activate|
694   // flag.  If the HighResolutionTimer is not Enabled (see
695   // EnableHighResolutionTimer), this function will return false.  Otherwise
696   // returns true.  Each successful activate call must be paired with a
697   // subsequent deactivate call.
698   // All callers to activate the high resolution timer must eventually call
699   // this function to deactivate the high resolution timer.
700   static bool ActivateHighResolutionTimer(bool activate);
701 
702   // Returns true if the high resolution timer is both enabled and activated.
703   // This is provided for testing only, and is not tracked in a thread-safe
704   // way.
705   static bool IsHighResolutionTimerInUse();
706 
707   // The following two functions are used to report the fraction of elapsed time
708   // that the high resolution timer is activated.
709   // ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
710   // measurement interval and GetHighResolutionTimerUsage() returns the
711   // percentage of time since the reset that the high resolution timer was
712   // activated.
713   // ResetHighResolutionTimerUsage() must be called at least once before calling
714   // GetHighResolutionTimerUsage(); otherwise the usage result would be
715   // undefined.
716   static void ResetHighResolutionTimerUsage();
717   static double GetHighResolutionTimerUsage();
718 #endif  // defined(OS_WIN)
719 
720   // Converts an exploded structure representing either the local time or UTC
721   // into a Time class. Returns false on a failure when, for example, a day of
722   // month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
FromUTCExploded(const Exploded & exploded,Time * time)723   static bool FromUTCExploded(const Exploded& exploded,
724                               Time* time) WARN_UNUSED_RESULT {
725     return FromExploded(false, exploded, time);
726   }
FromLocalExploded(const Exploded & exploded,Time * time)727   static bool FromLocalExploded(const Exploded& exploded,
728                                 Time* time) WARN_UNUSED_RESULT {
729     return FromExploded(true, exploded, time);
730   }
731 
732   // Converts a string representation of time to a Time object.
733   // An example of a time string which is converted is as below:-
734   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
735   // in the input string, FromString assumes local time and FromUTCString
736   // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
737   // specified in RFC822) is treated as if the timezone is not specified.
738   //
739   // WARNING: the underlying converter is very permissive. For example: it is
740   // not checked whether a given day of the week matches the date; Feb 29
741   // silently becomes Mar 1 in non-leap years; under certain conditions, whole
742   // English sentences may be parsed successfully and yield unexpected results.
743   //
744   // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
745   // a new time converter class.
FromString(const char * time_string,Time * parsed_time)746   static bool FromString(const char* time_string,
747                          Time* parsed_time) WARN_UNUSED_RESULT {
748     return FromStringInternal(time_string, true, parsed_time);
749   }
FromUTCString(const char * time_string,Time * parsed_time)750   static bool FromUTCString(const char* time_string,
751                             Time* parsed_time) WARN_UNUSED_RESULT {
752     return FromStringInternal(time_string, false, parsed_time);
753   }
754 
755   // Fills the given exploded structure with either the local time or UTC from
756   // this time structure (containing UTC).
UTCExplode(Exploded * exploded)757   void UTCExplode(Exploded* exploded) const {
758     return Explode(false, exploded);
759   }
LocalExplode(Exploded * exploded)760   void LocalExplode(Exploded* exploded) const {
761     return Explode(true, exploded);
762   }
763 
764   // The following two functions round down the time to the nearest day in
765   // either UTC or local time. It will represent midnight on that day.
UTCMidnight()766   Time UTCMidnight() const { return Midnight(false); }
LocalMidnight()767   Time LocalMidnight() const { return Midnight(true); }
768 
769   // Converts an integer value representing Time to a class. This may be used
770   // when deserializing a |Time| structure, using a value known to be
771   // compatible. It is not provided as a constructor because the integer type
772   // may be unclear from the perspective of a caller.
773   //
774   // DEPRECATED - Do not use in new code. For deserializing Time values, prefer
775   // Time::FromDeltaSinceWindowsEpoch(). http://crbug.com/634507
FromInternalValue(int64_t us)776   static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
777 
778  private:
779   friend class time_internal::TimeBase<Time>;
780 
Time(int64_t microseconds_since_win_epoch)781   constexpr explicit Time(int64_t microseconds_since_win_epoch)
782       : TimeBase(microseconds_since_win_epoch) {}
783 
784   // Explodes the given time to either local time |is_local = true| or UTC
785   // |is_local = false|.
786   void Explode(bool is_local, Exploded* exploded) const;
787 
788   // Unexplodes a given time assuming the source is either local time
789   // |is_local = true| or UTC |is_local = false|. Function returns false on
790   // failure and sets |time| to Time(0). Otherwise returns true and sets |time|
791   // to non-exploded time.
792   static bool FromExploded(bool is_local,
793                            const Exploded& exploded,
794                            Time* time) WARN_UNUSED_RESULT;
795 
796   // Rounds down the time to the nearest day in either local time
797   // |is_local = true| or UTC |is_local = false|.
798   Time Midnight(bool is_local) const;
799 
800   // Converts a string representation of time to a Time object.
801   // An example of a time string which is converted is as below:-
802   // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
803   // in the input string, local time |is_local = true| or
804   // UTC |is_local = false| is assumed. A timezone that cannot be parsed
805   // (e.g. "UTC" which is not specified in RFC822) is treated as if the
806   // timezone is not specified.
807   static bool FromStringInternal(const char* time_string,
808                                  bool is_local,
809                                  Time* parsed_time) WARN_UNUSED_RESULT;
810 
811   // Comparison does not consider |day_of_week| when doing the operation.
812   static bool ExplodedMostlyEquals(const Exploded& lhs,
813                                    const Exploded& rhs) WARN_UNUSED_RESULT;
814 
815   // Converts the provided time in milliseconds since the Unix epoch (1970) to a
816   // Time object, avoiding overflows.
817   static bool FromMillisecondsSinceUnixEpoch(int64_t unix_milliseconds,
818                                              Time* time) WARN_UNUSED_RESULT;
819 
820   // Returns the milliseconds since the Unix epoch (1970), rounding the
821   // microseconds towards -infinity.
822   int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
823 };
824 
825 // static
FromDays(int days)826 constexpr TimeDelta TimeDelta::FromDays(int days) {
827   return days == std::numeric_limits<int>::max()
828              ? Max()
829              : TimeDelta(days * Time::kMicrosecondsPerDay);
830 }
831 
832 // static
FromHours(int hours)833 constexpr TimeDelta TimeDelta::FromHours(int hours) {
834   return hours == std::numeric_limits<int>::max()
835              ? Max()
836              : TimeDelta(hours * Time::kMicrosecondsPerHour);
837 }
838 
839 // static
FromMinutes(int minutes)840 constexpr TimeDelta TimeDelta::FromMinutes(int minutes) {
841   return minutes == std::numeric_limits<int>::max()
842              ? Max()
843              : TimeDelta(minutes * Time::kMicrosecondsPerMinute);
844 }
845 
846 // static
FromSeconds(int64_t secs)847 constexpr TimeDelta TimeDelta::FromSeconds(int64_t secs) {
848   return FromProduct(secs, Time::kMicrosecondsPerSecond);
849 }
850 
851 // static
FromMilliseconds(int64_t ms)852 constexpr TimeDelta TimeDelta::FromMilliseconds(int64_t ms) {
853   return FromProduct(ms, Time::kMicrosecondsPerMillisecond);
854 }
855 
856 // static
FromMicroseconds(int64_t us)857 constexpr TimeDelta TimeDelta::FromMicroseconds(int64_t us) {
858   return TimeDelta(us);
859 }
860 
861 // static
FromNanoseconds(int64_t ns)862 constexpr TimeDelta TimeDelta::FromNanoseconds(int64_t ns) {
863   return TimeDelta(ns / Time::kNanosecondsPerMicrosecond);
864 }
865 
866 // static
FromSecondsD(double secs)867 constexpr TimeDelta TimeDelta::FromSecondsD(double secs) {
868   return FromDouble(secs * Time::kMicrosecondsPerSecond);
869 }
870 
871 // static
FromMillisecondsD(double ms)872 constexpr TimeDelta TimeDelta::FromMillisecondsD(double ms) {
873   return FromDouble(ms * Time::kMicrosecondsPerMillisecond);
874 }
875 
876 // static
FromMicrosecondsD(double us)877 constexpr TimeDelta TimeDelta::FromMicrosecondsD(double us) {
878   return FromDouble(us);
879 }
880 
881 // static
FromNanosecondsD(double ns)882 constexpr TimeDelta TimeDelta::FromNanosecondsD(double ns) {
883   return FromDouble(ns / Time::kNanosecondsPerMicrosecond);
884 }
885 
886 // static
Max()887 constexpr TimeDelta TimeDelta::Max() {
888   return TimeDelta(std::numeric_limits<int64_t>::max());
889 }
890 
891 // static
Min()892 constexpr TimeDelta TimeDelta::Min() {
893   return TimeDelta(std::numeric_limits<int64_t>::min());
894 }
895 
896 // static
FromDouble(double value)897 constexpr TimeDelta TimeDelta::FromDouble(double value) {
898   return TimeDelta(saturated_cast<int64_t>(value));
899 }
900 
901 // static
FromProduct(int64_t value,int64_t positive_value)902 constexpr TimeDelta TimeDelta::FromProduct(int64_t value,
903                                            int64_t positive_value) {
904 //  DCHECK(positive_value > 0);  // NOLINT, DCHECK_GT isn't constexpr.
905   return value > std::numeric_limits<int64_t>::max() / positive_value
906              ? Max()
907              : value < std::numeric_limits<int64_t>::min() / positive_value
908                    ? Min()
909                    : TimeDelta(value * positive_value);
910 }
911 
912 // For logging use only.
913 BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
914 
915 // TimeTicks ------------------------------------------------------------------
916 
917 // Represents monotonically non-decreasing clock time.
918 class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
919  public:
920   // The underlying clock used to generate new TimeTicks.
921   enum class Clock {
922     FUCHSIA_ZX_CLOCK_MONOTONIC,
923     LINUX_CLOCK_MONOTONIC,
924     IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
925     MAC_MACH_ABSOLUTE_TIME,
926     WIN_QPC,
927     WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
928   };
929 
TimeTicks()930   constexpr TimeTicks() : TimeBase(0) {}
931 
932   // Platform-dependent tick count representing "right now." When
933   // IsHighResolution() returns false, the resolution of the clock could be
934   // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
935   // microsecond.
936   static TimeTicks Now();
937 
938   // Returns true if the high resolution clock is working on this system and
939   // Now() will return high resolution values. Note that, on systems where the
940   // high resolution clock works but is deemed inefficient, the low resolution
941   // clock will be used instead.
942   static bool IsHighResolution() WARN_UNUSED_RESULT;
943 
944   // Returns true if TimeTicks is consistent across processes, meaning that
945   // timestamps taken on different processes can be safely compared with one
946   // another. (Note that, even on platforms where this returns true, time values
947   // from different threads that are within one tick of each other must be
948   // considered to have an ambiguous ordering.)
949   static bool IsConsistentAcrossProcesses() WARN_UNUSED_RESULT;
950 
951 #if defined(OS_FUCHSIA)
952   // Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
953   static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
954   zx_time_t ToZxTime() const;
955 #endif
956 
957 #if defined(OS_WIN)
958   // Translates an absolute QPC timestamp into a TimeTicks value. The returned
959   // value has the same origin as Now(). Do NOT attempt to use this if
960   // IsHighResolution() returns false.
961   static TimeTicks FromQPCValue(LONGLONG qpc_value);
962 #endif
963 
964 #if defined(OS_MACOSX) && !defined(OS_IOS)
965   static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
966 #endif  // defined(OS_MACOSX) && !defined(OS_IOS)
967 
968 #if defined(OS_ANDROID) || defined(OS_CHROMEOS)
969   // Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
970   // Note: this convertion may be non-monotonic in relation to previously
971   // obtained TimeTicks::Now() values because of the truncation (to
972   // milliseconds) performed by uptimeMillis().
973   static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
974 #endif
975 
976   // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
977   // Time and TimeTicks respond differently to user-set time and NTP
978   // adjustments, this number is only an estimate. Nevertheless, this can be
979   // useful when you need to relate the value of TimeTicks to a real time and
980   // date. Note: Upon first invocation, this function takes a snapshot of the
981   // realtime clock to establish a reference point.  This function will return
982   // the same value for the duration of the application, but will be different
983   // in future application runs.
984   static TimeTicks UnixEpoch();
985 
986   // Returns |this| snapped to the next tick, given a |tick_phase| and
987   // repeating |tick_interval| in both directions. |this| may be before,
988   // after, or equal to the |tick_phase|.
989   TimeTicks SnappedToNextTick(TimeTicks tick_phase,
990                               TimeDelta tick_interval) const;
991 
992   // Returns an enum indicating the underlying clock being used to generate
993   // TimeTicks timestamps. This function should only be used for debugging and
994   // logging purposes.
995   static Clock GetClock();
996 
997   // Converts an integer value representing TimeTicks to a class. This may be
998   // used when deserializing a |TimeTicks| structure, using a value known to be
999   // compatible. It is not provided as a constructor because the integer type
1000   // may be unclear from the perspective of a caller.
1001   //
1002   // DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
1003   // prefer TimeTicks + TimeDelta(). http://crbug.com/634507
FromInternalValue(int64_t us)1004   static constexpr TimeTicks FromInternalValue(int64_t us) {
1005     return TimeTicks(us);
1006   }
1007 
1008  protected:
1009 #if defined(OS_WIN)
1010   typedef DWORD (*TickFunctionType)(void);
1011   static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
1012 #endif
1013 
1014  private:
1015   friend class time_internal::TimeBase<TimeTicks>;
1016 
1017   // Please use Now() to create a new object. This is for internal use
1018   // and testing.
TimeTicks(int64_t us)1019   constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
1020 };
1021 
1022 // For logging use only.
1023 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
1024 
1025 // ThreadTicks ----------------------------------------------------------------
1026 
1027 // Represents a clock, specific to a particular thread, than runs only while the
1028 // thread is running.
1029 class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
1030  public:
ThreadTicks()1031   constexpr ThreadTicks() : TimeBase(0) {}
1032 
1033   // Returns true if ThreadTicks::Now() is supported on this system.
IsSupported()1034   static bool IsSupported() WARN_UNUSED_RESULT {
1035 #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
1036     (defined(OS_MACOSX) && !defined(OS_IOS)) || defined(OS_ANDROID) ||  \
1037     defined(OS_FUCHSIA)
1038     return true;
1039 #elif defined(OS_WIN)
1040     return IsSupportedWin();
1041 #else
1042     return false;
1043 #endif
1044   }
1045 
1046   // Waits until the initialization is completed. Needs to be guarded with a
1047   // call to IsSupported().
WaitUntilInitialized()1048   static void WaitUntilInitialized() {
1049 #if defined(OS_WIN)
1050     WaitUntilInitializedWin();
1051 #endif
1052   }
1053 
1054   // Returns thread-specific CPU-time on systems that support this feature.
1055   // Needs to be guarded with a call to IsSupported(). Use this timer
1056   // to (approximately) measure how much time the calling thread spent doing
1057   // actual work vs. being de-scheduled. May return bogus results if the thread
1058   // migrates to another CPU between two calls. Returns an empty ThreadTicks
1059   // object until the initialization is completed. If a clock reading is
1060   // absolutely needed, call WaitUntilInitialized() before this method.
1061   static ThreadTicks Now();
1062 
1063 #if defined(OS_WIN)
1064   // Similar to Now() above except this returns thread-specific CPU time for an
1065   // arbitrary thread. All comments for Now() method above apply apply to this
1066   // method as well.
1067   static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
1068 #endif
1069 
1070   // Converts an integer value representing ThreadTicks to a class. This may be
1071   // used when deserializing a |ThreadTicks| structure, using a value known to
1072   // be compatible. It is not provided as a constructor because the integer type
1073   // may be unclear from the perspective of a caller.
1074   //
1075   // DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
1076   // prefer ThreadTicks + TimeDelta(). http://crbug.com/634507
FromInternalValue(int64_t us)1077   static constexpr ThreadTicks FromInternalValue(int64_t us) {
1078     return ThreadTicks(us);
1079   }
1080 
1081  private:
1082   friend class time_internal::TimeBase<ThreadTicks>;
1083 
1084   // Please use Now() or GetForThread() to create a new object. This is for
1085   // internal use and testing.
ThreadTicks(int64_t us)1086   constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
1087 
1088 #if defined(OS_WIN)
1089   FRIEND_TEST_ALL_PREFIXES(TimeTicks, TSCTicksPerSecond);
1090 
1091 #if defined(ARCH_CPU_ARM64)
1092   // TSCTicksPerSecond is not supported on Windows on Arm systems because the
1093   // cycle-counting methods use the actual CPU cycle count, and not a consistent
1094   // incrementing counter.
1095 #else
1096   // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
1097   // been measured yet. Needs to be guarded with a call to IsSupported().
1098   // This method is declared here rather than in the anonymous namespace to
1099   // allow testing.
1100   static double TSCTicksPerSecond();
1101 #endif
1102 
1103   static bool IsSupportedWin() WARN_UNUSED_RESULT;
1104   static void WaitUntilInitializedWin();
1105 #endif
1106 };
1107 
1108 // For logging use only.
1109 BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
1110 
1111 }  // namespace base
1112 
1113 #endif  // BASE_TIME_TIME_H_
1114