1 /*
2  * Copyright (c) Stefano Sabatini 2010
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file
23  * life video source, based on John Conways' Life Game
24  */
25 
26 /* #define DEBUG */
27 
28 #include "libavutil/file.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/intreadwrite.h"
31 #include "libavutil/lfg.h"
32 #include "libavutil/opt.h"
33 #include "libavutil/parseutils.h"
34 #include "libavutil/random_seed.h"
35 #include "libavutil/avstring.h"
36 #include "avfilter.h"
37 #include "internal.h"
38 #include "formats.h"
39 #include "video.h"
40 
41 typedef struct LifeContext {
42     const AVClass *class;
43     int w, h;
44     char *filename;
45     char *rule_str;
46     uint8_t *file_buf;
47     size_t file_bufsize;
48 
49     /**
50      * The two grid state buffers.
51      *
52      * A 0xFF (ALIVE_CELL) value means the cell is alive (or new born), while
53      * the decreasing values from 0xFE to 0 means the cell is dead; the range
54      * of values is used for the slow death effect, or mold (0xFE means dead,
55      * 0xFD means very dead, 0xFC means very very dead... and 0x00 means
56      * definitely dead/mold).
57      */
58     uint8_t *buf[2];
59 
60     uint8_t  buf_idx;
61     uint16_t stay_rule;         ///< encode the behavior for filled cells
62     uint16_t born_rule;         ///< encode the behavior for empty cells
63     uint64_t pts;
64     AVRational frame_rate;
65     double   random_fill_ratio;
66     int64_t random_seed;
67     int stitch;
68     int mold;
69     uint8_t  life_color[4];
70     uint8_t death_color[4];
71     uint8_t  mold_color[4];
72     AVLFG lfg;
73     void (*draw)(AVFilterContext*, AVFrame*);
74 } LifeContext;
75 
76 #define ALIVE_CELL 0xFF
77 #define OFFSET(x) offsetof(LifeContext, x)
78 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
79 
80 static const AVOption life_options[] = {
81     { "filename", "set source file",  OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
82     { "f",        "set source file",  OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
83     { "size",     "set video size",   OFFSET(w),        AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
84     { "s",        "set video size",   OFFSET(w),        AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
85     { "rate",     "set video rate",   OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
86     { "r",        "set video rate",   OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
87     { "rule",     "set rule",         OFFSET(rule_str), AV_OPT_TYPE_STRING, {.str = "B3/S23"}, CHAR_MIN, CHAR_MAX, FLAGS },
88     { "random_fill_ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
89     { "ratio",             "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
90     { "random_seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT64, {.i64=-1}, -1, UINT32_MAX, FLAGS },
91     { "seed",        "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT64, {.i64=-1}, -1, UINT32_MAX, FLAGS },
92     { "stitch",      "stitch boundaries", OFFSET(stitch), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
93     { "mold",        "set mold speed for dead cells", OFFSET(mold), AV_OPT_TYPE_INT, {.i64=0}, 0, 0xFF, FLAGS },
94     { "life_color",  "set life color",  OFFSET( life_color), AV_OPT_TYPE_COLOR, {.str="white"}, CHAR_MIN, CHAR_MAX, FLAGS },
95     { "death_color", "set death color", OFFSET(death_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
96     { "mold_color",  "set mold color",  OFFSET( mold_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
97     { NULL }
98 };
99 
100 AVFILTER_DEFINE_CLASS(life);
101 
parse_rule(uint16_t * born_rule,uint16_t * stay_rule,const char * rule_str,void * log_ctx)102 static int parse_rule(uint16_t *born_rule, uint16_t *stay_rule,
103                       const char *rule_str, void *log_ctx)
104 {
105     char *tail;
106     const char *p = rule_str;
107     *born_rule = 0;
108     *stay_rule = 0;
109 
110     if (strchr("bBsS", *p)) {
111         /* parse rule as a Born / Stay Alive code, see
112          * http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life */
113         do {
114             uint16_t *rule = (*p == 'b' || *p == 'B') ? born_rule : stay_rule;
115             p++;
116             while (*p >= '0' && *p <= '8') {
117                 *rule += 1<<(*p - '0');
118                 p++;
119             }
120             if (*p != '/')
121                 break;
122             p++;
123         } while (strchr("bBsS", *p));
124 
125         if (*p)
126             goto error;
127     } else {
128         /* parse rule as a number, expressed in the form STAY|(BORN<<9),
129          * where STAY and BORN encode the corresponding 9-bits rule */
130         long int rule = strtol(rule_str, &tail, 10);
131         if (*tail)
132             goto error;
133         *born_rule  = ((1<<9)-1) & rule;
134         *stay_rule = rule >> 9;
135     }
136 
137     return 0;
138 
139 error:
140     av_log(log_ctx, AV_LOG_ERROR, "Invalid rule code '%s' provided\n", rule_str);
141     return AVERROR(EINVAL);
142 }
143 
144 #ifdef DEBUG
show_life_grid(AVFilterContext * ctx)145 static void show_life_grid(AVFilterContext *ctx)
146 {
147     LifeContext *life = ctx->priv;
148     int i, j;
149 
150     char *line = av_malloc(life->w + 1);
151     if (!line)
152         return;
153     for (i = 0; i < life->h; i++) {
154         for (j = 0; j < life->w; j++)
155             line[j] = life->buf[life->buf_idx][i*life->w + j] == ALIVE_CELL ? '@' : ' ';
156         line[j] = 0;
157         av_log(ctx, AV_LOG_DEBUG, "%3d: %s\n", i, line);
158     }
159     av_free(line);
160 }
161 #endif
162 
init_pattern_from_file(AVFilterContext * ctx)163 static int init_pattern_from_file(AVFilterContext *ctx)
164 {
165     LifeContext *life = ctx->priv;
166     char *p;
167     int ret, i, i0, j, h = 0, w, max_w = 0;
168 
169     if ((ret = av_file_map(life->filename, &life->file_buf, &life->file_bufsize,
170                            0, ctx)) < 0)
171         return ret;
172     av_freep(&life->filename);
173 
174     /* prescan file to get the number of lines and the maximum width */
175     w = 0;
176     for (i = 0; i < life->file_bufsize; i++) {
177         if (life->file_buf[i] == '\n') {
178             h++; max_w = FFMAX(w, max_w); w = 0;
179         } else {
180             w++;
181         }
182     }
183     av_log(ctx, AV_LOG_DEBUG, "h:%d max_w:%d\n", h, max_w);
184 
185     if (life->w) {
186         if (max_w > life->w || h > life->h) {
187             av_log(ctx, AV_LOG_ERROR,
188                    "The specified size is %dx%d which cannot contain the provided file size of %dx%d\n",
189                    life->w, life->h, max_w, h);
190             return AVERROR(EINVAL);
191         }
192     } else {
193         /* size was not specified, set it to size of the grid */
194         life->w = max_w;
195         life->h = h;
196     }
197 
198     if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
199         !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
200         av_freep(&life->buf[0]);
201         av_freep(&life->buf[1]);
202         return AVERROR(ENOMEM);
203     }
204 
205     /* fill buf[0] */
206     p = life->file_buf;
207     for (i0 = 0, i = (life->h - h)/2; i0 < h; i0++, i++) {
208         for (j = (life->w - max_w)/2;; j++) {
209             av_log(ctx, AV_LOG_DEBUG, "%d:%d %c\n", i, j, *p == '\n' ? 'N' : *p);
210             if (*p == '\n') {
211                 p++; break;
212             } else
213                 life->buf[0][i*life->w + j] = av_isgraph(*(p++)) ? ALIVE_CELL : 0;
214         }
215     }
216     life->buf_idx = 0;
217 
218     return 0;
219 }
220 
init(AVFilterContext * ctx)221 static av_cold int init(AVFilterContext *ctx)
222 {
223     LifeContext *life = ctx->priv;
224     int ret;
225 
226     if (!life->w && !life->filename)
227         av_opt_set(life, "size", "320x240", 0);
228 
229     if ((ret = parse_rule(&life->born_rule, &life->stay_rule, life->rule_str, ctx)) < 0)
230         return ret;
231 
232     if (!life->mold && memcmp(life->mold_color, "\x00\x00\x00", 3))
233         av_log(ctx, AV_LOG_WARNING,
234                "Mold color is set while mold isn't, ignoring the color.\n");
235 
236     if (!life->filename) {
237         /* fill the grid randomly */
238         int i;
239 
240         if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
241             !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
242             av_freep(&life->buf[0]);
243             av_freep(&life->buf[1]);
244             return AVERROR(ENOMEM);
245         }
246         if (life->random_seed == -1)
247             life->random_seed = av_get_random_seed();
248 
249         av_lfg_init(&life->lfg, life->random_seed);
250 
251         for (i = 0; i < life->w * life->h; i++) {
252             double r = (double)av_lfg_get(&life->lfg) / UINT32_MAX;
253             if (r <= life->random_fill_ratio)
254                 life->buf[0][i] = ALIVE_CELL;
255         }
256         life->buf_idx = 0;
257     } else {
258         if ((ret = init_pattern_from_file(ctx)) < 0)
259             return ret;
260     }
261 
262     av_log(ctx, AV_LOG_VERBOSE,
263            "s:%dx%d r:%d/%d rule:%s stay_rule:%d born_rule:%d stitch:%d seed:%"PRId64"\n",
264            life->w, life->h, life->frame_rate.num, life->frame_rate.den,
265            life->rule_str, life->stay_rule, life->born_rule, life->stitch,
266            life->random_seed);
267     return 0;
268 }
269 
uninit(AVFilterContext * ctx)270 static av_cold void uninit(AVFilterContext *ctx)
271 {
272     LifeContext *life = ctx->priv;
273 
274     av_file_unmap(life->file_buf, life->file_bufsize);
275     av_freep(&life->rule_str);
276     av_freep(&life->buf[0]);
277     av_freep(&life->buf[1]);
278 }
279 
config_props(AVFilterLink * outlink)280 static int config_props(AVFilterLink *outlink)
281 {
282     LifeContext *life = outlink->src->priv;
283 
284     outlink->w = life->w;
285     outlink->h = life->h;
286     outlink->time_base = av_inv_q(life->frame_rate);
287 
288     return 0;
289 }
290 
evolve(AVFilterContext * ctx)291 static void evolve(AVFilterContext *ctx)
292 {
293     LifeContext *life = ctx->priv;
294     int i, j;
295     uint8_t *oldbuf = life->buf[ life->buf_idx];
296     uint8_t *newbuf = life->buf[!life->buf_idx];
297 
298     enum { NW, N, NE, W, E, SW, S, SE };
299 
300     /* evolve the grid */
301     for (i = 0; i < life->h; i++) {
302         for (j = 0; j < life->w; j++) {
303             int pos[8][2], n, alive, cell;
304             if (life->stitch) {
305                 pos[NW][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NW][1] = (j-1) < 0 ? life->w-1 : j-1;
306                 pos[N ][0] = (i-1) < 0 ? life->h-1 : i-1; pos[N ][1] =                         j  ;
307                 pos[NE][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NE][1] = (j+1) == life->w ?  0 : j+1;
308                 pos[W ][0] =                         i  ; pos[W ][1] = (j-1) < 0 ? life->w-1 : j-1;
309                 pos[E ][0] =                         i  ; pos[E ][1] = (j+1) == life->w ? 0  : j+1;
310                 pos[SW][0] = (i+1) == life->h ?  0 : i+1; pos[SW][1] = (j-1) < 0 ? life->w-1 : j-1;
311                 pos[S ][0] = (i+1) == life->h ?  0 : i+1; pos[S ][1] =                         j  ;
312                 pos[SE][0] = (i+1) == life->h ?  0 : i+1; pos[SE][1] = (j+1) == life->w ?  0 : j+1;
313             } else {
314                 pos[NW][0] = (i-1) < 0 ? -1        : i-1; pos[NW][1] = (j-1) < 0 ? -1        : j-1;
315                 pos[N ][0] = (i-1) < 0 ? -1        : i-1; pos[N ][1] =                         j  ;
316                 pos[NE][0] = (i-1) < 0 ? -1        : i-1; pos[NE][1] = (j+1) == life->w ? -1 : j+1;
317                 pos[W ][0] =                         i  ; pos[W ][1] = (j-1) < 0 ? -1        : j-1;
318                 pos[E ][0] =                         i  ; pos[E ][1] = (j+1) == life->w ? -1 : j+1;
319                 pos[SW][0] = (i+1) == life->h ? -1 : i+1; pos[SW][1] = (j-1) < 0 ? -1        : j-1;
320                 pos[S ][0] = (i+1) == life->h ? -1 : i+1; pos[S ][1] =                         j  ;
321                 pos[SE][0] = (i+1) == life->h ? -1 : i+1; pos[SE][1] = (j+1) == life->w ? -1 : j+1;
322             }
323 
324             /* compute the number of live neighbor cells */
325             n = (pos[NW][0] == -1 || pos[NW][1] == -1 ? 0 : oldbuf[pos[NW][0]*life->w + pos[NW][1]] == ALIVE_CELL) +
326                 (pos[N ][0] == -1 || pos[N ][1] == -1 ? 0 : oldbuf[pos[N ][0]*life->w + pos[N ][1]] == ALIVE_CELL) +
327                 (pos[NE][0] == -1 || pos[NE][1] == -1 ? 0 : oldbuf[pos[NE][0]*life->w + pos[NE][1]] == ALIVE_CELL) +
328                 (pos[W ][0] == -1 || pos[W ][1] == -1 ? 0 : oldbuf[pos[W ][0]*life->w + pos[W ][1]] == ALIVE_CELL) +
329                 (pos[E ][0] == -1 || pos[E ][1] == -1 ? 0 : oldbuf[pos[E ][0]*life->w + pos[E ][1]] == ALIVE_CELL) +
330                 (pos[SW][0] == -1 || pos[SW][1] == -1 ? 0 : oldbuf[pos[SW][0]*life->w + pos[SW][1]] == ALIVE_CELL) +
331                 (pos[S ][0] == -1 || pos[S ][1] == -1 ? 0 : oldbuf[pos[S ][0]*life->w + pos[S ][1]] == ALIVE_CELL) +
332                 (pos[SE][0] == -1 || pos[SE][1] == -1 ? 0 : oldbuf[pos[SE][0]*life->w + pos[SE][1]] == ALIVE_CELL);
333             cell  = oldbuf[i*life->w + j];
334             alive = 1<<n & (cell == ALIVE_CELL ? life->stay_rule : life->born_rule);
335             if (alive)     *newbuf = ALIVE_CELL; // new cell is alive
336             else if (cell) *newbuf = cell - 1;   // new cell is dead and in the process of mold
337             else           *newbuf = 0;          // new cell is definitely dead
338             ff_dlog(ctx, "i:%d j:%d live_neighbors:%d cell:%d -> cell:%d\n", i, j, n, cell, *newbuf);
339             newbuf++;
340         }
341     }
342 
343     life->buf_idx = !life->buf_idx;
344 }
345 
fill_picture_monoblack(AVFilterContext * ctx,AVFrame * picref)346 static void fill_picture_monoblack(AVFilterContext *ctx, AVFrame *picref)
347 {
348     LifeContext *life = ctx->priv;
349     uint8_t *buf = life->buf[life->buf_idx];
350     int i, j, k;
351 
352     /* fill the output picture with the old grid buffer */
353     for (i = 0; i < life->h; i++) {
354         uint8_t byte = 0;
355         uint8_t *p = picref->data[0] + i * picref->linesize[0];
356         for (k = 0, j = 0; j < life->w; j++) {
357             byte |= (buf[i*life->w+j] == ALIVE_CELL)<<(7-k++);
358             if (k==8 || j == life->w-1) {
359                 k = 0;
360                 *p++ = byte;
361                 byte = 0;
362             }
363         }
364     }
365 }
366 
367 // divide by 255 and round to nearest
368 // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
369 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
370 
fill_picture_rgb(AVFilterContext * ctx,AVFrame * picref)371 static void fill_picture_rgb(AVFilterContext *ctx, AVFrame *picref)
372 {
373     LifeContext *life = ctx->priv;
374     uint8_t *buf = life->buf[life->buf_idx];
375     int i, j;
376 
377     /* fill the output picture with the old grid buffer */
378     for (i = 0; i < life->h; i++) {
379         uint8_t *p = picref->data[0] + i * picref->linesize[0];
380         for (j = 0; j < life->w; j++) {
381             uint8_t v = buf[i*life->w + j];
382             if (life->mold && v != ALIVE_CELL) {
383                 const uint8_t *c1 = life-> mold_color;
384                 const uint8_t *c2 = life->death_color;
385                 int death_age = FFMIN((0xff - v) * life->mold, 0xff);
386                 *p++ = FAST_DIV255((c2[0] << 8) + ((int)c1[0] - (int)c2[0]) * death_age);
387                 *p++ = FAST_DIV255((c2[1] << 8) + ((int)c1[1] - (int)c2[1]) * death_age);
388                 *p++ = FAST_DIV255((c2[2] << 8) + ((int)c1[2] - (int)c2[2]) * death_age);
389             } else {
390                 const uint8_t *c = v == ALIVE_CELL ? life->life_color : life->death_color;
391                 AV_WB24(p, c[0]<<16 | c[1]<<8 | c[2]);
392                 p += 3;
393             }
394         }
395     }
396 }
397 
request_frame(AVFilterLink * outlink)398 static int request_frame(AVFilterLink *outlink)
399 {
400     LifeContext *life = outlink->src->priv;
401     AVFrame *picref = ff_get_video_buffer(outlink, life->w, life->h);
402     if (!picref)
403         return AVERROR(ENOMEM);
404     picref->sample_aspect_ratio = (AVRational) {1, 1};
405     picref->pts = life->pts++;
406 
407     life->draw(outlink->src, picref);
408     evolve(outlink->src);
409 #ifdef DEBUG
410     show_life_grid(outlink->src);
411 #endif
412     return ff_filter_frame(outlink, picref);
413 }
414 
query_formats(AVFilterContext * ctx)415 static int query_formats(AVFilterContext *ctx)
416 {
417     LifeContext *life = ctx->priv;
418     enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_NONE, AV_PIX_FMT_NONE };
419     AVFilterFormats *fmts_list;
420 
421     if (life->mold || memcmp(life-> life_color, "\xff\xff\xff", 3)
422                    || memcmp(life->death_color, "\x00\x00\x00", 3)) {
423         pix_fmts[0] = AV_PIX_FMT_RGB24;
424         life->draw = fill_picture_rgb;
425     } else {
426         pix_fmts[0] = AV_PIX_FMT_MONOBLACK;
427         life->draw = fill_picture_monoblack;
428     }
429 
430     fmts_list = ff_make_format_list(pix_fmts);
431     return ff_set_common_formats(ctx, fmts_list);
432 }
433 
434 static const AVFilterPad life_outputs[] = {
435     {
436         .name          = "default",
437         .type          = AVMEDIA_TYPE_VIDEO,
438         .request_frame = request_frame,
439         .config_props  = config_props,
440     },
441     { NULL}
442 };
443 
444 AVFilter ff_vsrc_life = {
445     .name          = "life",
446     .description   = NULL_IF_CONFIG_SMALL("Create life."),
447     .priv_size     = sizeof(LifeContext),
448     .priv_class    = &life_class,
449     .init          = init,
450     .uninit        = uninit,
451     .query_formats = query_formats,
452     .inputs        = NULL,
453     .outputs       = life_outputs,
454 };
455