1;
2; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
3;
4; Copyright (C) 2009-2011, 2014-2017, D. R. Commander.
5; Copyright (C) 2015, Matthieu Darbois.
6;
7; Based on the x86 SIMD extension for IJG JPEG library
8; Copyright (C) 1999-2006, MIYASAKA Masaru.
9; For conditions of distribution and use, see copyright notice in jsimdext.inc
10;
11; This file should be assembled with NASM (Netwide Assembler),
12; can *not* be assembled with Microsoft's MASM or any compatible
13; assembler (including Borland's Turbo Assembler).
14; NASM is available from http://nasm.sourceforge.net/ or
15; http://sourceforge.net/project/showfiles.php?group_id=6208
16;
17; This file contains an SSE2 implementation for Huffman coding of one block.
18; The following code is based directly on jchuff.c; see jchuff.c for more
19; details.
20;
21; [TAB8]
22
23%include "jsimdext.inc"
24
25; --------------------------------------------------------------------------
26    SECTION     SEG_CONST
27
28    alignz      32
29    GLOBAL_DATA(jconst_huff_encode_one_block)
30    EXTERN      EXTN(jpeg_nbits_table)
31
32EXTN(jconst_huff_encode_one_block):
33
34    alignz      32
35
36; --------------------------------------------------------------------------
37    SECTION     SEG_TEXT
38    BITS        32
39
40; These macros perform the same task as the emit_bits() function in the
41; original libjpeg code.  In addition to reducing overhead by explicitly
42; inlining the code, additional performance is achieved by taking into
43; account the size of the bit buffer and waiting until it is almost full
44; before emptying it.  This mostly benefits 64-bit platforms, since 6
45; bytes can be stored in a 64-bit bit buffer before it has to be emptied.
46
47%macro EMIT_BYTE 0
48    sub         put_bits, 8             ; put_bits -= 8;
49    mov         edx, put_buffer
50    mov         ecx, put_bits
51    shr         edx, cl                 ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
52    mov         byte [eax], dl          ; *buffer++ = c;
53    add         eax, 1
54    cmp         dl, 0xFF                ; need to stuff a zero byte?
55    jne         %%.EMIT_BYTE_END
56    mov         byte [eax], 0           ; *buffer++ = 0;
57    add         eax, 1
58%%.EMIT_BYTE_END:
59%endmacro
60
61%macro PUT_BITS 1
62    add         put_bits, ecx           ; put_bits += size;
63    shl         put_buffer, cl          ; put_buffer = (put_buffer << size);
64    or          put_buffer, %1
65%endmacro
66
67%macro CHECKBUF15 0
68    cmp         put_bits, 16            ; if (put_bits > 31) {
69    jl          %%.CHECKBUF15_END
70    mov         eax, POINTER [esp+buffer]
71    EMIT_BYTE
72    EMIT_BYTE
73    mov         POINTER [esp+buffer], eax
74%%.CHECKBUF15_END:
75%endmacro
76
77%macro EMIT_BITS 1
78    PUT_BITS    %1
79    CHECKBUF15
80%endmacro
81
82%macro kloop_prepare 37                 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
83    pxor        xmm4, xmm4              ; __m128i neg = _mm_setzero_si128();
84    pxor        xmm5, xmm5              ; __m128i neg = _mm_setzero_si128();
85    pxor        xmm6, xmm6              ; __m128i neg = _mm_setzero_si128();
86    pxor        xmm7, xmm7              ; __m128i neg = _mm_setzero_si128();
87    pinsrw      %34, word [esi + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
88    pinsrw      %35, word [esi + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
89    pinsrw      %36, word [esi + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
90    pinsrw      %37, word [esi + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
91    pinsrw      %34, word [esi + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
92    pinsrw      %35, word [esi + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
93    pinsrw      %36, word [esi + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
94    pinsrw      %37, word [esi + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
95    pinsrw      %34, word [esi + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
96    pinsrw      %35, word [esi + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
97    pinsrw      %36, word [esi + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
98    pinsrw      %37, word [esi + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
99    pinsrw      %34, word [esi + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
100    pinsrw      %35, word [esi + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
101    pinsrw      %36, word [esi + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
102    pinsrw      %37, word [esi + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
103    pinsrw      %34, word [esi + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
104    pinsrw      %35, word [esi + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
105    pinsrw      %36, word [esi + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
106    pinsrw      %37, word [esi + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
107    pinsrw      %34, word [esi + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
108    pinsrw      %35, word [esi + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
109    pinsrw      %36, word [esi + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
110    pinsrw      %37, word [esi + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
111    pinsrw      %34, word [esi + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
112    pinsrw      %35, word [esi + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
113    pinsrw      %36, word [esi + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
114    pinsrw      %37, word [esi + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
115    pinsrw      %34, word [esi + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
116    pinsrw      %35, word [esi + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
117    pinsrw      %36, word [esi + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
118%if %1 != 32
119    pinsrw      %37, word [esi + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
120%else
121    pinsrw      %37, ecx, 7             ; xmm_shadow[31] = block[jno31];
122%endif
123    pcmpgtw     xmm4, %34               ; neg = _mm_cmpgt_epi16(neg, x1);
124    pcmpgtw     xmm5, %35               ; neg = _mm_cmpgt_epi16(neg, x1);
125    pcmpgtw     xmm6, %36               ; neg = _mm_cmpgt_epi16(neg, x1);
126    pcmpgtw     xmm7, %37               ; neg = _mm_cmpgt_epi16(neg, x1);
127    paddw       %34, xmm4               ; x1 = _mm_add_epi16(x1, neg);
128    paddw       %35, xmm5               ; x1 = _mm_add_epi16(x1, neg);
129    paddw       %36, xmm6               ; x1 = _mm_add_epi16(x1, neg);
130    paddw       %37, xmm7               ; x1 = _mm_add_epi16(x1, neg);
131    pxor        %34, xmm4               ; x1 = _mm_xor_si128(x1, neg);
132    pxor        %35, xmm5               ; x1 = _mm_xor_si128(x1, neg);
133    pxor        %36, xmm6               ; x1 = _mm_xor_si128(x1, neg);
134    pxor        %37, xmm7               ; x1 = _mm_xor_si128(x1, neg);
135    pxor        xmm4, %34               ; neg = _mm_xor_si128(neg, x1);
136    pxor        xmm5, %35               ; neg = _mm_xor_si128(neg, x1);
137    pxor        xmm6, %36               ; neg = _mm_xor_si128(neg, x1);
138    pxor        xmm7, %37               ; neg = _mm_xor_si128(neg, x1);
139    movdqa      XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34          ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
140    movdqa      XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35    ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
141    movdqa      XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36   ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
142    movdqa      XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37   ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
143    movdqa      XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4         ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
144    movdqa      XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5   ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
145    movdqa      XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
146    movdqa      XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
147%endmacro
148
149;
150; Encode a single block's worth of coefficients.
151;
152; GLOBAL(JOCTET *)
153; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
154;                                  JCOEFPTR block, int last_dc_val,
155;                                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
156;
157
158; eax + 8 = working_state *state
159; eax + 12 = JOCTET *buffer
160; eax + 16 = JCOEFPTR block
161; eax + 20 = int last_dc_val
162; eax + 24 = c_derived_tbl *dctbl
163; eax + 28 = c_derived_tbl *actbl
164
165%define pad         6 * SIZEOF_DWORD    ; Align to 16 bytes
166%define t1          pad
167%define t2          t1 + (DCTSIZE2 * SIZEOF_WORD)
168%define block       t2 + (DCTSIZE2 * SIZEOF_WORD)
169%define actbl       block + SIZEOF_DWORD
170%define buffer      actbl + SIZEOF_DWORD
171%define temp        buffer + SIZEOF_DWORD
172%define temp2       temp + SIZEOF_DWORD
173%define temp3       temp2 + SIZEOF_DWORD
174%define temp4       temp3 + SIZEOF_DWORD
175%define temp5       temp4 + SIZEOF_DWORD
176%define gotptr      temp5 + SIZEOF_DWORD  ; void *gotptr
177%define put_buffer  ebx
178%define put_bits    edi
179
180    align       32
181    GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)
182
183EXTN(jsimd_huff_encode_one_block_sse2):
184    push        ebp
185    mov         eax, esp                     ; eax = original ebp
186    sub         esp, byte 4
187    and         esp, byte (-SIZEOF_XMMWORD)  ; align to 128 bits
188    mov         [esp], eax
189    mov         ebp, esp                     ; ebp = aligned ebp
190    sub         esp, temp5+9*SIZEOF_DWORD-pad
191    push        ebx
192    push        ecx
193;   push        edx                     ; need not be preserved
194    push        esi
195    push        edi
196    push        ebp
197
198    mov         esi, POINTER [eax+8]       ; (working_state *state)
199    mov         put_buffer, DWORD [esi+8]  ; put_buffer = state->cur.put_buffer;
200    mov         put_bits, DWORD [esi+12]   ; put_bits = state->cur.put_bits;
201    push        esi                        ; esi is now scratch
202
203    get_GOT     edx                        ; get GOT address
204    movpic      POINTER [esp+gotptr], edx  ; save GOT address
205
206    mov         ecx, POINTER [eax+28]
207    mov         edx, POINTER [eax+16]
208    mov         esi, POINTER [eax+12]
209    mov         POINTER [esp+actbl], ecx
210    mov         POINTER [esp+block], edx
211    mov         POINTER [esp+buffer], esi
212
213    ; Encode the DC coefficient difference per section F.1.2.1
214    mov         esi, POINTER [esp+block]  ; block
215    movsx       ecx, word [esi]           ; temp = temp2 = block[0] - last_dc_val;
216    sub         ecx, DWORD [eax+20]
217    mov         esi, ecx
218
219    ; This is a well-known technique for obtaining the absolute value
220    ; with out a branch.  It is derived from an assembly language technique
221    ; presented in "How to Optimize for the Pentium Processors",
222    ; Copyright (c) 1996, 1997 by Agner Fog.
223    mov         edx, ecx
224    sar         edx, 31                 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
225    xor         ecx, edx                ; temp ^= temp3;
226    sub         ecx, edx                ; temp -= temp3;
227
228    ; For a negative input, want temp2 = bitwise complement of abs(input)
229    ; This code assumes we are on a two's complement machine
230    add         esi, edx                ; temp2 += temp3;
231    mov         DWORD [esp+temp], esi   ; backup temp2 in temp
232
233    ; Find the number of bits needed for the magnitude of the coefficient
234    movpic      ebp, POINTER [esp+gotptr]                        ; load GOT address (ebp)
235    movzx       edx, byte [GOTOFF(ebp, EXTN(jpeg_nbits_table) + ecx)]  ; nbits = JPEG_NBITS(temp);
236    mov         DWORD [esp+temp2], edx                           ; backup nbits in temp2
237
238    ; Emit the Huffman-coded symbol for the number of bits
239    mov         ebp, POINTER [eax+24]         ; After this point, arguments are not accessible anymore
240    mov         eax,  INT [ebp + edx * 4]     ; code = dctbl->ehufco[nbits];
241    movzx       ecx, byte [ebp + edx + 1024]  ; size = dctbl->ehufsi[nbits];
242    EMIT_BITS   eax                           ; EMIT_BITS(code, size)
243
244    mov         ecx, DWORD [esp+temp2]        ; restore nbits
245
246    ; Mask off any extra bits in code
247    mov         eax, 1
248    shl         eax, cl
249    dec         eax
250    and         eax, DWORD [esp+temp]   ; temp2 &= (((JLONG)1)<<nbits) - 1;
251
252    ; Emit that number of bits of the value, if positive,
253    ; or the complement of its magnitude, if negative.
254    EMIT_BITS   eax                     ; EMIT_BITS(temp2, nbits)
255
256    ; Prepare data
257    xor         ecx, ecx
258    mov         esi, POINTER [esp+block]
259    kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
260                   18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
261                   27, 20, 13, 6,  7,  14, 21, 28, 35, \
262                   xmm0, xmm1, xmm2, xmm3
263    kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
264                   30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
265                   53, 60, 61, 54, 47, 55, 62, 63, 63, \
266                   xmm0, xmm1, xmm2, xmm3
267
268    pxor        xmm7, xmm7
269    movdqa      xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD]   ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
270    movdqa      xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD]   ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
271    movdqa      xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
272    movdqa      xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
273    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
274    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
275    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
276    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
277    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
278    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
279    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
280    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
281    shl         ecx, 16
282    or          edx, ecx
283    not         edx                     ; index = ~index;
284
285    lea         esi, [esp+t1]
286    mov         ebp, POINTER [esp+actbl]  ; ebp = actbl
287
288.BLOOP:
289    bsf         ecx, edx                ; r = __builtin_ctzl(index);
290    jz          near .ELOOP
291    lea         esi, [esi+ecx*2]        ; k += r;
292    shr         edx, cl                 ; index >>= r;
293    mov         DWORD [esp+temp3], edx
294.BRLOOP:
295    cmp         ecx, 16                       ; while (r > 15) {
296    jl          near .ERLOOP
297    sub         ecx, 16                       ; r -= 16;
298    mov         DWORD [esp+temp], ecx
299    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
300    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
301    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
302    mov         ecx, DWORD [esp+temp]
303    jmp         .BRLOOP
304.ERLOOP:
305    movsx       eax, word [esi]                                  ; temp = t1[k];
306    movpic      edx, POINTER [esp+gotptr]                        ; load GOT address (edx)
307    movzx       eax, byte [GOTOFF(edx, EXTN(jpeg_nbits_table) + eax)]  ; nbits = JPEG_NBITS(temp);
308    mov         DWORD [esp+temp2], eax
309    ; Emit Huffman symbol for run length / number of bits
310    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
311    add         ecx, eax
312    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
313    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
314    EMIT_BITS   eax
315
316    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
317    ; Mask off any extra bits in code
318    mov         ecx, DWORD [esp+temp2]
319    mov         eax, 1
320    shl         eax, cl
321    dec         eax
322    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
323    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
324    mov         edx, DWORD [esp+temp3]
325    add         esi, 2                  ; ++k;
326    shr         edx, 1                  ; index >>= 1;
327
328    jmp         .BLOOP
329.ELOOP:
330    movdqa      xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD]  ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
331    movdqa      xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD]  ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
332    movdqa      xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
333    movdqa      xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
334    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
335    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
336    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
337    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
338    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
339    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
340    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
341    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
342    shl         ecx, 16
343    or          edx, ecx
344    not         edx                     ; index = ~index;
345
346    lea         eax, [esp + t1 + (DCTSIZE2/2) * 2]
347    sub         eax, esi
348    shr         eax, 1
349    bsf         ecx, edx                ; r = __builtin_ctzl(index);
350    jz          near .ELOOP2
351    shr         edx, cl                 ; index >>= r;
352    add         ecx, eax
353    lea         esi, [esi+ecx*2]        ; k += r;
354    mov         DWORD [esp+temp3], edx
355    jmp         .BRLOOP2
356.BLOOP2:
357    bsf         ecx, edx                ; r = __builtin_ctzl(index);
358    jz          near .ELOOP2
359    lea         esi, [esi+ecx*2]        ; k += r;
360    shr         edx, cl                 ; index >>= r;
361    mov         DWORD [esp+temp3], edx
362.BRLOOP2:
363    cmp         ecx, 16                       ; while (r > 15) {
364    jl          near .ERLOOP2
365    sub         ecx, 16                       ; r -= 16;
366    mov         DWORD [esp+temp], ecx
367    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
368    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
369    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
370    mov         ecx, DWORD [esp+temp]
371    jmp         .BRLOOP2
372.ERLOOP2:
373    movsx       eax, word [esi]         ; temp = t1[k];
374    bsr         eax, eax                ; nbits = 32 - __builtin_clz(temp);
375    inc         eax
376    mov         DWORD [esp+temp2], eax
377    ; Emit Huffman symbol for run length / number of bits
378    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
379    add         ecx, eax
380    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
381    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
382    EMIT_BITS   eax
383
384    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
385    ; Mask off any extra bits in code
386    mov         ecx, DWORD [esp+temp2]
387    mov         eax, 1
388    shl         eax, cl
389    dec         eax
390    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
391    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
392    mov         edx, DWORD [esp+temp3]
393    add         esi, 2                  ; ++k;
394    shr         edx, 1                  ; index >>= 1;
395
396    jmp         .BLOOP2
397.ELOOP2:
398    ; If the last coef(s) were zero, emit an end-of-block code
399    lea         edx, [esp + t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
400    cmp         edx, esi                            ; if (r > 0) {
401    je          .EFN
402    mov         eax,  INT [ebp]                     ; code = actbl->ehufco[0];
403    movzx       ecx, byte [ebp + 1024]              ; size = actbl->ehufsi[0];
404    EMIT_BITS   eax
405.EFN:
406    mov         eax, [esp+buffer]
407    pop         esi
408    ; Save put_buffer & put_bits
409    mov         DWORD [esi+8], put_buffer  ; state->cur.put_buffer = put_buffer;
410    mov         DWORD [esi+12], put_bits   ; state->cur.put_bits = put_bits;
411
412    pop         ebp
413    pop         edi
414    pop         esi
415;   pop         edx                     ; need not be preserved
416    pop         ecx
417    pop         ebx
418    mov         esp, ebp                ; esp <- aligned ebp
419    pop         esp                     ; esp <- original ebp
420    pop         ebp
421    ret
422
423; For some reason, the OS X linker does not honor the request to align the
424; segment unless we do this.
425    align       32
426