1 /* -*- Mode: C; indent-tabs-mode:t ; c-basic-offset:8 -*- */
2 /*
3  * I/O functions for libusbx
4  * Copyright © 2007-2009 Daniel Drake <dsd@gentoo.org>
5  * Copyright © 2001 Johannes Erdfelt <johannes@erdfelt.com>
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include "config.h"
23 #include <errno.h>
24 #include <stdint.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <time.h>
28 #ifdef HAVE_SIGNAL_H
29 #include <signal.h>
30 #endif
31 #ifdef HAVE_SYS_TIME_H
32 #include <sys/time.h>
33 #endif
34 #ifdef USBI_TIMERFD_AVAILABLE
35 #include <sys/timerfd.h>
36 #endif
37 
38 #include "libusbi.h"
39 #include "hotplug.h"
40 
41 /**
42  * \page io Synchronous and asynchronous device I/O
43  *
44  * \section intro Introduction
45  *
46  * If you're using libusbx in your application, you're probably wanting to
47  * perform I/O with devices - you want to perform USB data transfers.
48  *
49  * libusbx offers two separate interfaces for device I/O. This page aims to
50  * introduce the two in order to help you decide which one is more suitable
51  * for your application. You can also choose to use both interfaces in your
52  * application by considering each transfer on a case-by-case basis.
53  *
54  * Once you have read through the following discussion, you should consult the
55  * detailed API documentation pages for the details:
56  * - \ref syncio
57  * - \ref asyncio
58  *
59  * \section theory Transfers at a logical level
60  *
61  * At a logical level, USB transfers typically happen in two parts. For
62  * example, when reading data from a endpoint:
63  * -# A request for data is sent to the device
64  * -# Some time later, the incoming data is received by the host
65  *
66  * or when writing data to an endpoint:
67  *
68  * -# The data is sent to the device
69  * -# Some time later, the host receives acknowledgement from the device that
70  *    the data has been transferred.
71  *
72  * There may be an indefinite delay between the two steps. Consider a
73  * fictional USB input device with a button that the user can press. In order
74  * to determine when the button is pressed, you would likely submit a request
75  * to read data on a bulk or interrupt endpoint and wait for data to arrive.
76  * Data will arrive when the button is pressed by the user, which is
77  * potentially hours later.
78  *
79  * libusbx offers both a synchronous and an asynchronous interface to performing
80  * USB transfers. The main difference is that the synchronous interface
81  * combines both steps indicated above into a single function call, whereas
82  * the asynchronous interface separates them.
83  *
84  * \section sync The synchronous interface
85  *
86  * The synchronous I/O interface allows you to perform a USB transfer with
87  * a single function call. When the function call returns, the transfer has
88  * completed and you can parse the results.
89  *
90  * If you have used the libusb-0.1 before, this I/O style will seem familar to
91  * you. libusb-0.1 only offered a synchronous interface.
92  *
93  * In our input device example, to read button presses you might write code
94  * in the following style:
95 \code
96 unsigned char data[4];
97 int actual_length;
98 int r = libusb_bulk_transfer(handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
99 if (r == 0 && actual_length == sizeof(data)) {
100 	// results of the transaction can now be found in the data buffer
101 	// parse them here and report button press
102 } else {
103 	error();
104 }
105 \endcode
106  *
107  * The main advantage of this model is simplicity: you did everything with
108  * a single simple function call.
109  *
110  * However, this interface has its limitations. Your application will sleep
111  * inside libusb_bulk_transfer() until the transaction has completed. If it
112  * takes the user 3 hours to press the button, your application will be
113  * sleeping for that long. Execution will be tied up inside the library -
114  * the entire thread will be useless for that duration.
115  *
116  * Another issue is that by tieing up the thread with that single transaction
117  * there is no possibility of performing I/O with multiple endpoints and/or
118  * multiple devices simultaneously, unless you resort to creating one thread
119  * per transaction.
120  *
121  * Additionally, there is no opportunity to cancel the transfer after the
122  * request has been submitted.
123  *
124  * For details on how to use the synchronous API, see the
125  * \ref syncio "synchronous I/O API documentation" pages.
126  *
127  * \section async The asynchronous interface
128  *
129  * Asynchronous I/O is the most significant new feature in libusb-1.0.
130  * Although it is a more complex interface, it solves all the issues detailed
131  * above.
132  *
133  * Instead of providing which functions that block until the I/O has complete,
134  * libusbx's asynchronous interface presents non-blocking functions which
135  * begin a transfer and then return immediately. Your application passes a
136  * callback function pointer to this non-blocking function, which libusbx will
137  * call with the results of the transaction when it has completed.
138  *
139  * Transfers which have been submitted through the non-blocking functions
140  * can be cancelled with a separate function call.
141  *
142  * The non-blocking nature of this interface allows you to be simultaneously
143  * performing I/O to multiple endpoints on multiple devices, without having
144  * to use threads.
145  *
146  * This added flexibility does come with some complications though:
147  * - In the interest of being a lightweight library, libusbx does not create
148  * threads and can only operate when your application is calling into it. Your
149  * application must call into libusbx from it's main loop when events are ready
150  * to be handled, or you must use some other scheme to allow libusbx to
151  * undertake whatever work needs to be done.
152  * - libusbx also needs to be called into at certain fixed points in time in
153  * order to accurately handle transfer timeouts.
154  * - Memory handling becomes more complex. You cannot use stack memory unless
155  * the function with that stack is guaranteed not to return until the transfer
156  * callback has finished executing.
157  * - You generally lose some linearity from your code flow because submitting
158  * the transfer request is done in a separate function from where the transfer
159  * results are handled. This becomes particularly obvious when you want to
160  * submit a second transfer based on the results of an earlier transfer.
161  *
162  * Internally, libusbx's synchronous interface is expressed in terms of function
163  * calls to the asynchronous interface.
164  *
165  * For details on how to use the asynchronous API, see the
166  * \ref asyncio "asynchronous I/O API" documentation pages.
167  */
168 
169 
170 /**
171  * \page packetoverflow Packets and overflows
172  *
173  * \section packets Packet abstraction
174  *
175  * The USB specifications describe how data is transmitted in packets, with
176  * constraints on packet size defined by endpoint descriptors. The host must
177  * not send data payloads larger than the endpoint's maximum packet size.
178  *
179  * libusbx and the underlying OS abstract out the packet concept, allowing you
180  * to request transfers of any size. Internally, the request will be divided
181  * up into correctly-sized packets. You do not have to be concerned with
182  * packet sizes, but there is one exception when considering overflows.
183  *
184  * \section overflow Bulk/interrupt transfer overflows
185  *
186  * When requesting data on a bulk endpoint, libusbx requires you to supply a
187  * buffer and the maximum number of bytes of data that libusbx can put in that
188  * buffer. However, the size of the buffer is not communicated to the device -
189  * the device is just asked to send any amount of data.
190  *
191  * There is no problem if the device sends an amount of data that is less than
192  * or equal to the buffer size. libusbx reports this condition to you through
193  * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
194  * field.
195  *
196  * Problems may occur if the device attempts to send more data than can fit in
197  * the buffer. libusbx reports LIBUSB_TRANSFER_OVERFLOW for this condition but
198  * other behaviour is largely undefined: actual_length may or may not be
199  * accurate, the chunk of data that can fit in the buffer (before overflow)
200  * may or may not have been transferred.
201  *
202  * Overflows are nasty, but can be avoided. Even though you were told to
203  * ignore packets above, think about the lower level details: each transfer is
204  * split into packets (typically small, with a maximum size of 512 bytes).
205  * Overflows can only happen if the final packet in an incoming data transfer
206  * is smaller than the actual packet that the device wants to transfer.
207  * Therefore, you will never see an overflow if your transfer buffer size is a
208  * multiple of the endpoint's packet size: the final packet will either
209  * fill up completely or will be only partially filled.
210  */
211 
212 /**
213  * @defgroup asyncio Asynchronous device I/O
214  *
215  * This page details libusbx's asynchronous (non-blocking) API for USB device
216  * I/O. This interface is very powerful but is also quite complex - you will
217  * need to read this page carefully to understand the necessary considerations
218  * and issues surrounding use of this interface. Simplistic applications
219  * may wish to consider the \ref syncio "synchronous I/O API" instead.
220  *
221  * The asynchronous interface is built around the idea of separating transfer
222  * submission and handling of transfer completion (the synchronous model
223  * combines both of these into one). There may be a long delay between
224  * submission and completion, however the asynchronous submission function
225  * is non-blocking so will return control to your application during that
226  * potentially long delay.
227  *
228  * \section asyncabstraction Transfer abstraction
229  *
230  * For the asynchronous I/O, libusbx implements the concept of a generic
231  * transfer entity for all types of I/O (control, bulk, interrupt,
232  * isochronous). The generic transfer object must be treated slightly
233  * differently depending on which type of I/O you are performing with it.
234  *
235  * This is represented by the public libusb_transfer structure type.
236  *
237  * \section asynctrf Asynchronous transfers
238  *
239  * We can view asynchronous I/O as a 5 step process:
240  * -# <b>Allocation</b>: allocate a libusb_transfer
241  * -# <b>Filling</b>: populate the libusb_transfer instance with information
242  *    about the transfer you wish to perform
243  * -# <b>Submission</b>: ask libusbx to submit the transfer
244  * -# <b>Completion handling</b>: examine transfer results in the
245  *    libusb_transfer structure
246  * -# <b>Deallocation</b>: clean up resources
247  *
248  *
249  * \subsection asyncalloc Allocation
250  *
251  * This step involves allocating memory for a USB transfer. This is the
252  * generic transfer object mentioned above. At this stage, the transfer
253  * is "blank" with no details about what type of I/O it will be used for.
254  *
255  * Allocation is done with the libusb_alloc_transfer() function. You must use
256  * this function rather than allocating your own transfers.
257  *
258  * \subsection asyncfill Filling
259  *
260  * This step is where you take a previously allocated transfer and fill it
261  * with information to determine the message type and direction, data buffer,
262  * callback function, etc.
263  *
264  * You can either fill the required fields yourself or you can use the
265  * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
266  * and libusb_fill_interrupt_transfer().
267  *
268  * \subsection asyncsubmit Submission
269  *
270  * When you have allocated a transfer and filled it, you can submit it using
271  * libusb_submit_transfer(). This function returns immediately but can be
272  * regarded as firing off the I/O request in the background.
273  *
274  * \subsection asynccomplete Completion handling
275  *
276  * After a transfer has been submitted, one of four things can happen to it:
277  *
278  * - The transfer completes (i.e. some data was transferred)
279  * - The transfer has a timeout and the timeout expires before all data is
280  * transferred
281  * - The transfer fails due to an error
282  * - The transfer is cancelled
283  *
284  * Each of these will cause the user-specified transfer callback function to
285  * be invoked. It is up to the callback function to determine which of the
286  * above actually happened and to act accordingly.
287  *
288  * The user-specified callback is passed a pointer to the libusb_transfer
289  * structure which was used to setup and submit the transfer. At completion
290  * time, libusbx has populated this structure with results of the transfer:
291  * success or failure reason, number of bytes of data transferred, etc. See
292  * the libusb_transfer structure documentation for more information.
293  *
294  * \subsection Deallocation
295  *
296  * When a transfer has completed (i.e. the callback function has been invoked),
297  * you are advised to free the transfer (unless you wish to resubmit it, see
298  * below). Transfers are deallocated with libusb_free_transfer().
299  *
300  * It is undefined behaviour to free a transfer which has not completed.
301  *
302  * \section asyncresubmit Resubmission
303  *
304  * You may be wondering why allocation, filling, and submission are all
305  * separated above where they could reasonably be combined into a single
306  * operation.
307  *
308  * The reason for separation is to allow you to resubmit transfers without
309  * having to allocate new ones every time. This is especially useful for
310  * common situations dealing with interrupt endpoints - you allocate one
311  * transfer, fill and submit it, and when it returns with results you just
312  * resubmit it for the next interrupt.
313  *
314  * \section asynccancel Cancellation
315  *
316  * Another advantage of using the asynchronous interface is that you have
317  * the ability to cancel transfers which have not yet completed. This is
318  * done by calling the libusb_cancel_transfer() function.
319  *
320  * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
321  * cancellation actually completes, the transfer's callback function will
322  * be invoked, and the callback function should check the transfer status to
323  * determine that it was cancelled.
324  *
325  * Freeing the transfer after it has been cancelled but before cancellation
326  * has completed will result in undefined behaviour.
327  *
328  * When a transfer is cancelled, some of the data may have been transferred.
329  * libusbx will communicate this to you in the transfer callback. Do not assume
330  * that no data was transferred.
331  *
332  * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
333  *
334  * If your device does not have predictable transfer sizes (or it misbehaves),
335  * your application may submit a request for data on an IN endpoint which is
336  * smaller than the data that the device wishes to send. In some circumstances
337  * this will cause an overflow, which is a nasty condition to deal with. See
338  * the \ref packetoverflow page for discussion.
339  *
340  * \section asyncctrl Considerations for control transfers
341  *
342  * The <tt>libusb_transfer</tt> structure is generic and hence does not
343  * include specific fields for the control-specific setup packet structure.
344  *
345  * In order to perform a control transfer, you must place the 8-byte setup
346  * packet at the start of the data buffer. To simplify this, you could
347  * cast the buffer pointer to type struct libusb_control_setup, or you can
348  * use the helper function libusb_fill_control_setup().
349  *
350  * The wLength field placed in the setup packet must be the length you would
351  * expect to be sent in the setup packet: the length of the payload that
352  * follows (or the expected maximum number of bytes to receive). However,
353  * the length field of the libusb_transfer object must be the length of
354  * the data buffer - i.e. it should be wLength <em>plus</em> the size of
355  * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
356  *
357  * If you use the helper functions, this is simplified for you:
358  * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
359  * data you are sending/requesting.
360  * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
361  * request size as the wLength value (i.e. do not include the extra space you
362  * allocated for the control setup).
363  * -# If this is a host-to-device transfer, place the data to be transferred
364  * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
365  * -# Call libusb_fill_control_transfer() to associate the data buffer with
366  * the transfer (and to set the remaining details such as callback and timeout).
367  *   - Note that there is no parameter to set the length field of the transfer.
368  *     The length is automatically inferred from the wLength field of the setup
369  *     packet.
370  * -# Submit the transfer.
371  *
372  * The multi-byte control setup fields (wValue, wIndex and wLength) must
373  * be given in little-endian byte order (the endianness of the USB bus).
374  * Endianness conversion is transparently handled by
375  * libusb_fill_control_setup() which is documented to accept host-endian
376  * values.
377  *
378  * Further considerations are needed when handling transfer completion in
379  * your callback function:
380  * - As you might expect, the setup packet will still be sitting at the start
381  * of the data buffer.
382  * - If this was a device-to-host transfer, the received data will be sitting
383  * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
384  * - The actual_length field of the transfer structure is relative to the
385  * wLength of the setup packet, rather than the size of the data buffer. So,
386  * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
387  * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
388  * transferred in entirity.
389  *
390  * To simplify parsing of setup packets and obtaining the data from the
391  * correct offset, you may wish to use the libusb_control_transfer_get_data()
392  * and libusb_control_transfer_get_setup() functions within your transfer
393  * callback.
394  *
395  * Even though control endpoints do not halt, a completed control transfer
396  * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
397  * request was not supported.
398  *
399  * \section asyncintr Considerations for interrupt transfers
400  *
401  * All interrupt transfers are performed using the polling interval presented
402  * by the bInterval value of the endpoint descriptor.
403  *
404  * \section asynciso Considerations for isochronous transfers
405  *
406  * Isochronous transfers are more complicated than transfers to
407  * non-isochronous endpoints.
408  *
409  * To perform I/O to an isochronous endpoint, allocate the transfer by calling
410  * libusb_alloc_transfer() with an appropriate number of isochronous packets.
411  *
412  * During filling, set \ref libusb_transfer::type "type" to
413  * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
414  * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
415  * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
416  * or equal to the number of packets you requested during allocation.
417  * libusb_alloc_transfer() does not set either of these fields for you, given
418  * that you might not even use the transfer on an isochronous endpoint.
419  *
420  * Next, populate the length field for the first num_iso_packets entries in
421  * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
422  * 5.6.3 of the USB2 specifications describe how the maximum isochronous
423  * packet length is determined by the wMaxPacketSize field in the endpoint
424  * descriptor.
425  * Two functions can help you here:
426  *
427  * - libusb_get_max_iso_packet_size() is an easy way to determine the max
428  *   packet size for an isochronous endpoint. Note that the maximum packet
429  *   size is actually the maximum number of bytes that can be transmitted in
430  *   a single microframe, therefore this function multiplies the maximum number
431  *   of bytes per transaction by the number of transaction opportunities per
432  *   microframe.
433  * - libusb_set_iso_packet_lengths() assigns the same length to all packets
434  *   within a transfer, which is usually what you want.
435  *
436  * For outgoing transfers, you'll obviously fill the buffer and populate the
437  * packet descriptors in hope that all the data gets transferred. For incoming
438  * transfers, you must ensure the buffer has sufficient capacity for
439  * the situation where all packets transfer the full amount of requested data.
440  *
441  * Completion handling requires some extra consideration. The
442  * \ref libusb_transfer::actual_length "actual_length" field of the transfer
443  * is meaningless and should not be examined; instead you must refer to the
444  * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
445  * each individual packet.
446  *
447  * The \ref libusb_transfer::status "status" field of the transfer is also a
448  * little misleading:
449  *  - If the packets were submitted and the isochronous data microframes
450  *    completed normally, status will have value
451  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
452  *    "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
453  *    delays are not counted as transfer errors; the transfer.status field may
454  *    indicate COMPLETED even if some or all of the packets failed. Refer to
455  *    the \ref libusb_iso_packet_descriptor::status "status" field of each
456  *    individual packet to determine packet failures.
457  *  - The status field will have value
458  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
459  *    "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
460  *  - Other transfer status codes occur with normal behaviour.
461  *
462  * The data for each packet will be found at an offset into the buffer that
463  * can be calculated as if each prior packet completed in full. The
464  * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
465  * functions may help you here.
466  *
467  * \section asyncmem Memory caveats
468  *
469  * In most circumstances, it is not safe to use stack memory for transfer
470  * buffers. This is because the function that fired off the asynchronous
471  * transfer may return before libusbx has finished using the buffer, and when
472  * the function returns it's stack gets destroyed. This is true for both
473  * host-to-device and device-to-host transfers.
474  *
475  * The only case in which it is safe to use stack memory is where you can
476  * guarantee that the function owning the stack space for the buffer does not
477  * return until after the transfer's callback function has completed. In every
478  * other case, you need to use heap memory instead.
479  *
480  * \section asyncflags Fine control
481  *
482  * Through using this asynchronous interface, you may find yourself repeating
483  * a few simple operations many times. You can apply a bitwise OR of certain
484  * flags to a transfer to simplify certain things:
485  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
486  *   "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
487  *   less than the requested amount of data being marked with status
488  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
489  *   (they would normally be regarded as COMPLETED)
490  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
491  *   "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusbx to free the transfer
492  *   buffer when freeing the transfer.
493  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
494  *   "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusbx to automatically free the
495  *   transfer after the transfer callback returns.
496  *
497  * \section asyncevent Event handling
498  *
499  * An asynchronous model requires that libusbx perform work at various
500  * points in time - namely processing the results of previously-submitted
501  * transfers and invoking the user-supplied callback function.
502  *
503  * This gives rise to the libusb_handle_events() function which your
504  * application must call into when libusbx has work do to. This gives libusbx
505  * the opportunity to reap pending transfers, invoke callbacks, etc.
506  *
507  * There are 2 different approaches to dealing with libusb_handle_events:
508  *
509  * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
510  *    thread.
511  * -# Integrate libusbx with your application's main event loop. libusbx
512  *    exposes a set of file descriptors which allow you to do this.
513  *
514  * The first approach has the big advantage that it will also work on Windows
515  * were libusbx' poll API for select / poll integration is not available. So
516  * if you want to support Windows and use the async API, you must use this
517  * approach, see the \ref eventthread "Using an event handling thread" section
518  * below for details.
519  *
520  * If you prefer a single threaded approach with a single central event loop,
521  * see the \ref poll "polling and timing" section for how to integrate libusbx
522  * into your application's main event loop.
523  *
524  * \section eventthread Using an event handling thread
525  *
526  * Lets begin with stating the obvious: If you're going to use a separate
527  * thread for libusbx event handling, your callback functions MUST be
528  * threadsafe.
529  *
530  * Other then that doing event handling from a separate thread, is mostly
531  * simple. You can use an event thread function as follows:
532 \code
533 void *event_thread_func(void *ctx)
534 {
535     while (event_thread_run)
536         libusb_handle_events(ctx);
537 
538     return NULL;
539 }
540 \endcode
541  *
542  * There is one caveat though, stopping this thread requires setting the
543  * event_thread_run variable to 0, and after that libusb_handle_events() needs
544  * to return control to event_thread_func. But unless some event happens,
545  * libusb_handle_events() will not return.
546  *
547  * There are 2 different ways of dealing with this, depending on if your
548  * application uses libusbx' \ref hotplug "hotplug" support or not.
549  *
550  * Applications which do not use hotplug support, should not start the event
551  * thread until after their first call to libusb_open(), and should stop the
552  * thread when closing the last open device as follows:
553 \code
554 void my_close_handle(libusb_device_handle *handle)
555 {
556     if (open_devs == 1)
557         event_thread_run = 0;
558 
559     libusb_close(handle); // This wakes up libusb_handle_events()
560 
561     if (open_devs == 1)
562         pthread_join(event_thread);
563 
564     open_devs--;
565 }
566 \endcode
567  *
568  * Applications using hotplug support should start the thread at program init,
569  * after having successfully called libusb_hotplug_register_callback(), and
570  * should stop the thread at program exit as follows:
571 \code
572 void my_libusb_exit(void)
573 {
574     event_thread_run = 0;
575     libusb_hotplug_deregister_callback(ctx, hotplug_cb_handle); // This wakes up libusb_handle_events()
576     pthread_join(event_thread);
577     libusb_exit(ctx);
578 }
579 \endcode
580  */
581 
582 /**
583  * @defgroup poll Polling and timing
584  *
585  * This page documents libusbx's functions for polling events and timing.
586  * These functions are only necessary for users of the
587  * \ref asyncio "asynchronous API". If you are only using the simpler
588  * \ref syncio "synchronous API" then you do not need to ever call these
589  * functions.
590  *
591  * The justification for the functionality described here has already been
592  * discussed in the \ref asyncevent "event handling" section of the
593  * asynchronous API documentation. In summary, libusbx does not create internal
594  * threads for event processing and hence relies on your application calling
595  * into libusbx at certain points in time so that pending events can be handled.
596  *
597  * Your main loop is probably already calling poll() or select() or a
598  * variant on a set of file descriptors for other event sources (e.g. keyboard
599  * button presses, mouse movements, network sockets, etc). You then add
600  * libusbx's file descriptors to your poll()/select() calls, and when activity
601  * is detected on such descriptors you know it is time to call
602  * libusb_handle_events().
603  *
604  * There is one final event handling complication. libusbx supports
605  * asynchronous transfers which time out after a specified time period.
606  *
607  * On some platforms a timerfd is used, so the timeout handling is just another
608  * fd, on other platforms this requires that libusbx is called into at or after
609  * the timeout to handle it. So, in addition to considering libusbx's file
610  * descriptors in your main event loop, you must also consider that libusbx
611  * sometimes needs to be called into at fixed points in time even when there
612  * is no file descriptor activity, see \ref polltime details.
613  *
614  * In order to know precisely when libusbx needs to be called into, libusbx
615  * offers you a set of pollable file descriptors and information about when
616  * the next timeout expires.
617  *
618  * If you are using the asynchronous I/O API, you must take one of the two
619  * following options, otherwise your I/O will not complete.
620  *
621  * \section pollsimple The simple option
622  *
623  * If your application revolves solely around libusbx and does not need to
624  * handle other event sources, you can have a program structure as follows:
625 \code
626 // initialize libusbx
627 // find and open device
628 // maybe fire off some initial async I/O
629 
630 while (user_has_not_requested_exit)
631 	libusb_handle_events(ctx);
632 
633 // clean up and exit
634 \endcode
635  *
636  * With such a simple main loop, you do not have to worry about managing
637  * sets of file descriptors or handling timeouts. libusb_handle_events() will
638  * handle those details internally.
639  *
640  * \section pollmain The more advanced option
641  *
642  * \note This functionality is currently only available on Unix-like platforms.
643  * On Windows, libusb_get_pollfds() simply returns NULL. Applications which
644  * want to support Windows are advised to use an \ref eventthread
645  * "event handling thread" instead.
646  *
647  * In more advanced applications, you will already have a main loop which
648  * is monitoring other event sources: network sockets, X11 events, mouse
649  * movements, etc. Through exposing a set of file descriptors, libusbx is
650  * designed to cleanly integrate into such main loops.
651  *
652  * In addition to polling file descriptors for the other event sources, you
653  * take a set of file descriptors from libusbx and monitor those too. When you
654  * detect activity on libusbx's file descriptors, you call
655  * libusb_handle_events_timeout() in non-blocking mode.
656  *
657  * What's more, libusbx may also need to handle events at specific moments in
658  * time. No file descriptor activity is generated at these times, so your
659  * own application needs to be continually aware of when the next one of these
660  * moments occurs (through calling libusb_get_next_timeout()), and then it
661  * needs to call libusb_handle_events_timeout() in non-blocking mode when
662  * these moments occur. This means that you need to adjust your
663  * poll()/select() timeout accordingly.
664  *
665  * libusbx provides you with a set of file descriptors to poll and expects you
666  * to poll all of them, treating them as a single entity. The meaning of each
667  * file descriptor in the set is an internal implementation detail,
668  * platform-dependent and may vary from release to release. Don't try and
669  * interpret the meaning of the file descriptors, just do as libusbx indicates,
670  * polling all of them at once.
671  *
672  * In pseudo-code, you want something that looks like:
673 \code
674 // initialise libusbx
675 
676 libusb_get_pollfds(ctx)
677 while (user has not requested application exit) {
678 	libusb_get_next_timeout(ctx);
679 	poll(on libusbx file descriptors plus any other event sources of interest,
680 		using a timeout no larger than the value libusbx just suggested)
681 	if (poll() indicated activity on libusbx file descriptors)
682 		libusb_handle_events_timeout(ctx, &zero_tv);
683 	if (time has elapsed to or beyond the libusbx timeout)
684 		libusb_handle_events_timeout(ctx, &zero_tv);
685 	// handle events from other sources here
686 }
687 
688 // clean up and exit
689 \endcode
690  *
691  * \subsection polltime Notes on time-based events
692  *
693  * The above complication with having to track time and call into libusbx at
694  * specific moments is a bit of a headache. For maximum compatibility, you do
695  * need to write your main loop as above, but you may decide that you can
696  * restrict the supported platforms of your application and get away with
697  * a more simplistic scheme.
698  *
699  * These time-based event complications are \b not required on the following
700  * platforms:
701  *  - Darwin
702  *  - Linux, provided that the following version requirements are satisfied:
703  *   - Linux v2.6.27 or newer, compiled with timerfd support
704  *   - glibc v2.9 or newer
705  *   - libusbx v1.0.5 or newer
706  *
707  * Under these configurations, libusb_get_next_timeout() will \em always return
708  * 0, so your main loop can be simplified to:
709 \code
710 // initialise libusbx
711 
712 libusb_get_pollfds(ctx)
713 while (user has not requested application exit) {
714 	poll(on libusbx file descriptors plus any other event sources of interest,
715 		using any timeout that you like)
716 	if (poll() indicated activity on libusbx file descriptors)
717 		libusb_handle_events_timeout(ctx, &zero_tv);
718 	// handle events from other sources here
719 }
720 
721 // clean up and exit
722 \endcode
723  *
724  * Do remember that if you simplify your main loop to the above, you will
725  * lose compatibility with some platforms (including legacy Linux platforms,
726  * and <em>any future platforms supported by libusbx which may have time-based
727  * event requirements</em>). The resultant problems will likely appear as
728  * strange bugs in your application.
729  *
730  * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
731  * check to see if it is safe to ignore the time-based event complications.
732  * If your application has taken the shortcut of ignoring libusbx's next timeout
733  * in your main loop, then you are advised to check the return value of
734  * libusb_pollfds_handle_timeouts() during application startup, and to abort
735  * if the platform does suffer from these timing complications.
736  *
737  * \subsection fdsetchange Changes in the file descriptor set
738  *
739  * The set of file descriptors that libusbx uses as event sources may change
740  * during the life of your application. Rather than having to repeatedly
741  * call libusb_get_pollfds(), you can set up notification functions for when
742  * the file descriptor set changes using libusb_set_pollfd_notifiers().
743  *
744  * \subsection mtissues Multi-threaded considerations
745  *
746  * Unfortunately, the situation is complicated further when multiple threads
747  * come into play. If two threads are monitoring the same file descriptors,
748  * the fact that only one thread will be woken up when an event occurs causes
749  * some headaches.
750  *
751  * The events lock, event waiters lock, and libusb_handle_events_locked()
752  * entities are added to solve these problems. You do not need to be concerned
753  * with these entities otherwise.
754  *
755  * See the extra documentation: \ref mtasync
756  */
757 
758 /** \page mtasync Multi-threaded applications and asynchronous I/O
759  *
760  * libusbx is a thread-safe library, but extra considerations must be applied
761  * to applications which interact with libusbx from multiple threads.
762  *
763  * The underlying issue that must be addressed is that all libusbx I/O
764  * revolves around monitoring file descriptors through the poll()/select()
765  * system calls. This is directly exposed at the
766  * \ref asyncio "asynchronous interface" but it is important to note that the
767  * \ref syncio "synchronous interface" is implemented on top of the
768  * asynchonrous interface, therefore the same considerations apply.
769  *
770  * The issue is that if two or more threads are concurrently calling poll()
771  * or select() on libusbx's file descriptors then only one of those threads
772  * will be woken up when an event arrives. The others will be completely
773  * oblivious that anything has happened.
774  *
775  * Consider the following pseudo-code, which submits an asynchronous transfer
776  * then waits for its completion. This style is one way you could implement a
777  * synchronous interface on top of the asynchronous interface (and libusbx
778  * does something similar, albeit more advanced due to the complications
779  * explained on this page).
780  *
781 \code
782 void cb(struct libusb_transfer *transfer)
783 {
784 	int *completed = transfer->user_data;
785 	*completed = 1;
786 }
787 
788 void myfunc() {
789 	struct libusb_transfer *transfer;
790 	unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE] __attribute__ ((aligned (2)));
791 	int completed = 0;
792 
793 	transfer = libusb_alloc_transfer(0);
794 	libusb_fill_control_setup(buffer,
795 		LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
796 	libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
797 	libusb_submit_transfer(transfer);
798 
799 	while (!completed) {
800 		poll(libusbx file descriptors, 120*1000);
801 		if (poll indicates activity)
802 			libusb_handle_events_timeout(ctx, &zero_tv);
803 	}
804 	printf("completed!");
805 	// other code here
806 }
807 \endcode
808  *
809  * Here we are <em>serializing</em> completion of an asynchronous event
810  * against a condition - the condition being completion of a specific transfer.
811  * The poll() loop has a long timeout to minimize CPU usage during situations
812  * when nothing is happening (it could reasonably be unlimited).
813  *
814  * If this is the only thread that is polling libusbx's file descriptors, there
815  * is no problem: there is no danger that another thread will swallow up the
816  * event that we are interested in. On the other hand, if there is another
817  * thread polling the same descriptors, there is a chance that it will receive
818  * the event that we were interested in. In this situation, <tt>myfunc()</tt>
819  * will only realise that the transfer has completed on the next iteration of
820  * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
821  * undesirable, and don't even think about using short timeouts to circumvent
822  * this issue!
823  *
824  * The solution here is to ensure that no two threads are ever polling the
825  * file descriptors at the same time. A naive implementation of this would
826  * impact the capabilities of the library, so libusbx offers the scheme
827  * documented below to ensure no loss of functionality.
828  *
829  * Before we go any further, it is worth mentioning that all libusb-wrapped
830  * event handling procedures fully adhere to the scheme documented below.
831  * This includes libusb_handle_events() and its variants, and all the
832  * synchronous I/O functions - libusbx hides this headache from you.
833  *
834  * \section Using libusb_handle_events() from multiple threads
835  *
836  * Even when only using libusb_handle_events() and synchronous I/O functions,
837  * you can still have a race condition. You might be tempted to solve the
838  * above with libusb_handle_events() like so:
839  *
840 \code
841 	libusb_submit_transfer(transfer);
842 
843 	while (!completed) {
844 		libusb_handle_events(ctx);
845 	}
846 	printf("completed!");
847 \endcode
848  *
849  * This however has a race between the checking of completed and
850  * libusb_handle_events() acquiring the events lock, so another thread
851  * could have completed the transfer, resulting in this thread hanging
852  * until either a timeout or another event occurs. See also commit
853  * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
854  * synchronous API implementation of libusb.
855  *
856  * Fixing this race requires checking the variable completed only after
857  * taking the event lock, which defeats the concept of just calling
858  * libusb_handle_events() without worrying about locking. This is why
859  * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
860  * and libusb_handle_events_completed() functions, which handles doing the
861  * completion check for you after they have acquired the lock:
862  *
863 \code
864 	libusb_submit_transfer(transfer);
865 
866 	while (!completed) {
867 		libusb_handle_events_completed(ctx, &completed);
868 	}
869 	printf("completed!");
870 \endcode
871  *
872  * This nicely fixes the race in our example. Note that if all you want to
873  * do is submit a single transfer and wait for its completion, then using
874  * one of the synchronous I/O functions is much easier.
875  *
876  * \section eventlock The events lock
877  *
878  * The problem is when we consider the fact that libusbx exposes file
879  * descriptors to allow for you to integrate asynchronous USB I/O into
880  * existing main loops, effectively allowing you to do some work behind
881  * libusbx's back. If you do take libusbx's file descriptors and pass them to
882  * poll()/select() yourself, you need to be aware of the associated issues.
883  *
884  * The first concept to be introduced is the events lock. The events lock
885  * is used to serialize threads that want to handle events, such that only
886  * one thread is handling events at any one time.
887  *
888  * You must take the events lock before polling libusbx file descriptors,
889  * using libusb_lock_events(). You must release the lock as soon as you have
890  * aborted your poll()/select() loop, using libusb_unlock_events().
891  *
892  * \section threadwait Letting other threads do the work for you
893  *
894  * Although the events lock is a critical part of the solution, it is not
895  * enough on it's own. You might wonder if the following is sufficient...
896 \code
897 	libusb_lock_events(ctx);
898 	while (!completed) {
899 		poll(libusbx file descriptors, 120*1000);
900 		if (poll indicates activity)
901 			libusb_handle_events_timeout(ctx, &zero_tv);
902 	}
903 	libusb_unlock_events(ctx);
904 \endcode
905  * ...and the answer is that it is not. This is because the transfer in the
906  * code shown above may take a long time (say 30 seconds) to complete, and
907  * the lock is not released until the transfer is completed.
908  *
909  * Another thread with similar code that wants to do event handling may be
910  * working with a transfer that completes after a few milliseconds. Despite
911  * having such a quick completion time, the other thread cannot check that
912  * status of its transfer until the code above has finished (30 seconds later)
913  * due to contention on the lock.
914  *
915  * To solve this, libusbx offers you a mechanism to determine when another
916  * thread is handling events. It also offers a mechanism to block your thread
917  * until the event handling thread has completed an event (and this mechanism
918  * does not involve polling of file descriptors).
919  *
920  * After determining that another thread is currently handling events, you
921  * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
922  * You then re-check that some other thread is still handling events, and if
923  * so, you call libusb_wait_for_event().
924  *
925  * libusb_wait_for_event() puts your application to sleep until an event
926  * occurs, or until a thread releases the events lock. When either of these
927  * things happen, your thread is woken up, and should re-check the condition
928  * it was waiting on. It should also re-check that another thread is handling
929  * events, and if not, it should start handling events itself.
930  *
931  * This looks like the following, as pseudo-code:
932 \code
933 retry:
934 if (libusb_try_lock_events(ctx) == 0) {
935 	// we obtained the event lock: do our own event handling
936 	while (!completed) {
937 		if (!libusb_event_handling_ok(ctx)) {
938 			libusb_unlock_events(ctx);
939 			goto retry;
940 		}
941 		poll(libusbx file descriptors, 120*1000);
942 		if (poll indicates activity)
943 			libusb_handle_events_locked(ctx, 0);
944 	}
945 	libusb_unlock_events(ctx);
946 } else {
947 	// another thread is doing event handling. wait for it to signal us that
948 	// an event has completed
949 	libusb_lock_event_waiters(ctx);
950 
951 	while (!completed) {
952 		// now that we have the event waiters lock, double check that another
953 		// thread is still handling events for us. (it may have ceased handling
954 		// events in the time it took us to reach this point)
955 		if (!libusb_event_handler_active(ctx)) {
956 			// whoever was handling events is no longer doing so, try again
957 			libusb_unlock_event_waiters(ctx);
958 			goto retry;
959 		}
960 
961 		libusb_wait_for_event(ctx, NULL);
962 	}
963 	libusb_unlock_event_waiters(ctx);
964 }
965 printf("completed!\n");
966 \endcode
967  *
968  * A naive look at the above code may suggest that this can only support
969  * one event waiter (hence a total of 2 competing threads, the other doing
970  * event handling), because the event waiter seems to have taken the event
971  * waiters lock while waiting for an event. However, the system does support
972  * multiple event waiters, because libusb_wait_for_event() actually drops
973  * the lock while waiting, and reaquires it before continuing.
974  *
975  * We have now implemented code which can dynamically handle situations where
976  * nobody is handling events (so we should do it ourselves), and it can also
977  * handle situations where another thread is doing event handling (so we can
978  * piggyback onto them). It is also equipped to handle a combination of
979  * the two, for example, another thread is doing event handling, but for
980  * whatever reason it stops doing so before our condition is met, so we take
981  * over the event handling.
982  *
983  * Four functions were introduced in the above pseudo-code. Their importance
984  * should be apparent from the code shown above.
985  * -# libusb_try_lock_events() is a non-blocking function which attempts
986  *    to acquire the events lock but returns a failure code if it is contended.
987  * -# libusb_event_handling_ok() checks that libusbx is still happy for your
988  *    thread to be performing event handling. Sometimes, libusbx needs to
989  *    interrupt the event handler, and this is how you can check if you have
990  *    been interrupted. If this function returns 0, the correct behaviour is
991  *    for you to give up the event handling lock, and then to repeat the cycle.
992  *    The following libusb_try_lock_events() will fail, so you will become an
993  *    events waiter. For more information on this, read \ref fullstory below.
994  * -# libusb_handle_events_locked() is a variant of
995  *    libusb_handle_events_timeout() that you can call while holding the
996  *    events lock. libusb_handle_events_timeout() itself implements similar
997  *    logic to the above, so be sure not to call it when you are
998  *    "working behind libusbx's back", as is the case here.
999  * -# libusb_event_handler_active() determines if someone is currently
1000  *    holding the events lock
1001  *
1002  * You might be wondering why there is no function to wake up all threads
1003  * blocked on libusb_wait_for_event(). This is because libusbx can do this
1004  * internally: it will wake up all such threads when someone calls
1005  * libusb_unlock_events() or when a transfer completes (at the point after its
1006  * callback has returned).
1007  *
1008  * \subsection fullstory The full story
1009  *
1010  * The above explanation should be enough to get you going, but if you're
1011  * really thinking through the issues then you may be left with some more
1012  * questions regarding libusbx's internals. If you're curious, read on, and if
1013  * not, skip to the next section to avoid confusing yourself!
1014  *
1015  * The immediate question that may spring to mind is: what if one thread
1016  * modifies the set of file descriptors that need to be polled while another
1017  * thread is doing event handling?
1018  *
1019  * There are 2 situations in which this may happen.
1020  * -# libusb_open() will add another file descriptor to the poll set,
1021  *    therefore it is desirable to interrupt the event handler so that it
1022  *    restarts, picking up the new descriptor.
1023  * -# libusb_close() will remove a file descriptor from the poll set. There
1024  *    are all kinds of race conditions that could arise here, so it is
1025  *    important that nobody is doing event handling at this time.
1026  *
1027  * libusbx handles these issues internally, so application developers do not
1028  * have to stop their event handlers while opening/closing devices. Here's how
1029  * it works, focusing on the libusb_close() situation first:
1030  *
1031  * -# During initialization, libusbx opens an internal pipe, and it adds the read
1032  *    end of this pipe to the set of file descriptors to be polled.
1033  * -# During libusb_close(), libusbx writes some dummy data on this control pipe.
1034  *    This immediately interrupts the event handler. libusbx also records
1035  *    internally that it is trying to interrupt event handlers for this
1036  *    high-priority event.
1037  * -# At this point, some of the functions described above start behaving
1038  *    differently:
1039  *   - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
1040  *     OK for event handling to continue.
1041  *   - libusb_try_lock_events() starts returning 1, indicating that another
1042  *     thread holds the event handling lock, even if the lock is uncontended.
1043  *   - libusb_event_handler_active() starts returning 1, indicating that
1044  *     another thread is doing event handling, even if that is not true.
1045  * -# The above changes in behaviour result in the event handler stopping and
1046  *    giving up the events lock very quickly, giving the high-priority
1047  *    libusb_close() operation a "free ride" to acquire the events lock. All
1048  *    threads that are competing to do event handling become event waiters.
1049  * -# With the events lock held inside libusb_close(), libusbx can safely remove
1050  *    a file descriptor from the poll set, in the safety of knowledge that
1051  *    nobody is polling those descriptors or trying to access the poll set.
1052  * -# After obtaining the events lock, the close operation completes very
1053  *    quickly (usually a matter of milliseconds) and then immediately releases
1054  *    the events lock.
1055  * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
1056  *    reverts to the original, documented behaviour.
1057  * -# The release of the events lock causes the threads that are waiting for
1058  *    events to be woken up and to start competing to become event handlers
1059  *    again. One of them will succeed; it will then re-obtain the list of poll
1060  *    descriptors, and USB I/O will then continue as normal.
1061  *
1062  * libusb_open() is similar, and is actually a more simplistic case. Upon a
1063  * call to libusb_open():
1064  *
1065  * -# The device is opened and a file descriptor is added to the poll set.
1066  * -# libusbx sends some dummy data on the control pipe, and records that it
1067  *    is trying to modify the poll descriptor set.
1068  * -# The event handler is interrupted, and the same behaviour change as for
1069  *    libusb_close() takes effect, causing all event handling threads to become
1070  *    event waiters.
1071  * -# The libusb_open() implementation takes its free ride to the events lock.
1072  * -# Happy that it has successfully paused the events handler, libusb_open()
1073  *    releases the events lock.
1074  * -# The event waiter threads are all woken up and compete to become event
1075  *    handlers again. The one that succeeds will obtain the list of poll
1076  *    descriptors again, which will include the addition of the new device.
1077  *
1078  * \subsection concl Closing remarks
1079  *
1080  * The above may seem a little complicated, but hopefully I have made it clear
1081  * why such complications are necessary. Also, do not forget that this only
1082  * applies to applications that take libusbx's file descriptors and integrate
1083  * them into their own polling loops.
1084  *
1085  * You may decide that it is OK for your multi-threaded application to ignore
1086  * some of the rules and locks detailed above, because you don't think that
1087  * two threads can ever be polling the descriptors at the same time. If that
1088  * is the case, then that's good news for you because you don't have to worry.
1089  * But be careful here; remember that the synchronous I/O functions do event
1090  * handling internally. If you have one thread doing event handling in a loop
1091  * (without implementing the rules and locking semantics documented above)
1092  * and another trying to send a synchronous USB transfer, you will end up with
1093  * two threads monitoring the same descriptors, and the above-described
1094  * undesirable behaviour occuring. The solution is for your polling thread to
1095  * play by the rules; the synchronous I/O functions do so, and this will result
1096  * in them getting along in perfect harmony.
1097  *
1098  * If you do have a dedicated thread doing event handling, it is perfectly
1099  * legal for it to take the event handling lock for long periods of time. Any
1100  * synchronous I/O functions you call from other threads will transparently
1101  * fall back to the "event waiters" mechanism detailed above. The only
1102  * consideration that your event handling thread must apply is the one related
1103  * to libusb_event_handling_ok(): you must call this before every poll(), and
1104  * give up the events lock if instructed.
1105  */
1106 
usbi_io_init(struct libusb_context * ctx)1107 int usbi_io_init(struct libusb_context *ctx)
1108 {
1109 	int r;
1110 
1111 	usbi_mutex_init(&ctx->flying_transfers_lock, NULL);
1112 	usbi_mutex_init(&ctx->pollfds_lock, NULL);
1113 	usbi_mutex_init(&ctx->pollfd_modify_lock, NULL);
1114 	usbi_mutex_init_recursive(&ctx->events_lock, NULL);
1115 	usbi_mutex_init(&ctx->event_waiters_lock, NULL);
1116 	usbi_cond_init(&ctx->event_waiters_cond, NULL);
1117 	list_init(&ctx->flying_transfers);
1118 	list_init(&ctx->pollfds);
1119 
1120 	/* FIXME should use an eventfd on kernels that support it */
1121 	r = usbi_pipe(ctx->ctrl_pipe);
1122 	if (r < 0) {
1123 		r = LIBUSB_ERROR_OTHER;
1124 		goto err;
1125 	}
1126 
1127 	r = usbi_add_pollfd(ctx, ctx->ctrl_pipe[0], POLLIN);
1128 	if (r < 0)
1129 		goto err_close_pipe;
1130 
1131 	/* create hotplug pipe */
1132 	r = usbi_pipe(ctx->hotplug_pipe);
1133 	if (r < 0) {
1134 		r = LIBUSB_ERROR_OTHER;
1135 		goto err;
1136 	}
1137 
1138 	r = usbi_add_pollfd(ctx, ctx->hotplug_pipe[0], POLLIN);
1139 	if (r < 0)
1140 		goto err_close_hp_pipe;
1141 
1142 #ifdef USBI_TIMERFD_AVAILABLE
1143 	ctx->timerfd = timerfd_create(usbi_backend->get_timerfd_clockid(),
1144 		TFD_NONBLOCK);
1145 	if (ctx->timerfd >= 0) {
1146 		usbi_dbg("using timerfd for timeouts");
1147 		r = usbi_add_pollfd(ctx, ctx->timerfd, POLLIN);
1148 		if (r < 0) {
1149 			usbi_remove_pollfd(ctx, ctx->ctrl_pipe[0]);
1150 			close(ctx->timerfd);
1151 			goto err_close_hp_pipe;
1152 		}
1153 	} else {
1154 		usbi_dbg("timerfd not available (code %d error %d)", ctx->timerfd, errno);
1155 		ctx->timerfd = -1;
1156 	}
1157 #endif
1158 
1159 	return 0;
1160 
1161 err_close_hp_pipe:
1162 	usbi_close(ctx->hotplug_pipe[0]);
1163 	usbi_close(ctx->hotplug_pipe[1]);
1164 err_close_pipe:
1165 	usbi_close(ctx->ctrl_pipe[0]);
1166 	usbi_close(ctx->ctrl_pipe[1]);
1167 err:
1168 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1169 	usbi_mutex_destroy(&ctx->pollfds_lock);
1170 	usbi_mutex_destroy(&ctx->pollfd_modify_lock);
1171 	usbi_mutex_destroy(&ctx->events_lock);
1172 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1173 	usbi_cond_destroy(&ctx->event_waiters_cond);
1174 	return r;
1175 }
1176 
usbi_io_exit(struct libusb_context * ctx)1177 void usbi_io_exit(struct libusb_context *ctx)
1178 {
1179 	usbi_remove_pollfd(ctx, ctx->ctrl_pipe[0]);
1180 	usbi_close(ctx->ctrl_pipe[0]);
1181 	usbi_close(ctx->ctrl_pipe[1]);
1182 	usbi_remove_pollfd(ctx, ctx->hotplug_pipe[0]);
1183 	usbi_close(ctx->hotplug_pipe[0]);
1184 	usbi_close(ctx->hotplug_pipe[1]);
1185 #ifdef USBI_TIMERFD_AVAILABLE
1186 	if (usbi_using_timerfd(ctx)) {
1187 		usbi_remove_pollfd(ctx, ctx->timerfd);
1188 		close(ctx->timerfd);
1189 	}
1190 #endif
1191 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1192 	usbi_mutex_destroy(&ctx->pollfds_lock);
1193 	usbi_mutex_destroy(&ctx->pollfd_modify_lock);
1194 	usbi_mutex_destroy(&ctx->events_lock);
1195 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1196 	usbi_cond_destroy(&ctx->event_waiters_cond);
1197 }
1198 
calculate_timeout(struct usbi_transfer * transfer)1199 static int calculate_timeout(struct usbi_transfer *transfer)
1200 {
1201 	int r;
1202 	struct timespec current_time;
1203 	unsigned int timeout =
1204 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)->timeout;
1205 
1206 	if (!timeout)
1207 		return 0;
1208 
1209 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &current_time);
1210 	if (r < 0) {
1211 		usbi_err(ITRANSFER_CTX(transfer),
1212 			"failed to read monotonic clock, errno=%d", errno);
1213 		return r;
1214 	}
1215 
1216 	current_time.tv_sec += timeout / 1000;
1217 	current_time.tv_nsec += (timeout % 1000) * 1000000;
1218 
1219 	while (current_time.tv_nsec >= 1000000000) {
1220 		current_time.tv_nsec -= 1000000000;
1221 		current_time.tv_sec++;
1222 	}
1223 
1224 	TIMESPEC_TO_TIMEVAL(&transfer->timeout, &current_time);
1225 	return 0;
1226 }
1227 
1228 /* add a transfer to the (timeout-sorted) active transfers list.
1229  * Callers of this function must hold the flying_transfers_lock.
1230  * This function *always* adds the transfer to the flying_transfers list,
1231  * it will return non 0 if it fails to update the timer, but even then the
1232  * transfer is added to the flying_transfers list. */
add_to_flying_list(struct usbi_transfer * transfer)1233 static int add_to_flying_list(struct usbi_transfer *transfer)
1234 {
1235 	struct usbi_transfer *cur;
1236 	struct timeval *timeout = &transfer->timeout;
1237 	struct libusb_context *ctx = ITRANSFER_CTX(transfer);
1238 	int r = 0;
1239 	int first = 1;
1240 
1241 	/* if we have no other flying transfers, start the list with this one */
1242 	if (list_empty(&ctx->flying_transfers)) {
1243 		list_add(&transfer->list, &ctx->flying_transfers);
1244 		goto out;
1245 	}
1246 
1247 	/* if we have infinite timeout, append to end of list */
1248 	if (!timerisset(timeout)) {
1249 		list_add_tail(&transfer->list, &ctx->flying_transfers);
1250 		/* first is irrelevant in this case */
1251 		goto out;
1252 	}
1253 
1254 	/* otherwise, find appropriate place in list */
1255 	list_for_each_entry(cur, &ctx->flying_transfers, list, struct usbi_transfer) {
1256 		/* find first timeout that occurs after the transfer in question */
1257 		struct timeval *cur_tv = &cur->timeout;
1258 
1259 		if (!timerisset(cur_tv) || (cur_tv->tv_sec > timeout->tv_sec) ||
1260 				(cur_tv->tv_sec == timeout->tv_sec &&
1261 					cur_tv->tv_usec > timeout->tv_usec)) {
1262 			list_add_tail(&transfer->list, &cur->list);
1263 			goto out;
1264 		}
1265 		first = 0;
1266 	}
1267 	/* first is 0 at this stage (list not empty) */
1268 
1269 	/* otherwise we need to be inserted at the end */
1270 	list_add_tail(&transfer->list, &ctx->flying_transfers);
1271 out:
1272 #ifdef USBI_TIMERFD_AVAILABLE
1273 	if (first && usbi_using_timerfd(ctx) && timerisset(timeout)) {
1274 		/* if this transfer has the lowest timeout of all active transfers,
1275 		 * rearm the timerfd with this transfer's timeout */
1276 		const struct itimerspec it = { {0, 0},
1277 			{ timeout->tv_sec, timeout->tv_usec * 1000 } };
1278 		usbi_dbg("arm timerfd for timeout in %dms (first in line)",
1279 			USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)->timeout);
1280 		r = timerfd_settime(ctx->timerfd, TFD_TIMER_ABSTIME, &it, NULL);
1281 		if (r < 0) {
1282 			usbi_warn(ctx, "failed to arm first timerfd (errno %d)", errno);
1283 			r = LIBUSB_ERROR_OTHER;
1284 		}
1285 	}
1286 #else
1287 	UNUSED(first);
1288 #endif
1289 
1290 	return r;
1291 }
1292 
1293 /** \ingroup asyncio
1294  * Allocate a libusbx transfer with a specified number of isochronous packet
1295  * descriptors. The returned transfer is pre-initialized for you. When the new
1296  * transfer is no longer needed, it should be freed with
1297  * libusb_free_transfer().
1298  *
1299  * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
1300  * interrupt) should specify an iso_packets count of zero.
1301  *
1302  * For transfers intended for isochronous endpoints, specify an appropriate
1303  * number of packet descriptors to be allocated as part of the transfer.
1304  * The returned transfer is not specially initialized for isochronous I/O;
1305  * you are still required to set the
1306  * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
1307  * \ref libusb_transfer::type "type" fields accordingly.
1308  *
1309  * It is safe to allocate a transfer with some isochronous packets and then
1310  * use it on a non-isochronous endpoint. If you do this, ensure that at time
1311  * of submission, num_iso_packets is 0 and that type is set appropriately.
1312  *
1313  * \param iso_packets number of isochronous packet descriptors to allocate
1314  * \returns a newly allocated transfer, or NULL on error
1315  */
1316 DEFAULT_VISIBILITY
libusb_alloc_transfer(int iso_packets)1317 struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
1318 	int iso_packets)
1319 {
1320 	size_t os_alloc_size = usbi_backend->transfer_priv_size
1321 		+ (usbi_backend->add_iso_packet_size * iso_packets);
1322 	size_t alloc_size = sizeof(struct usbi_transfer)
1323 		+ sizeof(struct libusb_transfer)
1324 		+ (sizeof(struct libusb_iso_packet_descriptor) * iso_packets)
1325 		+ os_alloc_size;
1326 	struct usbi_transfer *itransfer = calloc(1, alloc_size);
1327 	if (!itransfer)
1328 		return NULL;
1329 
1330 	itransfer->num_iso_packets = iso_packets;
1331 	usbi_mutex_init(&itransfer->lock, NULL);
1332 	return USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1333 }
1334 
1335 /** \ingroup asyncio
1336  * Free a transfer structure. This should be called for all transfers
1337  * allocated with libusb_alloc_transfer().
1338  *
1339  * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
1340  * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
1341  * non-NULL, this function will also free the transfer buffer using the
1342  * standard system memory allocator (e.g. free()).
1343  *
1344  * It is legal to call this function with a NULL transfer. In this case,
1345  * the function will simply return safely.
1346  *
1347  * It is not legal to free an active transfer (one which has been submitted
1348  * and has not yet completed).
1349  *
1350  * \param transfer the transfer to free
1351  */
libusb_free_transfer(struct libusb_transfer * transfer)1352 void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
1353 {
1354 	struct usbi_transfer *itransfer;
1355 	if (!transfer)
1356 		return;
1357 
1358 	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER && transfer->buffer)
1359 		free(transfer->buffer);
1360 
1361 	itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1362 	usbi_mutex_destroy(&itransfer->lock);
1363 	free(itransfer);
1364 }
1365 
1366 #ifdef USBI_TIMERFD_AVAILABLE
disarm_timerfd(struct libusb_context * ctx)1367 static int disarm_timerfd(struct libusb_context *ctx)
1368 {
1369 	const struct itimerspec disarm_timer = { { 0, 0 }, { 0, 0 } };
1370 	int r;
1371 
1372 	usbi_dbg("");
1373 	r = timerfd_settime(ctx->timerfd, 0, &disarm_timer, NULL);
1374 	if (r < 0)
1375 		return LIBUSB_ERROR_OTHER;
1376 	else
1377 		return 0;
1378 }
1379 
1380 /* iterates through the flying transfers, and rearms the timerfd based on the
1381  * next upcoming timeout.
1382  * must be called with flying_list locked.
1383  * returns 0 if there was no timeout to arm, 1 if the next timeout was armed,
1384  * or a LIBUSB_ERROR code on failure.
1385  */
arm_timerfd_for_next_timeout(struct libusb_context * ctx)1386 static int arm_timerfd_for_next_timeout(struct libusb_context *ctx)
1387 {
1388 	struct usbi_transfer *transfer;
1389 
1390 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
1391 		struct timeval *cur_tv = &transfer->timeout;
1392 
1393 		/* if we've reached transfers of infinite timeout, then we have no
1394 		 * arming to do */
1395 		if (!timerisset(cur_tv))
1396 			goto disarm;
1397 
1398 		/* act on first transfer that is not already cancelled */
1399 		if (!(transfer->flags & USBI_TRANSFER_TIMED_OUT)) {
1400 			int r;
1401 			const struct itimerspec it = { {0, 0},
1402 				{ cur_tv->tv_sec, cur_tv->tv_usec * 1000 } };
1403 			usbi_dbg("next timeout originally %dms", USBI_TRANSFER_TO_LIBUSB_TRANSFER(transfer)->timeout);
1404 			r = timerfd_settime(ctx->timerfd, TFD_TIMER_ABSTIME, &it, NULL);
1405 			if (r < 0)
1406 				return LIBUSB_ERROR_OTHER;
1407 			return 1;
1408 		}
1409 	}
1410 
1411 disarm:
1412 	return disarm_timerfd(ctx);
1413 }
1414 #else
arm_timerfd_for_next_timeout(struct libusb_context * ctx)1415 static int arm_timerfd_for_next_timeout(struct libusb_context *ctx)
1416 {
1417 	(void)ctx;
1418 	return 0;
1419 }
1420 #endif
1421 
1422 /** \ingroup asyncio
1423  * Submit a transfer. This function will fire off the USB transfer and then
1424  * return immediately.
1425  *
1426  * \param transfer the transfer to submit
1427  * \returns 0 on success
1428  * \returns LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
1429  * \returns LIBUSB_ERROR_BUSY if the transfer has already been submitted.
1430  * \returns LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
1431  * by the operating system.
1432  * \returns another LIBUSB_ERROR code on other failure
1433  */
libusb_submit_transfer(struct libusb_transfer * transfer)1434 int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
1435 {
1436 	struct libusb_context *ctx = TRANSFER_CTX(transfer);
1437 	struct usbi_transfer *itransfer =
1438 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1439 	int r;
1440 	int updated_fds;
1441 
1442 	usbi_mutex_lock(&itransfer->lock);
1443 	itransfer->transferred = 0;
1444 	itransfer->flags = 0;
1445 	r = calculate_timeout(itransfer);
1446 	if (r < 0) {
1447 		r = LIBUSB_ERROR_OTHER;
1448 		goto out;
1449 	}
1450 
1451 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1452 	r = add_to_flying_list(itransfer);
1453 	if (r == LIBUSB_SUCCESS) {
1454 		r = usbi_backend->submit_transfer(itransfer);
1455 	}
1456 	if (r != LIBUSB_SUCCESS) {
1457 		list_del(&itransfer->list);
1458 		arm_timerfd_for_next_timeout(ctx);
1459 	}
1460 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1461 
1462 	/* keep a reference to this device */
1463 	libusb_ref_device(transfer->dev_handle->dev);
1464 out:
1465 	updated_fds = (itransfer->flags & USBI_TRANSFER_UPDATED_FDS);
1466 	usbi_mutex_unlock(&itransfer->lock);
1467 	if (updated_fds)
1468 		usbi_fd_notification(ctx);
1469 	return r;
1470 }
1471 
1472 /** \ingroup asyncio
1473  * Asynchronously cancel a previously submitted transfer.
1474  * This function returns immediately, but this does not indicate cancellation
1475  * is complete. Your callback function will be invoked at some later time
1476  * with a transfer status of
1477  * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1478  * "LIBUSB_TRANSFER_CANCELLED."
1479  *
1480  * \param transfer the transfer to cancel
1481  * \returns 0 on success
1482  * \returns LIBUSB_ERROR_NOT_FOUND if the transfer is already complete or
1483  * cancelled.
1484  * \returns a LIBUSB_ERROR code on failure
1485  */
libusb_cancel_transfer(struct libusb_transfer * transfer)1486 int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
1487 {
1488 	struct usbi_transfer *itransfer =
1489 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1490 	int r;
1491 
1492 	usbi_dbg("");
1493 	usbi_mutex_lock(&itransfer->lock);
1494 	r = usbi_backend->cancel_transfer(itransfer);
1495 	if (r < 0) {
1496 		if (r != LIBUSB_ERROR_NOT_FOUND &&
1497 		    r != LIBUSB_ERROR_NO_DEVICE)
1498 			usbi_err(TRANSFER_CTX(transfer),
1499 				"cancel transfer failed error %d", r);
1500 		else
1501 			usbi_dbg("cancel transfer failed error %d", r);
1502 
1503 		if (r == LIBUSB_ERROR_NO_DEVICE)
1504 			itransfer->flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
1505 	}
1506 
1507 	itransfer->flags |= USBI_TRANSFER_CANCELLING;
1508 
1509 	usbi_mutex_unlock(&itransfer->lock);
1510 	return r;
1511 }
1512 
1513 /* Handle completion of a transfer (completion might be an error condition).
1514  * This will invoke the user-supplied callback function, which may end up
1515  * freeing the transfer. Therefore you cannot use the transfer structure
1516  * after calling this function, and you should free all backend-specific
1517  * data before calling it.
1518  * Do not call this function with the usbi_transfer lock held. User-specified
1519  * callback functions may attempt to directly resubmit the transfer, which
1520  * will attempt to take the lock. */
usbi_handle_transfer_completion(struct usbi_transfer * itransfer,enum libusb_transfer_status status)1521 int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
1522 	enum libusb_transfer_status status)
1523 {
1524 	struct libusb_transfer *transfer =
1525 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1526 	struct libusb_context *ctx = TRANSFER_CTX(transfer);
1527 	struct libusb_device_handle *handle = transfer->dev_handle;
1528 	uint8_t flags;
1529 	int r = 0;
1530 
1531 	/* FIXME: could be more intelligent with the timerfd here. we don't need
1532 	 * to disarm the timerfd if there was no timer running, and we only need
1533 	 * to rearm the timerfd if the transfer that expired was the one with
1534 	 * the shortest timeout. */
1535 
1536 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1537 	list_del(&itransfer->list);
1538 	if (usbi_using_timerfd(ctx))
1539 		r = arm_timerfd_for_next_timeout(ctx);
1540 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1541 	if (usbi_using_timerfd(ctx) && (r < 0))
1542 		return r;
1543 
1544 	if (status == LIBUSB_TRANSFER_COMPLETED
1545 			&& transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
1546 		int rqlen = transfer->length;
1547 		if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
1548 			rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
1549 		if (rqlen != itransfer->transferred) {
1550 			usbi_dbg("interpreting short transfer as error");
1551 			status = LIBUSB_TRANSFER_ERROR;
1552 		}
1553 	}
1554 
1555 	flags = transfer->flags;
1556 	transfer->status = status;
1557 	transfer->actual_length = itransfer->transferred;
1558 	usbi_dbg("transfer %p has callback %p", transfer, transfer->callback);
1559 	if (transfer->callback)
1560 		transfer->callback(transfer);
1561 	/* transfer might have been freed by the above call, do not use from
1562 	 * this point. */
1563 	if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
1564 		libusb_free_transfer(transfer);
1565 	usbi_mutex_lock(&ctx->event_waiters_lock);
1566 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1567 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1568 	libusb_unref_device(handle->dev);
1569 	return 0;
1570 }
1571 
1572 /* Similar to usbi_handle_transfer_completion() but exclusively for transfers
1573  * that were asynchronously cancelled. The same concerns w.r.t. freeing of
1574  * transfers exist here.
1575  * Do not call this function with the usbi_transfer lock held. User-specified
1576  * callback functions may attempt to directly resubmit the transfer, which
1577  * will attempt to take the lock. */
usbi_handle_transfer_cancellation(struct usbi_transfer * transfer)1578 int usbi_handle_transfer_cancellation(struct usbi_transfer *transfer)
1579 {
1580 	/* if the URB was cancelled due to timeout, report timeout to the user */
1581 	if (transfer->flags & USBI_TRANSFER_TIMED_OUT) {
1582 		usbi_dbg("detected timeout cancellation");
1583 		return usbi_handle_transfer_completion(transfer, LIBUSB_TRANSFER_TIMED_OUT);
1584 	}
1585 
1586 	/* otherwise its a normal async cancel */
1587 	return usbi_handle_transfer_completion(transfer, LIBUSB_TRANSFER_CANCELLED);
1588 }
1589 
1590 /** \ingroup poll
1591  * Attempt to acquire the event handling lock. This lock is used to ensure that
1592  * only one thread is monitoring libusbx event sources at any one time.
1593  *
1594  * You only need to use this lock if you are developing an application
1595  * which calls poll() or select() on libusbx's file descriptors directly.
1596  * If you stick to libusbx's event handling loop functions (e.g.
1597  * libusb_handle_events()) then you do not need to be concerned with this
1598  * locking.
1599  *
1600  * While holding this lock, you are trusted to actually be handling events.
1601  * If you are no longer handling events, you must call libusb_unlock_events()
1602  * as soon as possible.
1603  *
1604  * \param ctx the context to operate on, or NULL for the default context
1605  * \returns 0 if the lock was obtained successfully
1606  * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
1607  * \see \ref mtasync
1608  */
libusb_try_lock_events(libusb_context * ctx)1609 int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
1610 {
1611 	int r;
1612 	unsigned int ru;
1613 	USBI_GET_CONTEXT(ctx);
1614 
1615 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1616 	 * start event handling */
1617 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1618 	ru = ctx->pollfd_modify;
1619 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1620 	if (ru) {
1621 		usbi_dbg("someone else is modifying poll fds");
1622 		return 1;
1623 	}
1624 
1625 	r = usbi_mutex_trylock(&ctx->events_lock);
1626 	if (r)
1627 		return 1;
1628 
1629 	ctx->event_handler_active = 1;
1630 	return 0;
1631 }
1632 
1633 /** \ingroup poll
1634  * Acquire the event handling lock, blocking until successful acquisition if
1635  * it is contended. This lock is used to ensure that only one thread is
1636  * monitoring libusbx event sources at any one time.
1637  *
1638  * You only need to use this lock if you are developing an application
1639  * which calls poll() or select() on libusbx's file descriptors directly.
1640  * If you stick to libusbx's event handling loop functions (e.g.
1641  * libusb_handle_events()) then you do not need to be concerned with this
1642  * locking.
1643  *
1644  * While holding this lock, you are trusted to actually be handling events.
1645  * If you are no longer handling events, you must call libusb_unlock_events()
1646  * as soon as possible.
1647  *
1648  * \param ctx the context to operate on, or NULL for the default context
1649  * \see \ref mtasync
1650  */
libusb_lock_events(libusb_context * ctx)1651 void API_EXPORTED libusb_lock_events(libusb_context *ctx)
1652 {
1653 	USBI_GET_CONTEXT(ctx);
1654 	usbi_mutex_lock(&ctx->events_lock);
1655 	ctx->event_handler_active = 1;
1656 }
1657 
1658 /** \ingroup poll
1659  * Release the lock previously acquired with libusb_try_lock_events() or
1660  * libusb_lock_events(). Releasing this lock will wake up any threads blocked
1661  * on libusb_wait_for_event().
1662  *
1663  * \param ctx the context to operate on, or NULL for the default context
1664  * \see \ref mtasync
1665  */
libusb_unlock_events(libusb_context * ctx)1666 void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
1667 {
1668 	USBI_GET_CONTEXT(ctx);
1669 	ctx->event_handler_active = 0;
1670 	usbi_mutex_unlock(&ctx->events_lock);
1671 
1672 	/* FIXME: perhaps we should be a bit more efficient by not broadcasting
1673 	 * the availability of the events lock when we are modifying pollfds
1674 	 * (check ctx->pollfd_modify)? */
1675 	usbi_mutex_lock(&ctx->event_waiters_lock);
1676 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1677 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1678 }
1679 
1680 /** \ingroup poll
1681  * Determine if it is still OK for this thread to be doing event handling.
1682  *
1683  * Sometimes, libusbx needs to temporarily pause all event handlers, and this
1684  * is the function you should use before polling file descriptors to see if
1685  * this is the case.
1686  *
1687  * If this function instructs your thread to give up the events lock, you
1688  * should just continue the usual logic that is documented in \ref mtasync.
1689  * On the next iteration, your thread will fail to obtain the events lock,
1690  * and will hence become an event waiter.
1691  *
1692  * This function should be called while the events lock is held: you don't
1693  * need to worry about the results of this function if your thread is not
1694  * the current event handler.
1695  *
1696  * \param ctx the context to operate on, or NULL for the default context
1697  * \returns 1 if event handling can start or continue
1698  * \returns 0 if this thread must give up the events lock
1699  * \see \ref fullstory "Multi-threaded I/O: the full story"
1700  */
libusb_event_handling_ok(libusb_context * ctx)1701 int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
1702 {
1703 	unsigned int r;
1704 	USBI_GET_CONTEXT(ctx);
1705 
1706 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1707 	 * continue event handling */
1708 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1709 	r = ctx->pollfd_modify;
1710 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1711 	if (r) {
1712 		usbi_dbg("someone else is modifying poll fds");
1713 		return 0;
1714 	}
1715 
1716 	return 1;
1717 }
1718 
1719 
1720 /** \ingroup poll
1721  * Determine if an active thread is handling events (i.e. if anyone is holding
1722  * the event handling lock).
1723  *
1724  * \param ctx the context to operate on, or NULL for the default context
1725  * \returns 1 if a thread is handling events
1726  * \returns 0 if there are no threads currently handling events
1727  * \see \ref mtasync
1728  */
libusb_event_handler_active(libusb_context * ctx)1729 int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
1730 {
1731 	unsigned int r;
1732 	USBI_GET_CONTEXT(ctx);
1733 
1734 	/* is someone else waiting to modify poll fds? if so, don't let this thread
1735 	 * start event handling -- indicate that event handling is happening */
1736 	usbi_mutex_lock(&ctx->pollfd_modify_lock);
1737 	r = ctx->pollfd_modify;
1738 	usbi_mutex_unlock(&ctx->pollfd_modify_lock);
1739 	if (r) {
1740 		usbi_dbg("someone else is modifying poll fds");
1741 		return 1;
1742 	}
1743 
1744 	return ctx->event_handler_active;
1745 }
1746 
1747 /** \ingroup poll
1748  * Acquire the event waiters lock. This lock is designed to be obtained under
1749  * the situation where you want to be aware when events are completed, but
1750  * some other thread is event handling so calling libusb_handle_events() is not
1751  * allowed.
1752  *
1753  * You then obtain this lock, re-check that another thread is still handling
1754  * events, then call libusb_wait_for_event().
1755  *
1756  * You only need to use this lock if you are developing an application
1757  * which calls poll() or select() on libusbx's file descriptors directly,
1758  * <b>and</b> may potentially be handling events from 2 threads simultaenously.
1759  * If you stick to libusbx's event handling loop functions (e.g.
1760  * libusb_handle_events()) then you do not need to be concerned with this
1761  * locking.
1762  *
1763  * \param ctx the context to operate on, or NULL for the default context
1764  * \see \ref mtasync
1765  */
libusb_lock_event_waiters(libusb_context * ctx)1766 void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
1767 {
1768 	USBI_GET_CONTEXT(ctx);
1769 	usbi_mutex_lock(&ctx->event_waiters_lock);
1770 }
1771 
1772 /** \ingroup poll
1773  * Release the event waiters lock.
1774  * \param ctx the context to operate on, or NULL for the default context
1775  * \see \ref mtasync
1776  */
libusb_unlock_event_waiters(libusb_context * ctx)1777 void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
1778 {
1779 	USBI_GET_CONTEXT(ctx);
1780 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1781 }
1782 
1783 /** \ingroup poll
1784  * Wait for another thread to signal completion of an event. Must be called
1785  * with the event waiters lock held, see libusb_lock_event_waiters().
1786  *
1787  * This function will block until any of the following conditions are met:
1788  * -# The timeout expires
1789  * -# A transfer completes
1790  * -# A thread releases the event handling lock through libusb_unlock_events()
1791  *
1792  * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
1793  * the callback for the transfer has completed. Condition 3 is important
1794  * because it means that the thread that was previously handling events is no
1795  * longer doing so, so if any events are to complete, another thread needs to
1796  * step up and start event handling.
1797  *
1798  * This function releases the event waiters lock before putting your thread
1799  * to sleep, and reacquires the lock as it is being woken up.
1800  *
1801  * \param ctx the context to operate on, or NULL for the default context
1802  * \param tv maximum timeout for this blocking function. A NULL value
1803  * indicates unlimited timeout.
1804  * \returns 0 after a transfer completes or another thread stops event handling
1805  * \returns 1 if the timeout expired
1806  * \see \ref mtasync
1807  */
libusb_wait_for_event(libusb_context * ctx,struct timeval * tv)1808 int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
1809 {
1810 	struct timespec timeout;
1811 	int r;
1812 
1813 	USBI_GET_CONTEXT(ctx);
1814 	if (tv == NULL) {
1815 		usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
1816 		return 0;
1817 	}
1818 
1819 	r = usbi_backend->clock_gettime(USBI_CLOCK_REALTIME, &timeout);
1820 	if (r < 0) {
1821 		usbi_err(ctx, "failed to read realtime clock, error %d", errno);
1822 		return LIBUSB_ERROR_OTHER;
1823 	}
1824 
1825 	timeout.tv_sec += tv->tv_sec;
1826 	timeout.tv_nsec += tv->tv_usec * 1000;
1827 	while (timeout.tv_nsec >= 1000000000) {
1828 		timeout.tv_nsec -= 1000000000;
1829 		timeout.tv_sec++;
1830 	}
1831 
1832 	r = usbi_cond_timedwait(&ctx->event_waiters_cond,
1833 		&ctx->event_waiters_lock, &timeout);
1834 	return (r == ETIMEDOUT);
1835 }
1836 
handle_timeout(struct usbi_transfer * itransfer)1837 static void handle_timeout(struct usbi_transfer *itransfer)
1838 {
1839 	struct libusb_transfer *transfer =
1840 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1841 	int r;
1842 
1843 	itransfer->flags |= USBI_TRANSFER_TIMED_OUT;
1844 	r = libusb_cancel_transfer(transfer);
1845 	if (r < 0)
1846 		usbi_warn(TRANSFER_CTX(transfer),
1847 			"async cancel failed %d errno=%d", r, errno);
1848 }
1849 
handle_timeouts_locked(struct libusb_context * ctx)1850 static int handle_timeouts_locked(struct libusb_context *ctx)
1851 {
1852 	int r;
1853 	struct timespec systime_ts;
1854 	struct timeval systime;
1855 	struct usbi_transfer *transfer;
1856 
1857 	if (list_empty(&ctx->flying_transfers))
1858 		return 0;
1859 
1860 	/* get current time */
1861 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &systime_ts);
1862 	if (r < 0)
1863 		return r;
1864 
1865 	TIMESPEC_TO_TIMEVAL(&systime, &systime_ts);
1866 
1867 	/* iterate through flying transfers list, finding all transfers that
1868 	 * have expired timeouts */
1869 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
1870 		struct timeval *cur_tv = &transfer->timeout;
1871 
1872 		/* if we've reached transfers of infinite timeout, we're all done */
1873 		if (!timerisset(cur_tv))
1874 			return 0;
1875 
1876 		/* ignore timeouts we've already handled */
1877 		if (transfer->flags & (USBI_TRANSFER_TIMED_OUT | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
1878 			continue;
1879 
1880 		/* if transfer has non-expired timeout, nothing more to do */
1881 		if ((cur_tv->tv_sec > systime.tv_sec) ||
1882 				(cur_tv->tv_sec == systime.tv_sec &&
1883 					cur_tv->tv_usec > systime.tv_usec))
1884 			return 0;
1885 
1886 		/* otherwise, we've got an expired timeout to handle */
1887 		handle_timeout(transfer);
1888 	}
1889 	return 0;
1890 }
1891 
handle_timeouts(struct libusb_context * ctx)1892 static int handle_timeouts(struct libusb_context *ctx)
1893 {
1894 	int r;
1895 	USBI_GET_CONTEXT(ctx);
1896 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1897 	r = handle_timeouts_locked(ctx);
1898 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1899 	return r;
1900 }
1901 
1902 #ifdef USBI_TIMERFD_AVAILABLE
handle_timerfd_trigger(struct libusb_context * ctx)1903 static int handle_timerfd_trigger(struct libusb_context *ctx)
1904 {
1905 	int r;
1906 
1907 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1908 
1909 	/* process the timeout that just happened */
1910 	r = handle_timeouts_locked(ctx);
1911 	if (r < 0)
1912 		goto out;
1913 
1914 	/* arm for next timeout*/
1915 	r = arm_timerfd_for_next_timeout(ctx);
1916 
1917 out:
1918 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1919 	return r;
1920 }
1921 #endif
1922 
1923 /* do the actual event handling. assumes that no other thread is concurrently
1924  * doing the same thing. */
handle_events(struct libusb_context * ctx,struct timeval * tv)1925 static int handle_events(struct libusb_context *ctx, struct timeval *tv)
1926 {
1927 	int r;
1928 	struct usbi_pollfd *ipollfd;
1929 	POLL_NFDS_TYPE nfds = 0;
1930 	struct pollfd *fds = NULL;
1931 	int i = -1;
1932 	int timeout_ms;
1933 
1934 	usbi_mutex_lock(&ctx->pollfds_lock);
1935 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
1936 		nfds++;
1937 
1938 	/* TODO: malloc when number of fd's changes, not on every poll */
1939 	if (nfds != 0)
1940 		fds = malloc(sizeof(*fds) * nfds);
1941 	if (!fds) {
1942 		usbi_mutex_unlock(&ctx->pollfds_lock);
1943 		return LIBUSB_ERROR_NO_MEM;
1944 	}
1945 
1946 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd) {
1947 		struct libusb_pollfd *pollfd = &ipollfd->pollfd;
1948 		int fd = pollfd->fd;
1949 		i++;
1950 		fds[i].fd = fd;
1951 		fds[i].events = pollfd->events;
1952 		fds[i].revents = 0;
1953 	}
1954 	usbi_mutex_unlock(&ctx->pollfds_lock);
1955 
1956 	timeout_ms = (int)(tv->tv_sec * 1000) + (tv->tv_usec / 1000);
1957 
1958 	/* round up to next millisecond */
1959 	if (tv->tv_usec % 1000)
1960 		timeout_ms++;
1961 
1962 	usbi_dbg("poll() %d fds with timeout in %dms", nfds, timeout_ms);
1963 	r = usbi_poll(fds, nfds, timeout_ms);
1964 	usbi_dbg("poll() returned %d", r);
1965 	if (r == 0) {
1966 		free(fds);
1967 		return handle_timeouts(ctx);
1968 	} else if (r == -1 && errno == EINTR) {
1969 		free(fds);
1970 		return LIBUSB_ERROR_INTERRUPTED;
1971 	} else if (r < 0) {
1972 		free(fds);
1973 		usbi_err(ctx, "poll failed %d err=%d\n", r, errno);
1974 		return LIBUSB_ERROR_IO;
1975 	}
1976 
1977 	/* fd[0] is always the ctrl pipe */
1978 	if (fds[0].revents) {
1979 		/* another thread wanted to interrupt event handling, and it succeeded!
1980 		 * handle any other events that cropped up at the same time, and
1981 		 * simply return */
1982 		usbi_dbg("caught a fish on the control pipe");
1983 
1984 		if (r == 1) {
1985 			r = 0;
1986 			goto handled;
1987 		} else {
1988 			/* prevent OS backend from trying to handle events on ctrl pipe */
1989 			fds[0].revents = 0;
1990 			r--;
1991 		}
1992 	}
1993 
1994 	/* fd[1] is always the hotplug pipe */
1995 	if (libusb_has_capability(LIBUSB_CAP_HAS_HOTPLUG) && fds[1].revents) {
1996 		libusb_hotplug_message message;
1997 		ssize_t ret;
1998 
1999 		usbi_dbg("caught a fish on the hotplug pipe");
2000 
2001 		/* read the message from the hotplug thread */
2002 		ret = usbi_read(ctx->hotplug_pipe[0], &message, sizeof (message));
2003 		if (ret != sizeof(message)) {
2004 			usbi_err(ctx, "hotplug pipe read error %d != %u",
2005 				 ret, sizeof(message));
2006 			r = LIBUSB_ERROR_OTHER;
2007 			goto handled;
2008 		}
2009 
2010 		usbi_hotplug_match(ctx, message.device, message.event);
2011 
2012 		/* the device left. dereference the device */
2013 		if (LIBUSB_HOTPLUG_EVENT_DEVICE_LEFT == message.event)
2014 			libusb_unref_device(message.device);
2015 
2016 		fds[1].revents = 0;
2017 		if (1 == r--)
2018 			goto handled;
2019 	} /* else there shouldn't be anything on this pipe */
2020 
2021 #ifdef USBI_TIMERFD_AVAILABLE
2022 	/* on timerfd configurations, fds[2] is the timerfd */
2023 	if (usbi_using_timerfd(ctx) && fds[2].revents) {
2024 		/* timerfd indicates that a timeout has expired */
2025 		int ret;
2026 		usbi_dbg("timerfd triggered");
2027 
2028 		ret = handle_timerfd_trigger(ctx);
2029 		if (ret < 0) {
2030 			/* return error code */
2031 			r = ret;
2032 			goto handled;
2033 		} else if (r == 1) {
2034 			/* no more active file descriptors, nothing more to do */
2035 			r = 0;
2036 			goto handled;
2037 		} else {
2038 			/* more events pending...
2039 			 * prevent OS backend from trying to handle events on timerfd */
2040 			fds[2].revents = 0;
2041 			r--;
2042 		}
2043 	}
2044 #endif
2045 
2046 	r = usbi_backend->handle_events(ctx, fds, nfds, r);
2047 	if (r)
2048 		usbi_err(ctx, "backend handle_events failed with error %d", r);
2049 
2050 handled:
2051 	free(fds);
2052 	return r;
2053 }
2054 
2055 /* returns the smallest of:
2056  *  1. timeout of next URB
2057  *  2. user-supplied timeout
2058  * returns 1 if there is an already-expired timeout, otherwise returns 0
2059  * and populates out
2060  */
get_next_timeout(libusb_context * ctx,struct timeval * tv,struct timeval * out)2061 static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
2062 	struct timeval *out)
2063 {
2064 	struct timeval timeout;
2065 	int r = libusb_get_next_timeout(ctx, &timeout);
2066 	if (r) {
2067 		/* timeout already expired? */
2068 		if (!timerisset(&timeout))
2069 			return 1;
2070 
2071 		/* choose the smallest of next URB timeout or user specified timeout */
2072 		if (timercmp(&timeout, tv, <))
2073 			*out = timeout;
2074 		else
2075 			*out = *tv;
2076 	} else {
2077 		*out = *tv;
2078 	}
2079 	return 0;
2080 }
2081 
2082 /** \ingroup poll
2083  * Handle any pending events.
2084  *
2085  * libusbx determines "pending events" by checking if any timeouts have expired
2086  * and by checking the set of file descriptors for activity.
2087  *
2088  * If a zero timeval is passed, this function will handle any already-pending
2089  * events and then immediately return in non-blocking style.
2090  *
2091  * If a non-zero timeval is passed and no events are currently pending, this
2092  * function will block waiting for events to handle up until the specified
2093  * timeout. If an event arrives or a signal is raised, this function will
2094  * return early.
2095  *
2096  * If the parameter completed is not NULL then <em>after obtaining the event
2097  * handling lock</em> this function will return immediately if the integer
2098  * pointed to is not 0. This allows for race free waiting for the completion
2099  * of a specific transfer.
2100  *
2101  * \param ctx the context to operate on, or NULL for the default context
2102  * \param tv the maximum time to block waiting for events, or an all zero
2103  * timeval struct for non-blocking mode
2104  * \param completed pointer to completion integer to check, or NULL
2105  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2106  * \see \ref mtasync
2107  */
libusb_handle_events_timeout_completed(libusb_context * ctx,struct timeval * tv,int * completed)2108 int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
2109 	struct timeval *tv, int *completed)
2110 {
2111 	int r;
2112 	struct timeval poll_timeout;
2113 
2114 	USBI_GET_CONTEXT(ctx);
2115 	r = get_next_timeout(ctx, tv, &poll_timeout);
2116 	if (r) {
2117 		/* timeout already expired */
2118 		return handle_timeouts(ctx);
2119 	}
2120 
2121 retry:
2122 	if (libusb_try_lock_events(ctx) == 0) {
2123 		if (completed == NULL || !*completed) {
2124 			/* we obtained the event lock: do our own event handling */
2125 			usbi_dbg("doing our own event handling");
2126 			r = handle_events(ctx, &poll_timeout);
2127 		}
2128 		libusb_unlock_events(ctx);
2129 		return r;
2130 	}
2131 
2132 	/* another thread is doing event handling. wait for thread events that
2133 	 * notify event completion. */
2134 	libusb_lock_event_waiters(ctx);
2135 
2136 	if (completed && *completed)
2137 		goto already_done;
2138 
2139 	if (!libusb_event_handler_active(ctx)) {
2140 		/* we hit a race: whoever was event handling earlier finished in the
2141 		 * time it took us to reach this point. try the cycle again. */
2142 		libusb_unlock_event_waiters(ctx);
2143 		usbi_dbg("event handler was active but went away, retrying");
2144 		goto retry;
2145 	}
2146 
2147 	usbi_dbg("another thread is doing event handling");
2148 	r = libusb_wait_for_event(ctx, &poll_timeout);
2149 
2150 already_done:
2151 	libusb_unlock_event_waiters(ctx);
2152 
2153 	if (r < 0)
2154 		return r;
2155 	else if (r == 1)
2156 		return handle_timeouts(ctx);
2157 	else
2158 		return 0;
2159 }
2160 
2161 /** \ingroup poll
2162  * Handle any pending events
2163  *
2164  * Like libusb_handle_events_timeout_completed(), but without the completed
2165  * parameter, calling this function is equivalent to calling
2166  * libusb_handle_events_timeout_completed() with a NULL completed parameter.
2167  *
2168  * This function is kept primarily for backwards compatibility.
2169  * All new code should call libusb_handle_events_completed() or
2170  * libusb_handle_events_timeout_completed() to avoid race conditions.
2171  *
2172  * \param ctx the context to operate on, or NULL for the default context
2173  * \param tv the maximum time to block waiting for events, or an all zero
2174  * timeval struct for non-blocking mode
2175  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2176  */
libusb_handle_events_timeout(libusb_context * ctx,struct timeval * tv)2177 int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
2178 	struct timeval *tv)
2179 {
2180 	return libusb_handle_events_timeout_completed(ctx, tv, NULL);
2181 }
2182 
2183 /** \ingroup poll
2184  * Handle any pending events in blocking mode. There is currently a timeout
2185  * hardcoded at 60 seconds but we plan to make it unlimited in future. For
2186  * finer control over whether this function is blocking or non-blocking, or
2187  * for control over the timeout, use libusb_handle_events_timeout_completed()
2188  * instead.
2189  *
2190  * This function is kept primarily for backwards compatibility.
2191  * All new code should call libusb_handle_events_completed() or
2192  * libusb_handle_events_timeout_completed() to avoid race conditions.
2193  *
2194  * \param ctx the context to operate on, or NULL for the default context
2195  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2196  */
libusb_handle_events(libusb_context * ctx)2197 int API_EXPORTED libusb_handle_events(libusb_context *ctx)
2198 {
2199 	struct timeval tv;
2200 	tv.tv_sec = 60;
2201 	tv.tv_usec = 0;
2202 	return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
2203 }
2204 
2205 /** \ingroup poll
2206  * Handle any pending events in blocking mode.
2207  *
2208  * Like libusb_handle_events(), with the addition of a completed parameter
2209  * to allow for race free waiting for the completion of a specific transfer.
2210  *
2211  * See libusb_handle_events_timeout_completed() for details on the completed
2212  * parameter.
2213  *
2214  * \param ctx the context to operate on, or NULL for the default context
2215  * \param completed pointer to completion integer to check, or NULL
2216  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2217  * \see \ref mtasync
2218  */
libusb_handle_events_completed(libusb_context * ctx,int * completed)2219 int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
2220 	int *completed)
2221 {
2222 	struct timeval tv;
2223 	tv.tv_sec = 60;
2224 	tv.tv_usec = 0;
2225 	return libusb_handle_events_timeout_completed(ctx, &tv, completed);
2226 }
2227 
2228 /** \ingroup poll
2229  * Handle any pending events by polling file descriptors, without checking if
2230  * any other threads are already doing so. Must be called with the event lock
2231  * held, see libusb_lock_events().
2232  *
2233  * This function is designed to be called under the situation where you have
2234  * taken the event lock and are calling poll()/select() directly on libusbx's
2235  * file descriptors (as opposed to using libusb_handle_events() or similar).
2236  * You detect events on libusbx's descriptors, so you then call this function
2237  * with a zero timeout value (while still holding the event lock).
2238  *
2239  * \param ctx the context to operate on, or NULL for the default context
2240  * \param tv the maximum time to block waiting for events, or zero for
2241  * non-blocking mode
2242  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2243  * \see \ref mtasync
2244  */
libusb_handle_events_locked(libusb_context * ctx,struct timeval * tv)2245 int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
2246 	struct timeval *tv)
2247 {
2248 	int r;
2249 	struct timeval poll_timeout;
2250 
2251 	USBI_GET_CONTEXT(ctx);
2252 	r = get_next_timeout(ctx, tv, &poll_timeout);
2253 	if (r) {
2254 		/* timeout already expired */
2255 		return handle_timeouts(ctx);
2256 	}
2257 
2258 	return handle_events(ctx, &poll_timeout);
2259 }
2260 
2261 /** \ingroup poll
2262  * Determines whether your application must apply special timing considerations
2263  * when monitoring libusbx's file descriptors.
2264  *
2265  * This function is only useful for applications which retrieve and poll
2266  * libusbx's file descriptors in their own main loop (\ref pollmain).
2267  *
2268  * Ordinarily, libusbx's event handler needs to be called into at specific
2269  * moments in time (in addition to times when there is activity on the file
2270  * descriptor set). The usual approach is to use libusb_get_next_timeout()
2271  * to learn about when the next timeout occurs, and to adjust your
2272  * poll()/select() timeout accordingly so that you can make a call into the
2273  * library at that time.
2274  *
2275  * Some platforms supported by libusbx do not come with this baggage - any
2276  * events relevant to timing will be represented by activity on the file
2277  * descriptor set, and libusb_get_next_timeout() will always return 0.
2278  * This function allows you to detect whether you are running on such a
2279  * platform.
2280  *
2281  * Since v1.0.5.
2282  *
2283  * \param ctx the context to operate on, or NULL for the default context
2284  * \returns 0 if you must call into libusbx at times determined by
2285  * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
2286  * or through regular activity on the file descriptors.
2287  * \see \ref pollmain "Polling libusbx file descriptors for event handling"
2288  */
libusb_pollfds_handle_timeouts(libusb_context * ctx)2289 int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
2290 {
2291 #if defined(USBI_TIMERFD_AVAILABLE)
2292 	USBI_GET_CONTEXT(ctx);
2293 	return usbi_using_timerfd(ctx);
2294 #else
2295 	(void)ctx;
2296 	return 0;
2297 #endif
2298 }
2299 
2300 /** \ingroup poll
2301  * Determine the next internal timeout that libusbx needs to handle. You only
2302  * need to use this function if you are calling poll() or select() or similar
2303  * on libusbx's file descriptors yourself - you do not need to use it if you
2304  * are calling libusb_handle_events() or a variant directly.
2305  *
2306  * You should call this function in your main loop in order to determine how
2307  * long to wait for select() or poll() to return results. libusbx needs to be
2308  * called into at this timeout, so you should use it as an upper bound on
2309  * your select() or poll() call.
2310  *
2311  * When the timeout has expired, call into libusb_handle_events_timeout()
2312  * (perhaps in non-blocking mode) so that libusbx can handle the timeout.
2313  *
2314  * This function may return 1 (success) and an all-zero timeval. If this is
2315  * the case, it indicates that libusbx has a timeout that has already expired
2316  * so you should call libusb_handle_events_timeout() or similar immediately.
2317  * A return code of 0 indicates that there are no pending timeouts.
2318  *
2319  * On some platforms, this function will always returns 0 (no pending
2320  * timeouts). See \ref polltime.
2321  *
2322  * \param ctx the context to operate on, or NULL for the default context
2323  * \param tv output location for a relative time against the current
2324  * clock in which libusbx must be called into in order to process timeout events
2325  * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
2326  * or LIBUSB_ERROR_OTHER on failure
2327  */
libusb_get_next_timeout(libusb_context * ctx,struct timeval * tv)2328 int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
2329 	struct timeval *tv)
2330 {
2331 	struct usbi_transfer *transfer;
2332 	struct timespec cur_ts;
2333 	struct timeval cur_tv;
2334 	struct timeval next_timeout;
2335 	int r;
2336 	int found = 0;
2337 
2338 	USBI_GET_CONTEXT(ctx);
2339 	if (usbi_using_timerfd(ctx))
2340 		return 0;
2341 
2342 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2343 	if (list_empty(&ctx->flying_transfers)) {
2344 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2345 		usbi_dbg("no URBs, no timeout!");
2346 		return 0;
2347 	}
2348 
2349 	/* find next transfer which hasn't already been processed as timed out */
2350 	list_for_each_entry(transfer, &ctx->flying_transfers, list, struct usbi_transfer) {
2351 		if (transfer->flags & (USBI_TRANSFER_TIMED_OUT | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2352 			continue;
2353 
2354 		/* no timeout for this transfer? */
2355 		if (!timerisset(&transfer->timeout))
2356 			continue;
2357 
2358 		found = 1;
2359 		next_timeout = transfer->timeout;
2360 		break;
2361 	}
2362 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2363 
2364 	if (!found) {
2365 		usbi_dbg("no URB with timeout or all handled by OS; no timeout!");
2366 		return 0;
2367 	}
2368 
2369 	r = usbi_backend->clock_gettime(USBI_CLOCK_MONOTONIC, &cur_ts);
2370 	if (r < 0) {
2371 		usbi_err(ctx, "failed to read monotonic clock, errno=%d", errno);
2372 		return 0;
2373 	}
2374 	TIMESPEC_TO_TIMEVAL(&cur_tv, &cur_ts);
2375 
2376 	if (!timercmp(&cur_tv, &next_timeout, <)) {
2377 		usbi_dbg("first timeout already expired");
2378 		timerclear(tv);
2379 	} else {
2380 		timersub(&next_timeout, &cur_tv, tv);
2381 		usbi_dbg("next timeout in %d.%06ds", tv->tv_sec, tv->tv_usec);
2382 	}
2383 
2384 	return 1;
2385 }
2386 
2387 /** \ingroup poll
2388  * Register notification functions for file descriptor additions/removals.
2389  * These functions will be invoked for every new or removed file descriptor
2390  * that libusbx uses as an event source.
2391  *
2392  * To remove notifiers, pass NULL values for the function pointers.
2393  *
2394  * Note that file descriptors may have been added even before you register
2395  * these notifiers (e.g. at libusb_init() time).
2396  *
2397  * Additionally, note that the removal notifier may be called during
2398  * libusb_exit() (e.g. when it is closing file descriptors that were opened
2399  * and added to the poll set at libusb_init() time). If you don't want this,
2400  * remove the notifiers immediately before calling libusb_exit().
2401  *
2402  * \param ctx the context to operate on, or NULL for the default context
2403  * \param added_cb pointer to function for addition notifications
2404  * \param removed_cb pointer to function for removal notifications
2405  * \param user_data User data to be passed back to callbacks (useful for
2406  * passing context information)
2407  */
libusb_set_pollfd_notifiers(libusb_context * ctx,libusb_pollfd_added_cb added_cb,libusb_pollfd_removed_cb removed_cb,void * user_data)2408 void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
2409 	libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
2410 	void *user_data)
2411 {
2412 	USBI_GET_CONTEXT(ctx);
2413 	ctx->fd_added_cb = added_cb;
2414 	ctx->fd_removed_cb = removed_cb;
2415 	ctx->fd_cb_user_data = user_data;
2416 }
2417 
2418 /* Add a file descriptor to the list of file descriptors to be monitored.
2419  * events should be specified as a bitmask of events passed to poll(), e.g.
2420  * POLLIN and/or POLLOUT. */
usbi_add_pollfd(struct libusb_context * ctx,int fd,short events)2421 int usbi_add_pollfd(struct libusb_context *ctx, int fd, short events)
2422 {
2423 	struct usbi_pollfd *ipollfd = malloc(sizeof(*ipollfd));
2424 	if (!ipollfd)
2425 		return LIBUSB_ERROR_NO_MEM;
2426 
2427 	usbi_dbg("add fd %d events %d", fd, events);
2428 	ipollfd->pollfd.fd = fd;
2429 	ipollfd->pollfd.events = events;
2430 	usbi_mutex_lock(&ctx->pollfds_lock);
2431 	list_add_tail(&ipollfd->list, &ctx->pollfds);
2432 	usbi_mutex_unlock(&ctx->pollfds_lock);
2433 
2434 	if (ctx->fd_added_cb)
2435 		ctx->fd_added_cb(fd, events, ctx->fd_cb_user_data);
2436 	return 0;
2437 }
2438 
2439 /* Remove a file descriptor from the list of file descriptors to be polled. */
usbi_remove_pollfd(struct libusb_context * ctx,int fd)2440 void usbi_remove_pollfd(struct libusb_context *ctx, int fd)
2441 {
2442 	struct usbi_pollfd *ipollfd;
2443 	int found = 0;
2444 
2445 	usbi_dbg("remove fd %d", fd);
2446 	usbi_mutex_lock(&ctx->pollfds_lock);
2447 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2448 		if (ipollfd->pollfd.fd == fd) {
2449 			found = 1;
2450 			break;
2451 		}
2452 
2453 	if (!found) {
2454 		usbi_dbg("couldn't find fd %d to remove", fd);
2455 		usbi_mutex_unlock(&ctx->pollfds_lock);
2456 		return;
2457 	}
2458 
2459 	list_del(&ipollfd->list);
2460 	usbi_mutex_unlock(&ctx->pollfds_lock);
2461 	free(ipollfd);
2462 	if (ctx->fd_removed_cb)
2463 		ctx->fd_removed_cb(fd, ctx->fd_cb_user_data);
2464 }
2465 
2466 /** \ingroup poll
2467  * Retrieve a list of file descriptors that should be polled by your main loop
2468  * as libusbx event sources.
2469  *
2470  * The returned list is NULL-terminated and should be freed with free() when
2471  * done. The actual list contents must not be touched.
2472  *
2473  * As file descriptors are a Unix-specific concept, this function is not
2474  * available on Windows and will always return NULL.
2475  *
2476  * \param ctx the context to operate on, or NULL for the default context
2477  * \returns a NULL-terminated list of libusb_pollfd structures
2478  * \returns NULL on error
2479  * \returns NULL on platforms where the functionality is not available
2480  */
2481 DEFAULT_VISIBILITY
libusb_get_pollfds(libusb_context * ctx)2482 const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
2483 	libusb_context *ctx)
2484 {
2485 #ifndef OS_WINDOWS
2486 	struct libusb_pollfd **ret = NULL;
2487 	struct usbi_pollfd *ipollfd;
2488 	size_t i = 0;
2489 	size_t cnt = 0;
2490 	USBI_GET_CONTEXT(ctx);
2491 
2492 	usbi_mutex_lock(&ctx->pollfds_lock);
2493 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2494 		cnt++;
2495 
2496 	ret = calloc(cnt + 1, sizeof(struct libusb_pollfd *));
2497 	if (!ret)
2498 		goto out;
2499 
2500 	list_for_each_entry(ipollfd, &ctx->pollfds, list, struct usbi_pollfd)
2501 		ret[i++] = (struct libusb_pollfd *) ipollfd;
2502 	ret[cnt] = NULL;
2503 
2504 out:
2505 	usbi_mutex_unlock(&ctx->pollfds_lock);
2506 	return (const struct libusb_pollfd **) ret;
2507 #else
2508 	usbi_err(ctx, "external polling of libusbx's internal descriptors "\
2509 		"is not yet supported on Windows platforms");
2510 	return NULL;
2511 #endif
2512 }
2513 
2514 /* Backends may call this from handle_events to report disconnection of a
2515  * device. This function ensures transfers get cancelled appropriately.
2516  * Callers of this function must hold the events_lock.
2517  */
usbi_handle_disconnect(struct libusb_device_handle * handle)2518 void usbi_handle_disconnect(struct libusb_device_handle *handle)
2519 {
2520 	struct usbi_transfer *cur;
2521 	struct usbi_transfer *to_cancel;
2522 
2523 	usbi_dbg("device %d.%d",
2524 		handle->dev->bus_number, handle->dev->device_address);
2525 
2526 	/* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
2527 	 * status code.
2528 	 *
2529 	 * this is a bit tricky because:
2530 	 * 1. we can't do transfer completion while holding flying_transfers_lock
2531 	 *    because the completion handler may try to re-submit the transfer
2532 	 * 2. the transfers list can change underneath us - if we were to build a
2533 	 *    list of transfers to complete (while holding lock), the situation
2534 	 *    might be different by the time we come to free them
2535 	 *
2536 	 * so we resort to a loop-based approach as below
2537 	 *
2538 	 * This is safe because transfers are only removed from the
2539 	 * flying_transfer list by usbi_handle_transfer_completion and
2540 	 * libusb_close, both of which hold the events_lock while doing so,
2541 	 * so usbi_handle_disconnect cannot be running at the same time.
2542 	 *
2543 	 * Note that libusb_submit_transfer also removes the transfer from
2544 	 * the flying_transfer list on submission failure, but it keeps the
2545 	 * flying_transfer list locked between addition and removal, so
2546 	 * usbi_handle_disconnect never sees such transfers.
2547 	 */
2548 
2549 	while (1) {
2550 		usbi_mutex_lock(&HANDLE_CTX(handle)->flying_transfers_lock);
2551 		to_cancel = NULL;
2552 		list_for_each_entry(cur, &HANDLE_CTX(handle)->flying_transfers, list, struct usbi_transfer)
2553 			if (USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur)->dev_handle == handle) {
2554 				to_cancel = cur;
2555 				break;
2556 			}
2557 		usbi_mutex_unlock(&HANDLE_CTX(handle)->flying_transfers_lock);
2558 
2559 		if (!to_cancel)
2560 			break;
2561 
2562 		usbi_dbg("cancelling transfer %p from disconnect",
2563 			 USBI_TRANSFER_TO_LIBUSB_TRANSFER(to_cancel));
2564 
2565 		usbi_backend->clear_transfer_priv(to_cancel);
2566 		usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
2567 	}
2568 
2569 }
2570