1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17 
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
21 
22 /*
23 ** Create a new virtual database engine.
24 */
sqlite3VdbeCreate(Parse * pParse)25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26   sqlite3 *db = pParse->db;
27   Vdbe *p;
28   p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29   if( p==0 ) return 0;
30   memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31   p->db = db;
32   if( db->pVdbe ){
33     db->pVdbe->pPrev = p;
34   }
35   p->pNext = db->pVdbe;
36   p->pPrev = 0;
37   db->pVdbe = p;
38   p->magic = VDBE_MAGIC_INIT;
39   p->pParse = pParse;
40   pParse->pVdbe = p;
41   assert( pParse->aLabel==0 );
42   assert( pParse->nLabel==0 );
43   assert( p->nOpAlloc==0 );
44   assert( pParse->szOpAlloc==0 );
45   sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46   return p;
47 }
48 
49 /*
50 ** Return the Parse object that owns a Vdbe object.
51 */
sqlite3VdbeParser(Vdbe * p)52 Parse *sqlite3VdbeParser(Vdbe *p){
53   return p->pParse;
54 }
55 
56 /*
57 ** Change the error string stored in Vdbe.zErrMsg
58 */
sqlite3VdbeError(Vdbe * p,const char * zFormat,...)59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60   va_list ap;
61   sqlite3DbFree(p->db, p->zErrMsg);
62   va_start(ap, zFormat);
63   p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64   va_end(ap);
65 }
66 
67 /*
68 ** Remember the SQL string for a prepared statement.
69 */
sqlite3VdbeSetSql(Vdbe * p,const char * z,int n,u8 prepFlags)70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71   if( p==0 ) return;
72   p->prepFlags = prepFlags;
73   if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74     p->expmask = 0;
75   }
76   assert( p->zSql==0 );
77   p->zSql = sqlite3DbStrNDup(p->db, z, n);
78 }
79 
80 #ifdef SQLITE_ENABLE_NORMALIZE
81 /*
82 ** Add a new element to the Vdbe->pDblStr list.
83 */
sqlite3VdbeAddDblquoteStr(sqlite3 * db,Vdbe * p,const char * z)84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85   if( p ){
86     int n = sqlite3Strlen30(z);
87     DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88                             sizeof(*pStr)+n+1-sizeof(pStr->z));
89     if( pStr ){
90       pStr->pNextStr = p->pDblStr;
91       p->pDblStr = pStr;
92       memcpy(pStr->z, z, n+1);
93     }
94   }
95 }
96 #endif
97 
98 #ifdef SQLITE_ENABLE_NORMALIZE
99 /*
100 ** zId of length nId is a double-quoted identifier.  Check to see if
101 ** that identifier is really used as a string literal.
102 */
sqlite3VdbeUsesDoubleQuotedString(Vdbe * pVdbe,const char * zId)103 int sqlite3VdbeUsesDoubleQuotedString(
104   Vdbe *pVdbe,            /* The prepared statement */
105   const char *zId         /* The double-quoted identifier, already dequoted */
106 ){
107   DblquoteStr *pStr;
108   assert( zId!=0 );
109   if( pVdbe->pDblStr==0 ) return 0;
110   for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111     if( strcmp(zId, pStr->z)==0 ) return 1;
112   }
113   return 0;
114 }
115 #endif
116 
117 /*
118 ** Swap all content between two VDBE structures.
119 */
sqlite3VdbeSwap(Vdbe * pA,Vdbe * pB)120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121   Vdbe tmp, *pTmp;
122   char *zTmp;
123   assert( pA->db==pB->db );
124   tmp = *pA;
125   *pA = *pB;
126   *pB = tmp;
127   pTmp = pA->pNext;
128   pA->pNext = pB->pNext;
129   pB->pNext = pTmp;
130   pTmp = pA->pPrev;
131   pA->pPrev = pB->pPrev;
132   pB->pPrev = pTmp;
133   zTmp = pA->zSql;
134   pA->zSql = pB->zSql;
135   pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137   zTmp = pA->zNormSql;
138   pA->zNormSql = pB->zNormSql;
139   pB->zNormSql = zTmp;
140 #endif
141   pB->expmask = pA->expmask;
142   pB->prepFlags = pA->prepFlags;
143   memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144   pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
145 }
146 
147 /*
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
151 **
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
156 */
growOpArray(Vdbe * v,int nOp)157 static int growOpArray(Vdbe *v, int nOp){
158   VdbeOp *pNew;
159   Parse *p = v->pParse;
160 
161   /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162   ** more frequent reallocs and hence provide more opportunities for
163   ** simulated OOM faults.  SQLITE_TEST_REALLOC_STRESS is generally used
164   ** during testing only.  With SQLITE_TEST_REALLOC_STRESS grow the op array
165   ** by the minimum* amount required until the size reaches 512.  Normal
166   ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167   ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169   sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170                         : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172   sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173                         : (sqlite3_int64)(1024/sizeof(Op)));
174   UNUSED_PARAMETER(nOp);
175 #endif
176 
177   /* Ensure that the size of a VDBE does not grow too large */
178   if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179     sqlite3OomFault(p->db);
180     return SQLITE_NOMEM;
181   }
182 
183   assert( nOp<=(1024/sizeof(Op)) );
184   assert( nNew>=(v->nOpAlloc+nOp) );
185   pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186   if( pNew ){
187     p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188     v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189     v->aOp = pNew;
190   }
191   return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
192 }
193 
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on".  Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
199 **
200 ** Other useful labels for breakpoints include:
201 **   test_trace_breakpoint(pc,pOp)
202 **   sqlite3CorruptError(lineno)
203 **   sqlite3MisuseError(lineno)
204 **   sqlite3CantopenError(lineno)
205 */
test_addop_breakpoint(int pc,Op * pOp)206 static void test_addop_breakpoint(int pc, Op *pOp){
207   static int n = 0;
208   n++;
209 }
210 #endif
211 
212 /*
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE.  Return the address of the new instruction.
215 **
216 ** Parameters:
217 **
218 **    p               Pointer to the VDBE
219 **
220 **    op              The opcode for this instruction
221 **
222 **    p1, p2, p3      Operands
223 **
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
227 */
growOp3(Vdbe * p,int op,int p1,int p2,int p3)228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229   assert( p->nOpAlloc<=p->nOp );
230   if( growOpArray(p, 1) ) return 1;
231   assert( p->nOpAlloc>p->nOp );
232   return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 }
sqlite3VdbeAddOp3(Vdbe * p,int op,int p1,int p2,int p3)234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235   int i;
236   VdbeOp *pOp;
237 
238   i = p->nOp;
239   assert( p->magic==VDBE_MAGIC_INIT );
240   assert( op>=0 && op<0xff );
241   if( p->nOpAlloc<=i ){
242     return growOp3(p, op, p1, p2, p3);
243   }
244   p->nOp++;
245   pOp = &p->aOp[i];
246   pOp->opcode = (u8)op;
247   pOp->p5 = 0;
248   pOp->p1 = p1;
249   pOp->p2 = p2;
250   pOp->p3 = p3;
251   pOp->p4.p = 0;
252   pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254   pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257   if( p->db->flags & SQLITE_VdbeAddopTrace ){
258     sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259     test_addop_breakpoint(i, &p->aOp[i]);
260   }
261 #endif
262 #ifdef VDBE_PROFILE
263   pOp->cycles = 0;
264   pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267   pOp->iSrcLine = 0;
268 #endif
269   return i;
270 }
sqlite3VdbeAddOp0(Vdbe * p,int op)271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
273 }
sqlite3VdbeAddOp1(Vdbe * p,int op,int p1)274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
276 }
sqlite3VdbeAddOp2(Vdbe * p,int op,int p1,int p2)277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
279 }
280 
281 /* Generate code for an unconditional jump to instruction iDest
282 */
sqlite3VdbeGoto(Vdbe * p,int iDest)283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284   return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
285 }
286 
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
289 */
sqlite3VdbeLoadString(Vdbe * p,int iDest,const char * zStr)290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291   return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
292 }
293 
294 /*
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants.  The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[].  For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer.  For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
301 **
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
304 */
sqlite3VdbeMultiLoad(Vdbe * p,int iDest,const char * zTypes,...)305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306   va_list ap;
307   int i;
308   char c;
309   va_start(ap, zTypes);
310   for(i=0; (c = zTypes[i])!=0; i++){
311     if( c=='s' ){
312       const char *z = va_arg(ap, const char*);
313       sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314     }else if( c=='i' ){
315       sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316     }else{
317       goto skip_op_resultrow;
318     }
319   }
320   sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322   va_end(ap);
323 }
324 
325 /*
326 ** Add an opcode that includes the p4 value as a pointer.
327 */
sqlite3VdbeAddOp4(Vdbe * p,int op,int p1,int p2,int p3,const char * zP4,int p4type)328 int sqlite3VdbeAddOp4(
329   Vdbe *p,            /* Add the opcode to this VM */
330   int op,             /* The new opcode */
331   int p1,             /* The P1 operand */
332   int p2,             /* The P2 operand */
333   int p3,             /* The P3 operand */
334   const char *zP4,    /* The P4 operand */
335   int p4type          /* P4 operand type */
336 ){
337   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339   return addr;
340 }
341 
342 /*
343 ** Add an OP_Function or OP_PureFunc opcode.
344 **
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function.  0 means a general
347 ** function call.  NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression.  NC_PartIdx
349 ** means in the WHERE clause of a partial index.  NC_GenCol means called
350 ** while computing a generated column value.  0 is the usual case.
351 */
sqlite3VdbeAddFunctionCall(Parse * pParse,int p1,int p2,int p3,int nArg,const FuncDef * pFunc,int eCallCtx)352 int sqlite3VdbeAddFunctionCall(
353   Parse *pParse,        /* Parsing context */
354   int p1,               /* Constant argument mask */
355   int p2,               /* First argument register */
356   int p3,               /* Register into which results are written */
357   int nArg,             /* Number of argument */
358   const FuncDef *pFunc, /* The function to be invoked */
359   int eCallCtx          /* Calling context */
360 ){
361   Vdbe *v = pParse->pVdbe;
362   int nByte;
363   int addr;
364   sqlite3_context *pCtx;
365   assert( v );
366   nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367   pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368   if( pCtx==0 ){
369     assert( pParse->db->mallocFailed );
370     freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371     return 0;
372   }
373   pCtx->pOut = 0;
374   pCtx->pFunc = (FuncDef*)pFunc;
375   pCtx->pVdbe = 0;
376   pCtx->isError = 0;
377   pCtx->argc = nArg;
378   pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379   addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380                            p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381   sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382   return addr;
383 }
384 
385 /*
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
388 */
sqlite3VdbeAddOp4Dup8(Vdbe * p,int op,int p1,int p2,int p3,const u8 * zP4,int p4type)389 int sqlite3VdbeAddOp4Dup8(
390   Vdbe *p,            /* Add the opcode to this VM */
391   int op,             /* The new opcode */
392   int p1,             /* The P1 operand */
393   int p2,             /* The P2 operand */
394   int p3,             /* The P3 operand */
395   const u8 *zP4,      /* The P4 operand */
396   int p4type          /* P4 operand type */
397 ){
398   char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399   if( p4copy ) memcpy(p4copy, zP4, 8);
400   return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
401 }
402 
403 #ifndef SQLITE_OMIT_EXPLAIN
404 /*
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
407 */
sqlite3VdbeExplainParent(Parse * pParse)408 int sqlite3VdbeExplainParent(Parse *pParse){
409   VdbeOp *pOp;
410   if( pParse->addrExplain==0 ) return 0;
411   pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412   return pOp->p2;
413 }
414 
415 /*
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
418 */
419 #if defined(SQLITE_DEBUG)
sqlite3ExplainBreakpoint(const char * z1,const char * z2)420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421   (void)z1;
422   (void)z2;
423 }
424 #endif
425 
426 /*
427 ** Add a new OP_ opcode.
428 **
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
431 */
sqlite3VdbeExplain(Parse * pParse,u8 bPush,const char * zFmt,...)432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434   /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435   ** But omit them (for performance) during production builds */
436   if( pParse->explain==2 )
437 #endif
438   {
439     char *zMsg;
440     Vdbe *v;
441     va_list ap;
442     int iThis;
443     va_start(ap, zFmt);
444     zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445     va_end(ap);
446     v = pParse->pVdbe;
447     iThis = v->nOp;
448     sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449                       zMsg, P4_DYNAMIC);
450     sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451     if( bPush){
452       pParse->addrExplain = iThis;
453     }
454   }
455 }
456 
457 /*
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
459 */
sqlite3VdbeExplainPop(Parse * pParse)460 void sqlite3VdbeExplainPop(Parse *pParse){
461   sqlite3ExplainBreakpoint("POP", 0);
462   pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
463 }
464 #endif /* SQLITE_OMIT_EXPLAIN */
465 
466 /*
467 ** Add an OP_ParseSchema opcode.  This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
470 **
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
473 */
sqlite3VdbeAddParseSchemaOp(Vdbe * p,int iDb,char * zWhere)474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475   int j;
476   sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477   for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
478 }
479 
480 /*
481 ** Add an opcode that includes the p4 value as an integer.
482 */
sqlite3VdbeAddOp4Int(Vdbe * p,int op,int p1,int p2,int p3,int p4)483 int sqlite3VdbeAddOp4Int(
484   Vdbe *p,            /* Add the opcode to this VM */
485   int op,             /* The new opcode */
486   int p1,             /* The P1 operand */
487   int p2,             /* The P2 operand */
488   int p3,             /* The P3 operand */
489   int p4              /* The P4 operand as an integer */
490 ){
491   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
492   if( p->db->mallocFailed==0 ){
493     VdbeOp *pOp = &p->aOp[addr];
494     pOp->p4type = P4_INT32;
495     pOp->p4.i = p4;
496   }
497   return addr;
498 }
499 
500 /* Insert the end of a co-routine
501 */
sqlite3VdbeEndCoroutine(Vdbe * v,int regYield)502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
503   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
504 
505   /* Clear the temporary register cache, thereby ensuring that each
506   ** co-routine has its own independent set of registers, because co-routines
507   ** might expect their registers to be preserved across an OP_Yield, and
508   ** that could cause problems if two or more co-routines are using the same
509   ** temporary register.
510   */
511   v->pParse->nTempReg = 0;
512   v->pParse->nRangeReg = 0;
513 }
514 
515 /*
516 ** Create a new symbolic label for an instruction that has yet to be
517 ** coded.  The symbolic label is really just a negative number.  The
518 ** label can be used as the P2 value of an operation.  Later, when
519 ** the label is resolved to a specific address, the VDBE will scan
520 ** through its operation list and change all values of P2 which match
521 ** the label into the resolved address.
522 **
523 ** The VDBE knows that a P2 value is a label because labels are
524 ** always negative and P2 values are suppose to be non-negative.
525 ** Hence, a negative P2 value is a label that has yet to be resolved.
526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
527 ** property.
528 **
529 ** Variable usage notes:
530 **
531 **     Parse.aLabel[x]     Stores the address that the x-th label resolves
532 **                         into.  For testing (SQLITE_DEBUG), unresolved
533 **                         labels stores -1, but that is not required.
534 **     Parse.nLabelAlloc   Number of slots allocated to Parse.aLabel[]
535 **     Parse.nLabel        The *negative* of the number of labels that have
536 **                         been issued.  The negative is stored because
537 **                         that gives a performance improvement over storing
538 **                         the equivalent positive value.
539 */
sqlite3VdbeMakeLabel(Parse * pParse)540 int sqlite3VdbeMakeLabel(Parse *pParse){
541   return --pParse->nLabel;
542 }
543 
544 /*
545 ** Resolve label "x" to be the address of the next instruction to
546 ** be inserted.  The parameter "x" must have been obtained from
547 ** a prior call to sqlite3VdbeMakeLabel().
548 */
resizeResolveLabel(Parse * p,Vdbe * v,int j)549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
550   int nNewSize = 10 - p->nLabel;
551   p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
552                      nNewSize*sizeof(p->aLabel[0]));
553   if( p->aLabel==0 ){
554     p->nLabelAlloc = 0;
555   }else{
556 #ifdef SQLITE_DEBUG
557     int i;
558     for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
559 #endif
560     p->nLabelAlloc = nNewSize;
561     p->aLabel[j] = v->nOp;
562   }
563 }
sqlite3VdbeResolveLabel(Vdbe * v,int x)564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
565   Parse *p = v->pParse;
566   int j = ADDR(x);
567   assert( v->magic==VDBE_MAGIC_INIT );
568   assert( j<-p->nLabel );
569   assert( j>=0 );
570 #ifdef SQLITE_DEBUG
571   if( p->db->flags & SQLITE_VdbeAddopTrace ){
572     printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
573   }
574 #endif
575   if( p->nLabelAlloc + p->nLabel < 0 ){
576     resizeResolveLabel(p,v,j);
577   }else{
578     assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
579     p->aLabel[j] = v->nOp;
580   }
581 }
582 
583 /*
584 ** Mark the VDBE as one that can only be run one time.
585 */
sqlite3VdbeRunOnlyOnce(Vdbe * p)586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
587   p->runOnlyOnce = 1;
588 }
589 
590 /*
591 ** Mark the VDBE as one that can only be run multiple times.
592 */
sqlite3VdbeReusable(Vdbe * p)593 void sqlite3VdbeReusable(Vdbe *p){
594   p->runOnlyOnce = 0;
595 }
596 
597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
598 
599 /*
600 ** The following type and function are used to iterate through all opcodes
601 ** in a Vdbe main program and each of the sub-programs (triggers) it may
602 ** invoke directly or indirectly. It should be used as follows:
603 **
604 **   Op *pOp;
605 **   VdbeOpIter sIter;
606 **
607 **   memset(&sIter, 0, sizeof(sIter));
608 **   sIter.v = v;                            // v is of type Vdbe*
609 **   while( (pOp = opIterNext(&sIter)) ){
610 **     // Do something with pOp
611 **   }
612 **   sqlite3DbFree(v->db, sIter.apSub);
613 **
614 */
615 typedef struct VdbeOpIter VdbeOpIter;
616 struct VdbeOpIter {
617   Vdbe *v;                   /* Vdbe to iterate through the opcodes of */
618   SubProgram **apSub;        /* Array of subprograms */
619   int nSub;                  /* Number of entries in apSub */
620   int iAddr;                 /* Address of next instruction to return */
621   int iSub;                  /* 0 = main program, 1 = first sub-program etc. */
622 };
opIterNext(VdbeOpIter * p)623 static Op *opIterNext(VdbeOpIter *p){
624   Vdbe *v = p->v;
625   Op *pRet = 0;
626   Op *aOp;
627   int nOp;
628 
629   if( p->iSub<=p->nSub ){
630 
631     if( p->iSub==0 ){
632       aOp = v->aOp;
633       nOp = v->nOp;
634     }else{
635       aOp = p->apSub[p->iSub-1]->aOp;
636       nOp = p->apSub[p->iSub-1]->nOp;
637     }
638     assert( p->iAddr<nOp );
639 
640     pRet = &aOp[p->iAddr];
641     p->iAddr++;
642     if( p->iAddr==nOp ){
643       p->iSub++;
644       p->iAddr = 0;
645     }
646 
647     if( pRet->p4type==P4_SUBPROGRAM ){
648       int nByte = (p->nSub+1)*sizeof(SubProgram*);
649       int j;
650       for(j=0; j<p->nSub; j++){
651         if( p->apSub[j]==pRet->p4.pProgram ) break;
652       }
653       if( j==p->nSub ){
654         p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
655         if( !p->apSub ){
656           pRet = 0;
657         }else{
658           p->apSub[p->nSub++] = pRet->p4.pProgram;
659         }
660       }
661     }
662   }
663 
664   return pRet;
665 }
666 
667 /*
668 ** Check if the program stored in the VM associated with pParse may
669 ** throw an ABORT exception (causing the statement, but not entire transaction
670 ** to be rolled back). This condition is true if the main program or any
671 ** sub-programs contains any of the following:
672 **
673 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
674 **   *  OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 **   *  OP_Destroy
676 **   *  OP_VUpdate
677 **   *  OP_VCreate
678 **   *  OP_VRename
679 **   *  OP_FkCounter with P2==0 (immediate foreign key constraint)
680 **   *  OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
681 **      (for CREATE TABLE AS SELECT ...)
682 **
683 ** Then check that the value of Parse.mayAbort is true if an
684 ** ABORT may be thrown, or false otherwise. Return true if it does
685 ** match, or false otherwise. This function is intended to be used as
686 ** part of an assert statement in the compiler. Similar to:
687 **
688 **   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
689 */
sqlite3VdbeAssertMayAbort(Vdbe * v,int mayAbort)690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
691   int hasAbort = 0;
692   int hasFkCounter = 0;
693   int hasCreateTable = 0;
694   int hasCreateIndex = 0;
695   int hasInitCoroutine = 0;
696   Op *pOp;
697   VdbeOpIter sIter;
698   memset(&sIter, 0, sizeof(sIter));
699   sIter.v = v;
700 
701   while( (pOp = opIterNext(&sIter))!=0 ){
702     int opcode = pOp->opcode;
703     if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
704      || opcode==OP_VDestroy
705      || opcode==OP_VCreate
706      || (opcode==OP_ParseSchema && pOp->p4.z==0)
707      || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
708       && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
709     ){
710       hasAbort = 1;
711       break;
712     }
713     if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
714     if( mayAbort ){
715       /* hasCreateIndex may also be set for some DELETE statements that use
716       ** OP_Clear. So this routine may end up returning true in the case
717       ** where a "DELETE FROM tbl" has a statement-journal but does not
718       ** require one. This is not so bad - it is an inefficiency, not a bug. */
719       if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
720       if( opcode==OP_Clear ) hasCreateIndex = 1;
721     }
722     if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
723 #ifndef SQLITE_OMIT_FOREIGN_KEY
724     if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
725       hasFkCounter = 1;
726     }
727 #endif
728   }
729   sqlite3DbFree(v->db, sIter.apSub);
730 
731   /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
732   ** If malloc failed, then the while() loop above may not have iterated
733   ** through all opcodes and hasAbort may be set incorrectly. Return
734   ** true for this case to prevent the assert() in the callers frame
735   ** from failing.  */
736   return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
737         || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
738   );
739 }
740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
741 
742 #ifdef SQLITE_DEBUG
743 /*
744 ** Increment the nWrite counter in the VDBE if the cursor is not an
745 ** ephemeral cursor, or if the cursor argument is NULL.
746 */
sqlite3VdbeIncrWriteCounter(Vdbe * p,VdbeCursor * pC)747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
748   if( pC==0
749    || (pC->eCurType!=CURTYPE_SORTER
750        && pC->eCurType!=CURTYPE_PSEUDO
751        && !pC->isEphemeral)
752   ){
753     p->nWrite++;
754   }
755 }
756 #endif
757 
758 #ifdef SQLITE_DEBUG
759 /*
760 ** Assert if an Abort at this point in time might result in a corrupt
761 ** database.
762 */
sqlite3VdbeAssertAbortable(Vdbe * p)763 void sqlite3VdbeAssertAbortable(Vdbe *p){
764   assert( p->nWrite==0 || p->usesStmtJournal );
765 }
766 #endif
767 
768 /*
769 ** This routine is called after all opcodes have been inserted.  It loops
770 ** through all the opcodes and fixes up some details.
771 **
772 ** (1) For each jump instruction with a negative P2 value (a label)
773 **     resolve the P2 value to an actual address.
774 **
775 ** (2) Compute the maximum number of arguments used by any SQL function
776 **     and store that value in *pMaxFuncArgs.
777 **
778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
779 **     indicate what the prepared statement actually does.
780 **
781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
782 **
783 ** (5) Reclaim the memory allocated for storing labels.
784 **
785 ** This routine will only function correctly if the mkopcodeh.tcl generator
786 ** script numbers the opcodes correctly.  Changes to this routine must be
787 ** coordinated with changes to mkopcodeh.tcl.
788 */
resolveP2Values(Vdbe * p,int * pMaxFuncArgs)789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
790   int nMaxArgs = *pMaxFuncArgs;
791   Op *pOp;
792   Parse *pParse = p->pParse;
793   int *aLabel = pParse->aLabel;
794   p->readOnly = 1;
795   p->bIsReader = 0;
796   pOp = &p->aOp[p->nOp-1];
797   while(1){
798 
799     /* Only JUMP opcodes and the short list of special opcodes in the switch
800     ** below need to be considered.  The mkopcodeh.tcl generator script groups
801     ** all these opcodes together near the front of the opcode list.  Skip
802     ** any opcode that does not need processing by virtual of the fact that
803     ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
804     */
805     if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
806       /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
807       ** cases from this switch! */
808       switch( pOp->opcode ){
809         case OP_Transaction: {
810           if( pOp->p2!=0 ) p->readOnly = 0;
811           /* fall thru */
812         }
813         case OP_AutoCommit:
814         case OP_Savepoint: {
815           p->bIsReader = 1;
816           break;
817         }
818 #ifndef SQLITE_OMIT_WAL
819         case OP_Checkpoint:
820 #endif
821         case OP_Vacuum:
822         case OP_JournalMode: {
823           p->readOnly = 0;
824           p->bIsReader = 1;
825           break;
826         }
827         case OP_Next:
828         case OP_SorterNext: {
829           pOp->p4.xAdvance = sqlite3BtreeNext;
830           pOp->p4type = P4_ADVANCE;
831           /* The code generator never codes any of these opcodes as a jump
832           ** to a label.  They are always coded as a jump backwards to a
833           ** known address */
834           assert( pOp->p2>=0 );
835           break;
836         }
837         case OP_Prev: {
838           pOp->p4.xAdvance = sqlite3BtreePrevious;
839           pOp->p4type = P4_ADVANCE;
840           /* The code generator never codes any of these opcodes as a jump
841           ** to a label.  They are always coded as a jump backwards to a
842           ** known address */
843           assert( pOp->p2>=0 );
844           break;
845         }
846 #ifndef SQLITE_OMIT_VIRTUALTABLE
847         case OP_VUpdate: {
848           if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
849           break;
850         }
851         case OP_VFilter: {
852           int n;
853           assert( (pOp - p->aOp) >= 3 );
854           assert( pOp[-1].opcode==OP_Integer );
855           n = pOp[-1].p1;
856           if( n>nMaxArgs ) nMaxArgs = n;
857           /* Fall through into the default case */
858         }
859 #endif
860         default: {
861           if( pOp->p2<0 ){
862             /* The mkopcodeh.tcl script has so arranged things that the only
863             ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
864             ** have non-negative values for P2. */
865             assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
866             assert( ADDR(pOp->p2)<-pParse->nLabel );
867             pOp->p2 = aLabel[ADDR(pOp->p2)];
868           }
869           break;
870         }
871       }
872       /* The mkopcodeh.tcl script has so arranged things that the only
873       ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
874       ** have non-negative values for P2. */
875       assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
876     }
877     if( pOp==p->aOp ) break;
878     pOp--;
879   }
880   sqlite3DbFree(p->db, pParse->aLabel);
881   pParse->aLabel = 0;
882   pParse->nLabel = 0;
883   *pMaxFuncArgs = nMaxArgs;
884   assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
885 }
886 
887 /*
888 ** Return the address of the next instruction to be inserted.
889 */
sqlite3VdbeCurrentAddr(Vdbe * p)890 int sqlite3VdbeCurrentAddr(Vdbe *p){
891   assert( p->magic==VDBE_MAGIC_INIT );
892   return p->nOp;
893 }
894 
895 /*
896 ** Verify that at least N opcode slots are available in p without
897 ** having to malloc for more space (except when compiled using
898 ** SQLITE_TEST_REALLOC_STRESS).  This interface is used during testing
899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
900 ** fail due to a OOM fault and hence that the return value from
901 ** sqlite3VdbeAddOpList() will always be non-NULL.
902 */
903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoMallocRequired(Vdbe * p,int N)904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
905   assert( p->nOp + N <= p->nOpAlloc );
906 }
907 #endif
908 
909 /*
910 ** Verify that the VM passed as the only argument does not contain
911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
912 ** by code in pragma.c to ensure that the implementation of certain
913 ** pragmas comports with the flags specified in the mkpragmatab.tcl
914 ** script.
915 */
916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
sqlite3VdbeVerifyNoResultRow(Vdbe * p)917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
918   int i;
919   for(i=0; i<p->nOp; i++){
920     assert( p->aOp[i].opcode!=OP_ResultRow );
921   }
922 }
923 #endif
924 
925 /*
926 ** Generate code (a single OP_Abortable opcode) that will
927 ** verify that the VDBE program can safely call Abort in the current
928 ** context.
929 */
930 #if defined(SQLITE_DEBUG)
sqlite3VdbeVerifyAbortable(Vdbe * p,int onError)931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
932   if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
933 }
934 #endif
935 
936 /*
937 ** This function returns a pointer to the array of opcodes associated with
938 ** the Vdbe passed as the first argument. It is the callers responsibility
939 ** to arrange for the returned array to be eventually freed using the
940 ** vdbeFreeOpArray() function.
941 **
942 ** Before returning, *pnOp is set to the number of entries in the returned
943 ** array. Also, *pnMaxArg is set to the larger of its current value and
944 ** the number of entries in the Vdbe.apArg[] array required to execute the
945 ** returned program.
946 */
sqlite3VdbeTakeOpArray(Vdbe * p,int * pnOp,int * pnMaxArg)947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
948   VdbeOp *aOp = p->aOp;
949   assert( aOp && !p->db->mallocFailed );
950 
951   /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
952   assert( DbMaskAllZero(p->btreeMask) );
953 
954   resolveP2Values(p, pnMaxArg);
955   *pnOp = p->nOp;
956   p->aOp = 0;
957   return aOp;
958 }
959 
960 /*
961 ** Add a whole list of operations to the operation stack.  Return a
962 ** pointer to the first operation inserted.
963 **
964 ** Non-zero P2 arguments to jump instructions are automatically adjusted
965 ** so that the jump target is relative to the first operation inserted.
966 */
sqlite3VdbeAddOpList(Vdbe * p,int nOp,VdbeOpList const * aOp,int iLineno)967 VdbeOp *sqlite3VdbeAddOpList(
968   Vdbe *p,                     /* Add opcodes to the prepared statement */
969   int nOp,                     /* Number of opcodes to add */
970   VdbeOpList const *aOp,       /* The opcodes to be added */
971   int iLineno                  /* Source-file line number of first opcode */
972 ){
973   int i;
974   VdbeOp *pOut, *pFirst;
975   assert( nOp>0 );
976   assert( p->magic==VDBE_MAGIC_INIT );
977   if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
978     return 0;
979   }
980   pFirst = pOut = &p->aOp[p->nOp];
981   for(i=0; i<nOp; i++, aOp++, pOut++){
982     pOut->opcode = aOp->opcode;
983     pOut->p1 = aOp->p1;
984     pOut->p2 = aOp->p2;
985     assert( aOp->p2>=0 );
986     if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
987       pOut->p2 += p->nOp;
988     }
989     pOut->p3 = aOp->p3;
990     pOut->p4type = P4_NOTUSED;
991     pOut->p4.p = 0;
992     pOut->p5 = 0;
993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
994     pOut->zComment = 0;
995 #endif
996 #ifdef SQLITE_VDBE_COVERAGE
997     pOut->iSrcLine = iLineno+i;
998 #else
999     (void)iLineno;
1000 #endif
1001 #ifdef SQLITE_DEBUG
1002     if( p->db->flags & SQLITE_VdbeAddopTrace ){
1003       sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1004     }
1005 #endif
1006   }
1007   p->nOp += nOp;
1008   return pFirst;
1009 }
1010 
1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1012 /*
1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1014 */
sqlite3VdbeScanStatus(Vdbe * p,int addrExplain,int addrLoop,int addrVisit,LogEst nEst,const char * zName)1015 void sqlite3VdbeScanStatus(
1016   Vdbe *p,                        /* VM to add scanstatus() to */
1017   int addrExplain,                /* Address of OP_Explain (or 0) */
1018   int addrLoop,                   /* Address of loop counter */
1019   int addrVisit,                  /* Address of rows visited counter */
1020   LogEst nEst,                    /* Estimated number of output rows */
1021   const char *zName               /* Name of table or index being scanned */
1022 ){
1023   sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1024   ScanStatus *aNew;
1025   aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1026   if( aNew ){
1027     ScanStatus *pNew = &aNew[p->nScan++];
1028     pNew->addrExplain = addrExplain;
1029     pNew->addrLoop = addrLoop;
1030     pNew->addrVisit = addrVisit;
1031     pNew->nEst = nEst;
1032     pNew->zName = sqlite3DbStrDup(p->db, zName);
1033     p->aScan = aNew;
1034   }
1035 }
1036 #endif
1037 
1038 
1039 /*
1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1041 ** for a specific instruction.
1042 */
sqlite3VdbeChangeOpcode(Vdbe * p,int addr,u8 iNewOpcode)1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1044   sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1045 }
sqlite3VdbeChangeP1(Vdbe * p,int addr,int val)1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1047   sqlite3VdbeGetOp(p,addr)->p1 = val;
1048 }
sqlite3VdbeChangeP2(Vdbe * p,int addr,int val)1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1050   sqlite3VdbeGetOp(p,addr)->p2 = val;
1051 }
sqlite3VdbeChangeP3(Vdbe * p,int addr,int val)1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1053   sqlite3VdbeGetOp(p,addr)->p3 = val;
1054 }
sqlite3VdbeChangeP5(Vdbe * p,u16 p5)1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1056   assert( p->nOp>0 || p->db->mallocFailed );
1057   if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1058 }
1059 
1060 /*
1061 ** Change the P2 operand of instruction addr so that it points to
1062 ** the address of the next instruction to be coded.
1063 */
sqlite3VdbeJumpHere(Vdbe * p,int addr)1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1065   sqlite3VdbeChangeP2(p, addr, p->nOp);
1066 }
1067 
1068 
1069 /*
1070 ** If the input FuncDef structure is ephemeral, then free it.  If
1071 ** the FuncDef is not ephermal, then do nothing.
1072 */
freeEphemeralFunction(sqlite3 * db,FuncDef * pDef)1073 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1074   if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1075     sqlite3DbFreeNN(db, pDef);
1076   }
1077 }
1078 
1079 /*
1080 ** Delete a P4 value if necessary.
1081 */
freeP4Mem(sqlite3 * db,Mem * p)1082 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1083   if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1084   sqlite3DbFreeNN(db, p);
1085 }
freeP4FuncCtx(sqlite3 * db,sqlite3_context * p)1086 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1087   freeEphemeralFunction(db, p->pFunc);
1088   sqlite3DbFreeNN(db, p);
1089 }
freeP4(sqlite3 * db,int p4type,void * p4)1090 static void freeP4(sqlite3 *db, int p4type, void *p4){
1091   assert( db );
1092   switch( p4type ){
1093     case P4_FUNCCTX: {
1094       freeP4FuncCtx(db, (sqlite3_context*)p4);
1095       break;
1096     }
1097     case P4_REAL:
1098     case P4_INT64:
1099     case P4_DYNAMIC:
1100     case P4_DYNBLOB:
1101     case P4_INTARRAY: {
1102       sqlite3DbFree(db, p4);
1103       break;
1104     }
1105     case P4_KEYINFO: {
1106       if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1107       break;
1108     }
1109 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1110     case P4_EXPR: {
1111       sqlite3ExprDelete(db, (Expr*)p4);
1112       break;
1113     }
1114 #endif
1115     case P4_FUNCDEF: {
1116       freeEphemeralFunction(db, (FuncDef*)p4);
1117       break;
1118     }
1119     case P4_MEM: {
1120       if( db->pnBytesFreed==0 ){
1121         sqlite3ValueFree((sqlite3_value*)p4);
1122       }else{
1123         freeP4Mem(db, (Mem*)p4);
1124       }
1125       break;
1126     }
1127     case P4_VTAB : {
1128       if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1129       break;
1130     }
1131   }
1132 }
1133 
1134 /*
1135 ** Free the space allocated for aOp and any p4 values allocated for the
1136 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1137 ** nOp entries.
1138 */
vdbeFreeOpArray(sqlite3 * db,Op * aOp,int nOp)1139 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1140   if( aOp ){
1141     Op *pOp;
1142     for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1143       if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1144 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1145       sqlite3DbFree(db, pOp->zComment);
1146 #endif
1147     }
1148     sqlite3DbFreeNN(db, aOp);
1149   }
1150 }
1151 
1152 /*
1153 ** Link the SubProgram object passed as the second argument into the linked
1154 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1155 ** objects when the VM is no longer required.
1156 */
sqlite3VdbeLinkSubProgram(Vdbe * pVdbe,SubProgram * p)1157 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1158   p->pNext = pVdbe->pProgram;
1159   pVdbe->pProgram = p;
1160 }
1161 
1162 /*
1163 ** Return true if the given Vdbe has any SubPrograms.
1164 */
sqlite3VdbeHasSubProgram(Vdbe * pVdbe)1165 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1166   return pVdbe->pProgram!=0;
1167 }
1168 
1169 /*
1170 ** Change the opcode at addr into OP_Noop
1171 */
sqlite3VdbeChangeToNoop(Vdbe * p,int addr)1172 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1173   VdbeOp *pOp;
1174   if( p->db->mallocFailed ) return 0;
1175   assert( addr>=0 && addr<p->nOp );
1176   pOp = &p->aOp[addr];
1177   freeP4(p->db, pOp->p4type, pOp->p4.p);
1178   pOp->p4type = P4_NOTUSED;
1179   pOp->p4.z = 0;
1180   pOp->opcode = OP_Noop;
1181   return 1;
1182 }
1183 
1184 /*
1185 ** If the last opcode is "op" and it is not a jump destination,
1186 ** then remove it.  Return true if and only if an opcode was removed.
1187 */
sqlite3VdbeDeletePriorOpcode(Vdbe * p,u8 op)1188 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1189   if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1190     return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1191   }else{
1192     return 0;
1193   }
1194 }
1195 
1196 #ifdef SQLITE_DEBUG
1197 /*
1198 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1199 ** registers, except any identified by mask, are no longer in use.
1200 */
sqlite3VdbeReleaseRegisters(Parse * pParse,int iFirst,int N,u32 mask,int bUndefine)1201 void sqlite3VdbeReleaseRegisters(
1202   Parse *pParse,       /* Parsing context */
1203   int iFirst,          /* Index of first register to be released */
1204   int N,               /* Number of registers to release */
1205   u32 mask,            /* Mask of registers to NOT release */
1206   int bUndefine        /* If true, mark registers as undefined */
1207 ){
1208   if( N==0 ) return;
1209   assert( pParse->pVdbe );
1210   assert( iFirst>=1 );
1211   assert( iFirst+N-1<=pParse->nMem );
1212   if( N<=31 && mask!=0 ){
1213     while( N>0 && (mask&1)!=0 ){
1214       mask >>= 1;
1215       iFirst++;
1216       N--;
1217     }
1218     while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1219       mask &= ~MASKBIT32(N-1);
1220       N--;
1221     }
1222   }
1223   if( N>0 ){
1224     sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1225     if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1226   }
1227 }
1228 #endif /* SQLITE_DEBUG */
1229 
1230 
1231 /*
1232 ** Change the value of the P4 operand for a specific instruction.
1233 ** This routine is useful when a large program is loaded from a
1234 ** static array using sqlite3VdbeAddOpList but we want to make a
1235 ** few minor changes to the program.
1236 **
1237 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1238 ** the string is made into memory obtained from sqlite3_malloc().
1239 ** A value of n==0 means copy bytes of zP4 up to and including the
1240 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
1241 **
1242 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1243 ** to a string or structure that is guaranteed to exist for the lifetime of
1244 ** the Vdbe. In these cases we can just copy the pointer.
1245 **
1246 ** If addr<0 then change P4 on the most recently inserted instruction.
1247 */
vdbeChangeP4Full(Vdbe * p,Op * pOp,const char * zP4,int n)1248 static void SQLITE_NOINLINE vdbeChangeP4Full(
1249   Vdbe *p,
1250   Op *pOp,
1251   const char *zP4,
1252   int n
1253 ){
1254   if( pOp->p4type ){
1255     freeP4(p->db, pOp->p4type, pOp->p4.p);
1256     pOp->p4type = 0;
1257     pOp->p4.p = 0;
1258   }
1259   if( n<0 ){
1260     sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1261   }else{
1262     if( n==0 ) n = sqlite3Strlen30(zP4);
1263     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1264     pOp->p4type = P4_DYNAMIC;
1265   }
1266 }
sqlite3VdbeChangeP4(Vdbe * p,int addr,const char * zP4,int n)1267 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1268   Op *pOp;
1269   sqlite3 *db;
1270   assert( p!=0 );
1271   db = p->db;
1272   assert( p->magic==VDBE_MAGIC_INIT );
1273   assert( p->aOp!=0 || db->mallocFailed );
1274   if( db->mallocFailed ){
1275     if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1276     return;
1277   }
1278   assert( p->nOp>0 );
1279   assert( addr<p->nOp );
1280   if( addr<0 ){
1281     addr = p->nOp - 1;
1282   }
1283   pOp = &p->aOp[addr];
1284   if( n>=0 || pOp->p4type ){
1285     vdbeChangeP4Full(p, pOp, zP4, n);
1286     return;
1287   }
1288   if( n==P4_INT32 ){
1289     /* Note: this cast is safe, because the origin data point was an int
1290     ** that was cast to a (const char *). */
1291     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1292     pOp->p4type = P4_INT32;
1293   }else if( zP4!=0 ){
1294     assert( n<0 );
1295     pOp->p4.p = (void*)zP4;
1296     pOp->p4type = (signed char)n;
1297     if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1298   }
1299 }
1300 
1301 /*
1302 ** Change the P4 operand of the most recently coded instruction
1303 ** to the value defined by the arguments.  This is a high-speed
1304 ** version of sqlite3VdbeChangeP4().
1305 **
1306 ** The P4 operand must not have been previously defined.  And the new
1307 ** P4 must not be P4_INT32.  Use sqlite3VdbeChangeP4() in either of
1308 ** those cases.
1309 */
sqlite3VdbeAppendP4(Vdbe * p,void * pP4,int n)1310 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1311   VdbeOp *pOp;
1312   assert( n!=P4_INT32 && n!=P4_VTAB );
1313   assert( n<=0 );
1314   if( p->db->mallocFailed ){
1315     freeP4(p->db, n, pP4);
1316   }else{
1317     assert( pP4!=0 );
1318     assert( p->nOp>0 );
1319     pOp = &p->aOp[p->nOp-1];
1320     assert( pOp->p4type==P4_NOTUSED );
1321     pOp->p4type = n;
1322     pOp->p4.p = pP4;
1323   }
1324 }
1325 
1326 /*
1327 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1328 ** index given.
1329 */
sqlite3VdbeSetP4KeyInfo(Parse * pParse,Index * pIdx)1330 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1331   Vdbe *v = pParse->pVdbe;
1332   KeyInfo *pKeyInfo;
1333   assert( v!=0 );
1334   assert( pIdx!=0 );
1335   pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1336   if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1337 }
1338 
1339 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1340 /*
1341 ** Change the comment on the most recently coded instruction.  Or
1342 ** insert a No-op and add the comment to that new instruction.  This
1343 ** makes the code easier to read during debugging.  None of this happens
1344 ** in a production build.
1345 */
vdbeVComment(Vdbe * p,const char * zFormat,va_list ap)1346 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1347   assert( p->nOp>0 || p->aOp==0 );
1348   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1349           || p->pParse->nErr>0 );
1350   if( p->nOp ){
1351     assert( p->aOp );
1352     sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1353     p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1354   }
1355 }
sqlite3VdbeComment(Vdbe * p,const char * zFormat,...)1356 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1357   va_list ap;
1358   if( p ){
1359     va_start(ap, zFormat);
1360     vdbeVComment(p, zFormat, ap);
1361     va_end(ap);
1362   }
1363 }
sqlite3VdbeNoopComment(Vdbe * p,const char * zFormat,...)1364 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1365   va_list ap;
1366   if( p ){
1367     sqlite3VdbeAddOp0(p, OP_Noop);
1368     va_start(ap, zFormat);
1369     vdbeVComment(p, zFormat, ap);
1370     va_end(ap);
1371   }
1372 }
1373 #endif  /* NDEBUG */
1374 
1375 #ifdef SQLITE_VDBE_COVERAGE
1376 /*
1377 ** Set the value if the iSrcLine field for the previously coded instruction.
1378 */
sqlite3VdbeSetLineNumber(Vdbe * v,int iLine)1379 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1380   sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1381 }
1382 #endif /* SQLITE_VDBE_COVERAGE */
1383 
1384 /*
1385 ** Return the opcode for a given address.  If the address is -1, then
1386 ** return the most recently inserted opcode.
1387 **
1388 ** If a memory allocation error has occurred prior to the calling of this
1389 ** routine, then a pointer to a dummy VdbeOp will be returned.  That opcode
1390 ** is readable but not writable, though it is cast to a writable value.
1391 ** The return of a dummy opcode allows the call to continue functioning
1392 ** after an OOM fault without having to check to see if the return from
1393 ** this routine is a valid pointer.  But because the dummy.opcode is 0,
1394 ** dummy will never be written to.  This is verified by code inspection and
1395 ** by running with Valgrind.
1396 */
sqlite3VdbeGetOp(Vdbe * p,int addr)1397 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1398   /* C89 specifies that the constant "dummy" will be initialized to all
1399   ** zeros, which is correct.  MSVC generates a warning, nevertheless. */
1400   static VdbeOp dummy;  /* Ignore the MSVC warning about no initializer */
1401   assert( p->magic==VDBE_MAGIC_INIT );
1402   if( addr<0 ){
1403     addr = p->nOp - 1;
1404   }
1405   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1406   if( p->db->mallocFailed ){
1407     return (VdbeOp*)&dummy;
1408   }else{
1409     return &p->aOp[addr];
1410   }
1411 }
1412 
1413 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1414 /*
1415 ** Return an integer value for one of the parameters to the opcode pOp
1416 ** determined by character c.
1417 */
translateP(char c,const Op * pOp)1418 static int translateP(char c, const Op *pOp){
1419   if( c=='1' ) return pOp->p1;
1420   if( c=='2' ) return pOp->p2;
1421   if( c=='3' ) return pOp->p3;
1422   if( c=='4' ) return pOp->p4.i;
1423   return pOp->p5;
1424 }
1425 
1426 /*
1427 ** Compute a string for the "comment" field of a VDBE opcode listing.
1428 **
1429 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1430 ** to an extra string that is appended to the sqlite3OpcodeName().  In the
1431 ** absence of other comments, this synopsis becomes the comment on the opcode.
1432 ** Some translation occurs:
1433 **
1434 **       "PX"      ->  "r[X]"
1435 **       "PX@PY"   ->  "r[X..X+Y-1]"  or "r[x]" if y is 0 or 1
1436 **       "PX@PY+1" ->  "r[X..X+Y]"    or "r[x]" if y is 0
1437 **       "PY..PY"  ->  "r[X..Y]"      or "r[x]" if y<=x
1438 */
displayComment(const Op * pOp,const char * zP4,char * zTemp,int nTemp)1439 static int displayComment(
1440   const Op *pOp,     /* The opcode to be commented */
1441   const char *zP4,   /* Previously obtained value for P4 */
1442   char *zTemp,       /* Write result here */
1443   int nTemp          /* Space available in zTemp[] */
1444 ){
1445   const char *zOpName;
1446   const char *zSynopsis;
1447   int nOpName;
1448   int ii, jj;
1449   char zAlt[50];
1450   zOpName = sqlite3OpcodeName(pOp->opcode);
1451   nOpName = sqlite3Strlen30(zOpName);
1452   if( zOpName[nOpName+1] ){
1453     int seenCom = 0;
1454     char c;
1455     zSynopsis = zOpName += nOpName + 1;
1456     if( strncmp(zSynopsis,"IF ",3)==0 ){
1457       if( pOp->p5 & SQLITE_STOREP2 ){
1458         sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1459       }else{
1460         sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1461       }
1462       zSynopsis = zAlt;
1463     }
1464     for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1465       if( c=='P' ){
1466         c = zSynopsis[++ii];
1467         if( c=='4' ){
1468           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1469         }else if( c=='X' ){
1470           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1471           seenCom = 1;
1472         }else{
1473           int v1 = translateP(c, pOp);
1474           int v2;
1475           sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1476           if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1477             ii += 3;
1478             jj += sqlite3Strlen30(zTemp+jj);
1479             v2 = translateP(zSynopsis[ii], pOp);
1480             if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1481               ii += 2;
1482               v2++;
1483             }
1484             if( v2>1 ){
1485               sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1486             }
1487           }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1488             ii += 4;
1489           }
1490         }
1491         jj += sqlite3Strlen30(zTemp+jj);
1492       }else{
1493         zTemp[jj++] = c;
1494       }
1495     }
1496     if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1497       sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1498       jj += sqlite3Strlen30(zTemp+jj);
1499     }
1500     if( jj<nTemp ) zTemp[jj] = 0;
1501   }else if( pOp->zComment ){
1502     sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1503     jj = sqlite3Strlen30(zTemp);
1504   }else{
1505     zTemp[0] = 0;
1506     jj = 0;
1507   }
1508   return jj;
1509 }
1510 #endif /* SQLITE_DEBUG */
1511 
1512 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1513 /*
1514 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1515 ** that can be displayed in the P4 column of EXPLAIN output.
1516 */
displayP4Expr(StrAccum * p,Expr * pExpr)1517 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1518   const char *zOp = 0;
1519   switch( pExpr->op ){
1520     case TK_STRING:
1521       sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1522       break;
1523     case TK_INTEGER:
1524       sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1525       break;
1526     case TK_NULL:
1527       sqlite3_str_appendf(p, "NULL");
1528       break;
1529     case TK_REGISTER: {
1530       sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1531       break;
1532     }
1533     case TK_COLUMN: {
1534       if( pExpr->iColumn<0 ){
1535         sqlite3_str_appendf(p, "rowid");
1536       }else{
1537         sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1538       }
1539       break;
1540     }
1541     case TK_LT:      zOp = "LT";      break;
1542     case TK_LE:      zOp = "LE";      break;
1543     case TK_GT:      zOp = "GT";      break;
1544     case TK_GE:      zOp = "GE";      break;
1545     case TK_NE:      zOp = "NE";      break;
1546     case TK_EQ:      zOp = "EQ";      break;
1547     case TK_IS:      zOp = "IS";      break;
1548     case TK_ISNOT:   zOp = "ISNOT";   break;
1549     case TK_AND:     zOp = "AND";     break;
1550     case TK_OR:      zOp = "OR";      break;
1551     case TK_PLUS:    zOp = "ADD";     break;
1552     case TK_STAR:    zOp = "MUL";     break;
1553     case TK_MINUS:   zOp = "SUB";     break;
1554     case TK_REM:     zOp = "REM";     break;
1555     case TK_BITAND:  zOp = "BITAND";  break;
1556     case TK_BITOR:   zOp = "BITOR";   break;
1557     case TK_SLASH:   zOp = "DIV";     break;
1558     case TK_LSHIFT:  zOp = "LSHIFT";  break;
1559     case TK_RSHIFT:  zOp = "RSHIFT";  break;
1560     case TK_CONCAT:  zOp = "CONCAT";  break;
1561     case TK_UMINUS:  zOp = "MINUS";   break;
1562     case TK_UPLUS:   zOp = "PLUS";    break;
1563     case TK_BITNOT:  zOp = "BITNOT";  break;
1564     case TK_NOT:     zOp = "NOT";     break;
1565     case TK_ISNULL:  zOp = "ISNULL";  break;
1566     case TK_NOTNULL: zOp = "NOTNULL"; break;
1567 
1568     default:
1569       sqlite3_str_appendf(p, "%s", "expr");
1570       break;
1571   }
1572 
1573   if( zOp ){
1574     sqlite3_str_appendf(p, "%s(", zOp);
1575     displayP4Expr(p, pExpr->pLeft);
1576     if( pExpr->pRight ){
1577       sqlite3_str_append(p, ",", 1);
1578       displayP4Expr(p, pExpr->pRight);
1579     }
1580     sqlite3_str_append(p, ")", 1);
1581   }
1582 }
1583 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1584 
1585 
1586 #if VDBE_DISPLAY_P4
1587 /*
1588 ** Compute a string that describes the P4 parameter for an opcode.
1589 ** Use zTemp for any required temporary buffer space.
1590 */
displayP4(Op * pOp,char * zTemp,int nTemp)1591 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1592   char *zP4 = zTemp;
1593   StrAccum x;
1594   assert( nTemp>=20 );
1595   sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1596   switch( pOp->p4type ){
1597     case P4_KEYINFO: {
1598       int j;
1599       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1600       assert( pKeyInfo->aSortFlags!=0 );
1601       sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1602       for(j=0; j<pKeyInfo->nKeyField; j++){
1603         CollSeq *pColl = pKeyInfo->aColl[j];
1604         const char *zColl = pColl ? pColl->zName : "";
1605         if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1606         sqlite3_str_appendf(&x, ",%s%s%s",
1607                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1608                (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1609                zColl);
1610       }
1611       sqlite3_str_append(&x, ")", 1);
1612       break;
1613     }
1614 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1615     case P4_EXPR: {
1616       displayP4Expr(&x, pOp->p4.pExpr);
1617       break;
1618     }
1619 #endif
1620     case P4_COLLSEQ: {
1621       CollSeq *pColl = pOp->p4.pColl;
1622       sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
1623       break;
1624     }
1625     case P4_FUNCDEF: {
1626       FuncDef *pDef = pOp->p4.pFunc;
1627       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1628       break;
1629     }
1630     case P4_FUNCCTX: {
1631       FuncDef *pDef = pOp->p4.pCtx->pFunc;
1632       sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1633       break;
1634     }
1635     case P4_INT64: {
1636       sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1637       break;
1638     }
1639     case P4_INT32: {
1640       sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1641       break;
1642     }
1643     case P4_REAL: {
1644       sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1645       break;
1646     }
1647     case P4_MEM: {
1648       Mem *pMem = pOp->p4.pMem;
1649       if( pMem->flags & MEM_Str ){
1650         zP4 = pMem->z;
1651       }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1652         sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1653       }else if( pMem->flags & MEM_Real ){
1654         sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1655       }else if( pMem->flags & MEM_Null ){
1656         zP4 = "NULL";
1657       }else{
1658         assert( pMem->flags & MEM_Blob );
1659         zP4 = "(blob)";
1660       }
1661       break;
1662     }
1663 #ifndef SQLITE_OMIT_VIRTUALTABLE
1664     case P4_VTAB: {
1665       sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1666       sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1667       break;
1668     }
1669 #endif
1670     case P4_INTARRAY: {
1671       int i;
1672       int *ai = pOp->p4.ai;
1673       int n = ai[0];   /* The first element of an INTARRAY is always the
1674                        ** count of the number of elements to follow */
1675       for(i=1; i<=n; i++){
1676         sqlite3_str_appendf(&x, ",%d", ai[i]);
1677       }
1678       zTemp[0] = '[';
1679       sqlite3_str_append(&x, "]", 1);
1680       break;
1681     }
1682     case P4_SUBPROGRAM: {
1683       sqlite3_str_appendf(&x, "program");
1684       break;
1685     }
1686     case P4_DYNBLOB:
1687     case P4_ADVANCE: {
1688       zTemp[0] = 0;
1689       break;
1690     }
1691     case P4_TABLE: {
1692       sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
1693       break;
1694     }
1695     default: {
1696       zP4 = pOp->p4.z;
1697       if( zP4==0 ){
1698         zP4 = zTemp;
1699         zTemp[0] = 0;
1700       }
1701     }
1702   }
1703   sqlite3StrAccumFinish(&x);
1704   assert( zP4!=0 );
1705   return zP4;
1706 }
1707 #endif /* VDBE_DISPLAY_P4 */
1708 
1709 /*
1710 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1711 **
1712 ** The prepared statements need to know in advance the complete set of
1713 ** attached databases that will be use.  A mask of these databases
1714 ** is maintained in p->btreeMask.  The p->lockMask value is the subset of
1715 ** p->btreeMask of databases that will require a lock.
1716 */
sqlite3VdbeUsesBtree(Vdbe * p,int i)1717 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1718   assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1719   assert( i<(int)sizeof(p->btreeMask)*8 );
1720   DbMaskSet(p->btreeMask, i);
1721   if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1722     DbMaskSet(p->lockMask, i);
1723   }
1724 }
1725 
1726 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1727 /*
1728 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1729 ** this routine obtains the mutex associated with each BtShared structure
1730 ** that may be accessed by the VM passed as an argument. In doing so it also
1731 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1732 ** that the correct busy-handler callback is invoked if required.
1733 **
1734 ** If SQLite is not threadsafe but does support shared-cache mode, then
1735 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1736 ** of all of BtShared structures accessible via the database handle
1737 ** associated with the VM.
1738 **
1739 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1740 ** function is a no-op.
1741 **
1742 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1743 ** statement p will ever use.  Let N be the number of bits in p->btreeMask
1744 ** corresponding to btrees that use shared cache.  Then the runtime of
1745 ** this routine is N*N.  But as N is rarely more than 1, this should not
1746 ** be a problem.
1747 */
sqlite3VdbeEnter(Vdbe * p)1748 void sqlite3VdbeEnter(Vdbe *p){
1749   int i;
1750   sqlite3 *db;
1751   Db *aDb;
1752   int nDb;
1753   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1754   db = p->db;
1755   aDb = db->aDb;
1756   nDb = db->nDb;
1757   for(i=0; i<nDb; i++){
1758     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1759       sqlite3BtreeEnter(aDb[i].pBt);
1760     }
1761   }
1762 }
1763 #endif
1764 
1765 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1766 /*
1767 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1768 */
vdbeLeave(Vdbe * p)1769 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1770   int i;
1771   sqlite3 *db;
1772   Db *aDb;
1773   int nDb;
1774   db = p->db;
1775   aDb = db->aDb;
1776   nDb = db->nDb;
1777   for(i=0; i<nDb; i++){
1778     if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1779       sqlite3BtreeLeave(aDb[i].pBt);
1780     }
1781   }
1782 }
sqlite3VdbeLeave(Vdbe * p)1783 void sqlite3VdbeLeave(Vdbe *p){
1784   if( DbMaskAllZero(p->lockMask) ) return;  /* The common case */
1785   vdbeLeave(p);
1786 }
1787 #endif
1788 
1789 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1790 /*
1791 ** Print a single opcode.  This routine is used for debugging only.
1792 */
sqlite3VdbePrintOp(FILE * pOut,int pc,VdbeOp * pOp)1793 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1794   char *zP4;
1795   char zPtr[50];
1796   char zCom[100];
1797   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1798   if( pOut==0 ) pOut = stdout;
1799   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1800 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1801   displayComment(pOp, zP4, zCom, sizeof(zCom));
1802 #else
1803   zCom[0] = 0;
1804 #endif
1805   /* NB:  The sqlite3OpcodeName() function is implemented by code created
1806   ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1807   ** information from the vdbe.c source text */
1808   fprintf(pOut, zFormat1, pc,
1809       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1810       zCom
1811   );
1812   fflush(pOut);
1813 }
1814 #endif
1815 
1816 /*
1817 ** Initialize an array of N Mem element.
1818 */
initMemArray(Mem * p,int N,sqlite3 * db,u16 flags)1819 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1820   while( (N--)>0 ){
1821     p->db = db;
1822     p->flags = flags;
1823     p->szMalloc = 0;
1824 #ifdef SQLITE_DEBUG
1825     p->pScopyFrom = 0;
1826 #endif
1827     p++;
1828   }
1829 }
1830 
1831 /*
1832 ** Release an array of N Mem elements
1833 */
releaseMemArray(Mem * p,int N)1834 static void releaseMemArray(Mem *p, int N){
1835   if( p && N ){
1836     Mem *pEnd = &p[N];
1837     sqlite3 *db = p->db;
1838     if( db->pnBytesFreed ){
1839       do{
1840         if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1841       }while( (++p)<pEnd );
1842       return;
1843     }
1844     do{
1845       assert( (&p[1])==pEnd || p[0].db==p[1].db );
1846       assert( sqlite3VdbeCheckMemInvariants(p) );
1847 
1848       /* This block is really an inlined version of sqlite3VdbeMemRelease()
1849       ** that takes advantage of the fact that the memory cell value is
1850       ** being set to NULL after releasing any dynamic resources.
1851       **
1852       ** The justification for duplicating code is that according to
1853       ** callgrind, this causes a certain test case to hit the CPU 4.7
1854       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1855       ** sqlite3MemRelease() were called from here. With -O2, this jumps
1856       ** to 6.6 percent. The test case is inserting 1000 rows into a table
1857       ** with no indexes using a single prepared INSERT statement, bind()
1858       ** and reset(). Inserts are grouped into a transaction.
1859       */
1860       testcase( p->flags & MEM_Agg );
1861       testcase( p->flags & MEM_Dyn );
1862       testcase( p->xDel==sqlite3VdbeFrameMemDel );
1863       if( p->flags&(MEM_Agg|MEM_Dyn) ){
1864         sqlite3VdbeMemRelease(p);
1865       }else if( p->szMalloc ){
1866         sqlite3DbFreeNN(db, p->zMalloc);
1867         p->szMalloc = 0;
1868       }
1869 
1870       p->flags = MEM_Undefined;
1871     }while( (++p)<pEnd );
1872   }
1873 }
1874 
1875 #ifdef SQLITE_DEBUG
1876 /*
1877 ** Verify that pFrame is a valid VdbeFrame pointer.  Return true if it is
1878 ** and false if something is wrong.
1879 **
1880 ** This routine is intended for use inside of assert() statements only.
1881 */
sqlite3VdbeFrameIsValid(VdbeFrame * pFrame)1882 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1883   if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1884   return 1;
1885 }
1886 #endif
1887 
1888 
1889 /*
1890 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1891 ** that deletes the Frame object that is attached to it as a blob.
1892 **
1893 ** This routine does not delete the Frame right away.  It merely adds the
1894 ** frame to a list of frames to be deleted when the Vdbe halts.
1895 */
sqlite3VdbeFrameMemDel(void * pArg)1896 void sqlite3VdbeFrameMemDel(void *pArg){
1897   VdbeFrame *pFrame = (VdbeFrame*)pArg;
1898   assert( sqlite3VdbeFrameIsValid(pFrame) );
1899   pFrame->pParent = pFrame->v->pDelFrame;
1900   pFrame->v->pDelFrame = pFrame;
1901 }
1902 
1903 
1904 /*
1905 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1906 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1907 */
sqlite3VdbeFrameDelete(VdbeFrame * p)1908 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1909   int i;
1910   Mem *aMem = VdbeFrameMem(p);
1911   VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1912   assert( sqlite3VdbeFrameIsValid(p) );
1913   for(i=0; i<p->nChildCsr; i++){
1914     sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1915   }
1916   releaseMemArray(aMem, p->nChildMem);
1917   sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1918   sqlite3DbFree(p->v->db, p);
1919 }
1920 
1921 #ifndef SQLITE_OMIT_EXPLAIN
1922 /*
1923 ** Give a listing of the program in the virtual machine.
1924 **
1925 ** The interface is the same as sqlite3VdbeExec().  But instead of
1926 ** running the code, it invokes the callback once for each instruction.
1927 ** This feature is used to implement "EXPLAIN".
1928 **
1929 ** When p->explain==1, each instruction is listed.  When
1930 ** p->explain==2, only OP_Explain instructions are listed and these
1931 ** are shown in a different format.  p->explain==2 is used to implement
1932 ** EXPLAIN QUERY PLAN.
1933 ** 2018-04-24:  In p->explain==2 mode, the OP_Init opcodes of triggers
1934 ** are also shown, so that the boundaries between the main program and
1935 ** each trigger are clear.
1936 **
1937 ** When p->explain==1, first the main program is listed, then each of
1938 ** the trigger subprograms are listed one by one.
1939 */
sqlite3VdbeList(Vdbe * p)1940 int sqlite3VdbeList(
1941   Vdbe *p                   /* The VDBE */
1942 ){
1943   int nRow;                            /* Stop when row count reaches this */
1944   int nSub = 0;                        /* Number of sub-vdbes seen so far */
1945   SubProgram **apSub = 0;              /* Array of sub-vdbes */
1946   Mem *pSub = 0;                       /* Memory cell hold array of subprogs */
1947   sqlite3 *db = p->db;                 /* The database connection */
1948   int i;                               /* Loop counter */
1949   int rc = SQLITE_OK;                  /* Return code */
1950   Mem *pMem = &p->aMem[1];             /* First Mem of result set */
1951   int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1952   Op *pOp = 0;
1953 
1954   assert( p->explain );
1955   assert( p->magic==VDBE_MAGIC_RUN );
1956   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1957 
1958   /* Even though this opcode does not use dynamic strings for
1959   ** the result, result columns may become dynamic if the user calls
1960   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1961   */
1962   releaseMemArray(pMem, 8);
1963   p->pResultSet = 0;
1964 
1965   if( p->rc==SQLITE_NOMEM ){
1966     /* This happens if a malloc() inside a call to sqlite3_column_text() or
1967     ** sqlite3_column_text16() failed.  */
1968     sqlite3OomFault(db);
1969     return SQLITE_ERROR;
1970   }
1971 
1972   /* When the number of output rows reaches nRow, that means the
1973   ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1974   ** nRow is the sum of the number of rows in the main program, plus
1975   ** the sum of the number of rows in all trigger subprograms encountered
1976   ** so far.  The nRow value will increase as new trigger subprograms are
1977   ** encountered, but p->pc will eventually catch up to nRow.
1978   */
1979   nRow = p->nOp;
1980   if( bListSubprogs ){
1981     /* The first 8 memory cells are used for the result set.  So we will
1982     ** commandeer the 9th cell to use as storage for an array of pointers
1983     ** to trigger subprograms.  The VDBE is guaranteed to have at least 9
1984     ** cells.  */
1985     assert( p->nMem>9 );
1986     pSub = &p->aMem[9];
1987     if( pSub->flags&MEM_Blob ){
1988       /* On the first call to sqlite3_step(), pSub will hold a NULL.  It is
1989       ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1990       nSub = pSub->n/sizeof(Vdbe*);
1991       apSub = (SubProgram **)pSub->z;
1992     }
1993     for(i=0; i<nSub; i++){
1994       nRow += apSub[i]->nOp;
1995     }
1996   }
1997 
1998   while(1){  /* Loop exits via break */
1999     i = p->pc++;
2000     if( i>=nRow ){
2001       p->rc = SQLITE_OK;
2002       rc = SQLITE_DONE;
2003       break;
2004     }
2005     if( i<p->nOp ){
2006       /* The output line number is small enough that we are still in the
2007       ** main program. */
2008       pOp = &p->aOp[i];
2009     }else{
2010       /* We are currently listing subprograms.  Figure out which one and
2011       ** pick up the appropriate opcode. */
2012       int j;
2013       i -= p->nOp;
2014       assert( apSub!=0 );
2015       assert( nSub>0 );
2016       for(j=0; i>=apSub[j]->nOp; j++){
2017         i -= apSub[j]->nOp;
2018         assert( i<apSub[j]->nOp || j+1<nSub );
2019       }
2020       pOp = &apSub[j]->aOp[i];
2021     }
2022 
2023     /* When an OP_Program opcode is encounter (the only opcode that has
2024     ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2025     ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2026     ** has not already been seen.
2027     */
2028     if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
2029       int nByte = (nSub+1)*sizeof(SubProgram*);
2030       int j;
2031       for(j=0; j<nSub; j++){
2032         if( apSub[j]==pOp->p4.pProgram ) break;
2033       }
2034       if( j==nSub ){
2035         p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2036         if( p->rc!=SQLITE_OK ){
2037           rc = SQLITE_ERROR;
2038           break;
2039         }
2040         apSub = (SubProgram **)pSub->z;
2041         apSub[nSub++] = pOp->p4.pProgram;
2042         pSub->flags |= MEM_Blob;
2043         pSub->n = nSub*sizeof(SubProgram*);
2044         nRow += pOp->p4.pProgram->nOp;
2045       }
2046     }
2047     if( p->explain<2 ) break;
2048     if( pOp->opcode==OP_Explain ) break;
2049     if( pOp->opcode==OP_Init && p->pc>1 ) break;
2050   }
2051 
2052   if( rc==SQLITE_OK ){
2053     if( db->u1.isInterrupted ){
2054       p->rc = SQLITE_INTERRUPT;
2055       rc = SQLITE_ERROR;
2056       sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2057     }else{
2058       char *zP4;
2059       if( p->explain==1 ){
2060         pMem->flags = MEM_Int;
2061         pMem->u.i = i;                                /* Program counter */
2062         pMem++;
2063 
2064         pMem->flags = MEM_Static|MEM_Str|MEM_Term;
2065         pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
2066         assert( pMem->z!=0 );
2067         pMem->n = sqlite3Strlen30(pMem->z);
2068         pMem->enc = SQLITE_UTF8;
2069         pMem++;
2070       }
2071 
2072       pMem->flags = MEM_Int;
2073       pMem->u.i = pOp->p1;                          /* P1 */
2074       pMem++;
2075 
2076       pMem->flags = MEM_Int;
2077       pMem->u.i = pOp->p2;                          /* P2 */
2078       pMem++;
2079 
2080       pMem->flags = MEM_Int;
2081       pMem->u.i = pOp->p3;                          /* P3 */
2082       pMem++;
2083 
2084       if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
2085         assert( p->db->mallocFailed );
2086         return SQLITE_ERROR;
2087       }
2088       pMem->flags = MEM_Str|MEM_Term;
2089       zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
2090       if( zP4!=pMem->z ){
2091         pMem->n = 0;
2092         sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
2093       }else{
2094         assert( pMem->z!=0 );
2095         pMem->n = sqlite3Strlen30(pMem->z);
2096         pMem->enc = SQLITE_UTF8;
2097       }
2098       pMem++;
2099 
2100       if( p->explain==1 ){
2101         if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
2102           assert( p->db->mallocFailed );
2103           return SQLITE_ERROR;
2104         }
2105         pMem->flags = MEM_Str|MEM_Term;
2106         pMem->n = 2;
2107         sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
2108         pMem->enc = SQLITE_UTF8;
2109         pMem++;
2110 
2111 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2112         if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
2113           assert( p->db->mallocFailed );
2114           return SQLITE_ERROR;
2115         }
2116         pMem->flags = MEM_Str|MEM_Term;
2117         pMem->n = displayComment(pOp, zP4, pMem->z, 500);
2118         pMem->enc = SQLITE_UTF8;
2119 #else
2120         pMem->flags = MEM_Null;                       /* Comment */
2121 #endif
2122       }
2123 
2124       p->nResColumn = 8 - 4*(p->explain-1);
2125       p->pResultSet = &p->aMem[1];
2126       p->rc = SQLITE_OK;
2127       rc = SQLITE_ROW;
2128     }
2129   }
2130   return rc;
2131 }
2132 #endif /* SQLITE_OMIT_EXPLAIN */
2133 
2134 #ifdef SQLITE_DEBUG
2135 /*
2136 ** Print the SQL that was used to generate a VDBE program.
2137 */
sqlite3VdbePrintSql(Vdbe * p)2138 void sqlite3VdbePrintSql(Vdbe *p){
2139   const char *z = 0;
2140   if( p->zSql ){
2141     z = p->zSql;
2142   }else if( p->nOp>=1 ){
2143     const VdbeOp *pOp = &p->aOp[0];
2144     if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2145       z = pOp->p4.z;
2146       while( sqlite3Isspace(*z) ) z++;
2147     }
2148   }
2149   if( z ) printf("SQL: [%s]\n", z);
2150 }
2151 #endif
2152 
2153 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2154 /*
2155 ** Print an IOTRACE message showing SQL content.
2156 */
sqlite3VdbeIOTraceSql(Vdbe * p)2157 void sqlite3VdbeIOTraceSql(Vdbe *p){
2158   int nOp = p->nOp;
2159   VdbeOp *pOp;
2160   if( sqlite3IoTrace==0 ) return;
2161   if( nOp<1 ) return;
2162   pOp = &p->aOp[0];
2163   if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2164     int i, j;
2165     char z[1000];
2166     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2167     for(i=0; sqlite3Isspace(z[i]); i++){}
2168     for(j=0; z[i]; i++){
2169       if( sqlite3Isspace(z[i]) ){
2170         if( z[i-1]!=' ' ){
2171           z[j++] = ' ';
2172         }
2173       }else{
2174         z[j++] = z[i];
2175       }
2176     }
2177     z[j] = 0;
2178     sqlite3IoTrace("SQL %s\n", z);
2179   }
2180 }
2181 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2182 
2183 /* An instance of this object describes bulk memory available for use
2184 ** by subcomponents of a prepared statement.  Space is allocated out
2185 ** of a ReusableSpace object by the allocSpace() routine below.
2186 */
2187 struct ReusableSpace {
2188   u8 *pSpace;            /* Available memory */
2189   sqlite3_int64 nFree;   /* Bytes of available memory */
2190   sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2191 };
2192 
2193 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2194 ** from the ReusableSpace object.  Return a pointer to the allocated
2195 ** memory on success.  If insufficient memory is available in the
2196 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2197 ** value by the amount needed and return NULL.
2198 **
2199 ** If pBuf is not initially NULL, that means that the memory has already
2200 ** been allocated by a prior call to this routine, so just return a copy
2201 ** of pBuf and leave ReusableSpace unchanged.
2202 **
2203 ** This allocator is employed to repurpose unused slots at the end of the
2204 ** opcode array of prepared state for other memory needs of the prepared
2205 ** statement.
2206 */
allocSpace(struct ReusableSpace * p,void * pBuf,sqlite3_int64 nByte)2207 static void *allocSpace(
2208   struct ReusableSpace *p,  /* Bulk memory available for allocation */
2209   void *pBuf,               /* Pointer to a prior allocation */
2210   sqlite3_int64 nByte       /* Bytes of memory needed */
2211 ){
2212   assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2213   if( pBuf==0 ){
2214     nByte = ROUND8(nByte);
2215     if( nByte <= p->nFree ){
2216       p->nFree -= nByte;
2217       pBuf = &p->pSpace[p->nFree];
2218     }else{
2219       p->nNeeded += nByte;
2220     }
2221   }
2222   assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2223   return pBuf;
2224 }
2225 
2226 /*
2227 ** Rewind the VDBE back to the beginning in preparation for
2228 ** running it.
2229 */
sqlite3VdbeRewind(Vdbe * p)2230 void sqlite3VdbeRewind(Vdbe *p){
2231 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2232   int i;
2233 #endif
2234   assert( p!=0 );
2235   assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2236 
2237   /* There should be at least one opcode.
2238   */
2239   assert( p->nOp>0 );
2240 
2241   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2242   p->magic = VDBE_MAGIC_RUN;
2243 
2244 #ifdef SQLITE_DEBUG
2245   for(i=0; i<p->nMem; i++){
2246     assert( p->aMem[i].db==p->db );
2247   }
2248 #endif
2249   p->pc = -1;
2250   p->rc = SQLITE_OK;
2251   p->errorAction = OE_Abort;
2252   p->nChange = 0;
2253   p->cacheCtr = 1;
2254   p->minWriteFileFormat = 255;
2255   p->iStatement = 0;
2256   p->nFkConstraint = 0;
2257 #ifdef VDBE_PROFILE
2258   for(i=0; i<p->nOp; i++){
2259     p->aOp[i].cnt = 0;
2260     p->aOp[i].cycles = 0;
2261   }
2262 #endif
2263 }
2264 
2265 /*
2266 ** Prepare a virtual machine for execution for the first time after
2267 ** creating the virtual machine.  This involves things such
2268 ** as allocating registers and initializing the program counter.
2269 ** After the VDBE has be prepped, it can be executed by one or more
2270 ** calls to sqlite3VdbeExec().
2271 **
2272 ** This function may be called exactly once on each virtual machine.
2273 ** After this routine is called the VM has been "packaged" and is ready
2274 ** to run.  After this routine is called, further calls to
2275 ** sqlite3VdbeAddOp() functions are prohibited.  This routine disconnects
2276 ** the Vdbe from the Parse object that helped generate it so that the
2277 ** the Vdbe becomes an independent entity and the Parse object can be
2278 ** destroyed.
2279 **
2280 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2281 ** to its initial state after it has been run.
2282 */
sqlite3VdbeMakeReady(Vdbe * p,Parse * pParse)2283 void sqlite3VdbeMakeReady(
2284   Vdbe *p,                       /* The VDBE */
2285   Parse *pParse                  /* Parsing context */
2286 ){
2287   sqlite3 *db;                   /* The database connection */
2288   int nVar;                      /* Number of parameters */
2289   int nMem;                      /* Number of VM memory registers */
2290   int nCursor;                   /* Number of cursors required */
2291   int nArg;                      /* Number of arguments in subprograms */
2292   int n;                         /* Loop counter */
2293   struct ReusableSpace x;        /* Reusable bulk memory */
2294 
2295   assert( p!=0 );
2296   assert( p->nOp>0 );
2297   assert( pParse!=0 );
2298   assert( p->magic==VDBE_MAGIC_INIT );
2299   assert( pParse==p->pParse );
2300   db = p->db;
2301   assert( db->mallocFailed==0 );
2302   nVar = pParse->nVar;
2303   nMem = pParse->nMem;
2304   nCursor = pParse->nTab;
2305   nArg = pParse->nMaxArg;
2306 
2307   /* Each cursor uses a memory cell.  The first cursor (cursor 0) can
2308   ** use aMem[0] which is not otherwise used by the VDBE program.  Allocate
2309   ** space at the end of aMem[] for cursors 1 and greater.
2310   ** See also: allocateCursor().
2311   */
2312   nMem += nCursor;
2313   if( nCursor==0 && nMem>0 ) nMem++;  /* Space for aMem[0] even if not used */
2314 
2315   /* Figure out how much reusable memory is available at the end of the
2316   ** opcode array.  This extra memory will be reallocated for other elements
2317   ** of the prepared statement.
2318   */
2319   n = ROUND8(sizeof(Op)*p->nOp);              /* Bytes of opcode memory used */
2320   x.pSpace = &((u8*)p->aOp)[n];               /* Unused opcode memory */
2321   assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2322   x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n);  /* Bytes of unused memory */
2323   assert( x.nFree>=0 );
2324   assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2325 
2326   resolveP2Values(p, &nArg);
2327   p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2328   if( pParse->explain ){
2329     static const char * const azColName[] = {
2330        "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2331        "id", "parent", "notused", "detail"
2332     };
2333     int iFirst, mx, i;
2334     if( nMem<10 ) nMem = 10;
2335     if( pParse->explain==2 ){
2336       sqlite3VdbeSetNumCols(p, 4);
2337       iFirst = 8;
2338       mx = 12;
2339     }else{
2340       sqlite3VdbeSetNumCols(p, 8);
2341       iFirst = 0;
2342       mx = 8;
2343     }
2344     for(i=iFirst; i<mx; i++){
2345       sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2346                             azColName[i], SQLITE_STATIC);
2347     }
2348   }
2349   p->expired = 0;
2350 
2351   /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2352   ** passes.  On the first pass, we try to reuse unused memory at the
2353   ** end of the opcode array.  If we are unable to satisfy all memory
2354   ** requirements by reusing the opcode array tail, then the second
2355   ** pass will fill in the remainder using a fresh memory allocation.
2356   **
2357   ** This two-pass approach that reuses as much memory as possible from
2358   ** the leftover memory at the end of the opcode array.  This can significantly
2359   ** reduce the amount of memory held by a prepared statement.
2360   */
2361   x.nNeeded = 0;
2362   p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2363   p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2364   p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2365   p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2366 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2367   p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2368 #endif
2369   if( x.nNeeded ){
2370     x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2371     x.nFree = x.nNeeded;
2372     if( !db->mallocFailed ){
2373       p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2374       p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2375       p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2376       p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2377 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2378       p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2379 #endif
2380     }
2381   }
2382 
2383   p->pVList = pParse->pVList;
2384   pParse->pVList =  0;
2385   p->explain = pParse->explain;
2386   if( db->mallocFailed ){
2387     p->nVar = 0;
2388     p->nCursor = 0;
2389     p->nMem = 0;
2390   }else{
2391     p->nCursor = nCursor;
2392     p->nVar = (ynVar)nVar;
2393     initMemArray(p->aVar, nVar, db, MEM_Null);
2394     p->nMem = nMem;
2395     initMemArray(p->aMem, nMem, db, MEM_Undefined);
2396     memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2397 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2398     memset(p->anExec, 0, p->nOp*sizeof(i64));
2399 #endif
2400   }
2401   sqlite3VdbeRewind(p);
2402 }
2403 
2404 /*
2405 ** Close a VDBE cursor and release all the resources that cursor
2406 ** happens to hold.
2407 */
sqlite3VdbeFreeCursor(Vdbe * p,VdbeCursor * pCx)2408 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2409   if( pCx==0 ){
2410     return;
2411   }
2412   assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2413   switch( pCx->eCurType ){
2414     case CURTYPE_SORTER: {
2415       sqlite3VdbeSorterClose(p->db, pCx);
2416       break;
2417     }
2418     case CURTYPE_BTREE: {
2419       if( pCx->isEphemeral ){
2420         if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2421         /* The pCx->pCursor will be close automatically, if it exists, by
2422         ** the call above. */
2423       }else{
2424         assert( pCx->uc.pCursor!=0 );
2425         sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2426       }
2427       break;
2428     }
2429 #ifndef SQLITE_OMIT_VIRTUALTABLE
2430     case CURTYPE_VTAB: {
2431       sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2432       const sqlite3_module *pModule = pVCur->pVtab->pModule;
2433       assert( pVCur->pVtab->nRef>0 );
2434       pVCur->pVtab->nRef--;
2435       pModule->xClose(pVCur);
2436       break;
2437     }
2438 #endif
2439   }
2440 }
2441 
2442 /*
2443 ** Close all cursors in the current frame.
2444 */
closeCursorsInFrame(Vdbe * p)2445 static void closeCursorsInFrame(Vdbe *p){
2446   if( p->apCsr ){
2447     int i;
2448     for(i=0; i<p->nCursor; i++){
2449       VdbeCursor *pC = p->apCsr[i];
2450       if( pC ){
2451         sqlite3VdbeFreeCursor(p, pC);
2452         p->apCsr[i] = 0;
2453       }
2454     }
2455   }
2456 }
2457 
2458 /*
2459 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2460 ** is used, for example, when a trigger sub-program is halted to restore
2461 ** control to the main program.
2462 */
sqlite3VdbeFrameRestore(VdbeFrame * pFrame)2463 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2464   Vdbe *v = pFrame->v;
2465   closeCursorsInFrame(v);
2466 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2467   v->anExec = pFrame->anExec;
2468 #endif
2469   v->aOp = pFrame->aOp;
2470   v->nOp = pFrame->nOp;
2471   v->aMem = pFrame->aMem;
2472   v->nMem = pFrame->nMem;
2473   v->apCsr = pFrame->apCsr;
2474   v->nCursor = pFrame->nCursor;
2475   v->db->lastRowid = pFrame->lastRowid;
2476   v->nChange = pFrame->nChange;
2477   v->db->nChange = pFrame->nDbChange;
2478   sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2479   v->pAuxData = pFrame->pAuxData;
2480   pFrame->pAuxData = 0;
2481   return pFrame->pc;
2482 }
2483 
2484 /*
2485 ** Close all cursors.
2486 **
2487 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2488 ** cell array. This is necessary as the memory cell array may contain
2489 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2490 ** open cursors.
2491 */
closeAllCursors(Vdbe * p)2492 static void closeAllCursors(Vdbe *p){
2493   if( p->pFrame ){
2494     VdbeFrame *pFrame;
2495     for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2496     sqlite3VdbeFrameRestore(pFrame);
2497     p->pFrame = 0;
2498     p->nFrame = 0;
2499   }
2500   assert( p->nFrame==0 );
2501   closeCursorsInFrame(p);
2502   if( p->aMem ){
2503     releaseMemArray(p->aMem, p->nMem);
2504   }
2505   while( p->pDelFrame ){
2506     VdbeFrame *pDel = p->pDelFrame;
2507     p->pDelFrame = pDel->pParent;
2508     sqlite3VdbeFrameDelete(pDel);
2509   }
2510 
2511   /* Delete any auxdata allocations made by the VM */
2512   if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2513   assert( p->pAuxData==0 );
2514 }
2515 
2516 /*
2517 ** Set the number of result columns that will be returned by this SQL
2518 ** statement. This is now set at compile time, rather than during
2519 ** execution of the vdbe program so that sqlite3_column_count() can
2520 ** be called on an SQL statement before sqlite3_step().
2521 */
sqlite3VdbeSetNumCols(Vdbe * p,int nResColumn)2522 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2523   int n;
2524   sqlite3 *db = p->db;
2525 
2526   if( p->nResColumn ){
2527     releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2528     sqlite3DbFree(db, p->aColName);
2529   }
2530   n = nResColumn*COLNAME_N;
2531   p->nResColumn = (u16)nResColumn;
2532   p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2533   if( p->aColName==0 ) return;
2534   initMemArray(p->aColName, n, db, MEM_Null);
2535 }
2536 
2537 /*
2538 ** Set the name of the idx'th column to be returned by the SQL statement.
2539 ** zName must be a pointer to a nul terminated string.
2540 **
2541 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2542 **
2543 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2544 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2545 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2546 */
sqlite3VdbeSetColName(Vdbe * p,int idx,int var,const char * zName,void (* xDel)(void *))2547 int sqlite3VdbeSetColName(
2548   Vdbe *p,                         /* Vdbe being configured */
2549   int idx,                         /* Index of column zName applies to */
2550   int var,                         /* One of the COLNAME_* constants */
2551   const char *zName,               /* Pointer to buffer containing name */
2552   void (*xDel)(void*)              /* Memory management strategy for zName */
2553 ){
2554   int rc;
2555   Mem *pColName;
2556   assert( idx<p->nResColumn );
2557   assert( var<COLNAME_N );
2558   if( p->db->mallocFailed ){
2559     assert( !zName || xDel!=SQLITE_DYNAMIC );
2560     return SQLITE_NOMEM_BKPT;
2561   }
2562   assert( p->aColName!=0 );
2563   pColName = &(p->aColName[idx+var*p->nResColumn]);
2564   rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2565   assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2566   return rc;
2567 }
2568 
2569 /*
2570 ** A read or write transaction may or may not be active on database handle
2571 ** db. If a transaction is active, commit it. If there is a
2572 ** write-transaction spanning more than one database file, this routine
2573 ** takes care of the master journal trickery.
2574 */
vdbeCommit(sqlite3 * db,Vdbe * p)2575 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2576   int i;
2577   int nTrans = 0;  /* Number of databases with an active write-transaction
2578                    ** that are candidates for a two-phase commit using a
2579                    ** master-journal */
2580   int rc = SQLITE_OK;
2581   int needXcommit = 0;
2582 
2583 #ifdef SQLITE_OMIT_VIRTUALTABLE
2584   /* With this option, sqlite3VtabSync() is defined to be simply
2585   ** SQLITE_OK so p is not used.
2586   */
2587   UNUSED_PARAMETER(p);
2588 #endif
2589 
2590   /* Before doing anything else, call the xSync() callback for any
2591   ** virtual module tables written in this transaction. This has to
2592   ** be done before determining whether a master journal file is
2593   ** required, as an xSync() callback may add an attached database
2594   ** to the transaction.
2595   */
2596   rc = sqlite3VtabSync(db, p);
2597 
2598   /* This loop determines (a) if the commit hook should be invoked and
2599   ** (b) how many database files have open write transactions, not
2600   ** including the temp database. (b) is important because if more than
2601   ** one database file has an open write transaction, a master journal
2602   ** file is required for an atomic commit.
2603   */
2604   for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2605     Btree *pBt = db->aDb[i].pBt;
2606     if( sqlite3BtreeIsInTrans(pBt) ){
2607       /* Whether or not a database might need a master journal depends upon
2608       ** its journal mode (among other things).  This matrix determines which
2609       ** journal modes use a master journal and which do not */
2610       static const u8 aMJNeeded[] = {
2611         /* DELETE   */  1,
2612         /* PERSIST   */ 1,
2613         /* OFF       */ 0,
2614         /* TRUNCATE  */ 1,
2615         /* MEMORY    */ 0,
2616         /* WAL       */ 0
2617       };
2618       Pager *pPager;   /* Pager associated with pBt */
2619       needXcommit = 1;
2620       sqlite3BtreeEnter(pBt);
2621       pPager = sqlite3BtreePager(pBt);
2622       if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2623        && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2624        && sqlite3PagerIsMemdb(pPager)==0
2625       ){
2626         assert( i!=1 );
2627         nTrans++;
2628       }
2629       rc = sqlite3PagerExclusiveLock(pPager);
2630       sqlite3BtreeLeave(pBt);
2631     }
2632   }
2633   if( rc!=SQLITE_OK ){
2634     return rc;
2635   }
2636 
2637   /* If there are any write-transactions at all, invoke the commit hook */
2638   if( needXcommit && db->xCommitCallback ){
2639     rc = db->xCommitCallback(db->pCommitArg);
2640     if( rc ){
2641       return SQLITE_CONSTRAINT_COMMITHOOK;
2642     }
2643   }
2644 
2645   /* The simple case - no more than one database file (not counting the
2646   ** TEMP database) has a transaction active.   There is no need for the
2647   ** master-journal.
2648   **
2649   ** If the return value of sqlite3BtreeGetFilename() is a zero length
2650   ** string, it means the main database is :memory: or a temp file.  In
2651   ** that case we do not support atomic multi-file commits, so use the
2652   ** simple case then too.
2653   */
2654   if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2655    || nTrans<=1
2656   ){
2657     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2658       Btree *pBt = db->aDb[i].pBt;
2659       if( pBt ){
2660         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2661       }
2662     }
2663 
2664     /* Do the commit only if all databases successfully complete phase 1.
2665     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2666     ** IO error while deleting or truncating a journal file. It is unlikely,
2667     ** but could happen. In this case abandon processing and return the error.
2668     */
2669     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2670       Btree *pBt = db->aDb[i].pBt;
2671       if( pBt ){
2672         rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2673       }
2674     }
2675     if( rc==SQLITE_OK ){
2676       sqlite3VtabCommit(db);
2677     }
2678   }
2679 
2680   /* The complex case - There is a multi-file write-transaction active.
2681   ** This requires a master journal file to ensure the transaction is
2682   ** committed atomically.
2683   */
2684 #ifndef SQLITE_OMIT_DISKIO
2685   else{
2686     sqlite3_vfs *pVfs = db->pVfs;
2687     char *zMaster = 0;   /* File-name for the master journal */
2688     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2689     sqlite3_file *pMaster = 0;
2690     i64 offset = 0;
2691     int res;
2692     int retryCount = 0;
2693     int nMainFile;
2694 
2695     /* Select a master journal file name */
2696     nMainFile = sqlite3Strlen30(zMainFile);
2697     zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz%c%c", zMainFile, 0, 0);
2698     if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2699     do {
2700       u32 iRandom;
2701       if( retryCount ){
2702         if( retryCount>100 ){
2703           sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2704           sqlite3OsDelete(pVfs, zMaster, 0);
2705           break;
2706         }else if( retryCount==1 ){
2707           sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2708         }
2709       }
2710       retryCount++;
2711       sqlite3_randomness(sizeof(iRandom), &iRandom);
2712       sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2713                                (iRandom>>8)&0xffffff, iRandom&0xff);
2714       /* The antipenultimate character of the master journal name must
2715       ** be "9" to avoid name collisions when using 8+3 filenames. */
2716       assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2717       sqlite3FileSuffix3(zMainFile, zMaster);
2718       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2719     }while( rc==SQLITE_OK && res );
2720     if( rc==SQLITE_OK ){
2721       /* Open the master journal. */
2722       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2723           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2724           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2725       );
2726     }
2727     if( rc!=SQLITE_OK ){
2728       sqlite3DbFree(db, zMaster);
2729       return rc;
2730     }
2731 
2732     /* Write the name of each database file in the transaction into the new
2733     ** master journal file. If an error occurs at this point close
2734     ** and delete the master journal file. All the individual journal files
2735     ** still have 'null' as the master journal pointer, so they will roll
2736     ** back independently if a failure occurs.
2737     */
2738     for(i=0; i<db->nDb; i++){
2739       Btree *pBt = db->aDb[i].pBt;
2740       if( sqlite3BtreeIsInTrans(pBt) ){
2741         char const *zFile = sqlite3BtreeGetJournalname(pBt);
2742         if( zFile==0 ){
2743           continue;  /* Ignore TEMP and :memory: databases */
2744         }
2745         assert( zFile[0]!=0 );
2746         rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2747         offset += sqlite3Strlen30(zFile)+1;
2748         if( rc!=SQLITE_OK ){
2749           sqlite3OsCloseFree(pMaster);
2750           sqlite3OsDelete(pVfs, zMaster, 0);
2751           sqlite3DbFree(db, zMaster);
2752           return rc;
2753         }
2754       }
2755     }
2756 
2757     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2758     ** flag is set this is not required.
2759     */
2760     if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2761      && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2762     ){
2763       sqlite3OsCloseFree(pMaster);
2764       sqlite3OsDelete(pVfs, zMaster, 0);
2765       sqlite3DbFree(db, zMaster);
2766       return rc;
2767     }
2768 
2769     /* Sync all the db files involved in the transaction. The same call
2770     ** sets the master journal pointer in each individual journal. If
2771     ** an error occurs here, do not delete the master journal file.
2772     **
2773     ** If the error occurs during the first call to
2774     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2775     ** master journal file will be orphaned. But we cannot delete it,
2776     ** in case the master journal file name was written into the journal
2777     ** file before the failure occurred.
2778     */
2779     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2780       Btree *pBt = db->aDb[i].pBt;
2781       if( pBt ){
2782         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2783       }
2784     }
2785     sqlite3OsCloseFree(pMaster);
2786     assert( rc!=SQLITE_BUSY );
2787     if( rc!=SQLITE_OK ){
2788       sqlite3DbFree(db, zMaster);
2789       return rc;
2790     }
2791 
2792     /* Delete the master journal file. This commits the transaction. After
2793     ** doing this the directory is synced again before any individual
2794     ** transaction files are deleted.
2795     */
2796     rc = sqlite3OsDelete(pVfs, zMaster, 1);
2797     sqlite3DbFree(db, zMaster);
2798     zMaster = 0;
2799     if( rc ){
2800       return rc;
2801     }
2802 
2803     /* All files and directories have already been synced, so the following
2804     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2805     ** deleting or truncating journals. If something goes wrong while
2806     ** this is happening we don't really care. The integrity of the
2807     ** transaction is already guaranteed, but some stray 'cold' journals
2808     ** may be lying around. Returning an error code won't help matters.
2809     */
2810     disable_simulated_io_errors();
2811     sqlite3BeginBenignMalloc();
2812     for(i=0; i<db->nDb; i++){
2813       Btree *pBt = db->aDb[i].pBt;
2814       if( pBt ){
2815         sqlite3BtreeCommitPhaseTwo(pBt, 1);
2816       }
2817     }
2818     sqlite3EndBenignMalloc();
2819     enable_simulated_io_errors();
2820 
2821     sqlite3VtabCommit(db);
2822   }
2823 #endif
2824 
2825   return rc;
2826 }
2827 
2828 /*
2829 ** This routine checks that the sqlite3.nVdbeActive count variable
2830 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2831 ** currently active. An assertion fails if the two counts do not match.
2832 ** This is an internal self-check only - it is not an essential processing
2833 ** step.
2834 **
2835 ** This is a no-op if NDEBUG is defined.
2836 */
2837 #ifndef NDEBUG
checkActiveVdbeCnt(sqlite3 * db)2838 static void checkActiveVdbeCnt(sqlite3 *db){
2839   Vdbe *p;
2840   int cnt = 0;
2841   int nWrite = 0;
2842   int nRead = 0;
2843   p = db->pVdbe;
2844   while( p ){
2845     if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2846       cnt++;
2847       if( p->readOnly==0 ) nWrite++;
2848       if( p->bIsReader ) nRead++;
2849     }
2850     p = p->pNext;
2851   }
2852   assert( cnt==db->nVdbeActive );
2853   assert( nWrite==db->nVdbeWrite );
2854   assert( nRead==db->nVdbeRead );
2855 }
2856 #else
2857 #define checkActiveVdbeCnt(x)
2858 #endif
2859 
2860 /*
2861 ** If the Vdbe passed as the first argument opened a statement-transaction,
2862 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2863 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2864 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2865 ** statement transaction is committed.
2866 **
2867 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2868 ** Otherwise SQLITE_OK.
2869 */
vdbeCloseStatement(Vdbe * p,int eOp)2870 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2871   sqlite3 *const db = p->db;
2872   int rc = SQLITE_OK;
2873   int i;
2874   const int iSavepoint = p->iStatement-1;
2875 
2876   assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2877   assert( db->nStatement>0 );
2878   assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2879 
2880   for(i=0; i<db->nDb; i++){
2881     int rc2 = SQLITE_OK;
2882     Btree *pBt = db->aDb[i].pBt;
2883     if( pBt ){
2884       if( eOp==SAVEPOINT_ROLLBACK ){
2885         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2886       }
2887       if( rc2==SQLITE_OK ){
2888         rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2889       }
2890       if( rc==SQLITE_OK ){
2891         rc = rc2;
2892       }
2893     }
2894   }
2895   db->nStatement--;
2896   p->iStatement = 0;
2897 
2898   if( rc==SQLITE_OK ){
2899     if( eOp==SAVEPOINT_ROLLBACK ){
2900       rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2901     }
2902     if( rc==SQLITE_OK ){
2903       rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2904     }
2905   }
2906 
2907   /* If the statement transaction is being rolled back, also restore the
2908   ** database handles deferred constraint counter to the value it had when
2909   ** the statement transaction was opened.  */
2910   if( eOp==SAVEPOINT_ROLLBACK ){
2911     db->nDeferredCons = p->nStmtDefCons;
2912     db->nDeferredImmCons = p->nStmtDefImmCons;
2913   }
2914   return rc;
2915 }
sqlite3VdbeCloseStatement(Vdbe * p,int eOp)2916 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2917   if( p->db->nStatement && p->iStatement ){
2918     return vdbeCloseStatement(p, eOp);
2919   }
2920   return SQLITE_OK;
2921 }
2922 
2923 
2924 /*
2925 ** This function is called when a transaction opened by the database
2926 ** handle associated with the VM passed as an argument is about to be
2927 ** committed. If there are outstanding deferred foreign key constraint
2928 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2929 **
2930 ** If there are outstanding FK violations and this function returns
2931 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2932 ** and write an error message to it. Then return SQLITE_ERROR.
2933 */
2934 #ifndef SQLITE_OMIT_FOREIGN_KEY
sqlite3VdbeCheckFk(Vdbe * p,int deferred)2935 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2936   sqlite3 *db = p->db;
2937   if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2938    || (!deferred && p->nFkConstraint>0)
2939   ){
2940     p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2941     p->errorAction = OE_Abort;
2942     sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2943     return SQLITE_ERROR;
2944   }
2945   return SQLITE_OK;
2946 }
2947 #endif
2948 
2949 /*
2950 ** This routine is called the when a VDBE tries to halt.  If the VDBE
2951 ** has made changes and is in autocommit mode, then commit those
2952 ** changes.  If a rollback is needed, then do the rollback.
2953 **
2954 ** This routine is the only way to move the state of a VM from
2955 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
2956 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2957 **
2958 ** Return an error code.  If the commit could not complete because of
2959 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
2960 ** means the close did not happen and needs to be repeated.
2961 */
sqlite3VdbeHalt(Vdbe * p)2962 int sqlite3VdbeHalt(Vdbe *p){
2963   int rc;                         /* Used to store transient return codes */
2964   sqlite3 *db = p->db;
2965 
2966   /* This function contains the logic that determines if a statement or
2967   ** transaction will be committed or rolled back as a result of the
2968   ** execution of this virtual machine.
2969   **
2970   ** If any of the following errors occur:
2971   **
2972   **     SQLITE_NOMEM
2973   **     SQLITE_IOERR
2974   **     SQLITE_FULL
2975   **     SQLITE_INTERRUPT
2976   **
2977   ** Then the internal cache might have been left in an inconsistent
2978   ** state.  We need to rollback the statement transaction, if there is
2979   ** one, or the complete transaction if there is no statement transaction.
2980   */
2981 
2982   if( p->magic!=VDBE_MAGIC_RUN ){
2983     return SQLITE_OK;
2984   }
2985   if( db->mallocFailed ){
2986     p->rc = SQLITE_NOMEM_BKPT;
2987   }
2988   closeAllCursors(p);
2989   checkActiveVdbeCnt(db);
2990 
2991   /* No commit or rollback needed if the program never started or if the
2992   ** SQL statement does not read or write a database file.  */
2993   if( p->pc>=0 && p->bIsReader ){
2994     int mrc;   /* Primary error code from p->rc */
2995     int eStatementOp = 0;
2996     int isSpecialError;            /* Set to true if a 'special' error */
2997 
2998     /* Lock all btrees used by the statement */
2999     sqlite3VdbeEnter(p);
3000 
3001     /* Check for one of the special errors */
3002     mrc = p->rc & 0xff;
3003     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3004                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3005     if( isSpecialError ){
3006       /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3007       ** no rollback is necessary. Otherwise, at least a savepoint
3008       ** transaction must be rolled back to restore the database to a
3009       ** consistent state.
3010       **
3011       ** Even if the statement is read-only, it is important to perform
3012       ** a statement or transaction rollback operation. If the error
3013       ** occurred while writing to the journal, sub-journal or database
3014       ** file as part of an effort to free up cache space (see function
3015       ** pagerStress() in pager.c), the rollback is required to restore
3016       ** the pager to a consistent state.
3017       */
3018       if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3019         if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3020           eStatementOp = SAVEPOINT_ROLLBACK;
3021         }else{
3022           /* We are forced to roll back the active transaction. Before doing
3023           ** so, abort any other statements this handle currently has active.
3024           */
3025           sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3026           sqlite3CloseSavepoints(db);
3027           db->autoCommit = 1;
3028           p->nChange = 0;
3029         }
3030       }
3031     }
3032 
3033     /* Check for immediate foreign key violations. */
3034     if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3035       sqlite3VdbeCheckFk(p, 0);
3036     }
3037 
3038     /* If the auto-commit flag is set and this is the only active writer
3039     ** VM, then we do either a commit or rollback of the current transaction.
3040     **
3041     ** Note: This block also runs if one of the special errors handled
3042     ** above has occurred.
3043     */
3044     if( !sqlite3VtabInSync(db)
3045      && db->autoCommit
3046      && db->nVdbeWrite==(p->readOnly==0)
3047     ){
3048       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3049         rc = sqlite3VdbeCheckFk(p, 1);
3050         if( rc!=SQLITE_OK ){
3051           if( NEVER(p->readOnly) ){
3052             sqlite3VdbeLeave(p);
3053             return SQLITE_ERROR;
3054           }
3055           rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3056         }else{
3057           /* The auto-commit flag is true, the vdbe program was successful
3058           ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3059           ** key constraints to hold up the transaction. This means a commit
3060           ** is required. */
3061           rc = vdbeCommit(db, p);
3062         }
3063         if( rc==SQLITE_BUSY && p->readOnly ){
3064           sqlite3VdbeLeave(p);
3065           return SQLITE_BUSY;
3066         }else if( rc!=SQLITE_OK ){
3067           p->rc = rc;
3068           sqlite3RollbackAll(db, SQLITE_OK);
3069           p->nChange = 0;
3070         }else{
3071           db->nDeferredCons = 0;
3072           db->nDeferredImmCons = 0;
3073           db->flags &= ~(u64)SQLITE_DeferFKs;
3074           sqlite3CommitInternalChanges(db);
3075         }
3076       }else{
3077         sqlite3RollbackAll(db, SQLITE_OK);
3078         p->nChange = 0;
3079       }
3080       db->nStatement = 0;
3081     }else if( eStatementOp==0 ){
3082       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3083         eStatementOp = SAVEPOINT_RELEASE;
3084       }else if( p->errorAction==OE_Abort ){
3085         eStatementOp = SAVEPOINT_ROLLBACK;
3086       }else{
3087         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3088         sqlite3CloseSavepoints(db);
3089         db->autoCommit = 1;
3090         p->nChange = 0;
3091       }
3092     }
3093 
3094     /* If eStatementOp is non-zero, then a statement transaction needs to
3095     ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3096     ** do so. If this operation returns an error, and the current statement
3097     ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3098     ** current statement error code.
3099     */
3100     if( eStatementOp ){
3101       rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3102       if( rc ){
3103         if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3104           p->rc = rc;
3105           sqlite3DbFree(db, p->zErrMsg);
3106           p->zErrMsg = 0;
3107         }
3108         sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3109         sqlite3CloseSavepoints(db);
3110         db->autoCommit = 1;
3111         p->nChange = 0;
3112       }
3113     }
3114 
3115     /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3116     ** has been rolled back, update the database connection change-counter.
3117     */
3118     if( p->changeCntOn ){
3119       if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3120         sqlite3VdbeSetChanges(db, p->nChange);
3121       }else{
3122         sqlite3VdbeSetChanges(db, 0);
3123       }
3124       p->nChange = 0;
3125     }
3126 
3127     /* Release the locks */
3128     sqlite3VdbeLeave(p);
3129   }
3130 
3131   /* We have successfully halted and closed the VM.  Record this fact. */
3132   if( p->pc>=0 ){
3133     db->nVdbeActive--;
3134     if( !p->readOnly ) db->nVdbeWrite--;
3135     if( p->bIsReader ) db->nVdbeRead--;
3136     assert( db->nVdbeActive>=db->nVdbeRead );
3137     assert( db->nVdbeRead>=db->nVdbeWrite );
3138     assert( db->nVdbeWrite>=0 );
3139   }
3140   p->magic = VDBE_MAGIC_HALT;
3141   checkActiveVdbeCnt(db);
3142   if( db->mallocFailed ){
3143     p->rc = SQLITE_NOMEM_BKPT;
3144   }
3145 
3146   /* If the auto-commit flag is set to true, then any locks that were held
3147   ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3148   ** to invoke any required unlock-notify callbacks.
3149   */
3150   if( db->autoCommit ){
3151     sqlite3ConnectionUnlocked(db);
3152   }
3153 
3154   assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3155   return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3156 }
3157 
3158 
3159 /*
3160 ** Each VDBE holds the result of the most recent sqlite3_step() call
3161 ** in p->rc.  This routine sets that result back to SQLITE_OK.
3162 */
sqlite3VdbeResetStepResult(Vdbe * p)3163 void sqlite3VdbeResetStepResult(Vdbe *p){
3164   p->rc = SQLITE_OK;
3165 }
3166 
3167 /*
3168 ** Copy the error code and error message belonging to the VDBE passed
3169 ** as the first argument to its database handle (so that they will be
3170 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3171 **
3172 ** This function does not clear the VDBE error code or message, just
3173 ** copies them to the database handle.
3174 */
sqlite3VdbeTransferError(Vdbe * p)3175 int sqlite3VdbeTransferError(Vdbe *p){
3176   sqlite3 *db = p->db;
3177   int rc = p->rc;
3178   if( p->zErrMsg ){
3179     db->bBenignMalloc++;
3180     sqlite3BeginBenignMalloc();
3181     if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3182     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3183     sqlite3EndBenignMalloc();
3184     db->bBenignMalloc--;
3185   }else if( db->pErr ){
3186     sqlite3ValueSetNull(db->pErr);
3187   }
3188   db->errCode = rc;
3189   return rc;
3190 }
3191 
3192 #ifdef SQLITE_ENABLE_SQLLOG
3193 /*
3194 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3195 ** invoke it.
3196 */
vdbeInvokeSqllog(Vdbe * v)3197 static void vdbeInvokeSqllog(Vdbe *v){
3198   if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3199     char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3200     assert( v->db->init.busy==0 );
3201     if( zExpanded ){
3202       sqlite3GlobalConfig.xSqllog(
3203           sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3204       );
3205       sqlite3DbFree(v->db, zExpanded);
3206     }
3207   }
3208 }
3209 #else
3210 # define vdbeInvokeSqllog(x)
3211 #endif
3212 
3213 /*
3214 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3215 ** Write any error messages into *pzErrMsg.  Return the result code.
3216 **
3217 ** After this routine is run, the VDBE should be ready to be executed
3218 ** again.
3219 **
3220 ** To look at it another way, this routine resets the state of the
3221 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3222 ** VDBE_MAGIC_INIT.
3223 */
sqlite3VdbeReset(Vdbe * p)3224 int sqlite3VdbeReset(Vdbe *p){
3225 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3226   int i;
3227 #endif
3228 
3229   sqlite3 *db;
3230   db = p->db;
3231 
3232   /* If the VM did not run to completion or if it encountered an
3233   ** error, then it might not have been halted properly.  So halt
3234   ** it now.
3235   */
3236   sqlite3VdbeHalt(p);
3237 
3238   /* If the VDBE has been run even partially, then transfer the error code
3239   ** and error message from the VDBE into the main database structure.  But
3240   ** if the VDBE has just been set to run but has not actually executed any
3241   ** instructions yet, leave the main database error information unchanged.
3242   */
3243   if( p->pc>=0 ){
3244     vdbeInvokeSqllog(p);
3245     sqlite3VdbeTransferError(p);
3246     if( p->runOnlyOnce ) p->expired = 1;
3247   }else if( p->rc && p->expired ){
3248     /* The expired flag was set on the VDBE before the first call
3249     ** to sqlite3_step(). For consistency (since sqlite3_step() was
3250     ** called), set the database error in this case as well.
3251     */
3252     sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3253   }
3254 
3255   /* Reset register contents and reclaim error message memory.
3256   */
3257 #ifdef SQLITE_DEBUG
3258   /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3259   ** Vdbe.aMem[] arrays have already been cleaned up.  */
3260   if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3261   if( p->aMem ){
3262     for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3263   }
3264 #endif
3265   sqlite3DbFree(db, p->zErrMsg);
3266   p->zErrMsg = 0;
3267   p->pResultSet = 0;
3268 #ifdef SQLITE_DEBUG
3269   p->nWrite = 0;
3270 #endif
3271 
3272   /* Save profiling information from this VDBE run.
3273   */
3274 #ifdef VDBE_PROFILE
3275   {
3276     FILE *out = fopen("vdbe_profile.out", "a");
3277     if( out ){
3278       fprintf(out, "---- ");
3279       for(i=0; i<p->nOp; i++){
3280         fprintf(out, "%02x", p->aOp[i].opcode);
3281       }
3282       fprintf(out, "\n");
3283       if( p->zSql ){
3284         char c, pc = 0;
3285         fprintf(out, "-- ");
3286         for(i=0; (c = p->zSql[i])!=0; i++){
3287           if( pc=='\n' ) fprintf(out, "-- ");
3288           putc(c, out);
3289           pc = c;
3290         }
3291         if( pc!='\n' ) fprintf(out, "\n");
3292       }
3293       for(i=0; i<p->nOp; i++){
3294         char zHdr[100];
3295         sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3296            p->aOp[i].cnt,
3297            p->aOp[i].cycles,
3298            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3299         );
3300         fprintf(out, "%s", zHdr);
3301         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3302       }
3303       fclose(out);
3304     }
3305   }
3306 #endif
3307   p->magic = VDBE_MAGIC_RESET;
3308   return p->rc & db->errMask;
3309 }
3310 
3311 /*
3312 ** Clean up and delete a VDBE after execution.  Return an integer which is
3313 ** the result code.  Write any error message text into *pzErrMsg.
3314 */
sqlite3VdbeFinalize(Vdbe * p)3315 int sqlite3VdbeFinalize(Vdbe *p){
3316   int rc = SQLITE_OK;
3317   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3318     rc = sqlite3VdbeReset(p);
3319     assert( (rc & p->db->errMask)==rc );
3320   }
3321   sqlite3VdbeDelete(p);
3322   return rc;
3323 }
3324 
3325 /*
3326 ** If parameter iOp is less than zero, then invoke the destructor for
3327 ** all auxiliary data pointers currently cached by the VM passed as
3328 ** the first argument.
3329 **
3330 ** Or, if iOp is greater than or equal to zero, then the destructor is
3331 ** only invoked for those auxiliary data pointers created by the user
3332 ** function invoked by the OP_Function opcode at instruction iOp of
3333 ** VM pVdbe, and only then if:
3334 **
3335 **    * the associated function parameter is the 32nd or later (counting
3336 **      from left to right), or
3337 **
3338 **    * the corresponding bit in argument mask is clear (where the first
3339 **      function parameter corresponds to bit 0 etc.).
3340 */
sqlite3VdbeDeleteAuxData(sqlite3 * db,AuxData ** pp,int iOp,int mask)3341 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3342   while( *pp ){
3343     AuxData *pAux = *pp;
3344     if( (iOp<0)
3345      || (pAux->iAuxOp==iOp
3346           && pAux->iAuxArg>=0
3347           && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3348     ){
3349       testcase( pAux->iAuxArg==31 );
3350       if( pAux->xDeleteAux ){
3351         pAux->xDeleteAux(pAux->pAux);
3352       }
3353       *pp = pAux->pNextAux;
3354       sqlite3DbFree(db, pAux);
3355     }else{
3356       pp= &pAux->pNextAux;
3357     }
3358   }
3359 }
3360 
3361 /*
3362 ** Free all memory associated with the Vdbe passed as the second argument,
3363 ** except for object itself, which is preserved.
3364 **
3365 ** The difference between this function and sqlite3VdbeDelete() is that
3366 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3367 ** the database connection and frees the object itself.
3368 */
sqlite3VdbeClearObject(sqlite3 * db,Vdbe * p)3369 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3370   SubProgram *pSub, *pNext;
3371   assert( p->db==0 || p->db==db );
3372   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3373   for(pSub=p->pProgram; pSub; pSub=pNext){
3374     pNext = pSub->pNext;
3375     vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3376     sqlite3DbFree(db, pSub);
3377   }
3378   if( p->magic!=VDBE_MAGIC_INIT ){
3379     releaseMemArray(p->aVar, p->nVar);
3380     sqlite3DbFree(db, p->pVList);
3381     sqlite3DbFree(db, p->pFree);
3382   }
3383   vdbeFreeOpArray(db, p->aOp, p->nOp);
3384   sqlite3DbFree(db, p->aColName);
3385   sqlite3DbFree(db, p->zSql);
3386 #ifdef SQLITE_ENABLE_NORMALIZE
3387   sqlite3DbFree(db, p->zNormSql);
3388   {
3389     DblquoteStr *pThis, *pNext;
3390     for(pThis=p->pDblStr; pThis; pThis=pNext){
3391       pNext = pThis->pNextStr;
3392       sqlite3DbFree(db, pThis);
3393     }
3394   }
3395 #endif
3396 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3397   {
3398     int i;
3399     for(i=0; i<p->nScan; i++){
3400       sqlite3DbFree(db, p->aScan[i].zName);
3401     }
3402     sqlite3DbFree(db, p->aScan);
3403   }
3404 #endif
3405 }
3406 
3407 /*
3408 ** Delete an entire VDBE.
3409 */
sqlite3VdbeDelete(Vdbe * p)3410 void sqlite3VdbeDelete(Vdbe *p){
3411   sqlite3 *db;
3412 
3413   assert( p!=0 );
3414   db = p->db;
3415   assert( sqlite3_mutex_held(db->mutex) );
3416   sqlite3VdbeClearObject(db, p);
3417   if( p->pPrev ){
3418     p->pPrev->pNext = p->pNext;
3419   }else{
3420     assert( db->pVdbe==p );
3421     db->pVdbe = p->pNext;
3422   }
3423   if( p->pNext ){
3424     p->pNext->pPrev = p->pPrev;
3425   }
3426   p->magic = VDBE_MAGIC_DEAD;
3427   p->db = 0;
3428   sqlite3DbFreeNN(db, p);
3429 }
3430 
3431 /*
3432 ** The cursor "p" has a pending seek operation that has not yet been
3433 ** carried out.  Seek the cursor now.  If an error occurs, return
3434 ** the appropriate error code.
3435 */
sqlite3VdbeFinishMoveto(VdbeCursor * p)3436 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3437   int res, rc;
3438 #ifdef SQLITE_TEST
3439   extern int sqlite3_search_count;
3440 #endif
3441   assert( p->deferredMoveto );
3442   assert( p->isTable );
3443   assert( p->eCurType==CURTYPE_BTREE );
3444   rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3445   if( rc ) return rc;
3446   if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3447 #ifdef SQLITE_TEST
3448   sqlite3_search_count++;
3449 #endif
3450   p->deferredMoveto = 0;
3451   p->cacheStatus = CACHE_STALE;
3452   return SQLITE_OK;
3453 }
3454 
3455 /*
3456 ** Something has moved cursor "p" out of place.  Maybe the row it was
3457 ** pointed to was deleted out from under it.  Or maybe the btree was
3458 ** rebalanced.  Whatever the cause, try to restore "p" to the place it
3459 ** is supposed to be pointing.  If the row was deleted out from under the
3460 ** cursor, set the cursor to point to a NULL row.
3461 */
handleMovedCursor(VdbeCursor * p)3462 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3463   int isDifferentRow, rc;
3464   assert( p->eCurType==CURTYPE_BTREE );
3465   assert( p->uc.pCursor!=0 );
3466   assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3467   rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3468   p->cacheStatus = CACHE_STALE;
3469   if( isDifferentRow ) p->nullRow = 1;
3470   return rc;
3471 }
3472 
3473 /*
3474 ** Check to ensure that the cursor is valid.  Restore the cursor
3475 ** if need be.  Return any I/O error from the restore operation.
3476 */
sqlite3VdbeCursorRestore(VdbeCursor * p)3477 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3478   assert( p->eCurType==CURTYPE_BTREE );
3479   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3480     return handleMovedCursor(p);
3481   }
3482   return SQLITE_OK;
3483 }
3484 
3485 /*
3486 ** Make sure the cursor p is ready to read or write the row to which it
3487 ** was last positioned.  Return an error code if an OOM fault or I/O error
3488 ** prevents us from positioning the cursor to its correct position.
3489 **
3490 ** If a MoveTo operation is pending on the given cursor, then do that
3491 ** MoveTo now.  If no move is pending, check to see if the row has been
3492 ** deleted out from under the cursor and if it has, mark the row as
3493 ** a NULL row.
3494 **
3495 ** If the cursor is already pointing to the correct row and that row has
3496 ** not been deleted out from under the cursor, then this routine is a no-op.
3497 */
sqlite3VdbeCursorMoveto(VdbeCursor ** pp,int * piCol)3498 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3499   VdbeCursor *p = *pp;
3500   assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3501   if( p->deferredMoveto ){
3502     int iMap;
3503     if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3504       *pp = p->pAltCursor;
3505       *piCol = iMap - 1;
3506       return SQLITE_OK;
3507     }
3508     return sqlite3VdbeFinishMoveto(p);
3509   }
3510   if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3511     return handleMovedCursor(p);
3512   }
3513   return SQLITE_OK;
3514 }
3515 
3516 /*
3517 ** The following functions:
3518 **
3519 ** sqlite3VdbeSerialType()
3520 ** sqlite3VdbeSerialTypeLen()
3521 ** sqlite3VdbeSerialLen()
3522 ** sqlite3VdbeSerialPut()
3523 ** sqlite3VdbeSerialGet()
3524 **
3525 ** encapsulate the code that serializes values for storage in SQLite
3526 ** data and index records. Each serialized value consists of a
3527 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3528 ** integer, stored as a varint.
3529 **
3530 ** In an SQLite index record, the serial type is stored directly before
3531 ** the blob of data that it corresponds to. In a table record, all serial
3532 ** types are stored at the start of the record, and the blobs of data at
3533 ** the end. Hence these functions allow the caller to handle the
3534 ** serial-type and data blob separately.
3535 **
3536 ** The following table describes the various storage classes for data:
3537 **
3538 **   serial type        bytes of data      type
3539 **   --------------     ---------------    ---------------
3540 **      0                     0            NULL
3541 **      1                     1            signed integer
3542 **      2                     2            signed integer
3543 **      3                     3            signed integer
3544 **      4                     4            signed integer
3545 **      5                     6            signed integer
3546 **      6                     8            signed integer
3547 **      7                     8            IEEE float
3548 **      8                     0            Integer constant 0
3549 **      9                     0            Integer constant 1
3550 **     10,11                               reserved for expansion
3551 **    N>=12 and even       (N-12)/2        BLOB
3552 **    N>=13 and odd        (N-13)/2        text
3553 **
3554 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
3555 ** of SQLite will not understand those serial types.
3556 */
3557 
3558 #if 0 /* Inlined into the OP_MakeRecord opcode */
3559 /*
3560 ** Return the serial-type for the value stored in pMem.
3561 **
3562 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3563 **
3564 ** 2019-07-11:  The primary user of this subroutine was the OP_MakeRecord
3565 ** opcode in the byte-code engine.  But by moving this routine in-line, we
3566 ** can omit some redundant tests and make that opcode a lot faster.  So
3567 ** this routine is now only used by the STAT3 logic and STAT3 support has
3568 ** ended.  The code is kept here for historical reference only.
3569 */
3570 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3571   int flags = pMem->flags;
3572   u32 n;
3573 
3574   assert( pLen!=0 );
3575   if( flags&MEM_Null ){
3576     *pLen = 0;
3577     return 0;
3578   }
3579   if( flags&(MEM_Int|MEM_IntReal) ){
3580     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3581 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3582     i64 i = pMem->u.i;
3583     u64 u;
3584     testcase( flags & MEM_Int );
3585     testcase( flags & MEM_IntReal );
3586     if( i<0 ){
3587       u = ~i;
3588     }else{
3589       u = i;
3590     }
3591     if( u<=127 ){
3592       if( (i&1)==i && file_format>=4 ){
3593         *pLen = 0;
3594         return 8+(u32)u;
3595       }else{
3596         *pLen = 1;
3597         return 1;
3598       }
3599     }
3600     if( u<=32767 ){ *pLen = 2; return 2; }
3601     if( u<=8388607 ){ *pLen = 3; return 3; }
3602     if( u<=2147483647 ){ *pLen = 4; return 4; }
3603     if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3604     *pLen = 8;
3605     if( flags&MEM_IntReal ){
3606       /* If the value is IntReal and is going to take up 8 bytes to store
3607       ** as an integer, then we might as well make it an 8-byte floating
3608       ** point value */
3609       pMem->u.r = (double)pMem->u.i;
3610       pMem->flags &= ~MEM_IntReal;
3611       pMem->flags |= MEM_Real;
3612       return 7;
3613     }
3614     return 6;
3615   }
3616   if( flags&MEM_Real ){
3617     *pLen = 8;
3618     return 7;
3619   }
3620   assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3621   assert( pMem->n>=0 );
3622   n = (u32)pMem->n;
3623   if( flags & MEM_Zero ){
3624     n += pMem->u.nZero;
3625   }
3626   *pLen = n;
3627   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3628 }
3629 #endif /* inlined into OP_MakeRecord */
3630 
3631 /*
3632 ** The sizes for serial types less than 128
3633 */
3634 static const u8 sqlite3SmallTypeSizes[] = {
3635         /*  0   1   2   3   4   5   6   7   8   9 */
3636 /*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
3637 /*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
3638 /*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
3639 /*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
3640 /*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3641 /*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3642 /*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3643 /*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3644 /*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3645 /*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3646 /* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3647 /* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3648 /* 120 */  54, 54, 55, 55, 56, 56, 57, 57
3649 };
3650 
3651 /*
3652 ** Return the length of the data corresponding to the supplied serial-type.
3653 */
sqlite3VdbeSerialTypeLen(u32 serial_type)3654 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3655   if( serial_type>=128 ){
3656     return (serial_type-12)/2;
3657   }else{
3658     assert( serial_type<12
3659             || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3660     return sqlite3SmallTypeSizes[serial_type];
3661   }
3662 }
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type)3663 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3664   assert( serial_type<128 );
3665   return sqlite3SmallTypeSizes[serial_type];
3666 }
3667 
3668 /*
3669 ** If we are on an architecture with mixed-endian floating
3670 ** points (ex: ARM7) then swap the lower 4 bytes with the
3671 ** upper 4 bytes.  Return the result.
3672 **
3673 ** For most architectures, this is a no-op.
3674 **
3675 ** (later):  It is reported to me that the mixed-endian problem
3676 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
3677 ** that early versions of GCC stored the two words of a 64-bit
3678 ** float in the wrong order.  And that error has been propagated
3679 ** ever since.  The blame is not necessarily with GCC, though.
3680 ** GCC might have just copying the problem from a prior compiler.
3681 ** I am also told that newer versions of GCC that follow a different
3682 ** ABI get the byte order right.
3683 **
3684 ** Developers using SQLite on an ARM7 should compile and run their
3685 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
3686 ** enabled, some asserts below will ensure that the byte order of
3687 ** floating point values is correct.
3688 **
3689 ** (2007-08-30)  Frank van Vugt has studied this problem closely
3690 ** and has send his findings to the SQLite developers.  Frank
3691 ** writes that some Linux kernels offer floating point hardware
3692 ** emulation that uses only 32-bit mantissas instead of a full
3693 ** 48-bits as required by the IEEE standard.  (This is the
3694 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
3695 ** byte swapping becomes very complicated.  To avoid problems,
3696 ** the necessary byte swapping is carried out using a 64-bit integer
3697 ** rather than a 64-bit float.  Frank assures us that the code here
3698 ** works for him.  We, the developers, have no way to independently
3699 ** verify this, but Frank seems to know what he is talking about
3700 ** so we trust him.
3701 */
3702 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
floatSwap(u64 in)3703 static u64 floatSwap(u64 in){
3704   union {
3705     u64 r;
3706     u32 i[2];
3707   } u;
3708   u32 t;
3709 
3710   u.r = in;
3711   t = u.i[0];
3712   u.i[0] = u.i[1];
3713   u.i[1] = t;
3714   return u.r;
3715 }
3716 # define swapMixedEndianFloat(X)  X = floatSwap(X)
3717 #else
3718 # define swapMixedEndianFloat(X)
3719 #endif
3720 
3721 /*
3722 ** Write the serialized data blob for the value stored in pMem into
3723 ** buf. It is assumed that the caller has allocated sufficient space.
3724 ** Return the number of bytes written.
3725 **
3726 ** nBuf is the amount of space left in buf[].  The caller is responsible
3727 ** for allocating enough space to buf[] to hold the entire field, exclusive
3728 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3729 **
3730 ** Return the number of bytes actually written into buf[].  The number
3731 ** of bytes in the zero-filled tail is included in the return value only
3732 ** if those bytes were zeroed in buf[].
3733 */
sqlite3VdbeSerialPut(u8 * buf,Mem * pMem,u32 serial_type)3734 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3735   u32 len;
3736 
3737   /* Integer and Real */
3738   if( serial_type<=7 && serial_type>0 ){
3739     u64 v;
3740     u32 i;
3741     if( serial_type==7 ){
3742       assert( sizeof(v)==sizeof(pMem->u.r) );
3743       memcpy(&v, &pMem->u.r, sizeof(v));
3744       swapMixedEndianFloat(v);
3745     }else{
3746       v = pMem->u.i;
3747     }
3748     len = i = sqlite3SmallTypeSizes[serial_type];
3749     assert( i>0 );
3750     do{
3751       buf[--i] = (u8)(v&0xFF);
3752       v >>= 8;
3753     }while( i );
3754     return len;
3755   }
3756 
3757   /* String or blob */
3758   if( serial_type>=12 ){
3759     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3760              == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3761     len = pMem->n;
3762     if( len>0 ) memcpy(buf, pMem->z, len);
3763     return len;
3764   }
3765 
3766   /* NULL or constants 0 or 1 */
3767   return 0;
3768 }
3769 
3770 /* Input "x" is a sequence of unsigned characters that represent a
3771 ** big-endian integer.  Return the equivalent native integer
3772 */
3773 #define ONE_BYTE_INT(x)    ((i8)(x)[0])
3774 #define TWO_BYTE_INT(x)    (256*(i8)((x)[0])|(x)[1])
3775 #define THREE_BYTE_INT(x)  (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3776 #define FOUR_BYTE_UINT(x)  (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3777 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3778 
3779 /*
3780 ** Deserialize the data blob pointed to by buf as serial type serial_type
3781 ** and store the result in pMem.  Return the number of bytes read.
3782 **
3783 ** This function is implemented as two separate routines for performance.
3784 ** The few cases that require local variables are broken out into a separate
3785 ** routine so that in most cases the overhead of moving the stack pointer
3786 ** is avoided.
3787 */
serialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3788 static u32 serialGet(
3789   const unsigned char *buf,     /* Buffer to deserialize from */
3790   u32 serial_type,              /* Serial type to deserialize */
3791   Mem *pMem                     /* Memory cell to write value into */
3792 ){
3793   u64 x = FOUR_BYTE_UINT(buf);
3794   u32 y = FOUR_BYTE_UINT(buf+4);
3795   x = (x<<32) + y;
3796   if( serial_type==6 ){
3797     /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3798     ** twos-complement integer. */
3799     pMem->u.i = *(i64*)&x;
3800     pMem->flags = MEM_Int;
3801     testcase( pMem->u.i<0 );
3802   }else{
3803     /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3804     ** floating point number. */
3805 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3806     /* Verify that integers and floating point values use the same
3807     ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3808     ** defined that 64-bit floating point values really are mixed
3809     ** endian.
3810     */
3811     static const u64 t1 = ((u64)0x3ff00000)<<32;
3812     static const double r1 = 1.0;
3813     u64 t2 = t1;
3814     swapMixedEndianFloat(t2);
3815     assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3816 #endif
3817     assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3818     swapMixedEndianFloat(x);
3819     memcpy(&pMem->u.r, &x, sizeof(x));
3820     pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3821   }
3822   return 8;
3823 }
sqlite3VdbeSerialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)3824 u32 sqlite3VdbeSerialGet(
3825   const unsigned char *buf,     /* Buffer to deserialize from */
3826   u32 serial_type,              /* Serial type to deserialize */
3827   Mem *pMem                     /* Memory cell to write value into */
3828 ){
3829   switch( serial_type ){
3830     case 10: { /* Internal use only: NULL with virtual table
3831                ** UPDATE no-change flag set */
3832       pMem->flags = MEM_Null|MEM_Zero;
3833       pMem->n = 0;
3834       pMem->u.nZero = 0;
3835       break;
3836     }
3837     case 11:   /* Reserved for future use */
3838     case 0: {  /* Null */
3839       /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3840       pMem->flags = MEM_Null;
3841       break;
3842     }
3843     case 1: {
3844       /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3845       ** integer. */
3846       pMem->u.i = ONE_BYTE_INT(buf);
3847       pMem->flags = MEM_Int;
3848       testcase( pMem->u.i<0 );
3849       return 1;
3850     }
3851     case 2: { /* 2-byte signed integer */
3852       /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3853       ** twos-complement integer. */
3854       pMem->u.i = TWO_BYTE_INT(buf);
3855       pMem->flags = MEM_Int;
3856       testcase( pMem->u.i<0 );
3857       return 2;
3858     }
3859     case 3: { /* 3-byte signed integer */
3860       /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3861       ** twos-complement integer. */
3862       pMem->u.i = THREE_BYTE_INT(buf);
3863       pMem->flags = MEM_Int;
3864       testcase( pMem->u.i<0 );
3865       return 3;
3866     }
3867     case 4: { /* 4-byte signed integer */
3868       /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3869       ** twos-complement integer. */
3870       pMem->u.i = FOUR_BYTE_INT(buf);
3871 #ifdef __HP_cc
3872       /* Work around a sign-extension bug in the HP compiler for HP/UX */
3873       if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3874 #endif
3875       pMem->flags = MEM_Int;
3876       testcase( pMem->u.i<0 );
3877       return 4;
3878     }
3879     case 5: { /* 6-byte signed integer */
3880       /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3881       ** twos-complement integer. */
3882       pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3883       pMem->flags = MEM_Int;
3884       testcase( pMem->u.i<0 );
3885       return 6;
3886     }
3887     case 6:   /* 8-byte signed integer */
3888     case 7: { /* IEEE floating point */
3889       /* These use local variables, so do them in a separate routine
3890       ** to avoid having to move the frame pointer in the common case */
3891       return serialGet(buf,serial_type,pMem);
3892     }
3893     case 8:    /* Integer 0 */
3894     case 9: {  /* Integer 1 */
3895       /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3896       /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3897       pMem->u.i = serial_type-8;
3898       pMem->flags = MEM_Int;
3899       return 0;
3900     }
3901     default: {
3902       /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3903       ** length.
3904       ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3905       ** (N-13)/2 bytes in length. */
3906       static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3907       pMem->z = (char *)buf;
3908       pMem->n = (serial_type-12)/2;
3909       pMem->flags = aFlag[serial_type&1];
3910       return pMem->n;
3911     }
3912   }
3913   return 0;
3914 }
3915 /*
3916 ** This routine is used to allocate sufficient space for an UnpackedRecord
3917 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3918 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3919 **
3920 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3921 ** the unaligned buffer passed via the second and third arguments (presumably
3922 ** stack space). If the former, then *ppFree is set to a pointer that should
3923 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3924 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3925 ** before returning.
3926 **
3927 ** If an OOM error occurs, NULL is returned.
3928 */
sqlite3VdbeAllocUnpackedRecord(KeyInfo * pKeyInfo)3929 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3930   KeyInfo *pKeyInfo               /* Description of the record */
3931 ){
3932   UnpackedRecord *p;              /* Unpacked record to return */
3933   int nByte;                      /* Number of bytes required for *p */
3934   nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3935   p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3936   if( !p ) return 0;
3937   p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3938   assert( pKeyInfo->aSortFlags!=0 );
3939   p->pKeyInfo = pKeyInfo;
3940   p->nField = pKeyInfo->nKeyField + 1;
3941   return p;
3942 }
3943 
3944 /*
3945 ** Given the nKey-byte encoding of a record in pKey[], populate the
3946 ** UnpackedRecord structure indicated by the fourth argument with the
3947 ** contents of the decoded record.
3948 */
sqlite3VdbeRecordUnpack(KeyInfo * pKeyInfo,int nKey,const void * pKey,UnpackedRecord * p)3949 void sqlite3VdbeRecordUnpack(
3950   KeyInfo *pKeyInfo,     /* Information about the record format */
3951   int nKey,              /* Size of the binary record */
3952   const void *pKey,      /* The binary record */
3953   UnpackedRecord *p      /* Populate this structure before returning. */
3954 ){
3955   const unsigned char *aKey = (const unsigned char *)pKey;
3956   u32 d;
3957   u32 idx;                        /* Offset in aKey[] to read from */
3958   u16 u;                          /* Unsigned loop counter */
3959   u32 szHdr;
3960   Mem *pMem = p->aMem;
3961 
3962   p->default_rc = 0;
3963   assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3964   idx = getVarint32(aKey, szHdr);
3965   d = szHdr;
3966   u = 0;
3967   while( idx<szHdr && d<=(u32)nKey ){
3968     u32 serial_type;
3969 
3970     idx += getVarint32(&aKey[idx], serial_type);
3971     pMem->enc = pKeyInfo->enc;
3972     pMem->db = pKeyInfo->db;
3973     /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3974     pMem->szMalloc = 0;
3975     pMem->z = 0;
3976     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3977     pMem++;
3978     if( (++u)>=p->nField ) break;
3979   }
3980   if( d>(u32)nKey && u ){
3981     assert( CORRUPT_DB );
3982     /* In a corrupt record entry, the last pMem might have been set up using
3983     ** uninitialized memory. Overwrite its value with NULL, to prevent
3984     ** warnings from MSAN. */
3985     sqlite3VdbeMemSetNull(pMem-1);
3986   }
3987   assert( u<=pKeyInfo->nKeyField + 1 );
3988   p->nField = u;
3989 }
3990 
3991 #ifdef SQLITE_DEBUG
3992 /*
3993 ** This function compares two index or table record keys in the same way
3994 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3995 ** this function deserializes and compares values using the
3996 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3997 ** in assert() statements to ensure that the optimized code in
3998 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3999 **
4000 ** Return true if the result of comparison is equivalent to desiredResult.
4001 ** Return false if there is a disagreement.
4002 */
vdbeRecordCompareDebug(int nKey1,const void * pKey1,const UnpackedRecord * pPKey2,int desiredResult)4003 static int vdbeRecordCompareDebug(
4004   int nKey1, const void *pKey1, /* Left key */
4005   const UnpackedRecord *pPKey2, /* Right key */
4006   int desiredResult             /* Correct answer */
4007 ){
4008   u32 d1;            /* Offset into aKey[] of next data element */
4009   u32 idx1;          /* Offset into aKey[] of next header element */
4010   u32 szHdr1;        /* Number of bytes in header */
4011   int i = 0;
4012   int rc = 0;
4013   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4014   KeyInfo *pKeyInfo;
4015   Mem mem1;
4016 
4017   pKeyInfo = pPKey2->pKeyInfo;
4018   if( pKeyInfo->db==0 ) return 1;
4019   mem1.enc = pKeyInfo->enc;
4020   mem1.db = pKeyInfo->db;
4021   /* mem1.flags = 0;  // Will be initialized by sqlite3VdbeSerialGet() */
4022   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4023 
4024   /* Compilers may complain that mem1.u.i is potentially uninitialized.
4025   ** We could initialize it, as shown here, to silence those complaints.
4026   ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4027   ** the unnecessary initialization has a measurable negative performance
4028   ** impact, since this routine is a very high runner.  And so, we choose
4029   ** to ignore the compiler warnings and leave this variable uninitialized.
4030   */
4031   /*  mem1.u.i = 0;  // not needed, here to silence compiler warning */
4032 
4033   idx1 = getVarint32(aKey1, szHdr1);
4034   if( szHdr1>98307 ) return SQLITE_CORRUPT;
4035   d1 = szHdr1;
4036   assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4037   assert( pKeyInfo->aSortFlags!=0 );
4038   assert( pKeyInfo->nKeyField>0 );
4039   assert( idx1<=szHdr1 || CORRUPT_DB );
4040   do{
4041     u32 serial_type1;
4042 
4043     /* Read the serial types for the next element in each key. */
4044     idx1 += getVarint32( aKey1+idx1, serial_type1 );
4045 
4046     /* Verify that there is enough key space remaining to avoid
4047     ** a buffer overread.  The "d1+serial_type1+2" subexpression will
4048     ** always be greater than or equal to the amount of required key space.
4049     ** Use that approximation to avoid the more expensive call to
4050     ** sqlite3VdbeSerialTypeLen() in the common case.
4051     */
4052     if( d1+(u64)serial_type1+2>(u64)nKey1
4053      && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4054     ){
4055       break;
4056     }
4057 
4058     /* Extract the values to be compared.
4059     */
4060     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4061 
4062     /* Do the comparison
4063     */
4064     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4065                            pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4066     if( rc!=0 ){
4067       assert( mem1.szMalloc==0 );  /* See comment below */
4068       if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4069        && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4070       ){
4071         rc = -rc;
4072       }
4073       if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4074         rc = -rc;  /* Invert the result for DESC sort order. */
4075       }
4076       goto debugCompareEnd;
4077     }
4078     i++;
4079   }while( idx1<szHdr1 && i<pPKey2->nField );
4080 
4081   /* No memory allocation is ever used on mem1.  Prove this using
4082   ** the following assert().  If the assert() fails, it indicates a
4083   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4084   */
4085   assert( mem1.szMalloc==0 );
4086 
4087   /* rc==0 here means that one of the keys ran out of fields and
4088   ** all the fields up to that point were equal. Return the default_rc
4089   ** value.  */
4090   rc = pPKey2->default_rc;
4091 
4092 debugCompareEnd:
4093   if( desiredResult==0 && rc==0 ) return 1;
4094   if( desiredResult<0 && rc<0 ) return 1;
4095   if( desiredResult>0 && rc>0 ) return 1;
4096   if( CORRUPT_DB ) return 1;
4097   if( pKeyInfo->db->mallocFailed ) return 1;
4098   return 0;
4099 }
4100 #endif
4101 
4102 #ifdef SQLITE_DEBUG
4103 /*
4104 ** Count the number of fields (a.k.a. columns) in the record given by
4105 ** pKey,nKey.  The verify that this count is less than or equal to the
4106 ** limit given by pKeyInfo->nAllField.
4107 **
4108 ** If this constraint is not satisfied, it means that the high-speed
4109 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4110 ** not work correctly.  If this assert() ever fires, it probably means
4111 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4112 ** incorrectly.
4113 */
vdbeAssertFieldCountWithinLimits(int nKey,const void * pKey,const KeyInfo * pKeyInfo)4114 static void vdbeAssertFieldCountWithinLimits(
4115   int nKey, const void *pKey,   /* The record to verify */
4116   const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
4117 ){
4118   int nField = 0;
4119   u32 szHdr;
4120   u32 idx;
4121   u32 notUsed;
4122   const unsigned char *aKey = (const unsigned char*)pKey;
4123 
4124   if( CORRUPT_DB ) return;
4125   idx = getVarint32(aKey, szHdr);
4126   assert( nKey>=0 );
4127   assert( szHdr<=(u32)nKey );
4128   while( idx<szHdr ){
4129     idx += getVarint32(aKey+idx, notUsed);
4130     nField++;
4131   }
4132   assert( nField <= pKeyInfo->nAllField );
4133 }
4134 #else
4135 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4136 #endif
4137 
4138 /*
4139 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4140 ** using the collation sequence pColl. As usual, return a negative , zero
4141 ** or positive value if *pMem1 is less than, equal to or greater than
4142 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4143 */
vdbeCompareMemString(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl,u8 * prcErr)4144 static int vdbeCompareMemString(
4145   const Mem *pMem1,
4146   const Mem *pMem2,
4147   const CollSeq *pColl,
4148   u8 *prcErr                      /* If an OOM occurs, set to SQLITE_NOMEM */
4149 ){
4150   if( pMem1->enc==pColl->enc ){
4151     /* The strings are already in the correct encoding.  Call the
4152      ** comparison function directly */
4153     return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4154   }else{
4155     int rc;
4156     const void *v1, *v2;
4157     Mem c1;
4158     Mem c2;
4159     sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4160     sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4161     sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4162     sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4163     v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4164     v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4165     if( (v1==0 || v2==0) ){
4166       if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4167       rc = 0;
4168     }else{
4169       rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4170     }
4171     sqlite3VdbeMemRelease(&c1);
4172     sqlite3VdbeMemRelease(&c2);
4173     return rc;
4174   }
4175 }
4176 
4177 /*
4178 ** The input pBlob is guaranteed to be a Blob that is not marked
4179 ** with MEM_Zero.  Return true if it could be a zero-blob.
4180 */
isAllZero(const char * z,int n)4181 static int isAllZero(const char *z, int n){
4182   int i;
4183   for(i=0; i<n; i++){
4184     if( z[i] ) return 0;
4185   }
4186   return 1;
4187 }
4188 
4189 /*
4190 ** Compare two blobs.  Return negative, zero, or positive if the first
4191 ** is less than, equal to, or greater than the second, respectively.
4192 ** If one blob is a prefix of the other, then the shorter is the lessor.
4193 */
sqlite3BlobCompare(const Mem * pB1,const Mem * pB2)4194 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4195   int c;
4196   int n1 = pB1->n;
4197   int n2 = pB2->n;
4198 
4199   /* It is possible to have a Blob value that has some non-zero content
4200   ** followed by zero content.  But that only comes up for Blobs formed
4201   ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4202   ** sqlite3MemCompare(). */
4203   assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4204   assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4205 
4206   if( (pB1->flags|pB2->flags) & MEM_Zero ){
4207     if( pB1->flags & pB2->flags & MEM_Zero ){
4208       return pB1->u.nZero - pB2->u.nZero;
4209     }else if( pB1->flags & MEM_Zero ){
4210       if( !isAllZero(pB2->z, pB2->n) ) return -1;
4211       return pB1->u.nZero - n2;
4212     }else{
4213       if( !isAllZero(pB1->z, pB1->n) ) return +1;
4214       return n1 - pB2->u.nZero;
4215     }
4216   }
4217   c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4218   if( c ) return c;
4219   return n1 - n2;
4220 }
4221 
4222 /*
4223 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4224 ** number.  Return negative, zero, or positive if the first (i64) is less than,
4225 ** equal to, or greater than the second (double).
4226 */
sqlite3IntFloatCompare(i64 i,double r)4227 static int sqlite3IntFloatCompare(i64 i, double r){
4228   if( sizeof(LONGDOUBLE_TYPE)>8 ){
4229     LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4230     if( x<r ) return -1;
4231     if( x>r ) return +1;
4232     return 0;
4233   }else{
4234     i64 y;
4235     double s;
4236     if( r<-9223372036854775808.0 ) return +1;
4237     if( r>=9223372036854775808.0 ) return -1;
4238     y = (i64)r;
4239     if( i<y ) return -1;
4240     if( i>y ) return +1;
4241     s = (double)i;
4242     if( s<r ) return -1;
4243     if( s>r ) return +1;
4244     return 0;
4245   }
4246 }
4247 
4248 /*
4249 ** Compare the values contained by the two memory cells, returning
4250 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4251 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4252 ** and reals) sorted numerically, followed by text ordered by the collating
4253 ** sequence pColl and finally blob's ordered by memcmp().
4254 **
4255 ** Two NULL values are considered equal by this function.
4256 */
sqlite3MemCompare(const Mem * pMem1,const Mem * pMem2,const CollSeq * pColl)4257 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4258   int f1, f2;
4259   int combined_flags;
4260 
4261   f1 = pMem1->flags;
4262   f2 = pMem2->flags;
4263   combined_flags = f1|f2;
4264   assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4265 
4266   /* If one value is NULL, it is less than the other. If both values
4267   ** are NULL, return 0.
4268   */
4269   if( combined_flags&MEM_Null ){
4270     return (f2&MEM_Null) - (f1&MEM_Null);
4271   }
4272 
4273   /* At least one of the two values is a number
4274   */
4275   if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4276     testcase( combined_flags & MEM_Int );
4277     testcase( combined_flags & MEM_Real );
4278     testcase( combined_flags & MEM_IntReal );
4279     if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4280       testcase( f1 & f2 & MEM_Int );
4281       testcase( f1 & f2 & MEM_IntReal );
4282       if( pMem1->u.i < pMem2->u.i ) return -1;
4283       if( pMem1->u.i > pMem2->u.i ) return +1;
4284       return 0;
4285     }
4286     if( (f1 & f2 & MEM_Real)!=0 ){
4287       if( pMem1->u.r < pMem2->u.r ) return -1;
4288       if( pMem1->u.r > pMem2->u.r ) return +1;
4289       return 0;
4290     }
4291     if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4292       testcase( f1 & MEM_Int );
4293       testcase( f1 & MEM_IntReal );
4294       if( (f2&MEM_Real)!=0 ){
4295         return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4296       }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4297         if( pMem1->u.i < pMem2->u.i ) return -1;
4298         if( pMem1->u.i > pMem2->u.i ) return +1;
4299         return 0;
4300       }else{
4301         return -1;
4302       }
4303     }
4304     if( (f1&MEM_Real)!=0 ){
4305       if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4306         testcase( f2 & MEM_Int );
4307         testcase( f2 & MEM_IntReal );
4308         return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4309       }else{
4310         return -1;
4311       }
4312     }
4313     return +1;
4314   }
4315 
4316   /* If one value is a string and the other is a blob, the string is less.
4317   ** If both are strings, compare using the collating functions.
4318   */
4319   if( combined_flags&MEM_Str ){
4320     if( (f1 & MEM_Str)==0 ){
4321       return 1;
4322     }
4323     if( (f2 & MEM_Str)==0 ){
4324       return -1;
4325     }
4326 
4327     assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4328     assert( pMem1->enc==SQLITE_UTF8 ||
4329             pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4330 
4331     /* The collation sequence must be defined at this point, even if
4332     ** the user deletes the collation sequence after the vdbe program is
4333     ** compiled (this was not always the case).
4334     */
4335     assert( !pColl || pColl->xCmp );
4336 
4337     if( pColl ){
4338       return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4339     }
4340     /* If a NULL pointer was passed as the collate function, fall through
4341     ** to the blob case and use memcmp().  */
4342   }
4343 
4344   /* Both values must be blobs.  Compare using memcmp().  */
4345   return sqlite3BlobCompare(pMem1, pMem2);
4346 }
4347 
4348 
4349 /*
4350 ** The first argument passed to this function is a serial-type that
4351 ** corresponds to an integer - all values between 1 and 9 inclusive
4352 ** except 7. The second points to a buffer containing an integer value
4353 ** serialized according to serial_type. This function deserializes
4354 ** and returns the value.
4355 */
vdbeRecordDecodeInt(u32 serial_type,const u8 * aKey)4356 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4357   u32 y;
4358   assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4359   switch( serial_type ){
4360     case 0:
4361     case 1:
4362       testcase( aKey[0]&0x80 );
4363       return ONE_BYTE_INT(aKey);
4364     case 2:
4365       testcase( aKey[0]&0x80 );
4366       return TWO_BYTE_INT(aKey);
4367     case 3:
4368       testcase( aKey[0]&0x80 );
4369       return THREE_BYTE_INT(aKey);
4370     case 4: {
4371       testcase( aKey[0]&0x80 );
4372       y = FOUR_BYTE_UINT(aKey);
4373       return (i64)*(int*)&y;
4374     }
4375     case 5: {
4376       testcase( aKey[0]&0x80 );
4377       return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4378     }
4379     case 6: {
4380       u64 x = FOUR_BYTE_UINT(aKey);
4381       testcase( aKey[0]&0x80 );
4382       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4383       return (i64)*(i64*)&x;
4384     }
4385   }
4386 
4387   return (serial_type - 8);
4388 }
4389 
4390 /*
4391 ** This function compares the two table rows or index records
4392 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
4393 ** or positive integer if key1 is less than, equal to or
4394 ** greater than key2.  The {nKey1, pKey1} key must be a blob
4395 ** created by the OP_MakeRecord opcode of the VDBE.  The pPKey2
4396 ** key must be a parsed key such as obtained from
4397 ** sqlite3VdbeParseRecord.
4398 **
4399 ** If argument bSkip is non-zero, it is assumed that the caller has already
4400 ** determined that the first fields of the keys are equal.
4401 **
4402 ** Key1 and Key2 do not have to contain the same number of fields. If all
4403 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4404 ** returned.
4405 **
4406 ** If database corruption is discovered, set pPKey2->errCode to
4407 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4408 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4409 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4410 */
sqlite3VdbeRecordCompareWithSkip(int nKey1,const void * pKey1,UnpackedRecord * pPKey2,int bSkip)4411 int sqlite3VdbeRecordCompareWithSkip(
4412   int nKey1, const void *pKey1,   /* Left key */
4413   UnpackedRecord *pPKey2,         /* Right key */
4414   int bSkip                       /* If true, skip the first field */
4415 ){
4416   u32 d1;                         /* Offset into aKey[] of next data element */
4417   int i;                          /* Index of next field to compare */
4418   u32 szHdr1;                     /* Size of record header in bytes */
4419   u32 idx1;                       /* Offset of first type in header */
4420   int rc = 0;                     /* Return value */
4421   Mem *pRhs = pPKey2->aMem;       /* Next field of pPKey2 to compare */
4422   KeyInfo *pKeyInfo;
4423   const unsigned char *aKey1 = (const unsigned char *)pKey1;
4424   Mem mem1;
4425 
4426   /* If bSkip is true, then the caller has already determined that the first
4427   ** two elements in the keys are equal. Fix the various stack variables so
4428   ** that this routine begins comparing at the second field. */
4429   if( bSkip ){
4430     u32 s1;
4431     idx1 = 1 + getVarint32(&aKey1[1], s1);
4432     szHdr1 = aKey1[0];
4433     d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4434     i = 1;
4435     pRhs++;
4436   }else{
4437     idx1 = getVarint32(aKey1, szHdr1);
4438     d1 = szHdr1;
4439     i = 0;
4440   }
4441   if( d1>(unsigned)nKey1 ){
4442     pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4443     return 0;  /* Corruption */
4444   }
4445 
4446   VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4447   assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4448        || CORRUPT_DB );
4449   assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4450   assert( pPKey2->pKeyInfo->nKeyField>0 );
4451   assert( idx1<=szHdr1 || CORRUPT_DB );
4452   do{
4453     u32 serial_type;
4454 
4455     /* RHS is an integer */
4456     if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4457       testcase( pRhs->flags & MEM_Int );
4458       testcase( pRhs->flags & MEM_IntReal );
4459       serial_type = aKey1[idx1];
4460       testcase( serial_type==12 );
4461       if( serial_type>=10 ){
4462         rc = +1;
4463       }else if( serial_type==0 ){
4464         rc = -1;
4465       }else if( serial_type==7 ){
4466         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4467         rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4468       }else{
4469         i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4470         i64 rhs = pRhs->u.i;
4471         if( lhs<rhs ){
4472           rc = -1;
4473         }else if( lhs>rhs ){
4474           rc = +1;
4475         }
4476       }
4477     }
4478 
4479     /* RHS is real */
4480     else if( pRhs->flags & MEM_Real ){
4481       serial_type = aKey1[idx1];
4482       if( serial_type>=10 ){
4483         /* Serial types 12 or greater are strings and blobs (greater than
4484         ** numbers). Types 10 and 11 are currently "reserved for future
4485         ** use", so it doesn't really matter what the results of comparing
4486         ** them to numberic values are.  */
4487         rc = +1;
4488       }else if( serial_type==0 ){
4489         rc = -1;
4490       }else{
4491         sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4492         if( serial_type==7 ){
4493           if( mem1.u.r<pRhs->u.r ){
4494             rc = -1;
4495           }else if( mem1.u.r>pRhs->u.r ){
4496             rc = +1;
4497           }
4498         }else{
4499           rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4500         }
4501       }
4502     }
4503 
4504     /* RHS is a string */
4505     else if( pRhs->flags & MEM_Str ){
4506       getVarint32(&aKey1[idx1], serial_type);
4507       testcase( serial_type==12 );
4508       if( serial_type<12 ){
4509         rc = -1;
4510       }else if( !(serial_type & 0x01) ){
4511         rc = +1;
4512       }else{
4513         mem1.n = (serial_type - 12) / 2;
4514         testcase( (d1+mem1.n)==(unsigned)nKey1 );
4515         testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4516         if( (d1+mem1.n) > (unsigned)nKey1
4517          || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4518         ){
4519           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4520           return 0;                /* Corruption */
4521         }else if( pKeyInfo->aColl[i] ){
4522           mem1.enc = pKeyInfo->enc;
4523           mem1.db = pKeyInfo->db;
4524           mem1.flags = MEM_Str;
4525           mem1.z = (char*)&aKey1[d1];
4526           rc = vdbeCompareMemString(
4527               &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4528           );
4529         }else{
4530           int nCmp = MIN(mem1.n, pRhs->n);
4531           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4532           if( rc==0 ) rc = mem1.n - pRhs->n;
4533         }
4534       }
4535     }
4536 
4537     /* RHS is a blob */
4538     else if( pRhs->flags & MEM_Blob ){
4539       assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4540       getVarint32(&aKey1[idx1], serial_type);
4541       testcase( serial_type==12 );
4542       if( serial_type<12 || (serial_type & 0x01) ){
4543         rc = -1;
4544       }else{
4545         int nStr = (serial_type - 12) / 2;
4546         testcase( (d1+nStr)==(unsigned)nKey1 );
4547         testcase( (d1+nStr+1)==(unsigned)nKey1 );
4548         if( (d1+nStr) > (unsigned)nKey1 ){
4549           pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4550           return 0;                /* Corruption */
4551         }else if( pRhs->flags & MEM_Zero ){
4552           if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4553             rc = 1;
4554           }else{
4555             rc = nStr - pRhs->u.nZero;
4556           }
4557         }else{
4558           int nCmp = MIN(nStr, pRhs->n);
4559           rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4560           if( rc==0 ) rc = nStr - pRhs->n;
4561         }
4562       }
4563     }
4564 
4565     /* RHS is null */
4566     else{
4567       serial_type = aKey1[idx1];
4568       rc = (serial_type!=0);
4569     }
4570 
4571     if( rc!=0 ){
4572       int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4573       if( sortFlags ){
4574         if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4575          || ((sortFlags & KEYINFO_ORDER_DESC)
4576            !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4577         ){
4578           rc = -rc;
4579         }
4580       }
4581       assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4582       assert( mem1.szMalloc==0 );  /* See comment below */
4583       return rc;
4584     }
4585 
4586     i++;
4587     if( i==pPKey2->nField ) break;
4588     pRhs++;
4589     d1 += sqlite3VdbeSerialTypeLen(serial_type);
4590     idx1 += sqlite3VarintLen(serial_type);
4591   }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4592 
4593   /* No memory allocation is ever used on mem1.  Prove this using
4594   ** the following assert().  If the assert() fails, it indicates a
4595   ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).  */
4596   assert( mem1.szMalloc==0 );
4597 
4598   /* rc==0 here means that one or both of the keys ran out of fields and
4599   ** all the fields up to that point were equal. Return the default_rc
4600   ** value.  */
4601   assert( CORRUPT_DB
4602        || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4603        || pPKey2->pKeyInfo->db->mallocFailed
4604   );
4605   pPKey2->eqSeen = 1;
4606   return pPKey2->default_rc;
4607 }
sqlite3VdbeRecordCompare(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4608 int sqlite3VdbeRecordCompare(
4609   int nKey1, const void *pKey1,   /* Left key */
4610   UnpackedRecord *pPKey2          /* Right key */
4611 ){
4612   return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4613 }
4614 
4615 
4616 /*
4617 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4618 ** that (a) the first field of pPKey2 is an integer, and (b) the
4619 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4620 ** byte (i.e. is less than 128).
4621 **
4622 ** To avoid concerns about buffer overreads, this routine is only used
4623 ** on schemas where the maximum valid header size is 63 bytes or less.
4624 */
vdbeRecordCompareInt(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4625 static int vdbeRecordCompareInt(
4626   int nKey1, const void *pKey1, /* Left key */
4627   UnpackedRecord *pPKey2        /* Right key */
4628 ){
4629   const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4630   int serial_type = ((const u8*)pKey1)[1];
4631   int res;
4632   u32 y;
4633   u64 x;
4634   i64 v;
4635   i64 lhs;
4636 
4637   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4638   assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4639   switch( serial_type ){
4640     case 1: { /* 1-byte signed integer */
4641       lhs = ONE_BYTE_INT(aKey);
4642       testcase( lhs<0 );
4643       break;
4644     }
4645     case 2: { /* 2-byte signed integer */
4646       lhs = TWO_BYTE_INT(aKey);
4647       testcase( lhs<0 );
4648       break;
4649     }
4650     case 3: { /* 3-byte signed integer */
4651       lhs = THREE_BYTE_INT(aKey);
4652       testcase( lhs<0 );
4653       break;
4654     }
4655     case 4: { /* 4-byte signed integer */
4656       y = FOUR_BYTE_UINT(aKey);
4657       lhs = (i64)*(int*)&y;
4658       testcase( lhs<0 );
4659       break;
4660     }
4661     case 5: { /* 6-byte signed integer */
4662       lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4663       testcase( lhs<0 );
4664       break;
4665     }
4666     case 6: { /* 8-byte signed integer */
4667       x = FOUR_BYTE_UINT(aKey);
4668       x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4669       lhs = *(i64*)&x;
4670       testcase( lhs<0 );
4671       break;
4672     }
4673     case 8:
4674       lhs = 0;
4675       break;
4676     case 9:
4677       lhs = 1;
4678       break;
4679 
4680     /* This case could be removed without changing the results of running
4681     ** this code. Including it causes gcc to generate a faster switch
4682     ** statement (since the range of switch targets now starts at zero and
4683     ** is contiguous) but does not cause any duplicate code to be generated
4684     ** (as gcc is clever enough to combine the two like cases). Other
4685     ** compilers might be similar.  */
4686     case 0: case 7:
4687       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4688 
4689     default:
4690       return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4691   }
4692 
4693   v = pPKey2->aMem[0].u.i;
4694   if( v>lhs ){
4695     res = pPKey2->r1;
4696   }else if( v<lhs ){
4697     res = pPKey2->r2;
4698   }else if( pPKey2->nField>1 ){
4699     /* The first fields of the two keys are equal. Compare the trailing
4700     ** fields.  */
4701     res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4702   }else{
4703     /* The first fields of the two keys are equal and there are no trailing
4704     ** fields. Return pPKey2->default_rc in this case. */
4705     res = pPKey2->default_rc;
4706     pPKey2->eqSeen = 1;
4707   }
4708 
4709   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4710   return res;
4711 }
4712 
4713 /*
4714 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4715 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4716 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4717 ** at the start of (pKey1/nKey1) fits in a single byte.
4718 */
vdbeRecordCompareString(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)4719 static int vdbeRecordCompareString(
4720   int nKey1, const void *pKey1, /* Left key */
4721   UnpackedRecord *pPKey2        /* Right key */
4722 ){
4723   const u8 *aKey1 = (const u8*)pKey1;
4724   int serial_type;
4725   int res;
4726 
4727   assert( pPKey2->aMem[0].flags & MEM_Str );
4728   vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4729   getVarint32(&aKey1[1], serial_type);
4730   if( serial_type<12 ){
4731     res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
4732   }else if( !(serial_type & 0x01) ){
4733     res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
4734   }else{
4735     int nCmp;
4736     int nStr;
4737     int szHdr = aKey1[0];
4738 
4739     nStr = (serial_type-12) / 2;
4740     if( (szHdr + nStr) > nKey1 ){
4741       pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4742       return 0;    /* Corruption */
4743     }
4744     nCmp = MIN( pPKey2->aMem[0].n, nStr );
4745     res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4746 
4747     if( res>0 ){
4748       res = pPKey2->r2;
4749     }else if( res<0 ){
4750       res = pPKey2->r1;
4751     }else{
4752       res = nStr - pPKey2->aMem[0].n;
4753       if( res==0 ){
4754         if( pPKey2->nField>1 ){
4755           res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4756         }else{
4757           res = pPKey2->default_rc;
4758           pPKey2->eqSeen = 1;
4759         }
4760       }else if( res>0 ){
4761         res = pPKey2->r2;
4762       }else{
4763         res = pPKey2->r1;
4764       }
4765     }
4766   }
4767 
4768   assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4769        || CORRUPT_DB
4770        || pPKey2->pKeyInfo->db->mallocFailed
4771   );
4772   return res;
4773 }
4774 
4775 /*
4776 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4777 ** suitable for comparing serialized records to the unpacked record passed
4778 ** as the only argument.
4779 */
sqlite3VdbeFindCompare(UnpackedRecord * p)4780 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4781   /* varintRecordCompareInt() and varintRecordCompareString() both assume
4782   ** that the size-of-header varint that occurs at the start of each record
4783   ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4784   ** also assumes that it is safe to overread a buffer by at least the
4785   ** maximum possible legal header size plus 8 bytes. Because there is
4786   ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4787   ** buffer passed to varintRecordCompareInt() this makes it convenient to
4788   ** limit the size of the header to 64 bytes in cases where the first field
4789   ** is an integer.
4790   **
4791   ** The easiest way to enforce this limit is to consider only records with
4792   ** 13 fields or less. If the first field is an integer, the maximum legal
4793   ** header size is (12*5 + 1 + 1) bytes.  */
4794   if( p->pKeyInfo->nAllField<=13 ){
4795     int flags = p->aMem[0].flags;
4796     if( p->pKeyInfo->aSortFlags[0] ){
4797       if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4798         return sqlite3VdbeRecordCompare;
4799       }
4800       p->r1 = 1;
4801       p->r2 = -1;
4802     }else{
4803       p->r1 = -1;
4804       p->r2 = 1;
4805     }
4806     if( (flags & MEM_Int) ){
4807       return vdbeRecordCompareInt;
4808     }
4809     testcase( flags & MEM_Real );
4810     testcase( flags & MEM_Null );
4811     testcase( flags & MEM_Blob );
4812     if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4813      && p->pKeyInfo->aColl[0]==0
4814     ){
4815       assert( flags & MEM_Str );
4816       return vdbeRecordCompareString;
4817     }
4818   }
4819 
4820   return sqlite3VdbeRecordCompare;
4821 }
4822 
4823 /*
4824 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4825 ** Read the rowid (the last field in the record) and store it in *rowid.
4826 ** Return SQLITE_OK if everything works, or an error code otherwise.
4827 **
4828 ** pCur might be pointing to text obtained from a corrupt database file.
4829 ** So the content cannot be trusted.  Do appropriate checks on the content.
4830 */
sqlite3VdbeIdxRowid(sqlite3 * db,BtCursor * pCur,i64 * rowid)4831 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4832   i64 nCellKey = 0;
4833   int rc;
4834   u32 szHdr;        /* Size of the header */
4835   u32 typeRowid;    /* Serial type of the rowid */
4836   u32 lenRowid;     /* Size of the rowid */
4837   Mem m, v;
4838 
4839   /* Get the size of the index entry.  Only indices entries of less
4840   ** than 2GiB are support - anything large must be database corruption.
4841   ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4842   ** this code can safely assume that nCellKey is 32-bits
4843   */
4844   assert( sqlite3BtreeCursorIsValid(pCur) );
4845   nCellKey = sqlite3BtreePayloadSize(pCur);
4846   assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4847 
4848   /* Read in the complete content of the index entry */
4849   sqlite3VdbeMemInit(&m, db, 0);
4850   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4851   if( rc ){
4852     return rc;
4853   }
4854 
4855   /* The index entry must begin with a header size */
4856   (void)getVarint32((u8*)m.z, szHdr);
4857   testcase( szHdr==3 );
4858   testcase( szHdr==m.n );
4859   testcase( szHdr>0x7fffffff );
4860   assert( m.n>=0 );
4861   if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4862     goto idx_rowid_corruption;
4863   }
4864 
4865   /* The last field of the index should be an integer - the ROWID.
4866   ** Verify that the last entry really is an integer. */
4867   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4868   testcase( typeRowid==1 );
4869   testcase( typeRowid==2 );
4870   testcase( typeRowid==3 );
4871   testcase( typeRowid==4 );
4872   testcase( typeRowid==5 );
4873   testcase( typeRowid==6 );
4874   testcase( typeRowid==8 );
4875   testcase( typeRowid==9 );
4876   if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4877     goto idx_rowid_corruption;
4878   }
4879   lenRowid = sqlite3SmallTypeSizes[typeRowid];
4880   testcase( (u32)m.n==szHdr+lenRowid );
4881   if( unlikely((u32)m.n<szHdr+lenRowid) ){
4882     goto idx_rowid_corruption;
4883   }
4884 
4885   /* Fetch the integer off the end of the index record */
4886   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4887   *rowid = v.u.i;
4888   sqlite3VdbeMemRelease(&m);
4889   return SQLITE_OK;
4890 
4891   /* Jump here if database corruption is detected after m has been
4892   ** allocated.  Free the m object and return SQLITE_CORRUPT. */
4893 idx_rowid_corruption:
4894   testcase( m.szMalloc!=0 );
4895   sqlite3VdbeMemRelease(&m);
4896   return SQLITE_CORRUPT_BKPT;
4897 }
4898 
4899 /*
4900 ** Compare the key of the index entry that cursor pC is pointing to against
4901 ** the key string in pUnpacked.  Write into *pRes a number
4902 ** that is negative, zero, or positive if pC is less than, equal to,
4903 ** or greater than pUnpacked.  Return SQLITE_OK on success.
4904 **
4905 ** pUnpacked is either created without a rowid or is truncated so that it
4906 ** omits the rowid at the end.  The rowid at the end of the index entry
4907 ** is ignored as well.  Hence, this routine only compares the prefixes
4908 ** of the keys prior to the final rowid, not the entire key.
4909 */
sqlite3VdbeIdxKeyCompare(sqlite3 * db,VdbeCursor * pC,UnpackedRecord * pUnpacked,int * res)4910 int sqlite3VdbeIdxKeyCompare(
4911   sqlite3 *db,                     /* Database connection */
4912   VdbeCursor *pC,                  /* The cursor to compare against */
4913   UnpackedRecord *pUnpacked,       /* Unpacked version of key */
4914   int *res                         /* Write the comparison result here */
4915 ){
4916   i64 nCellKey = 0;
4917   int rc;
4918   BtCursor *pCur;
4919   Mem m;
4920 
4921   assert( pC->eCurType==CURTYPE_BTREE );
4922   pCur = pC->uc.pCursor;
4923   assert( sqlite3BtreeCursorIsValid(pCur) );
4924   nCellKey = sqlite3BtreePayloadSize(pCur);
4925   /* nCellKey will always be between 0 and 0xffffffff because of the way
4926   ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4927   if( nCellKey<=0 || nCellKey>0x7fffffff ){
4928     *res = 0;
4929     return SQLITE_CORRUPT_BKPT;
4930   }
4931   sqlite3VdbeMemInit(&m, db, 0);
4932   rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4933   if( rc ){
4934     return rc;
4935   }
4936   *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
4937   sqlite3VdbeMemRelease(&m);
4938   return SQLITE_OK;
4939 }
4940 
4941 /*
4942 ** This routine sets the value to be returned by subsequent calls to
4943 ** sqlite3_changes() on the database handle 'db'.
4944 */
sqlite3VdbeSetChanges(sqlite3 * db,int nChange)4945 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4946   assert( sqlite3_mutex_held(db->mutex) );
4947   db->nChange = nChange;
4948   db->nTotalChange += nChange;
4949 }
4950 
4951 /*
4952 ** Set a flag in the vdbe to update the change counter when it is finalised
4953 ** or reset.
4954 */
sqlite3VdbeCountChanges(Vdbe * v)4955 void sqlite3VdbeCountChanges(Vdbe *v){
4956   v->changeCntOn = 1;
4957 }
4958 
4959 /*
4960 ** Mark every prepared statement associated with a database connection
4961 ** as expired.
4962 **
4963 ** An expired statement means that recompilation of the statement is
4964 ** recommend.  Statements expire when things happen that make their
4965 ** programs obsolete.  Removing user-defined functions or collating
4966 ** sequences, or changing an authorization function are the types of
4967 ** things that make prepared statements obsolete.
4968 **
4969 ** If iCode is 1, then expiration is advisory.  The statement should
4970 ** be reprepared before being restarted, but if it is already running
4971 ** it is allowed to run to completion.
4972 **
4973 ** Internally, this function just sets the Vdbe.expired flag on all
4974 ** prepared statements.  The flag is set to 1 for an immediate expiration
4975 ** and set to 2 for an advisory expiration.
4976 */
sqlite3ExpirePreparedStatements(sqlite3 * db,int iCode)4977 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
4978   Vdbe *p;
4979   for(p = db->pVdbe; p; p=p->pNext){
4980     p->expired = iCode+1;
4981   }
4982 }
4983 
4984 /*
4985 ** Return the database associated with the Vdbe.
4986 */
sqlite3VdbeDb(Vdbe * v)4987 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4988   return v->db;
4989 }
4990 
4991 /*
4992 ** Return the SQLITE_PREPARE flags for a Vdbe.
4993 */
sqlite3VdbePrepareFlags(Vdbe * v)4994 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4995   return v->prepFlags;
4996 }
4997 
4998 /*
4999 ** Return a pointer to an sqlite3_value structure containing the value bound
5000 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5001 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5002 ** constants) to the value before returning it.
5003 **
5004 ** The returned value must be freed by the caller using sqlite3ValueFree().
5005 */
sqlite3VdbeGetBoundValue(Vdbe * v,int iVar,u8 aff)5006 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5007   assert( iVar>0 );
5008   if( v ){
5009     Mem *pMem = &v->aVar[iVar-1];
5010     assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5011     if( 0==(pMem->flags & MEM_Null) ){
5012       sqlite3_value *pRet = sqlite3ValueNew(v->db);
5013       if( pRet ){
5014         sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5015         sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5016       }
5017       return pRet;
5018     }
5019   }
5020   return 0;
5021 }
5022 
5023 /*
5024 ** Configure SQL variable iVar so that binding a new value to it signals
5025 ** to sqlite3_reoptimize() that re-preparing the statement may result
5026 ** in a better query plan.
5027 */
sqlite3VdbeSetVarmask(Vdbe * v,int iVar)5028 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5029   assert( iVar>0 );
5030   assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5031   if( iVar>=32 ){
5032     v->expmask |= 0x80000000;
5033   }else{
5034     v->expmask |= ((u32)1 << (iVar-1));
5035   }
5036 }
5037 
5038 /*
5039 ** Cause a function to throw an error if it was call from OP_PureFunc
5040 ** rather than OP_Function.
5041 **
5042 ** OP_PureFunc means that the function must be deterministic, and should
5043 ** throw an error if it is given inputs that would make it non-deterministic.
5044 ** This routine is invoked by date/time functions that use non-deterministic
5045 ** features such as 'now'.
5046 */
sqlite3NotPureFunc(sqlite3_context * pCtx)5047 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5048   const VdbeOp *pOp;
5049 #ifdef SQLITE_ENABLE_STAT4
5050   if( pCtx->pVdbe==0 ) return 1;
5051 #endif
5052   pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5053   if( pOp->opcode==OP_PureFunc ){
5054     const char *zContext;
5055     char *zMsg;
5056     if( pOp->p5 & NC_IsCheck ){
5057       zContext = "a CHECK constraint";
5058     }else if( pOp->p5 & NC_GenCol ){
5059       zContext = "a generated column";
5060     }else{
5061       zContext = "an index";
5062     }
5063     zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5064                            pCtx->pFunc->zName, zContext);
5065     sqlite3_result_error(pCtx, zMsg, -1);
5066     sqlite3_free(zMsg);
5067     return 0;
5068   }
5069   return 1;
5070 }
5071 
5072 #ifndef SQLITE_OMIT_VIRTUALTABLE
5073 /*
5074 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5075 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5076 ** in memory obtained from sqlite3DbMalloc).
5077 */
sqlite3VtabImportErrmsg(Vdbe * p,sqlite3_vtab * pVtab)5078 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5079   if( pVtab->zErrMsg ){
5080     sqlite3 *db = p->db;
5081     sqlite3DbFree(db, p->zErrMsg);
5082     p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5083     sqlite3_free(pVtab->zErrMsg);
5084     pVtab->zErrMsg = 0;
5085   }
5086 }
5087 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5088 
5089 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5090 
5091 /*
5092 ** If the second argument is not NULL, release any allocations associated
5093 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5094 ** structure itself, using sqlite3DbFree().
5095 **
5096 ** This function is used to free UnpackedRecord structures allocated by
5097 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5098 */
vdbeFreeUnpacked(sqlite3 * db,int nField,UnpackedRecord * p)5099 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5100   if( p ){
5101     int i;
5102     for(i=0; i<nField; i++){
5103       Mem *pMem = &p->aMem[i];
5104       if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5105     }
5106     sqlite3DbFreeNN(db, p);
5107   }
5108 }
5109 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5110 
5111 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5112 /*
5113 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5114 ** then cursor passed as the second argument should point to the row about
5115 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5116 ** the required value will be read from the row the cursor points to.
5117 */
sqlite3VdbePreUpdateHook(Vdbe * v,VdbeCursor * pCsr,int op,const char * zDb,Table * pTab,i64 iKey1,int iReg)5118 void sqlite3VdbePreUpdateHook(
5119   Vdbe *v,                        /* Vdbe pre-update hook is invoked by */
5120   VdbeCursor *pCsr,               /* Cursor to grab old.* values from */
5121   int op,                         /* SQLITE_INSERT, UPDATE or DELETE */
5122   const char *zDb,                /* Database name */
5123   Table *pTab,                    /* Modified table */
5124   i64 iKey1,                      /* Initial key value */
5125   int iReg                        /* Register for new.* record */
5126 ){
5127   sqlite3 *db = v->db;
5128   i64 iKey2;
5129   PreUpdate preupdate;
5130   const char *zTbl = pTab->zName;
5131   static const u8 fakeSortOrder = 0;
5132 
5133   assert( db->pPreUpdate==0 );
5134   memset(&preupdate, 0, sizeof(PreUpdate));
5135   if( HasRowid(pTab)==0 ){
5136     iKey1 = iKey2 = 0;
5137     preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5138   }else{
5139     if( op==SQLITE_UPDATE ){
5140       iKey2 = v->aMem[iReg].u.i;
5141     }else{
5142       iKey2 = iKey1;
5143     }
5144   }
5145 
5146   assert( pCsr->nField==pTab->nCol
5147        || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5148   );
5149 
5150   preupdate.v = v;
5151   preupdate.pCsr = pCsr;
5152   preupdate.op = op;
5153   preupdate.iNewReg = iReg;
5154   preupdate.keyinfo.db = db;
5155   preupdate.keyinfo.enc = ENC(db);
5156   preupdate.keyinfo.nKeyField = pTab->nCol;
5157   preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5158   preupdate.iKey1 = iKey1;
5159   preupdate.iKey2 = iKey2;
5160   preupdate.pTab = pTab;
5161 
5162   db->pPreUpdate = &preupdate;
5163   db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5164   db->pPreUpdate = 0;
5165   sqlite3DbFree(db, preupdate.aRecord);
5166   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5167   vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5168   if( preupdate.aNew ){
5169     int i;
5170     for(i=0; i<pCsr->nField; i++){
5171       sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5172     }
5173     sqlite3DbFreeNN(db, preupdate.aNew);
5174   }
5175 }
5176 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5177