1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity.  This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
24 
25 /*
26 ** Deallocate all memory associated with a WhereOrInfo object.
27 */
whereOrInfoDelete(sqlite3 * db,WhereOrInfo * p)28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29   sqlite3WhereClauseClear(&p->wc);
30   sqlite3DbFree(db, p);
31 }
32 
33 /*
34 ** Deallocate all memory associated with a WhereAndInfo object.
35 */
whereAndInfoDelete(sqlite3 * db,WhereAndInfo * p)36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37   sqlite3WhereClauseClear(&p->wc);
38   sqlite3DbFree(db, p);
39 }
40 
41 /*
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error.  The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
48 **
49 ** This routine will increase the size of the pWC->a[] array as necessary.
50 **
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
54 **
55 ** WARNING:  This routine might reallocate the space used to store
56 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
57 ** calling this routine.  Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
59 */
whereClauseInsert(WhereClause * pWC,Expr * p,u16 wtFlags)60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61   WhereTerm *pTerm;
62   int idx;
63   testcase( wtFlags & TERM_VIRTUAL );
64   if( pWC->nTerm>=pWC->nSlot ){
65     WhereTerm *pOld = pWC->a;
66     sqlite3 *db = pWC->pWInfo->pParse->db;
67     pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68     if( pWC->a==0 ){
69       if( wtFlags & TERM_DYNAMIC ){
70         sqlite3ExprDelete(db, p);
71       }
72       pWC->a = pOld;
73       return 0;
74     }
75     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76     if( pOld!=pWC->aStatic ){
77       sqlite3DbFree(db, pOld);
78     }
79     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
80   }
81   pTerm = &pWC->a[idx = pWC->nTerm++];
82   if( p && ExprHasProperty(p, EP_Unlikely) ){
83     pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
84   }else{
85     pTerm->truthProb = 1;
86   }
87   pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
88   pTerm->wtFlags = wtFlags;
89   pTerm->pWC = pWC;
90   pTerm->iParent = -1;
91   memset(&pTerm->eOperator, 0,
92          sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
93   return idx;
94 }
95 
96 /*
97 ** Return TRUE if the given operator is one of the operators that is
98 ** allowed for an indexable WHERE clause term.  The allowed operators are
99 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
100 */
allowedOp(int op)101 static int allowedOp(int op){
102   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
103   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
104   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
105   assert( TK_GE==TK_EQ+4 );
106   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
107 }
108 
109 /*
110 ** Commute a comparison operator.  Expressions of the form "X op Y"
111 ** are converted into "Y op X".
112 */
exprCommute(Parse * pParse,Expr * pExpr)113 static u16 exprCommute(Parse *pParse, Expr *pExpr){
114   if( pExpr->pLeft->op==TK_VECTOR
115    || pExpr->pRight->op==TK_VECTOR
116    || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
117       sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
118   ){
119     pExpr->flags ^= EP_Commuted;
120   }
121   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
122   if( pExpr->op>=TK_GT ){
123     assert( TK_LT==TK_GT+2 );
124     assert( TK_GE==TK_LE+2 );
125     assert( TK_GT>TK_EQ );
126     assert( TK_GT<TK_LE );
127     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
128     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
129   }
130   return 0;
131 }
132 
133 /*
134 ** Translate from TK_xx operator to WO_xx bitmask.
135 */
operatorMask(int op)136 static u16 operatorMask(int op){
137   u16 c;
138   assert( allowedOp(op) );
139   if( op==TK_IN ){
140     c = WO_IN;
141   }else if( op==TK_ISNULL ){
142     c = WO_ISNULL;
143   }else if( op==TK_IS ){
144     c = WO_IS;
145   }else{
146     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
147     c = (u16)(WO_EQ<<(op-TK_EQ));
148   }
149   assert( op!=TK_ISNULL || c==WO_ISNULL );
150   assert( op!=TK_IN || c==WO_IN );
151   assert( op!=TK_EQ || c==WO_EQ );
152   assert( op!=TK_LT || c==WO_LT );
153   assert( op!=TK_LE || c==WO_LE );
154   assert( op!=TK_GT || c==WO_GT );
155   assert( op!=TK_GE || c==WO_GE );
156   assert( op!=TK_IS || c==WO_IS );
157   return c;
158 }
159 
160 
161 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
162 /*
163 ** Check to see if the given expression is a LIKE or GLOB operator that
164 ** can be optimized using inequality constraints.  Return TRUE if it is
165 ** so and false if not.
166 **
167 ** In order for the operator to be optimizible, the RHS must be a string
168 ** literal that does not begin with a wildcard.  The LHS must be a column
169 ** that may only be NULL, a string, or a BLOB, never a number. (This means
170 ** that virtual tables cannot participate in the LIKE optimization.)  The
171 ** collating sequence for the column on the LHS must be appropriate for
172 ** the operator.
173 */
isLikeOrGlob(Parse * pParse,Expr * pExpr,Expr ** ppPrefix,int * pisComplete,int * pnoCase)174 static int isLikeOrGlob(
175   Parse *pParse,    /* Parsing and code generating context */
176   Expr *pExpr,      /* Test this expression */
177   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
178   int *pisComplete, /* True if the only wildcard is % in the last character */
179   int *pnoCase      /* True if uppercase is equivalent to lowercase */
180 ){
181   const u8 *z = 0;           /* String on RHS of LIKE operator */
182   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
183   ExprList *pList;           /* List of operands to the LIKE operator */
184   u8 c;                      /* One character in z[] */
185   int cnt;                   /* Number of non-wildcard prefix characters */
186   u8 wc[4];                  /* Wildcard characters */
187   sqlite3 *db = pParse->db;  /* Database connection */
188   sqlite3_value *pVal = 0;
189   int op;                    /* Opcode of pRight */
190   int rc;                    /* Result code to return */
191 
192   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
193     return 0;
194   }
195 #ifdef SQLITE_EBCDIC
196   if( *pnoCase ) return 0;
197 #endif
198   pList = pExpr->x.pList;
199   pLeft = pList->a[1].pExpr;
200 
201   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
202   op = pRight->op;
203   if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
204     Vdbe *pReprepare = pParse->pReprepare;
205     int iCol = pRight->iColumn;
206     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
207     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
208       z = sqlite3_value_text(pVal);
209     }
210     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
211     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
212   }else if( op==TK_STRING ){
213     z = (u8*)pRight->u.zToken;
214   }
215   if( z ){
216 
217     /* Count the number of prefix characters prior to the first wildcard */
218     cnt = 0;
219     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
220       cnt++;
221       if( c==wc[3] && z[cnt]!=0 ) cnt++;
222     }
223 
224     /* The optimization is possible only if (1) the pattern does not begin
225     ** with a wildcard and if (2) the non-wildcard prefix does not end with
226     ** an (illegal 0xff) character, or (3) the pattern does not consist of
227     ** a single escape character. The second condition is necessary so
228     ** that we can increment the prefix key to find an upper bound for the
229     ** range search. The third is because the caller assumes that the pattern
230     ** consists of at least one character after all escapes have been
231     ** removed.  */
232     if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
233       Expr *pPrefix;
234 
235       /* A "complete" match if the pattern ends with "*" or "%" */
236       *pisComplete = c==wc[0] && z[cnt+1]==0;
237 
238       /* Get the pattern prefix.  Remove all escapes from the prefix. */
239       pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
240       if( pPrefix ){
241         int iFrom, iTo;
242         char *zNew = pPrefix->u.zToken;
243         zNew[cnt] = 0;
244         for(iFrom=iTo=0; iFrom<cnt; iFrom++){
245           if( zNew[iFrom]==wc[3] ) iFrom++;
246           zNew[iTo++] = zNew[iFrom];
247         }
248         zNew[iTo] = 0;
249         assert( iTo>0 );
250 
251         /* If the LHS is not an ordinary column with TEXT affinity, then the
252         ** pattern prefix boundaries (both the start and end boundaries) must
253         ** not look like a number.  Otherwise the pattern might be treated as
254         ** a number, which will invalidate the LIKE optimization.
255         **
256         ** Getting this right has been a persistent source of bugs in the
257         ** LIKE optimization.  See, for example:
258         **    2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
259         **    2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
260         **    2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
261         **    2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
262         **    2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
263         */
264         if( pLeft->op!=TK_COLUMN
265          || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
266          || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
267         ){
268           int isNum;
269           double rDummy;
270           isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
271           if( isNum<=0 ){
272             if( iTo==1 && zNew[0]=='-' ){
273               isNum = +1;
274             }else{
275               zNew[iTo-1]++;
276               isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
277               zNew[iTo-1]--;
278             }
279           }
280           if( isNum>0 ){
281             sqlite3ExprDelete(db, pPrefix);
282             sqlite3ValueFree(pVal);
283             return 0;
284           }
285         }
286       }
287       *ppPrefix = pPrefix;
288 
289       /* If the RHS pattern is a bound parameter, make arrangements to
290       ** reprepare the statement when that parameter is rebound */
291       if( op==TK_VARIABLE ){
292         Vdbe *v = pParse->pVdbe;
293         sqlite3VdbeSetVarmask(v, pRight->iColumn);
294         if( *pisComplete && pRight->u.zToken[1] ){
295           /* If the rhs of the LIKE expression is a variable, and the current
296           ** value of the variable means there is no need to invoke the LIKE
297           ** function, then no OP_Variable will be added to the program.
298           ** This causes problems for the sqlite3_bind_parameter_name()
299           ** API. To work around them, add a dummy OP_Variable here.
300           */
301           int r1 = sqlite3GetTempReg(pParse);
302           sqlite3ExprCodeTarget(pParse, pRight, r1);
303           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
304           sqlite3ReleaseTempReg(pParse, r1);
305         }
306       }
307     }else{
308       z = 0;
309     }
310   }
311 
312   rc = (z!=0);
313   sqlite3ValueFree(pVal);
314   return rc;
315 }
316 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
317 
318 
319 #ifndef SQLITE_OMIT_VIRTUALTABLE
320 /*
321 ** Check to see if the pExpr expression is a form that needs to be passed
322 ** to the xBestIndex method of virtual tables.  Forms of interest include:
323 **
324 **          Expression                   Virtual Table Operator
325 **          -----------------------      ---------------------------------
326 **      1.  column MATCH expr            SQLITE_INDEX_CONSTRAINT_MATCH
327 **      2.  column GLOB expr             SQLITE_INDEX_CONSTRAINT_GLOB
328 **      3.  column LIKE expr             SQLITE_INDEX_CONSTRAINT_LIKE
329 **      4.  column REGEXP expr           SQLITE_INDEX_CONSTRAINT_REGEXP
330 **      5.  column != expr               SQLITE_INDEX_CONSTRAINT_NE
331 **      6.  expr != column               SQLITE_INDEX_CONSTRAINT_NE
332 **      7.  column IS NOT expr           SQLITE_INDEX_CONSTRAINT_ISNOT
333 **      8.  expr IS NOT column           SQLITE_INDEX_CONSTRAINT_ISNOT
334 **      9.  column IS NOT NULL           SQLITE_INDEX_CONSTRAINT_ISNOTNULL
335 **
336 ** In every case, "column" must be a column of a virtual table.  If there
337 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
338 ** "expr" expression (even though in forms (6) and (8) the column is on the
339 ** right and the expression is on the left).  Also set *peOp2 to the
340 ** appropriate virtual table operator.  The return value is 1 or 2 if there
341 ** is a match.  The usual return is 1, but if the RHS is also a column
342 ** of virtual table in forms (5) or (7) then return 2.
343 **
344 ** If the expression matches none of the patterns above, return 0.
345 */
isAuxiliaryVtabOperator(sqlite3 * db,Expr * pExpr,unsigned char * peOp2,Expr ** ppLeft,Expr ** ppRight)346 static int isAuxiliaryVtabOperator(
347   sqlite3 *db,                    /* Parsing context */
348   Expr *pExpr,                    /* Test this expression */
349   unsigned char *peOp2,           /* OUT: 0 for MATCH, or else an op2 value */
350   Expr **ppLeft,                  /* Column expression to left of MATCH/op2 */
351   Expr **ppRight                  /* Expression to left of MATCH/op2 */
352 ){
353   if( pExpr->op==TK_FUNCTION ){
354     static const struct Op2 {
355       const char *zOp;
356       unsigned char eOp2;
357     } aOp[] = {
358       { "match",  SQLITE_INDEX_CONSTRAINT_MATCH },
359       { "glob",   SQLITE_INDEX_CONSTRAINT_GLOB },
360       { "like",   SQLITE_INDEX_CONSTRAINT_LIKE },
361       { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
362     };
363     ExprList *pList;
364     Expr *pCol;                     /* Column reference */
365     int i;
366 
367     pList = pExpr->x.pList;
368     if( pList==0 || pList->nExpr!=2 ){
369       return 0;
370     }
371 
372     /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
373     ** virtual table on their second argument, which is the same as
374     ** the left-hand side operand in their in-fix form.
375     **
376     **       vtab_column MATCH expression
377     **       MATCH(expression,vtab_column)
378     */
379     pCol = pList->a[1].pExpr;
380     testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
381     if( ExprIsVtab(pCol) ){
382       for(i=0; i<ArraySize(aOp); i++){
383         if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
384           *peOp2 = aOp[i].eOp2;
385           *ppRight = pList->a[0].pExpr;
386           *ppLeft = pCol;
387           return 1;
388         }
389       }
390     }
391 
392     /* We can also match against the first column of overloaded
393     ** functions where xFindFunction returns a value of at least
394     ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
395     **
396     **      OVERLOADED(vtab_column,expression)
397     **
398     ** Historically, xFindFunction expected to see lower-case function
399     ** names.  But for this use case, xFindFunction is expected to deal
400     ** with function names in an arbitrary case.
401     */
402     pCol = pList->a[0].pExpr;
403     testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
404     if( ExprIsVtab(pCol) ){
405       sqlite3_vtab *pVtab;
406       sqlite3_module *pMod;
407       void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
408       void *pNotUsed;
409       pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
410       assert( pVtab!=0 );
411       assert( pVtab->pModule!=0 );
412       pMod = (sqlite3_module *)pVtab->pModule;
413       if( pMod->xFindFunction!=0 ){
414         i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
415         if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
416           *peOp2 = i;
417           *ppRight = pList->a[1].pExpr;
418           *ppLeft = pCol;
419           return 1;
420         }
421       }
422     }
423   }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
424     int res = 0;
425     Expr *pLeft = pExpr->pLeft;
426     Expr *pRight = pExpr->pRight;
427     testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 );
428     if( ExprIsVtab(pLeft) ){
429       res++;
430     }
431     testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 );
432     if( pRight && ExprIsVtab(pRight) ){
433       res++;
434       SWAP(Expr*, pLeft, pRight);
435     }
436     *ppLeft = pLeft;
437     *ppRight = pRight;
438     if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
439     if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
440     if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
441     return res;
442   }
443   return 0;
444 }
445 #endif /* SQLITE_OMIT_VIRTUALTABLE */
446 
447 /*
448 ** If the pBase expression originated in the ON or USING clause of
449 ** a join, then transfer the appropriate markings over to derived.
450 */
transferJoinMarkings(Expr * pDerived,Expr * pBase)451 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
452   if( pDerived ){
453     pDerived->flags |= pBase->flags & EP_FromJoin;
454     pDerived->iRightJoinTable = pBase->iRightJoinTable;
455   }
456 }
457 
458 /*
459 ** Mark term iChild as being a child of term iParent
460 */
markTermAsChild(WhereClause * pWC,int iChild,int iParent)461 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
462   pWC->a[iChild].iParent = iParent;
463   pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
464   pWC->a[iParent].nChild++;
465 }
466 
467 /*
468 ** Return the N-th AND-connected subterm of pTerm.  Or if pTerm is not
469 ** a conjunction, then return just pTerm when N==0.  If N is exceeds
470 ** the number of available subterms, return NULL.
471 */
whereNthSubterm(WhereTerm * pTerm,int N)472 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
473   if( pTerm->eOperator!=WO_AND ){
474     return N==0 ? pTerm : 0;
475   }
476   if( N<pTerm->u.pAndInfo->wc.nTerm ){
477     return &pTerm->u.pAndInfo->wc.a[N];
478   }
479   return 0;
480 }
481 
482 /*
483 ** Subterms pOne and pTwo are contained within WHERE clause pWC.  The
484 ** two subterms are in disjunction - they are OR-ed together.
485 **
486 ** If these two terms are both of the form:  "A op B" with the same
487 ** A and B values but different operators and if the operators are
488 ** compatible (if one is = and the other is <, for example) then
489 ** add a new virtual AND term to pWC that is the combination of the
490 ** two.
491 **
492 ** Some examples:
493 **
494 **    x<y OR x=y    -->     x<=y
495 **    x=y OR x=y    -->     x=y
496 **    x<=y OR x<y   -->     x<=y
497 **
498 ** The following is NOT generated:
499 **
500 **    x<y OR x>y    -->     x!=y
501 */
whereCombineDisjuncts(SrcList * pSrc,WhereClause * pWC,WhereTerm * pOne,WhereTerm * pTwo)502 static void whereCombineDisjuncts(
503   SrcList *pSrc,         /* the FROM clause */
504   WhereClause *pWC,      /* The complete WHERE clause */
505   WhereTerm *pOne,       /* First disjunct */
506   WhereTerm *pTwo        /* Second disjunct */
507 ){
508   u16 eOp = pOne->eOperator | pTwo->eOperator;
509   sqlite3 *db;           /* Database connection (for malloc) */
510   Expr *pNew;            /* New virtual expression */
511   int op;                /* Operator for the combined expression */
512   int idxNew;            /* Index in pWC of the next virtual term */
513 
514   if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
515   if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
516   if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
517    && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
518   assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
519   assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
520   if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
521   if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
522   /* If we reach this point, it means the two subterms can be combined */
523   if( (eOp & (eOp-1))!=0 ){
524     if( eOp & (WO_LT|WO_LE) ){
525       eOp = WO_LE;
526     }else{
527       assert( eOp & (WO_GT|WO_GE) );
528       eOp = WO_GE;
529     }
530   }
531   db = pWC->pWInfo->pParse->db;
532   pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
533   if( pNew==0 ) return;
534   for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
535   pNew->op = op;
536   idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
537   exprAnalyze(pSrc, pWC, idxNew);
538 }
539 
540 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
541 /*
542 ** Analyze a term that consists of two or more OR-connected
543 ** subterms.  So in:
544 **
545 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
546 **                          ^^^^^^^^^^^^^^^^^^^^
547 **
548 ** This routine analyzes terms such as the middle term in the above example.
549 ** A WhereOrTerm object is computed and attached to the term under
550 ** analysis, regardless of the outcome of the analysis.  Hence:
551 **
552 **     WhereTerm.wtFlags   |=  TERM_ORINFO
553 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
554 **
555 ** The term being analyzed must have two or more of OR-connected subterms.
556 ** A single subterm might be a set of AND-connected sub-subterms.
557 ** Examples of terms under analysis:
558 **
559 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
560 **     (B)     x=expr1 OR expr2=x OR x=expr3
561 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
562 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
563 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
564 **     (F)     x>A OR (x=A AND y>=B)
565 **
566 ** CASE 1:
567 **
568 ** If all subterms are of the form T.C=expr for some single column of C and
569 ** a single table T (as shown in example B above) then create a new virtual
570 ** term that is an equivalent IN expression.  In other words, if the term
571 ** being analyzed is:
572 **
573 **      x = expr1  OR  expr2 = x  OR  x = expr3
574 **
575 ** then create a new virtual term like this:
576 **
577 **      x IN (expr1,expr2,expr3)
578 **
579 ** CASE 2:
580 **
581 ** If there are exactly two disjuncts and one side has x>A and the other side
582 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
583 ** WHERE clause of the form "x>=A".  Example:
584 **
585 **      x>A OR (x=A AND y>B)    adds:    x>=A
586 **
587 ** The added conjunct can sometimes be helpful in query planning.
588 **
589 ** CASE 3:
590 **
591 ** If all subterms are indexable by a single table T, then set
592 **
593 **     WhereTerm.eOperator              =  WO_OR
594 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
595 **
596 ** A subterm is "indexable" if it is of the form
597 ** "T.C <op> <expr>" where C is any column of table T and
598 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
599 ** A subterm is also indexable if it is an AND of two or more
600 ** subsubterms at least one of which is indexable.  Indexable AND
601 ** subterms have their eOperator set to WO_AND and they have
602 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
603 **
604 ** From another point of view, "indexable" means that the subterm could
605 ** potentially be used with an index if an appropriate index exists.
606 ** This analysis does not consider whether or not the index exists; that
607 ** is decided elsewhere.  This analysis only looks at whether subterms
608 ** appropriate for indexing exist.
609 **
610 ** All examples A through E above satisfy case 3.  But if a term
611 ** also satisfies case 1 (such as B) we know that the optimizer will
612 ** always prefer case 1, so in that case we pretend that case 3 is not
613 ** satisfied.
614 **
615 ** It might be the case that multiple tables are indexable.  For example,
616 ** (E) above is indexable on tables P, Q, and R.
617 **
618 ** Terms that satisfy case 3 are candidates for lookup by using
619 ** separate indices to find rowids for each subterm and composing
620 ** the union of all rowids using a RowSet object.  This is similar
621 ** to "bitmap indices" in other database engines.
622 **
623 ** OTHERWISE:
624 **
625 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
626 ** zero.  This term is not useful for search.
627 */
exprAnalyzeOrTerm(SrcList * pSrc,WhereClause * pWC,int idxTerm)628 static void exprAnalyzeOrTerm(
629   SrcList *pSrc,            /* the FROM clause */
630   WhereClause *pWC,         /* the complete WHERE clause */
631   int idxTerm               /* Index of the OR-term to be analyzed */
632 ){
633   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
634   Parse *pParse = pWInfo->pParse;         /* Parser context */
635   sqlite3 *db = pParse->db;               /* Database connection */
636   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
637   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
638   int i;                                  /* Loop counters */
639   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
640   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
641   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
642   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
643   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
644 
645   /*
646   ** Break the OR clause into its separate subterms.  The subterms are
647   ** stored in a WhereClause structure containing within the WhereOrInfo
648   ** object that is attached to the original OR clause term.
649   */
650   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
651   assert( pExpr->op==TK_OR );
652   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
653   if( pOrInfo==0 ) return;
654   pTerm->wtFlags |= TERM_ORINFO;
655   pOrWc = &pOrInfo->wc;
656   memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
657   sqlite3WhereClauseInit(pOrWc, pWInfo);
658   sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
659   sqlite3WhereExprAnalyze(pSrc, pOrWc);
660   if( db->mallocFailed ) return;
661   assert( pOrWc->nTerm>=2 );
662 
663   /*
664   ** Compute the set of tables that might satisfy cases 1 or 3.
665   */
666   indexable = ~(Bitmask)0;
667   chngToIN = ~(Bitmask)0;
668   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
669     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
670       WhereAndInfo *pAndInfo;
671       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
672       chngToIN = 0;
673       pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
674       if( pAndInfo ){
675         WhereClause *pAndWC;
676         WhereTerm *pAndTerm;
677         int j;
678         Bitmask b = 0;
679         pOrTerm->u.pAndInfo = pAndInfo;
680         pOrTerm->wtFlags |= TERM_ANDINFO;
681         pOrTerm->eOperator = WO_AND;
682         pAndWC = &pAndInfo->wc;
683         memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
684         sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
685         sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
686         sqlite3WhereExprAnalyze(pSrc, pAndWC);
687         pAndWC->pOuter = pWC;
688         if( !db->mallocFailed ){
689           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
690             assert( pAndTerm->pExpr );
691             if( allowedOp(pAndTerm->pExpr->op)
692              || pAndTerm->eOperator==WO_AUX
693             ){
694               b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
695             }
696           }
697         }
698         indexable &= b;
699       }
700     }else if( pOrTerm->wtFlags & TERM_COPIED ){
701       /* Skip this term for now.  We revisit it when we process the
702       ** corresponding TERM_VIRTUAL term */
703     }else{
704       Bitmask b;
705       b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
706       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
707         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
708         b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
709       }
710       indexable &= b;
711       if( (pOrTerm->eOperator & WO_EQ)==0 ){
712         chngToIN = 0;
713       }else{
714         chngToIN &= b;
715       }
716     }
717   }
718 
719   /*
720   ** Record the set of tables that satisfy case 3.  The set might be
721   ** empty.
722   */
723   pOrInfo->indexable = indexable;
724   if( indexable ){
725     pTerm->eOperator = WO_OR;
726     pWC->hasOr = 1;
727   }else{
728     pTerm->eOperator = WO_OR;
729   }
730 
731   /* For a two-way OR, attempt to implementation case 2.
732   */
733   if( indexable && pOrWc->nTerm==2 ){
734     int iOne = 0;
735     WhereTerm *pOne;
736     while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
737       int iTwo = 0;
738       WhereTerm *pTwo;
739       while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
740         whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
741       }
742     }
743   }
744 
745   /*
746   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
747   ** we have to do some additional checking to see if case 1 really
748   ** is satisfied.
749   **
750   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
751   ** that there is no possibility of transforming the OR clause into an
752   ** IN operator because one or more terms in the OR clause contain
753   ** something other than == on a column in the single table.  The 1-bit
754   ** case means that every term of the OR clause is of the form
755   ** "table.column=expr" for some single table.  The one bit that is set
756   ** will correspond to the common table.  We still need to check to make
757   ** sure the same column is used on all terms.  The 2-bit case is when
758   ** the all terms are of the form "table1.column=table2.column".  It
759   ** might be possible to form an IN operator with either table1.column
760   ** or table2.column as the LHS if either is common to every term of
761   ** the OR clause.
762   **
763   ** Note that terms of the form "table.column1=table.column2" (the
764   ** same table on both sizes of the ==) cannot be optimized.
765   */
766   if( chngToIN ){
767     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
768     int iColumn = -1;         /* Column index on lhs of IN operator */
769     int iCursor = -1;         /* Table cursor common to all terms */
770     int j = 0;                /* Loop counter */
771 
772     /* Search for a table and column that appears on one side or the
773     ** other of the == operator in every subterm.  That table and column
774     ** will be recorded in iCursor and iColumn.  There might not be any
775     ** such table and column.  Set okToChngToIN if an appropriate table
776     ** and column is found but leave okToChngToIN false if not found.
777     */
778     for(j=0; j<2 && !okToChngToIN; j++){
779       Expr *pLeft = 0;
780       pOrTerm = pOrWc->a;
781       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
782         assert( pOrTerm->eOperator & WO_EQ );
783         pOrTerm->wtFlags &= ~TERM_OR_OK;
784         if( pOrTerm->leftCursor==iCursor ){
785           /* This is the 2-bit case and we are on the second iteration and
786           ** current term is from the first iteration.  So skip this term. */
787           assert( j==1 );
788           continue;
789         }
790         if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
791                                             pOrTerm->leftCursor))==0 ){
792           /* This term must be of the form t1.a==t2.b where t2 is in the
793           ** chngToIN set but t1 is not.  This term will be either preceded
794           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
795           ** and use its inversion. */
796           testcase( pOrTerm->wtFlags & TERM_COPIED );
797           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
798           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
799           continue;
800         }
801         iColumn = pOrTerm->u.leftColumn;
802         iCursor = pOrTerm->leftCursor;
803         pLeft = pOrTerm->pExpr->pLeft;
804         break;
805       }
806       if( i<0 ){
807         /* No candidate table+column was found.  This can only occur
808         ** on the second iteration */
809         assert( j==1 );
810         assert( IsPowerOfTwo(chngToIN) );
811         assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
812         break;
813       }
814       testcase( j==1 );
815 
816       /* We have found a candidate table and column.  Check to see if that
817       ** table and column is common to every term in the OR clause */
818       okToChngToIN = 1;
819       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
820         assert( pOrTerm->eOperator & WO_EQ );
821         if( pOrTerm->leftCursor!=iCursor ){
822           pOrTerm->wtFlags &= ~TERM_OR_OK;
823         }else if( pOrTerm->u.leftColumn!=iColumn || (iColumn==XN_EXPR
824                && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
825         )){
826           okToChngToIN = 0;
827         }else{
828           int affLeft, affRight;
829           /* If the right-hand side is also a column, then the affinities
830           ** of both right and left sides must be such that no type
831           ** conversions are required on the right.  (Ticket #2249)
832           */
833           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
834           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
835           if( affRight!=0 && affRight!=affLeft ){
836             okToChngToIN = 0;
837           }else{
838             pOrTerm->wtFlags |= TERM_OR_OK;
839           }
840         }
841       }
842     }
843 
844     /* At this point, okToChngToIN is true if original pTerm satisfies
845     ** case 1.  In that case, construct a new virtual term that is
846     ** pTerm converted into an IN operator.
847     */
848     if( okToChngToIN ){
849       Expr *pDup;            /* A transient duplicate expression */
850       ExprList *pList = 0;   /* The RHS of the IN operator */
851       Expr *pLeft = 0;       /* The LHS of the IN operator */
852       Expr *pNew;            /* The complete IN operator */
853 
854       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
855         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
856         assert( pOrTerm->eOperator & WO_EQ );
857         assert( pOrTerm->leftCursor==iCursor );
858         assert( pOrTerm->u.leftColumn==iColumn );
859         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
860         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
861         pLeft = pOrTerm->pExpr->pLeft;
862       }
863       assert( pLeft!=0 );
864       pDup = sqlite3ExprDup(db, pLeft, 0);
865       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
866       if( pNew ){
867         int idxNew;
868         transferJoinMarkings(pNew, pExpr);
869         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
870         pNew->x.pList = pList;
871         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
872         testcase( idxNew==0 );
873         exprAnalyze(pSrc, pWC, idxNew);
874         /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where used again */
875         markTermAsChild(pWC, idxNew, idxTerm);
876       }else{
877         sqlite3ExprListDelete(db, pList);
878       }
879     }
880   }
881 }
882 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
883 
884 /*
885 ** We already know that pExpr is a binary operator where both operands are
886 ** column references.  This routine checks to see if pExpr is an equivalence
887 ** relation:
888 **   1.  The SQLITE_Transitive optimization must be enabled
889 **   2.  Must be either an == or an IS operator
890 **   3.  Not originating in the ON clause of an OUTER JOIN
891 **   4.  The affinities of A and B must be compatible
892 **   5a. Both operands use the same collating sequence OR
893 **   5b. The overall collating sequence is BINARY
894 ** If this routine returns TRUE, that means that the RHS can be substituted
895 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
896 ** This is an optimization.  No harm comes from returning 0.  But if 1 is
897 ** returned when it should not be, then incorrect answers might result.
898 */
termIsEquivalence(Parse * pParse,Expr * pExpr)899 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
900   char aff1, aff2;
901   CollSeq *pColl;
902   if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
903   if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
904   if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
905   aff1 = sqlite3ExprAffinity(pExpr->pLeft);
906   aff2 = sqlite3ExprAffinity(pExpr->pRight);
907   if( aff1!=aff2
908    && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
909   ){
910     return 0;
911   }
912   pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
913   if( sqlite3IsBinary(pColl) ) return 1;
914   return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
915 }
916 
917 /*
918 ** Recursively walk the expressions of a SELECT statement and generate
919 ** a bitmask indicating which tables are used in that expression
920 ** tree.
921 */
exprSelectUsage(WhereMaskSet * pMaskSet,Select * pS)922 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
923   Bitmask mask = 0;
924   while( pS ){
925     SrcList *pSrc = pS->pSrc;
926     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
927     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
928     mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
929     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
930     mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
931     if( ALWAYS(pSrc!=0) ){
932       int i;
933       for(i=0; i<pSrc->nSrc; i++){
934         mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
935         mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
936         if( pSrc->a[i].fg.isTabFunc ){
937           mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
938         }
939       }
940     }
941     pS = pS->pPrior;
942   }
943   return mask;
944 }
945 
946 /*
947 ** Expression pExpr is one operand of a comparison operator that might
948 ** be useful for indexing.  This routine checks to see if pExpr appears
949 ** in any index.  Return TRUE (1) if pExpr is an indexed term and return
950 ** FALSE (0) if not.  If TRUE is returned, also set aiCurCol[0] to the cursor
951 ** number of the table that is indexed and aiCurCol[1] to the column number
952 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
953 ** indexed.
954 **
955 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
956 ** true even if that particular column is not indexed, because the column
957 ** might be added to an automatic index later.
958 */
exprMightBeIndexed2(SrcList * pFrom,Bitmask mPrereq,int * aiCurCol,Expr * pExpr)959 static SQLITE_NOINLINE int exprMightBeIndexed2(
960   SrcList *pFrom,        /* The FROM clause */
961   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
962   int *aiCurCol,         /* Write the referenced table cursor and column here */
963   Expr *pExpr            /* An operand of a comparison operator */
964 ){
965   Index *pIdx;
966   int i;
967   int iCur;
968   for(i=0; mPrereq>1; i++, mPrereq>>=1){}
969   iCur = pFrom->a[i].iCursor;
970   for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
971     if( pIdx->aColExpr==0 ) continue;
972     for(i=0; i<pIdx->nKeyCol; i++){
973       if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
974       if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
975         aiCurCol[0] = iCur;
976         aiCurCol[1] = XN_EXPR;
977         return 1;
978       }
979     }
980   }
981   return 0;
982 }
exprMightBeIndexed(SrcList * pFrom,Bitmask mPrereq,int * aiCurCol,Expr * pExpr,int op)983 static int exprMightBeIndexed(
984   SrcList *pFrom,        /* The FROM clause */
985   Bitmask mPrereq,       /* Bitmask of FROM clause terms referenced by pExpr */
986   int *aiCurCol,         /* Write the referenced table cursor & column here */
987   Expr *pExpr,           /* An operand of a comparison operator */
988   int op                 /* The specific comparison operator */
989 ){
990   /* If this expression is a vector to the left or right of a
991   ** inequality constraint (>, <, >= or <=), perform the processing
992   ** on the first element of the vector.  */
993   assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
994   assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
995   assert( op<=TK_GE );
996   if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
997     pExpr = pExpr->x.pList->a[0].pExpr;
998   }
999 
1000   if( pExpr->op==TK_COLUMN ){
1001     aiCurCol[0] = pExpr->iTable;
1002     aiCurCol[1] = pExpr->iColumn;
1003     return 1;
1004   }
1005   if( mPrereq==0 ) return 0;                 /* No table references */
1006   if( (mPrereq&(mPrereq-1))!=0 ) return 0;   /* Refs more than one table */
1007   return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1008 }
1009 
1010 /*
1011 ** The input to this routine is an WhereTerm structure with only the
1012 ** "pExpr" field filled in.  The job of this routine is to analyze the
1013 ** subexpression and populate all the other fields of the WhereTerm
1014 ** structure.
1015 **
1016 ** If the expression is of the form "<expr> <op> X" it gets commuted
1017 ** to the standard form of "X <op> <expr>".
1018 **
1019 ** If the expression is of the form "X <op> Y" where both X and Y are
1020 ** columns, then the original expression is unchanged and a new virtual
1021 ** term of the form "Y <op> X" is added to the WHERE clause and
1022 ** analyzed separately.  The original term is marked with TERM_COPIED
1023 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1024 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1025 ** is a commuted copy of a prior term.)  The original term has nChild=1
1026 ** and the copy has idxParent set to the index of the original term.
1027 */
exprAnalyze(SrcList * pSrc,WhereClause * pWC,int idxTerm)1028 static void exprAnalyze(
1029   SrcList *pSrc,            /* the FROM clause */
1030   WhereClause *pWC,         /* the WHERE clause */
1031   int idxTerm               /* Index of the term to be analyzed */
1032 ){
1033   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1034   WhereTerm *pTerm;                /* The term to be analyzed */
1035   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1036   Expr *pExpr;                     /* The expression to be analyzed */
1037   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1038   Bitmask prereqAll;               /* Prerequesites of pExpr */
1039   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1040   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1041   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1042   int noCase = 0;                  /* uppercase equivalent to lowercase */
1043   int op;                          /* Top-level operator.  pExpr->op */
1044   Parse *pParse = pWInfo->pParse;  /* Parsing context */
1045   sqlite3 *db = pParse->db;        /* Database connection */
1046   unsigned char eOp2 = 0;          /* op2 value for LIKE/REGEXP/GLOB */
1047   int nLeft;                       /* Number of elements on left side vector */
1048 
1049   if( db->mallocFailed ){
1050     return;
1051   }
1052   pTerm = &pWC->a[idxTerm];
1053   pMaskSet = &pWInfo->sMaskSet;
1054   pExpr = pTerm->pExpr;
1055   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1056   prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1057   op = pExpr->op;
1058   if( op==TK_IN ){
1059     assert( pExpr->pRight==0 );
1060     if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1061     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1062       pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1063     }else{
1064       pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1065     }
1066   }else if( op==TK_ISNULL ){
1067     pTerm->prereqRight = 0;
1068   }else{
1069     pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1070   }
1071   pMaskSet->bVarSelect = 0;
1072   prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1073   if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1074   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1075     Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable);
1076     prereqAll |= x;
1077     extraRight = x-1;  /* ON clause terms may not be used with an index
1078                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1079     if( (prereqAll>>1)>=x ){
1080       sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1081       return;
1082     }
1083   }
1084   pTerm->prereqAll = prereqAll;
1085   pTerm->leftCursor = -1;
1086   pTerm->iParent = -1;
1087   pTerm->eOperator = 0;
1088   if( allowedOp(op) ){
1089     int aiCurCol[2];
1090     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1091     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1092     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1093 
1094     if( pTerm->iField>0 ){
1095       assert( op==TK_IN );
1096       assert( pLeft->op==TK_VECTOR );
1097       pLeft = pLeft->x.pList->a[pTerm->iField-1].pExpr;
1098     }
1099 
1100     if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1101       pTerm->leftCursor = aiCurCol[0];
1102       pTerm->u.leftColumn = aiCurCol[1];
1103       pTerm->eOperator = operatorMask(op) & opMask;
1104     }
1105     if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1106     if( pRight
1107      && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1108     ){
1109       WhereTerm *pNew;
1110       Expr *pDup;
1111       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
1112       assert( pTerm->iField==0 );
1113       if( pTerm->leftCursor>=0 ){
1114         int idxNew;
1115         pDup = sqlite3ExprDup(db, pExpr, 0);
1116         if( db->mallocFailed ){
1117           sqlite3ExprDelete(db, pDup);
1118           return;
1119         }
1120         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1121         if( idxNew==0 ) return;
1122         pNew = &pWC->a[idxNew];
1123         markTermAsChild(pWC, idxNew, idxTerm);
1124         if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1125         pTerm = &pWC->a[idxTerm];
1126         pTerm->wtFlags |= TERM_COPIED;
1127 
1128         if( termIsEquivalence(pParse, pDup) ){
1129           pTerm->eOperator |= WO_EQUIV;
1130           eExtraOp = WO_EQUIV;
1131         }
1132       }else{
1133         pDup = pExpr;
1134         pNew = pTerm;
1135       }
1136       pNew->wtFlags |= exprCommute(pParse, pDup);
1137       pNew->leftCursor = aiCurCol[0];
1138       pNew->u.leftColumn = aiCurCol[1];
1139       testcase( (prereqLeft | extraRight) != prereqLeft );
1140       pNew->prereqRight = prereqLeft | extraRight;
1141       pNew->prereqAll = prereqAll;
1142       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1143     }
1144   }
1145 
1146 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1147   /* If a term is the BETWEEN operator, create two new virtual terms
1148   ** that define the range that the BETWEEN implements.  For example:
1149   **
1150   **      a BETWEEN b AND c
1151   **
1152   ** is converted into:
1153   **
1154   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1155   **
1156   ** The two new terms are added onto the end of the WhereClause object.
1157   ** The new terms are "dynamic" and are children of the original BETWEEN
1158   ** term.  That means that if the BETWEEN term is coded, the children are
1159   ** skipped.  Or, if the children are satisfied by an index, the original
1160   ** BETWEEN term is skipped.
1161   */
1162   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1163     ExprList *pList = pExpr->x.pList;
1164     int i;
1165     static const u8 ops[] = {TK_GE, TK_LE};
1166     assert( pList!=0 );
1167     assert( pList->nExpr==2 );
1168     for(i=0; i<2; i++){
1169       Expr *pNewExpr;
1170       int idxNew;
1171       pNewExpr = sqlite3PExpr(pParse, ops[i],
1172                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1173                              sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1174       transferJoinMarkings(pNewExpr, pExpr);
1175       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1176       testcase( idxNew==0 );
1177       exprAnalyze(pSrc, pWC, idxNew);
1178       pTerm = &pWC->a[idxTerm];
1179       markTermAsChild(pWC, idxNew, idxTerm);
1180     }
1181   }
1182 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1183 
1184 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1185   /* Analyze a term that is composed of two or more subterms connected by
1186   ** an OR operator.
1187   */
1188   else if( pExpr->op==TK_OR ){
1189     assert( pWC->op==TK_AND );
1190     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1191     pTerm = &pWC->a[idxTerm];
1192   }
1193 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1194 
1195 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1196   /* Add constraints to reduce the search space on a LIKE or GLOB
1197   ** operator.
1198   **
1199   ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1200   **
1201   **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1202   **
1203   ** The last character of the prefix "abc" is incremented to form the
1204   ** termination condition "abd".  If case is not significant (the default
1205   ** for LIKE) then the lower-bound is made all uppercase and the upper-
1206   ** bound is made all lowercase so that the bounds also work when comparing
1207   ** BLOBs.
1208   */
1209   if( pWC->op==TK_AND
1210    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1211   ){
1212     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1213     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1214     Expr *pNewExpr1;
1215     Expr *pNewExpr2;
1216     int idxNew1;
1217     int idxNew2;
1218     const char *zCollSeqName;     /* Name of collating sequence */
1219     const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1220 
1221     pLeft = pExpr->x.pList->a[1].pExpr;
1222     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1223 
1224     /* Convert the lower bound to upper-case and the upper bound to
1225     ** lower-case (upper-case is less than lower-case in ASCII) so that
1226     ** the range constraints also work for BLOBs
1227     */
1228     if( noCase && !pParse->db->mallocFailed ){
1229       int i;
1230       char c;
1231       pTerm->wtFlags |= TERM_LIKE;
1232       for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1233         pStr1->u.zToken[i] = sqlite3Toupper(c);
1234         pStr2->u.zToken[i] = sqlite3Tolower(c);
1235       }
1236     }
1237 
1238     if( !db->mallocFailed ){
1239       u8 c, *pC;       /* Last character before the first wildcard */
1240       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1241       c = *pC;
1242       if( noCase ){
1243         /* The point is to increment the last character before the first
1244         ** wildcard.  But if we increment '@', that will push it into the
1245         ** alphabetic range where case conversions will mess up the
1246         ** inequality.  To avoid this, make sure to also run the full
1247         ** LIKE on all candidate expressions by clearing the isComplete flag
1248         */
1249         if( c=='A'-1 ) isComplete = 0;
1250         c = sqlite3UpperToLower[c];
1251       }
1252       *pC = c + 1;
1253     }
1254     zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1255     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1256     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1257            sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1258            pStr1);
1259     transferJoinMarkings(pNewExpr1, pExpr);
1260     idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1261     testcase( idxNew1==0 );
1262     exprAnalyze(pSrc, pWC, idxNew1);
1263     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1264     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1265            sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1266            pStr2);
1267     transferJoinMarkings(pNewExpr2, pExpr);
1268     idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1269     testcase( idxNew2==0 );
1270     exprAnalyze(pSrc, pWC, idxNew2);
1271     pTerm = &pWC->a[idxTerm];
1272     if( isComplete ){
1273       markTermAsChild(pWC, idxNew1, idxTerm);
1274       markTermAsChild(pWC, idxNew2, idxTerm);
1275     }
1276   }
1277 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1278 
1279 #ifndef SQLITE_OMIT_VIRTUALTABLE
1280   /* Add a WO_AUX auxiliary term to the constraint set if the
1281   ** current expression is of the form "column OP expr" where OP
1282   ** is an operator that gets passed into virtual tables but which is
1283   ** not normally optimized for ordinary tables.  In other words, OP
1284   ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1285   ** This information is used by the xBestIndex methods of
1286   ** virtual tables.  The native query optimizer does not attempt
1287   ** to do anything with MATCH functions.
1288   */
1289   if( pWC->op==TK_AND ){
1290     Expr *pRight = 0, *pLeft = 0;
1291     int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1292     while( res-- > 0 ){
1293       int idxNew;
1294       WhereTerm *pNewTerm;
1295       Bitmask prereqColumn, prereqExpr;
1296 
1297       prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1298       prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1299       if( (prereqExpr & prereqColumn)==0 ){
1300         Expr *pNewExpr;
1301         pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1302             0, sqlite3ExprDup(db, pRight, 0));
1303         if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1304           ExprSetProperty(pNewExpr, EP_FromJoin);
1305           pNewExpr->iRightJoinTable = pExpr->iRightJoinTable;
1306         }
1307         idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1308         testcase( idxNew==0 );
1309         pNewTerm = &pWC->a[idxNew];
1310         pNewTerm->prereqRight = prereqExpr;
1311         pNewTerm->leftCursor = pLeft->iTable;
1312         pNewTerm->u.leftColumn = pLeft->iColumn;
1313         pNewTerm->eOperator = WO_AUX;
1314         pNewTerm->eMatchOp = eOp2;
1315         markTermAsChild(pWC, idxNew, idxTerm);
1316         pTerm = &pWC->a[idxTerm];
1317         pTerm->wtFlags |= TERM_COPIED;
1318         pNewTerm->prereqAll = pTerm->prereqAll;
1319       }
1320       SWAP(Expr*, pLeft, pRight);
1321     }
1322   }
1323 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1324 
1325   /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1326   ** new terms for each component comparison - "a = ?" and "b = ?".  The
1327   ** new terms completely replace the original vector comparison, which is
1328   ** no longer used.
1329   **
1330   ** This is only required if at least one side of the comparison operation
1331   ** is not a sub-select.  */
1332   if( pWC->op==TK_AND
1333   && (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1334   && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1335   && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1336   && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1337     || (pExpr->pRight->flags & EP_xIsSelect)==0)
1338   ){
1339     int i;
1340     for(i=0; i<nLeft; i++){
1341       int idxNew;
1342       Expr *pNew;
1343       Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i);
1344       Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i);
1345 
1346       pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1347       transferJoinMarkings(pNew, pExpr);
1348       idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC);
1349       exprAnalyze(pSrc, pWC, idxNew);
1350     }
1351     pTerm = &pWC->a[idxTerm];
1352     pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL;  /* Disable the original */
1353     pTerm->eOperator = 0;
1354   }
1355 
1356   /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1357   ** a virtual term for each vector component. The expression object
1358   ** used by each such virtual term is pExpr (the full vector IN(...)
1359   ** expression). The WhereTerm.iField variable identifies the index within
1360   ** the vector on the LHS that the virtual term represents.
1361   **
1362   ** This only works if the RHS is a simple SELECT (not a compound) that does
1363   ** not use window functions.
1364   */
1365   if( pWC->op==TK_AND && pExpr->op==TK_IN && pTerm->iField==0
1366    && pExpr->pLeft->op==TK_VECTOR
1367    && pExpr->x.pSelect->pPrior==0
1368 #ifndef SQLITE_OMIT_WINDOWFUNC
1369    && pExpr->x.pSelect->pWin==0
1370 #endif
1371   ){
1372     int i;
1373     for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1374       int idxNew;
1375       idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL);
1376       pWC->a[idxNew].iField = i+1;
1377       exprAnalyze(pSrc, pWC, idxNew);
1378       markTermAsChild(pWC, idxNew, idxTerm);
1379     }
1380   }
1381 
1382 #ifdef SQLITE_ENABLE_STAT4
1383   /* When sqlite_stat4 histogram data is available an operator of the
1384   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1385   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1386   ** virtual term of that form.
1387   **
1388   ** Note that the virtual term must be tagged with TERM_VNULL.
1389   */
1390   if( pExpr->op==TK_NOTNULL
1391    && pExpr->pLeft->op==TK_COLUMN
1392    && pExpr->pLeft->iColumn>=0
1393    && !ExprHasProperty(pExpr, EP_FromJoin)
1394    && OptimizationEnabled(db, SQLITE_Stat4)
1395   ){
1396     Expr *pNewExpr;
1397     Expr *pLeft = pExpr->pLeft;
1398     int idxNew;
1399     WhereTerm *pNewTerm;
1400 
1401     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1402                             sqlite3ExprDup(db, pLeft, 0),
1403                             sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1404 
1405     idxNew = whereClauseInsert(pWC, pNewExpr,
1406                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1407     if( idxNew ){
1408       pNewTerm = &pWC->a[idxNew];
1409       pNewTerm->prereqRight = 0;
1410       pNewTerm->leftCursor = pLeft->iTable;
1411       pNewTerm->u.leftColumn = pLeft->iColumn;
1412       pNewTerm->eOperator = WO_GT;
1413       markTermAsChild(pWC, idxNew, idxTerm);
1414       pTerm = &pWC->a[idxTerm];
1415       pTerm->wtFlags |= TERM_COPIED;
1416       pNewTerm->prereqAll = pTerm->prereqAll;
1417     }
1418   }
1419 #endif /* SQLITE_ENABLE_STAT4 */
1420 
1421   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1422   ** an index for tables to the left of the join.
1423   */
1424   testcase( pTerm!=&pWC->a[idxTerm] );
1425   pTerm = &pWC->a[idxTerm];
1426   pTerm->prereqRight |= extraRight;
1427 }
1428 
1429 /***************************************************************************
1430 ** Routines with file scope above.  Interface to the rest of the where.c
1431 ** subsystem follows.
1432 ***************************************************************************/
1433 
1434 /*
1435 ** This routine identifies subexpressions in the WHERE clause where
1436 ** each subexpression is separated by the AND operator or some other
1437 ** operator specified in the op parameter.  The WhereClause structure
1438 ** is filled with pointers to subexpressions.  For example:
1439 **
1440 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1441 **           \________/     \_______________/     \________________/
1442 **            slot[0]            slot[1]               slot[2]
1443 **
1444 ** The original WHERE clause in pExpr is unaltered.  All this routine
1445 ** does is make slot[] entries point to substructure within pExpr.
1446 **
1447 ** In the previous sentence and in the diagram, "slot[]" refers to
1448 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
1449 ** all terms of the WHERE clause.
1450 */
sqlite3WhereSplit(WhereClause * pWC,Expr * pExpr,u8 op)1451 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1452   Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
1453   pWC->op = op;
1454   if( pE2==0 ) return;
1455   if( pE2->op!=op ){
1456     whereClauseInsert(pWC, pExpr, 0);
1457   }else{
1458     sqlite3WhereSplit(pWC, pE2->pLeft, op);
1459     sqlite3WhereSplit(pWC, pE2->pRight, op);
1460   }
1461 }
1462 
1463 /*
1464 ** Initialize a preallocated WhereClause structure.
1465 */
sqlite3WhereClauseInit(WhereClause * pWC,WhereInfo * pWInfo)1466 void sqlite3WhereClauseInit(
1467   WhereClause *pWC,        /* The WhereClause to be initialized */
1468   WhereInfo *pWInfo        /* The WHERE processing context */
1469 ){
1470   pWC->pWInfo = pWInfo;
1471   pWC->hasOr = 0;
1472   pWC->pOuter = 0;
1473   pWC->nTerm = 0;
1474   pWC->nSlot = ArraySize(pWC->aStatic);
1475   pWC->a = pWC->aStatic;
1476 }
1477 
1478 /*
1479 ** Deallocate a WhereClause structure.  The WhereClause structure
1480 ** itself is not freed.  This routine is the inverse of
1481 ** sqlite3WhereClauseInit().
1482 */
sqlite3WhereClauseClear(WhereClause * pWC)1483 void sqlite3WhereClauseClear(WhereClause *pWC){
1484   int i;
1485   WhereTerm *a;
1486   sqlite3 *db = pWC->pWInfo->pParse->db;
1487   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
1488     if( a->wtFlags & TERM_DYNAMIC ){
1489       sqlite3ExprDelete(db, a->pExpr);
1490     }
1491     if( a->wtFlags & TERM_ORINFO ){
1492       whereOrInfoDelete(db, a->u.pOrInfo);
1493     }else if( a->wtFlags & TERM_ANDINFO ){
1494       whereAndInfoDelete(db, a->u.pAndInfo);
1495     }
1496   }
1497   if( pWC->a!=pWC->aStatic ){
1498     sqlite3DbFree(db, pWC->a);
1499   }
1500 }
1501 
1502 
1503 /*
1504 ** These routines walk (recursively) an expression tree and generate
1505 ** a bitmask indicating which tables are used in that expression
1506 ** tree.
1507 */
sqlite3WhereExprUsageNN(WhereMaskSet * pMaskSet,Expr * p)1508 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1509   Bitmask mask;
1510   if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1511     return sqlite3WhereGetMask(pMaskSet, p->iTable);
1512   }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1513     assert( p->op!=TK_IF_NULL_ROW );
1514     return 0;
1515   }
1516   mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1517   if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1518   if( p->pRight ){
1519     mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1520     assert( p->x.pList==0 );
1521   }else if( ExprHasProperty(p, EP_xIsSelect) ){
1522     if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1523     mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1524   }else if( p->x.pList ){
1525     mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1526   }
1527 #ifndef SQLITE_OMIT_WINDOWFUNC
1528   if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && p->y.pWin ){
1529     mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
1530     mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
1531     mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
1532   }
1533 #endif
1534   return mask;
1535 }
sqlite3WhereExprUsage(WhereMaskSet * pMaskSet,Expr * p)1536 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1537   return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1538 }
sqlite3WhereExprListUsage(WhereMaskSet * pMaskSet,ExprList * pList)1539 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1540   int i;
1541   Bitmask mask = 0;
1542   if( pList ){
1543     for(i=0; i<pList->nExpr; i++){
1544       mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1545     }
1546   }
1547   return mask;
1548 }
1549 
1550 
1551 /*
1552 ** Call exprAnalyze on all terms in a WHERE clause.
1553 **
1554 ** Note that exprAnalyze() might add new virtual terms onto the
1555 ** end of the WHERE clause.  We do not want to analyze these new
1556 ** virtual terms, so start analyzing at the end and work forward
1557 ** so that the added virtual terms are never processed.
1558 */
sqlite3WhereExprAnalyze(SrcList * pTabList,WhereClause * pWC)1559 void sqlite3WhereExprAnalyze(
1560   SrcList *pTabList,       /* the FROM clause */
1561   WhereClause *pWC         /* the WHERE clause to be analyzed */
1562 ){
1563   int i;
1564   for(i=pWC->nTerm-1; i>=0; i--){
1565     exprAnalyze(pTabList, pWC, i);
1566   }
1567 }
1568 
1569 /*
1570 ** For table-valued-functions, transform the function arguments into
1571 ** new WHERE clause terms.
1572 **
1573 ** Each function argument translates into an equality constraint against
1574 ** a HIDDEN column in the table.
1575 */
sqlite3WhereTabFuncArgs(Parse * pParse,struct SrcList_item * pItem,WhereClause * pWC)1576 void sqlite3WhereTabFuncArgs(
1577   Parse *pParse,                    /* Parsing context */
1578   struct SrcList_item *pItem,       /* The FROM clause term to process */
1579   WhereClause *pWC                  /* Xfer function arguments to here */
1580 ){
1581   Table *pTab;
1582   int j, k;
1583   ExprList *pArgs;
1584   Expr *pColRef;
1585   Expr *pTerm;
1586   if( pItem->fg.isTabFunc==0 ) return;
1587   pTab = pItem->pTab;
1588   assert( pTab!=0 );
1589   pArgs = pItem->u1.pFuncArg;
1590   if( pArgs==0 ) return;
1591   for(j=k=0; j<pArgs->nExpr; j++){
1592     Expr *pRhs;
1593     while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1594     if( k>=pTab->nCol ){
1595       sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1596                       pTab->zName, j);
1597       return;
1598     }
1599     pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1600     if( pColRef==0 ) return;
1601     pColRef->iTable = pItem->iCursor;
1602     pColRef->iColumn = k++;
1603     pColRef->y.pTab = pTab;
1604     pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1605         sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1606     pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1607     if( pItem->fg.jointype & JT_LEFT ){
1608       sqlite3SetJoinExpr(pTerm, pItem->iCursor);
1609     }
1610     whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
1611   }
1612 }
1613