1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <stdint.h>
12 
13 #if defined(WEBRTC_POSIX)
14 #include <sys/time.h>
15 #if defined(WEBRTC_MAC)
16 #include <mach/mach_time.h>
17 #endif
18 #endif
19 
20 #if defined(WEBRTC_WIN)
21 // clang-format off
22 // clang formatting would put <windows.h> last,
23 // which leads to compilation failure.
24 #include <windows.h>
25 #include <mmsystem.h>
26 #include <sys/timeb.h>
27 // clang-format on
28 #endif
29 
30 #include "rtc_base/checks.h"
31 #include "rtc_base/numerics/safe_conversions.h"
32 #include "rtc_base/time_utils.h"
33 
34 namespace rtc {
35 
36 ClockInterface* g_clock = nullptr;
37 
SetClockForTesting(ClockInterface * clock)38 ClockInterface* SetClockForTesting(ClockInterface* clock) {
39   ClockInterface* prev = g_clock;
40   g_clock = clock;
41   return prev;
42 }
43 
GetClockForTesting()44 ClockInterface* GetClockForTesting() {
45   return g_clock;
46 }
47 
48 #if defined(WINUWP)
49 
50 namespace {
51 
52 class TimeHelper final {
53  public:
54   TimeHelper(const TimeHelper&) = delete;
55 
56   // Resets the clock based upon an NTP server. This routine must be called
57   // prior to the main system start-up to ensure all clocks are based upon
58   // an NTP server time if NTP synchronization is required. No critical
59   // section is used thus this method must be called prior to any clock
60   // routines being used.
SyncWithNtp(int64_t ntp_server_time_ms)61   static void SyncWithNtp(int64_t ntp_server_time_ms) {
62     auto& singleton = Singleton();
63     TIME_ZONE_INFORMATION time_zone;
64     GetTimeZoneInformation(&time_zone);
65     int64_t time_zone_bias_ns =
66         rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
67     singleton.app_start_time_ns_ =
68         (ntp_server_time_ms - kNTPTimeToUnixTimeEpochOffset) * 1000000 -
69         time_zone_bias_ns;
70     singleton.UpdateReferenceTime();
71   }
72 
73   // Returns the number of nanoseconds that have passed since unix epoch.
TicksNs()74   static int64_t TicksNs() {
75     auto& singleton = Singleton();
76     int64_t result = 0;
77     LARGE_INTEGER qpcnt;
78     QueryPerformanceCounter(&qpcnt);
79     result = rtc::dchecked_cast<int64_t>(
80         (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
81          rtc::dchecked_cast<uint64_t>(singleton.os_ticks_per_second_)) *
82         10000);
83     result = singleton.app_start_time_ns_ + result -
84              singleton.time_since_os_start_ns_;
85     return result;
86   }
87 
88  private:
TimeHelper()89   TimeHelper() {
90     TIME_ZONE_INFORMATION time_zone;
91     GetTimeZoneInformation(&time_zone);
92     int64_t time_zone_bias_ns =
93         rtc::dchecked_cast<int64_t>(time_zone.Bias) * 60 * 1000 * 1000 * 1000;
94     FILETIME ft;
95     // This will give us system file in UTC format.
96     GetSystemTimeAsFileTime(&ft);
97     LARGE_INTEGER li;
98     li.HighPart = ft.dwHighDateTime;
99     li.LowPart = ft.dwLowDateTime;
100 
101     app_start_time_ns_ = (li.QuadPart - kFileTimeToUnixTimeEpochOffset) * 100 -
102                          time_zone_bias_ns;
103 
104     UpdateReferenceTime();
105   }
106 
Singleton()107   static TimeHelper& Singleton() {
108     static TimeHelper singleton;
109     return singleton;
110   }
111 
UpdateReferenceTime()112   void UpdateReferenceTime() {
113     LARGE_INTEGER qpfreq;
114     QueryPerformanceFrequency(&qpfreq);
115     os_ticks_per_second_ = rtc::dchecked_cast<int64_t>(qpfreq.QuadPart);
116 
117     LARGE_INTEGER qpcnt;
118     QueryPerformanceCounter(&qpcnt);
119     time_since_os_start_ns_ = rtc::dchecked_cast<int64_t>(
120         (rtc::dchecked_cast<uint64_t>(qpcnt.QuadPart) * 100000 /
121          rtc::dchecked_cast<uint64_t>(os_ticks_per_second_)) *
122         10000);
123   }
124 
125  private:
126   static constexpr uint64_t kFileTimeToUnixTimeEpochOffset =
127       116444736000000000ULL;
128   static constexpr uint64_t kNTPTimeToUnixTimeEpochOffset = 2208988800000L;
129 
130   // The number of nanoseconds since unix system epoch
131   int64_t app_start_time_ns_;
132   // The number of nanoseconds since the OS started
133   int64_t time_since_os_start_ns_;
134   // The OS calculated ticks per second
135   int64_t os_ticks_per_second_;
136 };
137 
138 }  // namespace
139 
SyncWithNtp(int64_t time_from_ntp_server_ms)140 void SyncWithNtp(int64_t time_from_ntp_server_ms) {
141   TimeHelper::SyncWithNtp(time_from_ntp_server_ms);
142 }
143 
144 #endif  // defined(WINUWP)
145 
SystemTimeNanos()146 int64_t SystemTimeNanos() {
147   int64_t ticks;
148 #if defined(WEBRTC_MAC)
149   static mach_timebase_info_data_t timebase;
150   if (timebase.denom == 0) {
151     // Get the timebase if this is the first time we run.
152     // Recommended by Apple's QA1398.
153     if (mach_timebase_info(&timebase) != KERN_SUCCESS) {
154       RTC_NOTREACHED();
155     }
156   }
157   // Use timebase to convert absolute time tick units into nanoseconds.
158   const auto mul = [](uint64_t a, uint32_t b) -> int64_t {
159     RTC_DCHECK_NE(b, 0);
160     RTC_DCHECK_LE(a, std::numeric_limits<int64_t>::max() / b)
161         << "The multiplication " << a << " * " << b << " overflows";
162     return rtc::dchecked_cast<int64_t>(a * b);
163   };
164   ticks = mul(mach_absolute_time(), timebase.numer) / timebase.denom;
165 #elif defined(WEBRTC_POSIX)
166   struct timespec ts;
167   // TODO(deadbeef): Do we need to handle the case when CLOCK_MONOTONIC is not
168   // supported?
169   clock_gettime(CLOCK_MONOTONIC, &ts);
170   ticks = kNumNanosecsPerSec * static_cast<int64_t>(ts.tv_sec) +
171           static_cast<int64_t>(ts.tv_nsec);
172 #elif defined(WINUWP)
173   ticks = TimeHelper::TicksNs();
174 #elif defined(WEBRTC_WIN)
175   static volatile LONG last_timegettime = 0;
176   static volatile int64_t num_wrap_timegettime = 0;
177   volatile LONG* last_timegettime_ptr = &last_timegettime;
178   DWORD now = timeGetTime();
179   // Atomically update the last gotten time
180   DWORD old = InterlockedExchange(last_timegettime_ptr, now);
181   if (now < old) {
182     // If now is earlier than old, there may have been a race between threads.
183     // 0x0fffffff ~3.1 days, the code will not take that long to execute
184     // so it must have been a wrap around.
185     if (old > 0xf0000000 && now < 0x0fffffff) {
186       num_wrap_timegettime++;
187     }
188   }
189   ticks = now + (num_wrap_timegettime << 32);
190   // TODO(deadbeef): Calculate with nanosecond precision. Otherwise, we're
191   // just wasting a multiply and divide when doing Time() on Windows.
192   ticks = ticks * kNumNanosecsPerMillisec;
193 #else
194 #error Unsupported platform.
195 #endif
196   return ticks;
197 }
198 
SystemTimeMillis()199 int64_t SystemTimeMillis() {
200   return static_cast<int64_t>(SystemTimeNanos() / kNumNanosecsPerMillisec);
201 }
202 
TimeNanos()203 int64_t TimeNanos() {
204   if (g_clock) {
205     return g_clock->TimeNanos();
206   }
207   return SystemTimeNanos();
208 }
209 
Time32()210 uint32_t Time32() {
211   return static_cast<uint32_t>(TimeNanos() / kNumNanosecsPerMillisec);
212 }
213 
TimeMillis()214 int64_t TimeMillis() {
215   return TimeNanos() / kNumNanosecsPerMillisec;
216 }
217 
TimeMicros()218 int64_t TimeMicros() {
219   return TimeNanos() / kNumNanosecsPerMicrosec;
220 }
221 
TimeAfter(int64_t elapsed)222 int64_t TimeAfter(int64_t elapsed) {
223   RTC_DCHECK_GE(elapsed, 0);
224   return TimeMillis() + elapsed;
225 }
226 
TimeDiff32(uint32_t later,uint32_t earlier)227 int32_t TimeDiff32(uint32_t later, uint32_t earlier) {
228   return later - earlier;
229 }
230 
TimeDiff(int64_t later,int64_t earlier)231 int64_t TimeDiff(int64_t later, int64_t earlier) {
232   return later - earlier;
233 }
234 
TimestampWrapAroundHandler()235 TimestampWrapAroundHandler::TimestampWrapAroundHandler()
236     : last_ts_(0), num_wrap_(-1) {}
237 
Unwrap(uint32_t ts)238 int64_t TimestampWrapAroundHandler::Unwrap(uint32_t ts) {
239   if (num_wrap_ == -1) {
240     last_ts_ = ts;
241     num_wrap_ = 0;
242     return ts;
243   }
244 
245   if (ts < last_ts_) {
246     if (last_ts_ >= 0xf0000000 && ts < 0x0fffffff)
247       ++num_wrap_;
248   } else if ((ts - last_ts_) > 0xf0000000) {
249     // Backwards wrap. Unwrap with last wrap count and don't update last_ts_.
250     return ts + ((num_wrap_ - 1) << 32);
251   }
252 
253   last_ts_ = ts;
254   return ts + (num_wrap_ << 32);
255 }
256 
TmToSeconds(const tm & tm)257 int64_t TmToSeconds(const tm& tm) {
258   static short int mdays[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
259   static short int cumul_mdays[12] = {0,   31,  59,  90,  120, 151,
260                                       181, 212, 243, 273, 304, 334};
261   int year = tm.tm_year + 1900;
262   int month = tm.tm_mon;
263   int day = tm.tm_mday - 1;  // Make 0-based like the rest.
264   int hour = tm.tm_hour;
265   int min = tm.tm_min;
266   int sec = tm.tm_sec;
267 
268   bool expiry_in_leap_year =
269       (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0));
270 
271   if (year < 1970)
272     return -1;
273   if (month < 0 || month > 11)
274     return -1;
275   if (day < 0 || day >= mdays[month] + (expiry_in_leap_year && month == 2 - 1))
276     return -1;
277   if (hour < 0 || hour > 23)
278     return -1;
279   if (min < 0 || min > 59)
280     return -1;
281   if (sec < 0 || sec > 59)
282     return -1;
283 
284   day += cumul_mdays[month];
285 
286   // Add number of leap days between 1970 and the expiration year, inclusive.
287   day += ((year / 4 - 1970 / 4) - (year / 100 - 1970 / 100) +
288           (year / 400 - 1970 / 400));
289 
290   // We will have added one day too much above if expiration is during a leap
291   // year, and expiration is in January or February.
292   if (expiry_in_leap_year && month <= 2 - 1)  // |month| is zero based.
293     day -= 1;
294 
295   // Combine all variables into seconds from 1970-01-01 00:00 (except |month|
296   // which was accumulated into |day| above).
297   return (((static_cast<int64_t>(year - 1970) * 365 + day) * 24 + hour) * 60 +
298           min) *
299              60 +
300          sec;
301 }
302 
TimeUTCMicros()303 int64_t TimeUTCMicros() {
304   if (g_clock) {
305     return g_clock->TimeNanos() / kNumNanosecsPerMicrosec;
306   }
307 #if defined(WEBRTC_POSIX)
308   struct timeval time;
309   gettimeofday(&time, nullptr);
310   // Convert from second (1.0) and microsecond (1e-6).
311   return (static_cast<int64_t>(time.tv_sec) * rtc::kNumMicrosecsPerSec +
312           time.tv_usec);
313 
314 #elif defined(WEBRTC_WIN)
315   struct _timeb time;
316   _ftime(&time);
317   // Convert from second (1.0) and milliseconds (1e-3).
318   return (static_cast<int64_t>(time.time) * rtc::kNumMicrosecsPerSec +
319           static_cast<int64_t>(time.millitm) * rtc::kNumMicrosecsPerMillisec);
320 #endif
321 }
322 
TimeUTCMillis()323 int64_t TimeUTCMillis() {
324   return TimeUTCMicros() / kNumMicrosecsPerMillisec;
325 }
326 
327 }  // namespace rtc
328