1// Copyright 2015 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Transport code.
6
7package http2
8
9import (
10	"bufio"
11	"bytes"
12	"compress/gzip"
13	"context"
14	"crypto/rand"
15	"crypto/tls"
16	"errors"
17	"fmt"
18	"io"
19	"io/ioutil"
20	"log"
21	"math"
22	mathrand "math/rand"
23	"net"
24	"net/http"
25	"net/http/httptrace"
26	"net/textproto"
27	"sort"
28	"strconv"
29	"strings"
30	"sync"
31	"sync/atomic"
32	"time"
33
34	"golang.org/x/net/http/httpguts"
35	"golang.org/x/net/http2/hpack"
36	"golang.org/x/net/idna"
37)
38
39const (
40	// transportDefaultConnFlow is how many connection-level flow control
41	// tokens we give the server at start-up, past the default 64k.
42	transportDefaultConnFlow = 1 << 30
43
44	// transportDefaultStreamFlow is how many stream-level flow
45	// control tokens we announce to the peer, and how many bytes
46	// we buffer per stream.
47	transportDefaultStreamFlow = 4 << 20
48
49	// transportDefaultStreamMinRefresh is the minimum number of bytes we'll send
50	// a stream-level WINDOW_UPDATE for at a time.
51	transportDefaultStreamMinRefresh = 4 << 10
52
53	defaultUserAgent = "Go-http-client/2.0"
54)
55
56// Transport is an HTTP/2 Transport.
57//
58// A Transport internally caches connections to servers. It is safe
59// for concurrent use by multiple goroutines.
60type Transport struct {
61	// DialTLS specifies an optional dial function for creating
62	// TLS connections for requests.
63	//
64	// If DialTLS is nil, tls.Dial is used.
65	//
66	// If the returned net.Conn has a ConnectionState method like tls.Conn,
67	// it will be used to set http.Response.TLS.
68	DialTLS func(network, addr string, cfg *tls.Config) (net.Conn, error)
69
70	// TLSClientConfig specifies the TLS configuration to use with
71	// tls.Client. If nil, the default configuration is used.
72	TLSClientConfig *tls.Config
73
74	// ConnPool optionally specifies an alternate connection pool to use.
75	// If nil, the default is used.
76	ConnPool ClientConnPool
77
78	// DisableCompression, if true, prevents the Transport from
79	// requesting compression with an "Accept-Encoding: gzip"
80	// request header when the Request contains no existing
81	// Accept-Encoding value. If the Transport requests gzip on
82	// its own and gets a gzipped response, it's transparently
83	// decoded in the Response.Body. However, if the user
84	// explicitly requested gzip it is not automatically
85	// uncompressed.
86	DisableCompression bool
87
88	// AllowHTTP, if true, permits HTTP/2 requests using the insecure,
89	// plain-text "http" scheme. Note that this does not enable h2c support.
90	AllowHTTP bool
91
92	// MaxHeaderListSize is the http2 SETTINGS_MAX_HEADER_LIST_SIZE to
93	// send in the initial settings frame. It is how many bytes
94	// of response headers are allowed. Unlike the http2 spec, zero here
95	// means to use a default limit (currently 10MB). If you actually
96	// want to advertise an unlimited value to the peer, Transport
97	// interprets the highest possible value here (0xffffffff or 1<<32-1)
98	// to mean no limit.
99	MaxHeaderListSize uint32
100
101	// StrictMaxConcurrentStreams controls whether the server's
102	// SETTINGS_MAX_CONCURRENT_STREAMS should be respected
103	// globally. If false, new TCP connections are created to the
104	// server as needed to keep each under the per-connection
105	// SETTINGS_MAX_CONCURRENT_STREAMS limit. If true, the
106	// server's SETTINGS_MAX_CONCURRENT_STREAMS is interpreted as
107	// a global limit and callers of RoundTrip block when needed,
108	// waiting for their turn.
109	StrictMaxConcurrentStreams bool
110
111	// ReadIdleTimeout is the timeout after which a health check using ping
112	// frame will be carried out if no frame is received on the connection.
113	// Note that a ping response will is considered a received frame, so if
114	// there is no other traffic on the connection, the health check will
115	// be performed every ReadIdleTimeout interval.
116	// If zero, no health check is performed.
117	ReadIdleTimeout time.Duration
118
119	// PingTimeout is the timeout after which the connection will be closed
120	// if a response to Ping is not received.
121	// Defaults to 15s.
122	PingTimeout time.Duration
123
124	// t1, if non-nil, is the standard library Transport using
125	// this transport. Its settings are used (but not its
126	// RoundTrip method, etc).
127	t1 *http.Transport
128
129	connPoolOnce  sync.Once
130	connPoolOrDef ClientConnPool // non-nil version of ConnPool
131}
132
133func (t *Transport) maxHeaderListSize() uint32 {
134	if t.MaxHeaderListSize == 0 {
135		return 10 << 20
136	}
137	if t.MaxHeaderListSize == 0xffffffff {
138		return 0
139	}
140	return t.MaxHeaderListSize
141}
142
143func (t *Transport) disableCompression() bool {
144	return t.DisableCompression || (t.t1 != nil && t.t1.DisableCompression)
145}
146
147func (t *Transport) pingTimeout() time.Duration {
148	if t.PingTimeout == 0 {
149		return 15 * time.Second
150	}
151	return t.PingTimeout
152
153}
154
155// ConfigureTransport configures a net/http HTTP/1 Transport to use HTTP/2.
156// It returns an error if t1 has already been HTTP/2-enabled.
157//
158// Use ConfigureTransports instead to configure the HTTP/2 Transport.
159func ConfigureTransport(t1 *http.Transport) error {
160	_, err := ConfigureTransports(t1)
161	return err
162}
163
164// ConfigureTransports configures a net/http HTTP/1 Transport to use HTTP/2.
165// It returns a new HTTP/2 Transport for further configuration.
166// It returns an error if t1 has already been HTTP/2-enabled.
167func ConfigureTransports(t1 *http.Transport) (*Transport, error) {
168	return configureTransports(t1)
169}
170
171func configureTransports(t1 *http.Transport) (*Transport, error) {
172	connPool := new(clientConnPool)
173	t2 := &Transport{
174		ConnPool: noDialClientConnPool{connPool},
175		t1:       t1,
176	}
177	connPool.t = t2
178	if err := registerHTTPSProtocol(t1, noDialH2RoundTripper{t2}); err != nil {
179		return nil, err
180	}
181	if t1.TLSClientConfig == nil {
182		t1.TLSClientConfig = new(tls.Config)
183	}
184	if !strSliceContains(t1.TLSClientConfig.NextProtos, "h2") {
185		t1.TLSClientConfig.NextProtos = append([]string{"h2"}, t1.TLSClientConfig.NextProtos...)
186	}
187	if !strSliceContains(t1.TLSClientConfig.NextProtos, "http/1.1") {
188		t1.TLSClientConfig.NextProtos = append(t1.TLSClientConfig.NextProtos, "http/1.1")
189	}
190	upgradeFn := func(authority string, c *tls.Conn) http.RoundTripper {
191		addr := authorityAddr("https", authority)
192		if used, err := connPool.addConnIfNeeded(addr, t2, c); err != nil {
193			go c.Close()
194			return erringRoundTripper{err}
195		} else if !used {
196			// Turns out we don't need this c.
197			// For example, two goroutines made requests to the same host
198			// at the same time, both kicking off TCP dials. (since protocol
199			// was unknown)
200			go c.Close()
201		}
202		return t2
203	}
204	if m := t1.TLSNextProto; len(m) == 0 {
205		t1.TLSNextProto = map[string]func(string, *tls.Conn) http.RoundTripper{
206			"h2": upgradeFn,
207		}
208	} else {
209		m["h2"] = upgradeFn
210	}
211	return t2, nil
212}
213
214func (t *Transport) connPool() ClientConnPool {
215	t.connPoolOnce.Do(t.initConnPool)
216	return t.connPoolOrDef
217}
218
219func (t *Transport) initConnPool() {
220	if t.ConnPool != nil {
221		t.connPoolOrDef = t.ConnPool
222	} else {
223		t.connPoolOrDef = &clientConnPool{t: t}
224	}
225}
226
227// ClientConn is the state of a single HTTP/2 client connection to an
228// HTTP/2 server.
229type ClientConn struct {
230	t         *Transport
231	tconn     net.Conn             // usually *tls.Conn, except specialized impls
232	tlsState  *tls.ConnectionState // nil only for specialized impls
233	reused    uint32               // whether conn is being reused; atomic
234	singleUse bool                 // whether being used for a single http.Request
235
236	// readLoop goroutine fields:
237	readerDone chan struct{} // closed on error
238	readerErr  error         // set before readerDone is closed
239
240	idleTimeout time.Duration // or 0 for never
241	idleTimer   *time.Timer
242
243	mu              sync.Mutex // guards following
244	cond            *sync.Cond // hold mu; broadcast on flow/closed changes
245	flow            flow       // our conn-level flow control quota (cs.flow is per stream)
246	inflow          flow       // peer's conn-level flow control
247	closing         bool
248	closed          bool
249	wantSettingsAck bool                     // we sent a SETTINGS frame and haven't heard back
250	goAway          *GoAwayFrame             // if non-nil, the GoAwayFrame we received
251	goAwayDebug     string                   // goAway frame's debug data, retained as a string
252	streams         map[uint32]*clientStream // client-initiated
253	nextStreamID    uint32
254	pendingRequests int                       // requests blocked and waiting to be sent because len(streams) == maxConcurrentStreams
255	pings           map[[8]byte]chan struct{} // in flight ping data to notification channel
256	bw              *bufio.Writer
257	br              *bufio.Reader
258	fr              *Framer
259	lastActive      time.Time
260	lastIdle        time.Time // time last idle
261	// Settings from peer: (also guarded by mu)
262	maxFrameSize          uint32
263	maxConcurrentStreams  uint32
264	peerMaxHeaderListSize uint64
265	initialWindowSize     uint32
266
267	hbuf bytes.Buffer // HPACK encoder writes into this
268	henc *hpack.Encoder
269
270	wmu  sync.Mutex // held while writing; acquire AFTER mu if holding both
271	werr error      // first write error that has occurred
272}
273
274// clientStream is the state for a single HTTP/2 stream. One of these
275// is created for each Transport.RoundTrip call.
276type clientStream struct {
277	cc            *ClientConn
278	req           *http.Request
279	trace         *httptrace.ClientTrace // or nil
280	ID            uint32
281	resc          chan resAndError
282	bufPipe       pipe // buffered pipe with the flow-controlled response payload
283	startedWrite  bool // started request body write; guarded by cc.mu
284	requestedGzip bool
285	on100         func() // optional code to run if get a 100 continue response
286
287	flow        flow  // guarded by cc.mu
288	inflow      flow  // guarded by cc.mu
289	bytesRemain int64 // -1 means unknown; owned by transportResponseBody.Read
290	readErr     error // sticky read error; owned by transportResponseBody.Read
291	stopReqBody error // if non-nil, stop writing req body; guarded by cc.mu
292	didReset    bool  // whether we sent a RST_STREAM to the server; guarded by cc.mu
293
294	peerReset chan struct{} // closed on peer reset
295	resetErr  error         // populated before peerReset is closed
296
297	done chan struct{} // closed when stream remove from cc.streams map; close calls guarded by cc.mu
298
299	// owned by clientConnReadLoop:
300	firstByte    bool  // got the first response byte
301	pastHeaders  bool  // got first MetaHeadersFrame (actual headers)
302	pastTrailers bool  // got optional second MetaHeadersFrame (trailers)
303	num1xx       uint8 // number of 1xx responses seen
304
305	trailer    http.Header  // accumulated trailers
306	resTrailer *http.Header // client's Response.Trailer
307}
308
309// awaitRequestCancel waits for the user to cancel a request or for the done
310// channel to be signaled. A non-nil error is returned only if the request was
311// canceled.
312func awaitRequestCancel(req *http.Request, done <-chan struct{}) error {
313	ctx := req.Context()
314	if req.Cancel == nil && ctx.Done() == nil {
315		return nil
316	}
317	select {
318	case <-req.Cancel:
319		return errRequestCanceled
320	case <-ctx.Done():
321		return ctx.Err()
322	case <-done:
323		return nil
324	}
325}
326
327var got1xxFuncForTests func(int, textproto.MIMEHeader) error
328
329// get1xxTraceFunc returns the value of request's httptrace.ClientTrace.Got1xxResponse func,
330// if any. It returns nil if not set or if the Go version is too old.
331func (cs *clientStream) get1xxTraceFunc() func(int, textproto.MIMEHeader) error {
332	if fn := got1xxFuncForTests; fn != nil {
333		return fn
334	}
335	return traceGot1xxResponseFunc(cs.trace)
336}
337
338// awaitRequestCancel waits for the user to cancel a request, its context to
339// expire, or for the request to be done (any way it might be removed from the
340// cc.streams map: peer reset, successful completion, TCP connection breakage,
341// etc). If the request is canceled, then cs will be canceled and closed.
342func (cs *clientStream) awaitRequestCancel(req *http.Request) {
343	if err := awaitRequestCancel(req, cs.done); err != nil {
344		cs.cancelStream()
345		cs.bufPipe.CloseWithError(err)
346	}
347}
348
349func (cs *clientStream) cancelStream() {
350	cc := cs.cc
351	cc.mu.Lock()
352	didReset := cs.didReset
353	cs.didReset = true
354	cc.mu.Unlock()
355
356	if !didReset {
357		cc.writeStreamReset(cs.ID, ErrCodeCancel, nil)
358		cc.forgetStreamID(cs.ID)
359	}
360}
361
362// checkResetOrDone reports any error sent in a RST_STREAM frame by the
363// server, or errStreamClosed if the stream is complete.
364func (cs *clientStream) checkResetOrDone() error {
365	select {
366	case <-cs.peerReset:
367		return cs.resetErr
368	case <-cs.done:
369		return errStreamClosed
370	default:
371		return nil
372	}
373}
374
375func (cs *clientStream) getStartedWrite() bool {
376	cc := cs.cc
377	cc.mu.Lock()
378	defer cc.mu.Unlock()
379	return cs.startedWrite
380}
381
382func (cs *clientStream) abortRequestBodyWrite(err error) {
383	if err == nil {
384		panic("nil error")
385	}
386	cc := cs.cc
387	cc.mu.Lock()
388	cs.stopReqBody = err
389	cc.cond.Broadcast()
390	cc.mu.Unlock()
391}
392
393type stickyErrWriter struct {
394	w   io.Writer
395	err *error
396}
397
398func (sew stickyErrWriter) Write(p []byte) (n int, err error) {
399	if *sew.err != nil {
400		return 0, *sew.err
401	}
402	n, err = sew.w.Write(p)
403	*sew.err = err
404	return
405}
406
407// noCachedConnError is the concrete type of ErrNoCachedConn, which
408// needs to be detected by net/http regardless of whether it's its
409// bundled version (in h2_bundle.go with a rewritten type name) or
410// from a user's x/net/http2. As such, as it has a unique method name
411// (IsHTTP2NoCachedConnError) that net/http sniffs for via func
412// isNoCachedConnError.
413type noCachedConnError struct{}
414
415func (noCachedConnError) IsHTTP2NoCachedConnError() {}
416func (noCachedConnError) Error() string             { return "http2: no cached connection was available" }
417
418// isNoCachedConnError reports whether err is of type noCachedConnError
419// or its equivalent renamed type in net/http2's h2_bundle.go. Both types
420// may coexist in the same running program.
421func isNoCachedConnError(err error) bool {
422	_, ok := err.(interface{ IsHTTP2NoCachedConnError() })
423	return ok
424}
425
426var ErrNoCachedConn error = noCachedConnError{}
427
428// RoundTripOpt are options for the Transport.RoundTripOpt method.
429type RoundTripOpt struct {
430	// OnlyCachedConn controls whether RoundTripOpt may
431	// create a new TCP connection. If set true and
432	// no cached connection is available, RoundTripOpt
433	// will return ErrNoCachedConn.
434	OnlyCachedConn bool
435}
436
437func (t *Transport) RoundTrip(req *http.Request) (*http.Response, error) {
438	return t.RoundTripOpt(req, RoundTripOpt{})
439}
440
441// authorityAddr returns a given authority (a host/IP, or host:port / ip:port)
442// and returns a host:port. The port 443 is added if needed.
443func authorityAddr(scheme string, authority string) (addr string) {
444	host, port, err := net.SplitHostPort(authority)
445	if err != nil { // authority didn't have a port
446		port = "443"
447		if scheme == "http" {
448			port = "80"
449		}
450		host = authority
451	}
452	if a, err := idna.ToASCII(host); err == nil {
453		host = a
454	}
455	// IPv6 address literal, without a port:
456	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") {
457		return host + ":" + port
458	}
459	return net.JoinHostPort(host, port)
460}
461
462// RoundTripOpt is like RoundTrip, but takes options.
463func (t *Transport) RoundTripOpt(req *http.Request, opt RoundTripOpt) (*http.Response, error) {
464	if !(req.URL.Scheme == "https" || (req.URL.Scheme == "http" && t.AllowHTTP)) {
465		return nil, errors.New("http2: unsupported scheme")
466	}
467
468	addr := authorityAddr(req.URL.Scheme, req.URL.Host)
469	for retry := 0; ; retry++ {
470		cc, err := t.connPool().GetClientConn(req, addr)
471		if err != nil {
472			t.vlogf("http2: Transport failed to get client conn for %s: %v", addr, err)
473			return nil, err
474		}
475		reused := !atomic.CompareAndSwapUint32(&cc.reused, 0, 1)
476		traceGotConn(req, cc, reused)
477		res, gotErrAfterReqBodyWrite, err := cc.roundTrip(req)
478		if err != nil && retry <= 6 {
479			if req, err = shouldRetryRequest(req, err, gotErrAfterReqBodyWrite); err == nil {
480				// After the first retry, do exponential backoff with 10% jitter.
481				if retry == 0 {
482					continue
483				}
484				backoff := float64(uint(1) << (uint(retry) - 1))
485				backoff += backoff * (0.1 * mathrand.Float64())
486				select {
487				case <-time.After(time.Second * time.Duration(backoff)):
488					continue
489				case <-req.Context().Done():
490					return nil, req.Context().Err()
491				}
492			}
493		}
494		if err != nil {
495			t.vlogf("RoundTrip failure: %v", err)
496			return nil, err
497		}
498		return res, nil
499	}
500}
501
502// CloseIdleConnections closes any connections which were previously
503// connected from previous requests but are now sitting idle.
504// It does not interrupt any connections currently in use.
505func (t *Transport) CloseIdleConnections() {
506	if cp, ok := t.connPool().(clientConnPoolIdleCloser); ok {
507		cp.closeIdleConnections()
508	}
509}
510
511var (
512	errClientConnClosed    = errors.New("http2: client conn is closed")
513	errClientConnUnusable  = errors.New("http2: client conn not usable")
514	errClientConnGotGoAway = errors.New("http2: Transport received Server's graceful shutdown GOAWAY")
515)
516
517// shouldRetryRequest is called by RoundTrip when a request fails to get
518// response headers. It is always called with a non-nil error.
519// It returns either a request to retry (either the same request, or a
520// modified clone), or an error if the request can't be replayed.
521func shouldRetryRequest(req *http.Request, err error, afterBodyWrite bool) (*http.Request, error) {
522	if !canRetryError(err) {
523		return nil, err
524	}
525	// If the Body is nil (or http.NoBody), it's safe to reuse
526	// this request and its Body.
527	if req.Body == nil || req.Body == http.NoBody {
528		return req, nil
529	}
530
531	// If the request body can be reset back to its original
532	// state via the optional req.GetBody, do that.
533	if req.GetBody != nil {
534		// TODO: consider a req.Body.Close here? or audit that all caller paths do?
535		body, err := req.GetBody()
536		if err != nil {
537			return nil, err
538		}
539		newReq := *req
540		newReq.Body = body
541		return &newReq, nil
542	}
543
544	// The Request.Body can't reset back to the beginning, but we
545	// don't seem to have started to read from it yet, so reuse
546	// the request directly. The "afterBodyWrite" means the
547	// bodyWrite process has started, which becomes true before
548	// the first Read.
549	if !afterBodyWrite {
550		return req, nil
551	}
552
553	return nil, fmt.Errorf("http2: Transport: cannot retry err [%v] after Request.Body was written; define Request.GetBody to avoid this error", err)
554}
555
556func canRetryError(err error) bool {
557	if err == errClientConnUnusable || err == errClientConnGotGoAway {
558		return true
559	}
560	if se, ok := err.(StreamError); ok {
561		return se.Code == ErrCodeRefusedStream
562	}
563	return false
564}
565
566func (t *Transport) dialClientConn(ctx context.Context, addr string, singleUse bool) (*ClientConn, error) {
567	host, _, err := net.SplitHostPort(addr)
568	if err != nil {
569		return nil, err
570	}
571	tconn, err := t.dialTLS(ctx)("tcp", addr, t.newTLSConfig(host))
572	if err != nil {
573		return nil, err
574	}
575	return t.newClientConn(tconn, singleUse)
576}
577
578func (t *Transport) newTLSConfig(host string) *tls.Config {
579	cfg := new(tls.Config)
580	if t.TLSClientConfig != nil {
581		*cfg = *t.TLSClientConfig.Clone()
582	}
583	if !strSliceContains(cfg.NextProtos, NextProtoTLS) {
584		cfg.NextProtos = append([]string{NextProtoTLS}, cfg.NextProtos...)
585	}
586	if cfg.ServerName == "" {
587		cfg.ServerName = host
588	}
589	return cfg
590}
591
592func (t *Transport) dialTLS(ctx context.Context) func(string, string, *tls.Config) (net.Conn, error) {
593	if t.DialTLS != nil {
594		return t.DialTLS
595	}
596	return func(network, addr string, cfg *tls.Config) (net.Conn, error) {
597		tlsCn, err := t.dialTLSWithContext(ctx, network, addr, cfg)
598		if err != nil {
599			return nil, err
600		}
601		state := tlsCn.ConnectionState()
602		if p := state.NegotiatedProtocol; p != NextProtoTLS {
603			return nil, fmt.Errorf("http2: unexpected ALPN protocol %q; want %q", p, NextProtoTLS)
604		}
605		if !state.NegotiatedProtocolIsMutual {
606			return nil, errors.New("http2: could not negotiate protocol mutually")
607		}
608		return tlsCn, nil
609	}
610}
611
612// disableKeepAlives reports whether connections should be closed as
613// soon as possible after handling the first request.
614func (t *Transport) disableKeepAlives() bool {
615	return t.t1 != nil && t.t1.DisableKeepAlives
616}
617
618func (t *Transport) expectContinueTimeout() time.Duration {
619	if t.t1 == nil {
620		return 0
621	}
622	return t.t1.ExpectContinueTimeout
623}
624
625func (t *Transport) NewClientConn(c net.Conn) (*ClientConn, error) {
626	return t.newClientConn(c, t.disableKeepAlives())
627}
628
629func (t *Transport) newClientConn(c net.Conn, singleUse bool) (*ClientConn, error) {
630	cc := &ClientConn{
631		t:                     t,
632		tconn:                 c,
633		readerDone:            make(chan struct{}),
634		nextStreamID:          1,
635		maxFrameSize:          16 << 10,           // spec default
636		initialWindowSize:     65535,              // spec default
637		maxConcurrentStreams:  1000,               // "infinite", per spec. 1000 seems good enough.
638		peerMaxHeaderListSize: 0xffffffffffffffff, // "infinite", per spec. Use 2^64-1 instead.
639		streams:               make(map[uint32]*clientStream),
640		singleUse:             singleUse,
641		wantSettingsAck:       true,
642		pings:                 make(map[[8]byte]chan struct{}),
643	}
644	if d := t.idleConnTimeout(); d != 0 {
645		cc.idleTimeout = d
646		cc.idleTimer = time.AfterFunc(d, cc.onIdleTimeout)
647	}
648	if VerboseLogs {
649		t.vlogf("http2: Transport creating client conn %p to %v", cc, c.RemoteAddr())
650	}
651
652	cc.cond = sync.NewCond(&cc.mu)
653	cc.flow.add(int32(initialWindowSize))
654
655	// TODO: adjust this writer size to account for frame size +
656	// MTU + crypto/tls record padding.
657	cc.bw = bufio.NewWriter(stickyErrWriter{c, &cc.werr})
658	cc.br = bufio.NewReader(c)
659	cc.fr = NewFramer(cc.bw, cc.br)
660	cc.fr.ReadMetaHeaders = hpack.NewDecoder(initialHeaderTableSize, nil)
661	cc.fr.MaxHeaderListSize = t.maxHeaderListSize()
662
663	// TODO: SetMaxDynamicTableSize, SetMaxDynamicTableSizeLimit on
664	// henc in response to SETTINGS frames?
665	cc.henc = hpack.NewEncoder(&cc.hbuf)
666
667	if t.AllowHTTP {
668		cc.nextStreamID = 3
669	}
670
671	if cs, ok := c.(connectionStater); ok {
672		state := cs.ConnectionState()
673		cc.tlsState = &state
674	}
675
676	initialSettings := []Setting{
677		{ID: SettingEnablePush, Val: 0},
678		{ID: SettingInitialWindowSize, Val: transportDefaultStreamFlow},
679	}
680	if max := t.maxHeaderListSize(); max != 0 {
681		initialSettings = append(initialSettings, Setting{ID: SettingMaxHeaderListSize, Val: max})
682	}
683
684	cc.bw.Write(clientPreface)
685	cc.fr.WriteSettings(initialSettings...)
686	cc.fr.WriteWindowUpdate(0, transportDefaultConnFlow)
687	cc.inflow.add(transportDefaultConnFlow + initialWindowSize)
688	cc.bw.Flush()
689	if cc.werr != nil {
690		cc.Close()
691		return nil, cc.werr
692	}
693
694	go cc.readLoop()
695	return cc, nil
696}
697
698func (cc *ClientConn) healthCheck() {
699	pingTimeout := cc.t.pingTimeout()
700	// We don't need to periodically ping in the health check, because the readLoop of ClientConn will
701	// trigger the healthCheck again if there is no frame received.
702	ctx, cancel := context.WithTimeout(context.Background(), pingTimeout)
703	defer cancel()
704	err := cc.Ping(ctx)
705	if err != nil {
706		cc.closeForLostPing()
707		cc.t.connPool().MarkDead(cc)
708		return
709	}
710}
711
712func (cc *ClientConn) setGoAway(f *GoAwayFrame) {
713	cc.mu.Lock()
714	defer cc.mu.Unlock()
715
716	old := cc.goAway
717	cc.goAway = f
718
719	// Merge the previous and current GoAway error frames.
720	if cc.goAwayDebug == "" {
721		cc.goAwayDebug = string(f.DebugData())
722	}
723	if old != nil && old.ErrCode != ErrCodeNo {
724		cc.goAway.ErrCode = old.ErrCode
725	}
726	last := f.LastStreamID
727	for streamID, cs := range cc.streams {
728		if streamID > last {
729			select {
730			case cs.resc <- resAndError{err: errClientConnGotGoAway}:
731			default:
732			}
733		}
734	}
735}
736
737// CanTakeNewRequest reports whether the connection can take a new request,
738// meaning it has not been closed or received or sent a GOAWAY.
739func (cc *ClientConn) CanTakeNewRequest() bool {
740	cc.mu.Lock()
741	defer cc.mu.Unlock()
742	return cc.canTakeNewRequestLocked()
743}
744
745// clientConnIdleState describes the suitability of a client
746// connection to initiate a new RoundTrip request.
747type clientConnIdleState struct {
748	canTakeNewRequest bool
749	freshConn         bool // whether it's unused by any previous request
750}
751
752func (cc *ClientConn) idleState() clientConnIdleState {
753	cc.mu.Lock()
754	defer cc.mu.Unlock()
755	return cc.idleStateLocked()
756}
757
758func (cc *ClientConn) idleStateLocked() (st clientConnIdleState) {
759	if cc.singleUse && cc.nextStreamID > 1 {
760		return
761	}
762	var maxConcurrentOkay bool
763	if cc.t.StrictMaxConcurrentStreams {
764		// We'll tell the caller we can take a new request to
765		// prevent the caller from dialing a new TCP
766		// connection, but then we'll block later before
767		// writing it.
768		maxConcurrentOkay = true
769	} else {
770		maxConcurrentOkay = int64(len(cc.streams)+1) < int64(cc.maxConcurrentStreams)
771	}
772
773	st.canTakeNewRequest = cc.goAway == nil && !cc.closed && !cc.closing && maxConcurrentOkay &&
774		int64(cc.nextStreamID)+2*int64(cc.pendingRequests) < math.MaxInt32 &&
775		!cc.tooIdleLocked()
776	st.freshConn = cc.nextStreamID == 1 && st.canTakeNewRequest
777	return
778}
779
780func (cc *ClientConn) canTakeNewRequestLocked() bool {
781	st := cc.idleStateLocked()
782	return st.canTakeNewRequest
783}
784
785// tooIdleLocked reports whether this connection has been been sitting idle
786// for too much wall time.
787func (cc *ClientConn) tooIdleLocked() bool {
788	// The Round(0) strips the monontonic clock reading so the
789	// times are compared based on their wall time. We don't want
790	// to reuse a connection that's been sitting idle during
791	// VM/laptop suspend if monotonic time was also frozen.
792	return cc.idleTimeout != 0 && !cc.lastIdle.IsZero() && time.Since(cc.lastIdle.Round(0)) > cc.idleTimeout
793}
794
795// onIdleTimeout is called from a time.AfterFunc goroutine. It will
796// only be called when we're idle, but because we're coming from a new
797// goroutine, there could be a new request coming in at the same time,
798// so this simply calls the synchronized closeIfIdle to shut down this
799// connection. The timer could just call closeIfIdle, but this is more
800// clear.
801func (cc *ClientConn) onIdleTimeout() {
802	cc.closeIfIdle()
803}
804
805func (cc *ClientConn) closeIfIdle() {
806	cc.mu.Lock()
807	if len(cc.streams) > 0 {
808		cc.mu.Unlock()
809		return
810	}
811	cc.closed = true
812	nextID := cc.nextStreamID
813	// TODO: do clients send GOAWAY too? maybe? Just Close:
814	cc.mu.Unlock()
815
816	if VerboseLogs {
817		cc.vlogf("http2: Transport closing idle conn %p (forSingleUse=%v, maxStream=%v)", cc, cc.singleUse, nextID-2)
818	}
819	cc.tconn.Close()
820}
821
822var shutdownEnterWaitStateHook = func() {}
823
824// Shutdown gracefully close the client connection, waiting for running streams to complete.
825func (cc *ClientConn) Shutdown(ctx context.Context) error {
826	if err := cc.sendGoAway(); err != nil {
827		return err
828	}
829	// Wait for all in-flight streams to complete or connection to close
830	done := make(chan error, 1)
831	cancelled := false // guarded by cc.mu
832	go func() {
833		cc.mu.Lock()
834		defer cc.mu.Unlock()
835		for {
836			if len(cc.streams) == 0 || cc.closed {
837				cc.closed = true
838				done <- cc.tconn.Close()
839				break
840			}
841			if cancelled {
842				break
843			}
844			cc.cond.Wait()
845		}
846	}()
847	shutdownEnterWaitStateHook()
848	select {
849	case err := <-done:
850		return err
851	case <-ctx.Done():
852		cc.mu.Lock()
853		// Free the goroutine above
854		cancelled = true
855		cc.cond.Broadcast()
856		cc.mu.Unlock()
857		return ctx.Err()
858	}
859}
860
861func (cc *ClientConn) sendGoAway() error {
862	cc.mu.Lock()
863	defer cc.mu.Unlock()
864	cc.wmu.Lock()
865	defer cc.wmu.Unlock()
866	if cc.closing {
867		// GOAWAY sent already
868		return nil
869	}
870	// Send a graceful shutdown frame to server
871	maxStreamID := cc.nextStreamID
872	if err := cc.fr.WriteGoAway(maxStreamID, ErrCodeNo, nil); err != nil {
873		return err
874	}
875	if err := cc.bw.Flush(); err != nil {
876		return err
877	}
878	// Prevent new requests
879	cc.closing = true
880	return nil
881}
882
883// closes the client connection immediately. In-flight requests are interrupted.
884// err is sent to streams.
885func (cc *ClientConn) closeForError(err error) error {
886	cc.mu.Lock()
887	defer cc.cond.Broadcast()
888	defer cc.mu.Unlock()
889	for id, cs := range cc.streams {
890		select {
891		case cs.resc <- resAndError{err: err}:
892		default:
893		}
894		cs.bufPipe.CloseWithError(err)
895		delete(cc.streams, id)
896	}
897	cc.closed = true
898	return cc.tconn.Close()
899}
900
901// Close closes the client connection immediately.
902//
903// In-flight requests are interrupted. For a graceful shutdown, use Shutdown instead.
904func (cc *ClientConn) Close() error {
905	err := errors.New("http2: client connection force closed via ClientConn.Close")
906	return cc.closeForError(err)
907}
908
909// closes the client connection immediately. In-flight requests are interrupted.
910func (cc *ClientConn) closeForLostPing() error {
911	err := errors.New("http2: client connection lost")
912	return cc.closeForError(err)
913}
914
915// errRequestCanceled is a copy of net/http's errRequestCanceled because it's not
916// exported. At least they'll be DeepEqual for h1-vs-h2 comparisons tests.
917var errRequestCanceled = errors.New("net/http: request canceled")
918
919func commaSeparatedTrailers(req *http.Request) (string, error) {
920	keys := make([]string, 0, len(req.Trailer))
921	for k := range req.Trailer {
922		k = http.CanonicalHeaderKey(k)
923		switch k {
924		case "Transfer-Encoding", "Trailer", "Content-Length":
925			return "", fmt.Errorf("invalid Trailer key %q", k)
926		}
927		keys = append(keys, k)
928	}
929	if len(keys) > 0 {
930		sort.Strings(keys)
931		return strings.Join(keys, ","), nil
932	}
933	return "", nil
934}
935
936func (cc *ClientConn) responseHeaderTimeout() time.Duration {
937	if cc.t.t1 != nil {
938		return cc.t.t1.ResponseHeaderTimeout
939	}
940	// No way to do this (yet?) with just an http2.Transport. Probably
941	// no need. Request.Cancel this is the new way. We only need to support
942	// this for compatibility with the old http.Transport fields when
943	// we're doing transparent http2.
944	return 0
945}
946
947// checkConnHeaders checks whether req has any invalid connection-level headers.
948// per RFC 7540 section 8.1.2.2: Connection-Specific Header Fields.
949// Certain headers are special-cased as okay but not transmitted later.
950func checkConnHeaders(req *http.Request) error {
951	if v := req.Header.Get("Upgrade"); v != "" {
952		return fmt.Errorf("http2: invalid Upgrade request header: %q", req.Header["Upgrade"])
953	}
954	if vv := req.Header["Transfer-Encoding"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && vv[0] != "chunked") {
955		return fmt.Errorf("http2: invalid Transfer-Encoding request header: %q", vv)
956	}
957	if vv := req.Header["Connection"]; len(vv) > 0 && (len(vv) > 1 || vv[0] != "" && !asciiEqualFold(vv[0], "close") && !asciiEqualFold(vv[0], "keep-alive")) {
958		return fmt.Errorf("http2: invalid Connection request header: %q", vv)
959	}
960	return nil
961}
962
963// actualContentLength returns a sanitized version of
964// req.ContentLength, where 0 actually means zero (not unknown) and -1
965// means unknown.
966func actualContentLength(req *http.Request) int64 {
967	if req.Body == nil || req.Body == http.NoBody {
968		return 0
969	}
970	if req.ContentLength != 0 {
971		return req.ContentLength
972	}
973	return -1
974}
975
976func (cc *ClientConn) RoundTrip(req *http.Request) (*http.Response, error) {
977	resp, _, err := cc.roundTrip(req)
978	return resp, err
979}
980
981func (cc *ClientConn) roundTrip(req *http.Request) (res *http.Response, gotErrAfterReqBodyWrite bool, err error) {
982	if err := checkConnHeaders(req); err != nil {
983		return nil, false, err
984	}
985	if cc.idleTimer != nil {
986		cc.idleTimer.Stop()
987	}
988
989	trailers, err := commaSeparatedTrailers(req)
990	if err != nil {
991		return nil, false, err
992	}
993	hasTrailers := trailers != ""
994
995	cc.mu.Lock()
996	if err := cc.awaitOpenSlotForRequest(req); err != nil {
997		cc.mu.Unlock()
998		return nil, false, err
999	}
1000
1001	body := req.Body
1002	contentLen := actualContentLength(req)
1003	hasBody := contentLen != 0
1004
1005	// TODO(bradfitz): this is a copy of the logic in net/http. Unify somewhere?
1006	var requestedGzip bool
1007	if !cc.t.disableCompression() &&
1008		req.Header.Get("Accept-Encoding") == "" &&
1009		req.Header.Get("Range") == "" &&
1010		req.Method != "HEAD" {
1011		// Request gzip only, not deflate. Deflate is ambiguous and
1012		// not as universally supported anyway.
1013		// See: https://zlib.net/zlib_faq.html#faq39
1014		//
1015		// Note that we don't request this for HEAD requests,
1016		// due to a bug in nginx:
1017		//   http://trac.nginx.org/nginx/ticket/358
1018		//   https://golang.org/issue/5522
1019		//
1020		// We don't request gzip if the request is for a range, since
1021		// auto-decoding a portion of a gzipped document will just fail
1022		// anyway. See https://golang.org/issue/8923
1023		requestedGzip = true
1024	}
1025
1026	// we send: HEADERS{1}, CONTINUATION{0,} + DATA{0,} (DATA is
1027	// sent by writeRequestBody below, along with any Trailers,
1028	// again in form HEADERS{1}, CONTINUATION{0,})
1029	hdrs, err := cc.encodeHeaders(req, requestedGzip, trailers, contentLen)
1030	if err != nil {
1031		cc.mu.Unlock()
1032		return nil, false, err
1033	}
1034
1035	cs := cc.newStream()
1036	cs.req = req
1037	cs.trace = httptrace.ContextClientTrace(req.Context())
1038	cs.requestedGzip = requestedGzip
1039	bodyWriter := cc.t.getBodyWriterState(cs, body)
1040	cs.on100 = bodyWriter.on100
1041
1042	defer func() {
1043		cc.wmu.Lock()
1044		werr := cc.werr
1045		cc.wmu.Unlock()
1046		if werr != nil {
1047			cc.Close()
1048		}
1049	}()
1050
1051	cc.wmu.Lock()
1052	endStream := !hasBody && !hasTrailers
1053	werr := cc.writeHeaders(cs.ID, endStream, int(cc.maxFrameSize), hdrs)
1054	cc.wmu.Unlock()
1055	traceWroteHeaders(cs.trace)
1056	cc.mu.Unlock()
1057
1058	if werr != nil {
1059		if hasBody {
1060			req.Body.Close() // per RoundTripper contract
1061			bodyWriter.cancel()
1062		}
1063		cc.forgetStreamID(cs.ID)
1064		// Don't bother sending a RST_STREAM (our write already failed;
1065		// no need to keep writing)
1066		traceWroteRequest(cs.trace, werr)
1067		return nil, false, werr
1068	}
1069
1070	var respHeaderTimer <-chan time.Time
1071	if hasBody {
1072		bodyWriter.scheduleBodyWrite()
1073	} else {
1074		traceWroteRequest(cs.trace, nil)
1075		if d := cc.responseHeaderTimeout(); d != 0 {
1076			timer := time.NewTimer(d)
1077			defer timer.Stop()
1078			respHeaderTimer = timer.C
1079		}
1080	}
1081
1082	readLoopResCh := cs.resc
1083	bodyWritten := false
1084	ctx := req.Context()
1085
1086	handleReadLoopResponse := func(re resAndError) (*http.Response, bool, error) {
1087		res := re.res
1088		if re.err != nil || res.StatusCode > 299 {
1089			// On error or status code 3xx, 4xx, 5xx, etc abort any
1090			// ongoing write, assuming that the server doesn't care
1091			// about our request body. If the server replied with 1xx or
1092			// 2xx, however, then assume the server DOES potentially
1093			// want our body (e.g. full-duplex streaming:
1094			// golang.org/issue/13444). If it turns out the server
1095			// doesn't, they'll RST_STREAM us soon enough. This is a
1096			// heuristic to avoid adding knobs to Transport. Hopefully
1097			// we can keep it.
1098			bodyWriter.cancel()
1099			cs.abortRequestBodyWrite(errStopReqBodyWrite)
1100			if hasBody && !bodyWritten {
1101				<-bodyWriter.resc
1102			}
1103		}
1104		if re.err != nil {
1105			cc.forgetStreamID(cs.ID)
1106			return nil, cs.getStartedWrite(), re.err
1107		}
1108		res.Request = req
1109		res.TLS = cc.tlsState
1110		return res, false, nil
1111	}
1112
1113	for {
1114		select {
1115		case re := <-readLoopResCh:
1116			return handleReadLoopResponse(re)
1117		case <-respHeaderTimer:
1118			if !hasBody || bodyWritten {
1119				cc.writeStreamReset(cs.ID, ErrCodeCancel, nil)
1120			} else {
1121				bodyWriter.cancel()
1122				cs.abortRequestBodyWrite(errStopReqBodyWriteAndCancel)
1123				<-bodyWriter.resc
1124			}
1125			cc.forgetStreamID(cs.ID)
1126			return nil, cs.getStartedWrite(), errTimeout
1127		case <-ctx.Done():
1128			if !hasBody || bodyWritten {
1129				cc.writeStreamReset(cs.ID, ErrCodeCancel, nil)
1130			} else {
1131				bodyWriter.cancel()
1132				cs.abortRequestBodyWrite(errStopReqBodyWriteAndCancel)
1133				<-bodyWriter.resc
1134			}
1135			cc.forgetStreamID(cs.ID)
1136			return nil, cs.getStartedWrite(), ctx.Err()
1137		case <-req.Cancel:
1138			if !hasBody || bodyWritten {
1139				cc.writeStreamReset(cs.ID, ErrCodeCancel, nil)
1140			} else {
1141				bodyWriter.cancel()
1142				cs.abortRequestBodyWrite(errStopReqBodyWriteAndCancel)
1143				<-bodyWriter.resc
1144			}
1145			cc.forgetStreamID(cs.ID)
1146			return nil, cs.getStartedWrite(), errRequestCanceled
1147		case <-cs.peerReset:
1148			// processResetStream already removed the
1149			// stream from the streams map; no need for
1150			// forgetStreamID.
1151			return nil, cs.getStartedWrite(), cs.resetErr
1152		case err := <-bodyWriter.resc:
1153			bodyWritten = true
1154			// Prefer the read loop's response, if available. Issue 16102.
1155			select {
1156			case re := <-readLoopResCh:
1157				return handleReadLoopResponse(re)
1158			default:
1159			}
1160			if err != nil {
1161				cc.forgetStreamID(cs.ID)
1162				return nil, cs.getStartedWrite(), err
1163			}
1164			if d := cc.responseHeaderTimeout(); d != 0 {
1165				timer := time.NewTimer(d)
1166				defer timer.Stop()
1167				respHeaderTimer = timer.C
1168			}
1169		}
1170	}
1171}
1172
1173// awaitOpenSlotForRequest waits until len(streams) < maxConcurrentStreams.
1174// Must hold cc.mu.
1175func (cc *ClientConn) awaitOpenSlotForRequest(req *http.Request) error {
1176	var waitingForConn chan struct{}
1177	var waitingForConnErr error // guarded by cc.mu
1178	for {
1179		cc.lastActive = time.Now()
1180		if cc.closed || !cc.canTakeNewRequestLocked() {
1181			if waitingForConn != nil {
1182				close(waitingForConn)
1183			}
1184			return errClientConnUnusable
1185		}
1186		cc.lastIdle = time.Time{}
1187		if int64(len(cc.streams))+1 <= int64(cc.maxConcurrentStreams) {
1188			if waitingForConn != nil {
1189				close(waitingForConn)
1190			}
1191			return nil
1192		}
1193		// Unfortunately, we cannot wait on a condition variable and channel at
1194		// the same time, so instead, we spin up a goroutine to check if the
1195		// request is canceled while we wait for a slot to open in the connection.
1196		if waitingForConn == nil {
1197			waitingForConn = make(chan struct{})
1198			go func() {
1199				if err := awaitRequestCancel(req, waitingForConn); err != nil {
1200					cc.mu.Lock()
1201					waitingForConnErr = err
1202					cc.cond.Broadcast()
1203					cc.mu.Unlock()
1204				}
1205			}()
1206		}
1207		cc.pendingRequests++
1208		cc.cond.Wait()
1209		cc.pendingRequests--
1210		if waitingForConnErr != nil {
1211			return waitingForConnErr
1212		}
1213	}
1214}
1215
1216// requires cc.wmu be held
1217func (cc *ClientConn) writeHeaders(streamID uint32, endStream bool, maxFrameSize int, hdrs []byte) error {
1218	first := true // first frame written (HEADERS is first, then CONTINUATION)
1219	for len(hdrs) > 0 && cc.werr == nil {
1220		chunk := hdrs
1221		if len(chunk) > maxFrameSize {
1222			chunk = chunk[:maxFrameSize]
1223		}
1224		hdrs = hdrs[len(chunk):]
1225		endHeaders := len(hdrs) == 0
1226		if first {
1227			cc.fr.WriteHeaders(HeadersFrameParam{
1228				StreamID:      streamID,
1229				BlockFragment: chunk,
1230				EndStream:     endStream,
1231				EndHeaders:    endHeaders,
1232			})
1233			first = false
1234		} else {
1235			cc.fr.WriteContinuation(streamID, endHeaders, chunk)
1236		}
1237	}
1238	// TODO(bradfitz): this Flush could potentially block (as
1239	// could the WriteHeaders call(s) above), which means they
1240	// wouldn't respond to Request.Cancel being readable. That's
1241	// rare, but this should probably be in a goroutine.
1242	cc.bw.Flush()
1243	return cc.werr
1244}
1245
1246// internal error values; they don't escape to callers
1247var (
1248	// abort request body write; don't send cancel
1249	errStopReqBodyWrite = errors.New("http2: aborting request body write")
1250
1251	// abort request body write, but send stream reset of cancel.
1252	errStopReqBodyWriteAndCancel = errors.New("http2: canceling request")
1253
1254	errReqBodyTooLong = errors.New("http2: request body larger than specified content length")
1255)
1256
1257// frameScratchBufferLen returns the length of a buffer to use for
1258// outgoing request bodies to read/write to/from.
1259//
1260// It returns max(1, min(peer's advertised max frame size,
1261// Request.ContentLength+1, 512KB)).
1262func (cs *clientStream) frameScratchBufferLen(maxFrameSize int) int {
1263	const max = 512 << 10
1264	n := int64(maxFrameSize)
1265	if n > max {
1266		n = max
1267	}
1268	if cl := actualContentLength(cs.req); cl != -1 && cl+1 < n {
1269		// Add an extra byte past the declared content-length to
1270		// give the caller's Request.Body io.Reader a chance to
1271		// give us more bytes than they declared, so we can catch it
1272		// early.
1273		n = cl + 1
1274	}
1275	if n < 1 {
1276		return 1
1277	}
1278	return int(n) // doesn't truncate; max is 512K
1279}
1280
1281var bufPool sync.Pool // of *[]byte
1282
1283func (cs *clientStream) writeRequestBody(body io.Reader, bodyCloser io.Closer) (err error) {
1284	cc := cs.cc
1285	sentEnd := false // whether we sent the final DATA frame w/ END_STREAM
1286
1287	defer func() {
1288		traceWroteRequest(cs.trace, err)
1289		// TODO: write h12Compare test showing whether
1290		// Request.Body is closed by the Transport,
1291		// and in multiple cases: server replies <=299 and >299
1292		// while still writing request body
1293		cerr := bodyCloser.Close()
1294		if err == nil {
1295			err = cerr
1296		}
1297	}()
1298
1299	req := cs.req
1300	hasTrailers := req.Trailer != nil
1301	remainLen := actualContentLength(req)
1302	hasContentLen := remainLen != -1
1303
1304	cc.mu.Lock()
1305	maxFrameSize := int(cc.maxFrameSize)
1306	cc.mu.Unlock()
1307
1308	// Scratch buffer for reading into & writing from.
1309	scratchLen := cs.frameScratchBufferLen(maxFrameSize)
1310	var buf []byte
1311	if bp, ok := bufPool.Get().(*[]byte); ok && len(*bp) >= scratchLen {
1312		defer bufPool.Put(bp)
1313		buf = *bp
1314	} else {
1315		buf = make([]byte, scratchLen)
1316		defer bufPool.Put(&buf)
1317	}
1318
1319	var sawEOF bool
1320	for !sawEOF {
1321		n, err := body.Read(buf[:len(buf)])
1322		if hasContentLen {
1323			remainLen -= int64(n)
1324			if remainLen == 0 && err == nil {
1325				// The request body's Content-Length was predeclared and
1326				// we just finished reading it all, but the underlying io.Reader
1327				// returned the final chunk with a nil error (which is one of
1328				// the two valid things a Reader can do at EOF). Because we'd prefer
1329				// to send the END_STREAM bit early, double-check that we're actually
1330				// at EOF. Subsequent reads should return (0, EOF) at this point.
1331				// If either value is different, we return an error in one of two ways below.
1332				var scratch [1]byte
1333				var n1 int
1334				n1, err = body.Read(scratch[:])
1335				remainLen -= int64(n1)
1336			}
1337			if remainLen < 0 {
1338				err = errReqBodyTooLong
1339				cc.writeStreamReset(cs.ID, ErrCodeCancel, err)
1340				return err
1341			}
1342		}
1343		if err == io.EOF {
1344			sawEOF = true
1345			err = nil
1346		} else if err != nil {
1347			cc.writeStreamReset(cs.ID, ErrCodeCancel, err)
1348			return err
1349		}
1350
1351		remain := buf[:n]
1352		for len(remain) > 0 && err == nil {
1353			var allowed int32
1354			allowed, err = cs.awaitFlowControl(len(remain))
1355			switch {
1356			case err == errStopReqBodyWrite:
1357				return err
1358			case err == errStopReqBodyWriteAndCancel:
1359				cc.writeStreamReset(cs.ID, ErrCodeCancel, nil)
1360				return err
1361			case err != nil:
1362				return err
1363			}
1364			cc.wmu.Lock()
1365			data := remain[:allowed]
1366			remain = remain[allowed:]
1367			sentEnd = sawEOF && len(remain) == 0 && !hasTrailers
1368			err = cc.fr.WriteData(cs.ID, sentEnd, data)
1369			if err == nil {
1370				// TODO(bradfitz): this flush is for latency, not bandwidth.
1371				// Most requests won't need this. Make this opt-in or
1372				// opt-out?  Use some heuristic on the body type? Nagel-like
1373				// timers?  Based on 'n'? Only last chunk of this for loop,
1374				// unless flow control tokens are low? For now, always.
1375				// If we change this, see comment below.
1376				err = cc.bw.Flush()
1377			}
1378			cc.wmu.Unlock()
1379		}
1380		if err != nil {
1381			return err
1382		}
1383	}
1384
1385	if sentEnd {
1386		// Already sent END_STREAM (which implies we have no
1387		// trailers) and flushed, because currently all
1388		// WriteData frames above get a flush. So we're done.
1389		return nil
1390	}
1391
1392	var trls []byte
1393	if hasTrailers {
1394		cc.mu.Lock()
1395		trls, err = cc.encodeTrailers(req)
1396		cc.mu.Unlock()
1397		if err != nil {
1398			cc.writeStreamReset(cs.ID, ErrCodeInternal, err)
1399			cc.forgetStreamID(cs.ID)
1400			return err
1401		}
1402	}
1403
1404	cc.wmu.Lock()
1405	defer cc.wmu.Unlock()
1406
1407	// Two ways to send END_STREAM: either with trailers, or
1408	// with an empty DATA frame.
1409	if len(trls) > 0 {
1410		err = cc.writeHeaders(cs.ID, true, maxFrameSize, trls)
1411	} else {
1412		err = cc.fr.WriteData(cs.ID, true, nil)
1413	}
1414	if ferr := cc.bw.Flush(); ferr != nil && err == nil {
1415		err = ferr
1416	}
1417	return err
1418}
1419
1420// awaitFlowControl waits for [1, min(maxBytes, cc.cs.maxFrameSize)] flow
1421// control tokens from the server.
1422// It returns either the non-zero number of tokens taken or an error
1423// if the stream is dead.
1424func (cs *clientStream) awaitFlowControl(maxBytes int) (taken int32, err error) {
1425	cc := cs.cc
1426	cc.mu.Lock()
1427	defer cc.mu.Unlock()
1428	for {
1429		if cc.closed {
1430			return 0, errClientConnClosed
1431		}
1432		if cs.stopReqBody != nil {
1433			return 0, cs.stopReqBody
1434		}
1435		if err := cs.checkResetOrDone(); err != nil {
1436			return 0, err
1437		}
1438		if a := cs.flow.available(); a > 0 {
1439			take := a
1440			if int(take) > maxBytes {
1441
1442				take = int32(maxBytes) // can't truncate int; take is int32
1443			}
1444			if take > int32(cc.maxFrameSize) {
1445				take = int32(cc.maxFrameSize)
1446			}
1447			cs.flow.take(take)
1448			return take, nil
1449		}
1450		cc.cond.Wait()
1451	}
1452}
1453
1454// requires cc.mu be held.
1455func (cc *ClientConn) encodeHeaders(req *http.Request, addGzipHeader bool, trailers string, contentLength int64) ([]byte, error) {
1456	cc.hbuf.Reset()
1457
1458	host := req.Host
1459	if host == "" {
1460		host = req.URL.Host
1461	}
1462	host, err := httpguts.PunycodeHostPort(host)
1463	if err != nil {
1464		return nil, err
1465	}
1466
1467	var path string
1468	if req.Method != "CONNECT" {
1469		path = req.URL.RequestURI()
1470		if !validPseudoPath(path) {
1471			orig := path
1472			path = strings.TrimPrefix(path, req.URL.Scheme+"://"+host)
1473			if !validPseudoPath(path) {
1474				if req.URL.Opaque != "" {
1475					return nil, fmt.Errorf("invalid request :path %q from URL.Opaque = %q", orig, req.URL.Opaque)
1476				} else {
1477					return nil, fmt.Errorf("invalid request :path %q", orig)
1478				}
1479			}
1480		}
1481	}
1482
1483	// Check for any invalid headers and return an error before we
1484	// potentially pollute our hpack state. (We want to be able to
1485	// continue to reuse the hpack encoder for future requests)
1486	for k, vv := range req.Header {
1487		if !httpguts.ValidHeaderFieldName(k) {
1488			return nil, fmt.Errorf("invalid HTTP header name %q", k)
1489		}
1490		for _, v := range vv {
1491			if !httpguts.ValidHeaderFieldValue(v) {
1492				return nil, fmt.Errorf("invalid HTTP header value %q for header %q", v, k)
1493			}
1494		}
1495	}
1496
1497	enumerateHeaders := func(f func(name, value string)) {
1498		// 8.1.2.3 Request Pseudo-Header Fields
1499		// The :path pseudo-header field includes the path and query parts of the
1500		// target URI (the path-absolute production and optionally a '?' character
1501		// followed by the query production (see Sections 3.3 and 3.4 of
1502		// [RFC3986]).
1503		f(":authority", host)
1504		m := req.Method
1505		if m == "" {
1506			m = http.MethodGet
1507		}
1508		f(":method", m)
1509		if req.Method != "CONNECT" {
1510			f(":path", path)
1511			f(":scheme", req.URL.Scheme)
1512		}
1513		if trailers != "" {
1514			f("trailer", trailers)
1515		}
1516
1517		var didUA bool
1518		for k, vv := range req.Header {
1519			if asciiEqualFold(k, "host") || asciiEqualFold(k, "content-length") {
1520				// Host is :authority, already sent.
1521				// Content-Length is automatic, set below.
1522				continue
1523			} else if asciiEqualFold(k, "connection") ||
1524				asciiEqualFold(k, "proxy-connection") ||
1525				asciiEqualFold(k, "transfer-encoding") ||
1526				asciiEqualFold(k, "upgrade") ||
1527				asciiEqualFold(k, "keep-alive") {
1528				// Per 8.1.2.2 Connection-Specific Header
1529				// Fields, don't send connection-specific
1530				// fields. We have already checked if any
1531				// are error-worthy so just ignore the rest.
1532				continue
1533			} else if asciiEqualFold(k, "user-agent") {
1534				// Match Go's http1 behavior: at most one
1535				// User-Agent. If set to nil or empty string,
1536				// then omit it. Otherwise if not mentioned,
1537				// include the default (below).
1538				didUA = true
1539				if len(vv) < 1 {
1540					continue
1541				}
1542				vv = vv[:1]
1543				if vv[0] == "" {
1544					continue
1545				}
1546			} else if asciiEqualFold(k, "cookie") {
1547				// Per 8.1.2.5 To allow for better compression efficiency, the
1548				// Cookie header field MAY be split into separate header fields,
1549				// each with one or more cookie-pairs.
1550				for _, v := range vv {
1551					for {
1552						p := strings.IndexByte(v, ';')
1553						if p < 0 {
1554							break
1555						}
1556						f("cookie", v[:p])
1557						p++
1558						// strip space after semicolon if any.
1559						for p+1 <= len(v) && v[p] == ' ' {
1560							p++
1561						}
1562						v = v[p:]
1563					}
1564					if len(v) > 0 {
1565						f("cookie", v)
1566					}
1567				}
1568				continue
1569			}
1570
1571			for _, v := range vv {
1572				f(k, v)
1573			}
1574		}
1575		if shouldSendReqContentLength(req.Method, contentLength) {
1576			f("content-length", strconv.FormatInt(contentLength, 10))
1577		}
1578		if addGzipHeader {
1579			f("accept-encoding", "gzip")
1580		}
1581		if !didUA {
1582			f("user-agent", defaultUserAgent)
1583		}
1584	}
1585
1586	// Do a first pass over the headers counting bytes to ensure
1587	// we don't exceed cc.peerMaxHeaderListSize. This is done as a
1588	// separate pass before encoding the headers to prevent
1589	// modifying the hpack state.
1590	hlSize := uint64(0)
1591	enumerateHeaders(func(name, value string) {
1592		hf := hpack.HeaderField{Name: name, Value: value}
1593		hlSize += uint64(hf.Size())
1594	})
1595
1596	if hlSize > cc.peerMaxHeaderListSize {
1597		return nil, errRequestHeaderListSize
1598	}
1599
1600	trace := httptrace.ContextClientTrace(req.Context())
1601	traceHeaders := traceHasWroteHeaderField(trace)
1602
1603	// Header list size is ok. Write the headers.
1604	enumerateHeaders(func(name, value string) {
1605		name, ascii := asciiToLower(name)
1606		if !ascii {
1607			// Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
1608			// field names have to be ASCII characters (just as in HTTP/1.x).
1609			return
1610		}
1611		cc.writeHeader(name, value)
1612		if traceHeaders {
1613			traceWroteHeaderField(trace, name, value)
1614		}
1615	})
1616
1617	return cc.hbuf.Bytes(), nil
1618}
1619
1620// shouldSendReqContentLength reports whether the http2.Transport should send
1621// a "content-length" request header. This logic is basically a copy of the net/http
1622// transferWriter.shouldSendContentLength.
1623// The contentLength is the corrected contentLength (so 0 means actually 0, not unknown).
1624// -1 means unknown.
1625func shouldSendReqContentLength(method string, contentLength int64) bool {
1626	if contentLength > 0 {
1627		return true
1628	}
1629	if contentLength < 0 {
1630		return false
1631	}
1632	// For zero bodies, whether we send a content-length depends on the method.
1633	// It also kinda doesn't matter for http2 either way, with END_STREAM.
1634	switch method {
1635	case "POST", "PUT", "PATCH":
1636		return true
1637	default:
1638		return false
1639	}
1640}
1641
1642// requires cc.mu be held.
1643func (cc *ClientConn) encodeTrailers(req *http.Request) ([]byte, error) {
1644	cc.hbuf.Reset()
1645
1646	hlSize := uint64(0)
1647	for k, vv := range req.Trailer {
1648		for _, v := range vv {
1649			hf := hpack.HeaderField{Name: k, Value: v}
1650			hlSize += uint64(hf.Size())
1651		}
1652	}
1653	if hlSize > cc.peerMaxHeaderListSize {
1654		return nil, errRequestHeaderListSize
1655	}
1656
1657	for k, vv := range req.Trailer {
1658		lowKey, ascii := asciiToLower(k)
1659		if !ascii {
1660			// Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
1661			// field names have to be ASCII characters (just as in HTTP/1.x).
1662			continue
1663		}
1664		// Transfer-Encoding, etc.. have already been filtered at the
1665		// start of RoundTrip
1666		for _, v := range vv {
1667			cc.writeHeader(lowKey, v)
1668		}
1669	}
1670	return cc.hbuf.Bytes(), nil
1671}
1672
1673func (cc *ClientConn) writeHeader(name, value string) {
1674	if VerboseLogs {
1675		log.Printf("http2: Transport encoding header %q = %q", name, value)
1676	}
1677	cc.henc.WriteField(hpack.HeaderField{Name: name, Value: value})
1678}
1679
1680type resAndError struct {
1681	_   incomparable
1682	res *http.Response
1683	err error
1684}
1685
1686// requires cc.mu be held.
1687func (cc *ClientConn) newStream() *clientStream {
1688	cs := &clientStream{
1689		cc:        cc,
1690		ID:        cc.nextStreamID,
1691		resc:      make(chan resAndError, 1),
1692		peerReset: make(chan struct{}),
1693		done:      make(chan struct{}),
1694	}
1695	cs.flow.add(int32(cc.initialWindowSize))
1696	cs.flow.setConnFlow(&cc.flow)
1697	cs.inflow.add(transportDefaultStreamFlow)
1698	cs.inflow.setConnFlow(&cc.inflow)
1699	cc.nextStreamID += 2
1700	cc.streams[cs.ID] = cs
1701	return cs
1702}
1703
1704func (cc *ClientConn) forgetStreamID(id uint32) {
1705	cc.streamByID(id, true)
1706}
1707
1708func (cc *ClientConn) streamByID(id uint32, andRemove bool) *clientStream {
1709	cc.mu.Lock()
1710	defer cc.mu.Unlock()
1711	cs := cc.streams[id]
1712	if andRemove && cs != nil && !cc.closed {
1713		cc.lastActive = time.Now()
1714		delete(cc.streams, id)
1715		if len(cc.streams) == 0 && cc.idleTimer != nil {
1716			cc.idleTimer.Reset(cc.idleTimeout)
1717			cc.lastIdle = time.Now()
1718		}
1719		close(cs.done)
1720		// Wake up checkResetOrDone via clientStream.awaitFlowControl and
1721		// wake up RoundTrip if there is a pending request.
1722		cc.cond.Broadcast()
1723	}
1724	return cs
1725}
1726
1727// clientConnReadLoop is the state owned by the clientConn's frame-reading readLoop.
1728type clientConnReadLoop struct {
1729	_             incomparable
1730	cc            *ClientConn
1731	closeWhenIdle bool
1732}
1733
1734// readLoop runs in its own goroutine and reads and dispatches frames.
1735func (cc *ClientConn) readLoop() {
1736	rl := &clientConnReadLoop{cc: cc}
1737	defer rl.cleanup()
1738	cc.readerErr = rl.run()
1739	if ce, ok := cc.readerErr.(ConnectionError); ok {
1740		cc.wmu.Lock()
1741		cc.fr.WriteGoAway(0, ErrCode(ce), nil)
1742		cc.wmu.Unlock()
1743	}
1744}
1745
1746// GoAwayError is returned by the Transport when the server closes the
1747// TCP connection after sending a GOAWAY frame.
1748type GoAwayError struct {
1749	LastStreamID uint32
1750	ErrCode      ErrCode
1751	DebugData    string
1752}
1753
1754func (e GoAwayError) Error() string {
1755	return fmt.Sprintf("http2: server sent GOAWAY and closed the connection; LastStreamID=%v, ErrCode=%v, debug=%q",
1756		e.LastStreamID, e.ErrCode, e.DebugData)
1757}
1758
1759func isEOFOrNetReadError(err error) bool {
1760	if err == io.EOF {
1761		return true
1762	}
1763	ne, ok := err.(*net.OpError)
1764	return ok && ne.Op == "read"
1765}
1766
1767func (rl *clientConnReadLoop) cleanup() {
1768	cc := rl.cc
1769	defer cc.tconn.Close()
1770	defer cc.t.connPool().MarkDead(cc)
1771	defer close(cc.readerDone)
1772
1773	if cc.idleTimer != nil {
1774		cc.idleTimer.Stop()
1775	}
1776
1777	// Close any response bodies if the server closes prematurely.
1778	// TODO: also do this if we've written the headers but not
1779	// gotten a response yet.
1780	err := cc.readerErr
1781	cc.mu.Lock()
1782	if cc.goAway != nil && isEOFOrNetReadError(err) {
1783		err = GoAwayError{
1784			LastStreamID: cc.goAway.LastStreamID,
1785			ErrCode:      cc.goAway.ErrCode,
1786			DebugData:    cc.goAwayDebug,
1787		}
1788	} else if err == io.EOF {
1789		err = io.ErrUnexpectedEOF
1790	}
1791	for _, cs := range cc.streams {
1792		cs.bufPipe.CloseWithError(err) // no-op if already closed
1793		select {
1794		case cs.resc <- resAndError{err: err}:
1795		default:
1796		}
1797		close(cs.done)
1798	}
1799	cc.closed = true
1800	cc.cond.Broadcast()
1801	cc.mu.Unlock()
1802}
1803
1804func (rl *clientConnReadLoop) run() error {
1805	cc := rl.cc
1806	rl.closeWhenIdle = cc.t.disableKeepAlives() || cc.singleUse
1807	gotReply := false // ever saw a HEADERS reply
1808	gotSettings := false
1809	readIdleTimeout := cc.t.ReadIdleTimeout
1810	var t *time.Timer
1811	if readIdleTimeout != 0 {
1812		t = time.AfterFunc(readIdleTimeout, cc.healthCheck)
1813		defer t.Stop()
1814	}
1815	for {
1816		f, err := cc.fr.ReadFrame()
1817		if t != nil {
1818			t.Reset(readIdleTimeout)
1819		}
1820		if err != nil {
1821			cc.vlogf("http2: Transport readFrame error on conn %p: (%T) %v", cc, err, err)
1822		}
1823		if se, ok := err.(StreamError); ok {
1824			if cs := cc.streamByID(se.StreamID, false); cs != nil {
1825				cs.cc.writeStreamReset(cs.ID, se.Code, err)
1826				cs.cc.forgetStreamID(cs.ID)
1827				if se.Cause == nil {
1828					se.Cause = cc.fr.errDetail
1829				}
1830				rl.endStreamError(cs, se)
1831			}
1832			continue
1833		} else if err != nil {
1834			return err
1835		}
1836		if VerboseLogs {
1837			cc.vlogf("http2: Transport received %s", summarizeFrame(f))
1838		}
1839		if !gotSettings {
1840			if _, ok := f.(*SettingsFrame); !ok {
1841				cc.logf("protocol error: received %T before a SETTINGS frame", f)
1842				return ConnectionError(ErrCodeProtocol)
1843			}
1844			gotSettings = true
1845		}
1846		maybeIdle := false // whether frame might transition us to idle
1847
1848		switch f := f.(type) {
1849		case *MetaHeadersFrame:
1850			err = rl.processHeaders(f)
1851			maybeIdle = true
1852			gotReply = true
1853		case *DataFrame:
1854			err = rl.processData(f)
1855			maybeIdle = true
1856		case *GoAwayFrame:
1857			err = rl.processGoAway(f)
1858			maybeIdle = true
1859		case *RSTStreamFrame:
1860			err = rl.processResetStream(f)
1861			maybeIdle = true
1862		case *SettingsFrame:
1863			err = rl.processSettings(f)
1864		case *PushPromiseFrame:
1865			err = rl.processPushPromise(f)
1866		case *WindowUpdateFrame:
1867			err = rl.processWindowUpdate(f)
1868		case *PingFrame:
1869			err = rl.processPing(f)
1870		default:
1871			cc.logf("Transport: unhandled response frame type %T", f)
1872		}
1873		if err != nil {
1874			if VerboseLogs {
1875				cc.vlogf("http2: Transport conn %p received error from processing frame %v: %v", cc, summarizeFrame(f), err)
1876			}
1877			return err
1878		}
1879		if rl.closeWhenIdle && gotReply && maybeIdle {
1880			cc.closeIfIdle()
1881		}
1882	}
1883}
1884
1885func (rl *clientConnReadLoop) processHeaders(f *MetaHeadersFrame) error {
1886	cc := rl.cc
1887	cs := cc.streamByID(f.StreamID, false)
1888	if cs == nil {
1889		// We'd get here if we canceled a request while the
1890		// server had its response still in flight. So if this
1891		// was just something we canceled, ignore it.
1892		return nil
1893	}
1894	if f.StreamEnded() {
1895		// Issue 20521: If the stream has ended, streamByID() causes
1896		// clientStream.done to be closed, which causes the request's bodyWriter
1897		// to be closed with an errStreamClosed, which may be received by
1898		// clientConn.RoundTrip before the result of processing these headers.
1899		// Deferring stream closure allows the header processing to occur first.
1900		// clientConn.RoundTrip may still receive the bodyWriter error first, but
1901		// the fix for issue 16102 prioritises any response.
1902		//
1903		// Issue 22413: If there is no request body, we should close the
1904		// stream before writing to cs.resc so that the stream is closed
1905		// immediately once RoundTrip returns.
1906		if cs.req.Body != nil {
1907			defer cc.forgetStreamID(f.StreamID)
1908		} else {
1909			cc.forgetStreamID(f.StreamID)
1910		}
1911	}
1912	if !cs.firstByte {
1913		if cs.trace != nil {
1914			// TODO(bradfitz): move first response byte earlier,
1915			// when we first read the 9 byte header, not waiting
1916			// until all the HEADERS+CONTINUATION frames have been
1917			// merged. This works for now.
1918			traceFirstResponseByte(cs.trace)
1919		}
1920		cs.firstByte = true
1921	}
1922	if !cs.pastHeaders {
1923		cs.pastHeaders = true
1924	} else {
1925		return rl.processTrailers(cs, f)
1926	}
1927
1928	res, err := rl.handleResponse(cs, f)
1929	if err != nil {
1930		if _, ok := err.(ConnectionError); ok {
1931			return err
1932		}
1933		// Any other error type is a stream error.
1934		cs.cc.writeStreamReset(f.StreamID, ErrCodeProtocol, err)
1935		cc.forgetStreamID(cs.ID)
1936		cs.resc <- resAndError{err: err}
1937		return nil // return nil from process* funcs to keep conn alive
1938	}
1939	if res == nil {
1940		// (nil, nil) special case. See handleResponse docs.
1941		return nil
1942	}
1943	cs.resTrailer = &res.Trailer
1944	cs.resc <- resAndError{res: res}
1945	return nil
1946}
1947
1948// may return error types nil, or ConnectionError. Any other error value
1949// is a StreamError of type ErrCodeProtocol. The returned error in that case
1950// is the detail.
1951//
1952// As a special case, handleResponse may return (nil, nil) to skip the
1953// frame (currently only used for 1xx responses).
1954func (rl *clientConnReadLoop) handleResponse(cs *clientStream, f *MetaHeadersFrame) (*http.Response, error) {
1955	if f.Truncated {
1956		return nil, errResponseHeaderListSize
1957	}
1958
1959	status := f.PseudoValue("status")
1960	if status == "" {
1961		return nil, errors.New("malformed response from server: missing status pseudo header")
1962	}
1963	statusCode, err := strconv.Atoi(status)
1964	if err != nil {
1965		return nil, errors.New("malformed response from server: malformed non-numeric status pseudo header")
1966	}
1967
1968	regularFields := f.RegularFields()
1969	strs := make([]string, len(regularFields))
1970	header := make(http.Header, len(regularFields))
1971	res := &http.Response{
1972		Proto:      "HTTP/2.0",
1973		ProtoMajor: 2,
1974		Header:     header,
1975		StatusCode: statusCode,
1976		Status:     status + " " + http.StatusText(statusCode),
1977	}
1978	for _, hf := range regularFields {
1979		key := http.CanonicalHeaderKey(hf.Name)
1980		if key == "Trailer" {
1981			t := res.Trailer
1982			if t == nil {
1983				t = make(http.Header)
1984				res.Trailer = t
1985			}
1986			foreachHeaderElement(hf.Value, func(v string) {
1987				t[http.CanonicalHeaderKey(v)] = nil
1988			})
1989		} else {
1990			vv := header[key]
1991			if vv == nil && len(strs) > 0 {
1992				// More than likely this will be a single-element key.
1993				// Most headers aren't multi-valued.
1994				// Set the capacity on strs[0] to 1, so any future append
1995				// won't extend the slice into the other strings.
1996				vv, strs = strs[:1:1], strs[1:]
1997				vv[0] = hf.Value
1998				header[key] = vv
1999			} else {
2000				header[key] = append(vv, hf.Value)
2001			}
2002		}
2003	}
2004
2005	if statusCode >= 100 && statusCode <= 199 {
2006		cs.num1xx++
2007		const max1xxResponses = 5 // arbitrary bound on number of informational responses, same as net/http
2008		if cs.num1xx > max1xxResponses {
2009			return nil, errors.New("http2: too many 1xx informational responses")
2010		}
2011		if fn := cs.get1xxTraceFunc(); fn != nil {
2012			if err := fn(statusCode, textproto.MIMEHeader(header)); err != nil {
2013				return nil, err
2014			}
2015		}
2016		if statusCode == 100 {
2017			traceGot100Continue(cs.trace)
2018			if cs.on100 != nil {
2019				cs.on100() // forces any write delay timer to fire
2020			}
2021		}
2022		cs.pastHeaders = false // do it all again
2023		return nil, nil
2024	}
2025
2026	streamEnded := f.StreamEnded()
2027	isHead := cs.req.Method == "HEAD"
2028	if !streamEnded || isHead {
2029		res.ContentLength = -1
2030		if clens := res.Header["Content-Length"]; len(clens) == 1 {
2031			if cl, err := strconv.ParseUint(clens[0], 10, 63); err == nil {
2032				res.ContentLength = int64(cl)
2033			} else {
2034				// TODO: care? unlike http/1, it won't mess up our framing, so it's
2035				// more safe smuggling-wise to ignore.
2036			}
2037		} else if len(clens) > 1 {
2038			// TODO: care? unlike http/1, it won't mess up our framing, so it's
2039			// more safe smuggling-wise to ignore.
2040		}
2041	}
2042
2043	if streamEnded || isHead {
2044		res.Body = noBody
2045		return res, nil
2046	}
2047
2048	cs.bufPipe = pipe{b: &dataBuffer{expected: res.ContentLength}}
2049	cs.bytesRemain = res.ContentLength
2050	res.Body = transportResponseBody{cs}
2051	go cs.awaitRequestCancel(cs.req)
2052
2053	if cs.requestedGzip && res.Header.Get("Content-Encoding") == "gzip" {
2054		res.Header.Del("Content-Encoding")
2055		res.Header.Del("Content-Length")
2056		res.ContentLength = -1
2057		res.Body = &gzipReader{body: res.Body}
2058		res.Uncompressed = true
2059	}
2060	return res, nil
2061}
2062
2063func (rl *clientConnReadLoop) processTrailers(cs *clientStream, f *MetaHeadersFrame) error {
2064	if cs.pastTrailers {
2065		// Too many HEADERS frames for this stream.
2066		return ConnectionError(ErrCodeProtocol)
2067	}
2068	cs.pastTrailers = true
2069	if !f.StreamEnded() {
2070		// We expect that any headers for trailers also
2071		// has END_STREAM.
2072		return ConnectionError(ErrCodeProtocol)
2073	}
2074	if len(f.PseudoFields()) > 0 {
2075		// No pseudo header fields are defined for trailers.
2076		// TODO: ConnectionError might be overly harsh? Check.
2077		return ConnectionError(ErrCodeProtocol)
2078	}
2079
2080	trailer := make(http.Header)
2081	for _, hf := range f.RegularFields() {
2082		key := http.CanonicalHeaderKey(hf.Name)
2083		trailer[key] = append(trailer[key], hf.Value)
2084	}
2085	cs.trailer = trailer
2086
2087	rl.endStream(cs)
2088	return nil
2089}
2090
2091// transportResponseBody is the concrete type of Transport.RoundTrip's
2092// Response.Body. It is an io.ReadCloser. On Read, it reads from cs.body.
2093// On Close it sends RST_STREAM if EOF wasn't already seen.
2094type transportResponseBody struct {
2095	cs *clientStream
2096}
2097
2098func (b transportResponseBody) Read(p []byte) (n int, err error) {
2099	cs := b.cs
2100	cc := cs.cc
2101
2102	if cs.readErr != nil {
2103		return 0, cs.readErr
2104	}
2105	n, err = b.cs.bufPipe.Read(p)
2106	if cs.bytesRemain != -1 {
2107		if int64(n) > cs.bytesRemain {
2108			n = int(cs.bytesRemain)
2109			if err == nil {
2110				err = errors.New("net/http: server replied with more than declared Content-Length; truncated")
2111				cc.writeStreamReset(cs.ID, ErrCodeProtocol, err)
2112			}
2113			cs.readErr = err
2114			return int(cs.bytesRemain), err
2115		}
2116		cs.bytesRemain -= int64(n)
2117		if err == io.EOF && cs.bytesRemain > 0 {
2118			err = io.ErrUnexpectedEOF
2119			cs.readErr = err
2120			return n, err
2121		}
2122	}
2123	if n == 0 {
2124		// No flow control tokens to send back.
2125		return
2126	}
2127
2128	cc.mu.Lock()
2129	defer cc.mu.Unlock()
2130
2131	var connAdd, streamAdd int32
2132	// Check the conn-level first, before the stream-level.
2133	if v := cc.inflow.available(); v < transportDefaultConnFlow/2 {
2134		connAdd = transportDefaultConnFlow - v
2135		cc.inflow.add(connAdd)
2136	}
2137	if err == nil { // No need to refresh if the stream is over or failed.
2138		// Consider any buffered body data (read from the conn but not
2139		// consumed by the client) when computing flow control for this
2140		// stream.
2141		v := int(cs.inflow.available()) + cs.bufPipe.Len()
2142		if v < transportDefaultStreamFlow-transportDefaultStreamMinRefresh {
2143			streamAdd = int32(transportDefaultStreamFlow - v)
2144			cs.inflow.add(streamAdd)
2145		}
2146	}
2147	if connAdd != 0 || streamAdd != 0 {
2148		cc.wmu.Lock()
2149		defer cc.wmu.Unlock()
2150		if connAdd != 0 {
2151			cc.fr.WriteWindowUpdate(0, mustUint31(connAdd))
2152		}
2153		if streamAdd != 0 {
2154			cc.fr.WriteWindowUpdate(cs.ID, mustUint31(streamAdd))
2155		}
2156		cc.bw.Flush()
2157	}
2158	return
2159}
2160
2161var errClosedResponseBody = errors.New("http2: response body closed")
2162
2163func (b transportResponseBody) Close() error {
2164	cs := b.cs
2165	cc := cs.cc
2166
2167	serverSentStreamEnd := cs.bufPipe.Err() == io.EOF
2168	unread := cs.bufPipe.Len()
2169
2170	if unread > 0 || !serverSentStreamEnd {
2171		cc.mu.Lock()
2172		cc.wmu.Lock()
2173		if !serverSentStreamEnd {
2174			cc.fr.WriteRSTStream(cs.ID, ErrCodeCancel)
2175			cs.didReset = true
2176		}
2177		// Return connection-level flow control.
2178		if unread > 0 {
2179			cc.inflow.add(int32(unread))
2180			cc.fr.WriteWindowUpdate(0, uint32(unread))
2181		}
2182		cc.bw.Flush()
2183		cc.wmu.Unlock()
2184		cc.mu.Unlock()
2185	}
2186
2187	cs.bufPipe.BreakWithError(errClosedResponseBody)
2188	cc.forgetStreamID(cs.ID)
2189	return nil
2190}
2191
2192func (rl *clientConnReadLoop) processData(f *DataFrame) error {
2193	cc := rl.cc
2194	cs := cc.streamByID(f.StreamID, f.StreamEnded())
2195	data := f.Data()
2196	if cs == nil {
2197		cc.mu.Lock()
2198		neverSent := cc.nextStreamID
2199		cc.mu.Unlock()
2200		if f.StreamID >= neverSent {
2201			// We never asked for this.
2202			cc.logf("http2: Transport received unsolicited DATA frame; closing connection")
2203			return ConnectionError(ErrCodeProtocol)
2204		}
2205		// We probably did ask for this, but canceled. Just ignore it.
2206		// TODO: be stricter here? only silently ignore things which
2207		// we canceled, but not things which were closed normally
2208		// by the peer? Tough without accumulating too much state.
2209
2210		// But at least return their flow control:
2211		if f.Length > 0 {
2212			cc.mu.Lock()
2213			cc.inflow.add(int32(f.Length))
2214			cc.mu.Unlock()
2215
2216			cc.wmu.Lock()
2217			cc.fr.WriteWindowUpdate(0, uint32(f.Length))
2218			cc.bw.Flush()
2219			cc.wmu.Unlock()
2220		}
2221		return nil
2222	}
2223	if !cs.firstByte {
2224		cc.logf("protocol error: received DATA before a HEADERS frame")
2225		rl.endStreamError(cs, StreamError{
2226			StreamID: f.StreamID,
2227			Code:     ErrCodeProtocol,
2228		})
2229		return nil
2230	}
2231	if f.Length > 0 {
2232		if cs.req.Method == "HEAD" && len(data) > 0 {
2233			cc.logf("protocol error: received DATA on a HEAD request")
2234			rl.endStreamError(cs, StreamError{
2235				StreamID: f.StreamID,
2236				Code:     ErrCodeProtocol,
2237			})
2238			return nil
2239		}
2240		// Check connection-level flow control.
2241		cc.mu.Lock()
2242		if cs.inflow.available() >= int32(f.Length) {
2243			cs.inflow.take(int32(f.Length))
2244		} else {
2245			cc.mu.Unlock()
2246			return ConnectionError(ErrCodeFlowControl)
2247		}
2248		// Return any padded flow control now, since we won't
2249		// refund it later on body reads.
2250		var refund int
2251		if pad := int(f.Length) - len(data); pad > 0 {
2252			refund += pad
2253		}
2254		// Return len(data) now if the stream is already closed,
2255		// since data will never be read.
2256		didReset := cs.didReset
2257		if didReset {
2258			refund += len(data)
2259		}
2260		if refund > 0 {
2261			cc.inflow.add(int32(refund))
2262			cc.wmu.Lock()
2263			cc.fr.WriteWindowUpdate(0, uint32(refund))
2264			if !didReset {
2265				cs.inflow.add(int32(refund))
2266				cc.fr.WriteWindowUpdate(cs.ID, uint32(refund))
2267			}
2268			cc.bw.Flush()
2269			cc.wmu.Unlock()
2270		}
2271		cc.mu.Unlock()
2272
2273		if len(data) > 0 && !didReset {
2274			if _, err := cs.bufPipe.Write(data); err != nil {
2275				rl.endStreamError(cs, err)
2276				return err
2277			}
2278		}
2279	}
2280
2281	if f.StreamEnded() {
2282		rl.endStream(cs)
2283	}
2284	return nil
2285}
2286
2287func (rl *clientConnReadLoop) endStream(cs *clientStream) {
2288	// TODO: check that any declared content-length matches, like
2289	// server.go's (*stream).endStream method.
2290	rl.endStreamError(cs, nil)
2291}
2292
2293func (rl *clientConnReadLoop) endStreamError(cs *clientStream, err error) {
2294	var code func()
2295	if err == nil {
2296		err = io.EOF
2297		code = cs.copyTrailers
2298	}
2299	if isConnectionCloseRequest(cs.req) {
2300		rl.closeWhenIdle = true
2301	}
2302	cs.bufPipe.closeWithErrorAndCode(err, code)
2303
2304	select {
2305	case cs.resc <- resAndError{err: err}:
2306	default:
2307	}
2308}
2309
2310func (cs *clientStream) copyTrailers() {
2311	for k, vv := range cs.trailer {
2312		t := cs.resTrailer
2313		if *t == nil {
2314			*t = make(http.Header)
2315		}
2316		(*t)[k] = vv
2317	}
2318}
2319
2320func (rl *clientConnReadLoop) processGoAway(f *GoAwayFrame) error {
2321	cc := rl.cc
2322	cc.t.connPool().MarkDead(cc)
2323	if f.ErrCode != 0 {
2324		// TODO: deal with GOAWAY more. particularly the error code
2325		cc.vlogf("transport got GOAWAY with error code = %v", f.ErrCode)
2326	}
2327	cc.setGoAway(f)
2328	return nil
2329}
2330
2331func (rl *clientConnReadLoop) processSettings(f *SettingsFrame) error {
2332	cc := rl.cc
2333	cc.mu.Lock()
2334	defer cc.mu.Unlock()
2335
2336	if f.IsAck() {
2337		if cc.wantSettingsAck {
2338			cc.wantSettingsAck = false
2339			return nil
2340		}
2341		return ConnectionError(ErrCodeProtocol)
2342	}
2343
2344	err := f.ForeachSetting(func(s Setting) error {
2345		switch s.ID {
2346		case SettingMaxFrameSize:
2347			cc.maxFrameSize = s.Val
2348		case SettingMaxConcurrentStreams:
2349			cc.maxConcurrentStreams = s.Val
2350		case SettingMaxHeaderListSize:
2351			cc.peerMaxHeaderListSize = uint64(s.Val)
2352		case SettingInitialWindowSize:
2353			// Values above the maximum flow-control
2354			// window size of 2^31-1 MUST be treated as a
2355			// connection error (Section 5.4.1) of type
2356			// FLOW_CONTROL_ERROR.
2357			if s.Val > math.MaxInt32 {
2358				return ConnectionError(ErrCodeFlowControl)
2359			}
2360
2361			// Adjust flow control of currently-open
2362			// frames by the difference of the old initial
2363			// window size and this one.
2364			delta := int32(s.Val) - int32(cc.initialWindowSize)
2365			for _, cs := range cc.streams {
2366				cs.flow.add(delta)
2367			}
2368			cc.cond.Broadcast()
2369
2370			cc.initialWindowSize = s.Val
2371		default:
2372			// TODO(bradfitz): handle more settings? SETTINGS_HEADER_TABLE_SIZE probably.
2373			cc.vlogf("Unhandled Setting: %v", s)
2374		}
2375		return nil
2376	})
2377	if err != nil {
2378		return err
2379	}
2380
2381	cc.wmu.Lock()
2382	defer cc.wmu.Unlock()
2383
2384	cc.fr.WriteSettingsAck()
2385	cc.bw.Flush()
2386	return cc.werr
2387}
2388
2389func (rl *clientConnReadLoop) processWindowUpdate(f *WindowUpdateFrame) error {
2390	cc := rl.cc
2391	cs := cc.streamByID(f.StreamID, false)
2392	if f.StreamID != 0 && cs == nil {
2393		return nil
2394	}
2395
2396	cc.mu.Lock()
2397	defer cc.mu.Unlock()
2398
2399	fl := &cc.flow
2400	if cs != nil {
2401		fl = &cs.flow
2402	}
2403	if !fl.add(int32(f.Increment)) {
2404		return ConnectionError(ErrCodeFlowControl)
2405	}
2406	cc.cond.Broadcast()
2407	return nil
2408}
2409
2410func (rl *clientConnReadLoop) processResetStream(f *RSTStreamFrame) error {
2411	cs := rl.cc.streamByID(f.StreamID, true)
2412	if cs == nil {
2413		// TODO: return error if server tries to RST_STEAM an idle stream
2414		return nil
2415	}
2416	select {
2417	case <-cs.peerReset:
2418		// Already reset.
2419		// This is the only goroutine
2420		// which closes this, so there
2421		// isn't a race.
2422	default:
2423		err := streamError(cs.ID, f.ErrCode)
2424		cs.resetErr = err
2425		close(cs.peerReset)
2426		cs.bufPipe.CloseWithError(err)
2427		cs.cc.cond.Broadcast() // wake up checkResetOrDone via clientStream.awaitFlowControl
2428	}
2429	return nil
2430}
2431
2432// Ping sends a PING frame to the server and waits for the ack.
2433func (cc *ClientConn) Ping(ctx context.Context) error {
2434	c := make(chan struct{})
2435	// Generate a random payload
2436	var p [8]byte
2437	for {
2438		if _, err := rand.Read(p[:]); err != nil {
2439			return err
2440		}
2441		cc.mu.Lock()
2442		// check for dup before insert
2443		if _, found := cc.pings[p]; !found {
2444			cc.pings[p] = c
2445			cc.mu.Unlock()
2446			break
2447		}
2448		cc.mu.Unlock()
2449	}
2450	cc.wmu.Lock()
2451	if err := cc.fr.WritePing(false, p); err != nil {
2452		cc.wmu.Unlock()
2453		return err
2454	}
2455	if err := cc.bw.Flush(); err != nil {
2456		cc.wmu.Unlock()
2457		return err
2458	}
2459	cc.wmu.Unlock()
2460	select {
2461	case <-c:
2462		return nil
2463	case <-ctx.Done():
2464		return ctx.Err()
2465	case <-cc.readerDone:
2466		// connection closed
2467		return cc.readerErr
2468	}
2469}
2470
2471func (rl *clientConnReadLoop) processPing(f *PingFrame) error {
2472	if f.IsAck() {
2473		cc := rl.cc
2474		cc.mu.Lock()
2475		defer cc.mu.Unlock()
2476		// If ack, notify listener if any
2477		if c, ok := cc.pings[f.Data]; ok {
2478			close(c)
2479			delete(cc.pings, f.Data)
2480		}
2481		return nil
2482	}
2483	cc := rl.cc
2484	cc.wmu.Lock()
2485	defer cc.wmu.Unlock()
2486	if err := cc.fr.WritePing(true, f.Data); err != nil {
2487		return err
2488	}
2489	return cc.bw.Flush()
2490}
2491
2492func (rl *clientConnReadLoop) processPushPromise(f *PushPromiseFrame) error {
2493	// We told the peer we don't want them.
2494	// Spec says:
2495	// "PUSH_PROMISE MUST NOT be sent if the SETTINGS_ENABLE_PUSH
2496	// setting of the peer endpoint is set to 0. An endpoint that
2497	// has set this setting and has received acknowledgement MUST
2498	// treat the receipt of a PUSH_PROMISE frame as a connection
2499	// error (Section 5.4.1) of type PROTOCOL_ERROR."
2500	return ConnectionError(ErrCodeProtocol)
2501}
2502
2503func (cc *ClientConn) writeStreamReset(streamID uint32, code ErrCode, err error) {
2504	// TODO: map err to more interesting error codes, once the
2505	// HTTP community comes up with some. But currently for
2506	// RST_STREAM there's no equivalent to GOAWAY frame's debug
2507	// data, and the error codes are all pretty vague ("cancel").
2508	cc.wmu.Lock()
2509	cc.fr.WriteRSTStream(streamID, code)
2510	cc.bw.Flush()
2511	cc.wmu.Unlock()
2512}
2513
2514var (
2515	errResponseHeaderListSize = errors.New("http2: response header list larger than advertised limit")
2516	errRequestHeaderListSize  = errors.New("http2: request header list larger than peer's advertised limit")
2517)
2518
2519func (cc *ClientConn) logf(format string, args ...interface{}) {
2520	cc.t.logf(format, args...)
2521}
2522
2523func (cc *ClientConn) vlogf(format string, args ...interface{}) {
2524	cc.t.vlogf(format, args...)
2525}
2526
2527func (t *Transport) vlogf(format string, args ...interface{}) {
2528	if VerboseLogs {
2529		t.logf(format, args...)
2530	}
2531}
2532
2533func (t *Transport) logf(format string, args ...interface{}) {
2534	log.Printf(format, args...)
2535}
2536
2537var noBody io.ReadCloser = ioutil.NopCloser(bytes.NewReader(nil))
2538
2539func strSliceContains(ss []string, s string) bool {
2540	for _, v := range ss {
2541		if v == s {
2542			return true
2543		}
2544	}
2545	return false
2546}
2547
2548type erringRoundTripper struct{ err error }
2549
2550func (rt erringRoundTripper) RoundTripErr() error                             { return rt.err }
2551func (rt erringRoundTripper) RoundTrip(*http.Request) (*http.Response, error) { return nil, rt.err }
2552
2553// gzipReader wraps a response body so it can lazily
2554// call gzip.NewReader on the first call to Read
2555type gzipReader struct {
2556	_    incomparable
2557	body io.ReadCloser // underlying Response.Body
2558	zr   *gzip.Reader  // lazily-initialized gzip reader
2559	zerr error         // sticky error
2560}
2561
2562func (gz *gzipReader) Read(p []byte) (n int, err error) {
2563	if gz.zerr != nil {
2564		return 0, gz.zerr
2565	}
2566	if gz.zr == nil {
2567		gz.zr, err = gzip.NewReader(gz.body)
2568		if err != nil {
2569			gz.zerr = err
2570			return 0, err
2571		}
2572	}
2573	return gz.zr.Read(p)
2574}
2575
2576func (gz *gzipReader) Close() error {
2577	return gz.body.Close()
2578}
2579
2580type errorReader struct{ err error }
2581
2582func (r errorReader) Read(p []byte) (int, error) { return 0, r.err }
2583
2584// bodyWriterState encapsulates various state around the Transport's writing
2585// of the request body, particularly regarding doing delayed writes of the body
2586// when the request contains "Expect: 100-continue".
2587type bodyWriterState struct {
2588	cs     *clientStream
2589	timer  *time.Timer   // if non-nil, we're doing a delayed write
2590	fnonce *sync.Once    // to call fn with
2591	fn     func()        // the code to run in the goroutine, writing the body
2592	resc   chan error    // result of fn's execution
2593	delay  time.Duration // how long we should delay a delayed write for
2594}
2595
2596func (t *Transport) getBodyWriterState(cs *clientStream, body io.Reader) (s bodyWriterState) {
2597	s.cs = cs
2598	if body == nil {
2599		return
2600	}
2601	resc := make(chan error, 1)
2602	s.resc = resc
2603	s.fn = func() {
2604		cs.cc.mu.Lock()
2605		cs.startedWrite = true
2606		cs.cc.mu.Unlock()
2607		resc <- cs.writeRequestBody(body, cs.req.Body)
2608	}
2609	s.delay = t.expectContinueTimeout()
2610	if s.delay == 0 ||
2611		!httpguts.HeaderValuesContainsToken(
2612			cs.req.Header["Expect"],
2613			"100-continue") {
2614		return
2615	}
2616	s.fnonce = new(sync.Once)
2617
2618	// Arm the timer with a very large duration, which we'll
2619	// intentionally lower later. It has to be large now because
2620	// we need a handle to it before writing the headers, but the
2621	// s.delay value is defined to not start until after the
2622	// request headers were written.
2623	const hugeDuration = 365 * 24 * time.Hour
2624	s.timer = time.AfterFunc(hugeDuration, func() {
2625		s.fnonce.Do(s.fn)
2626	})
2627	return
2628}
2629
2630func (s bodyWriterState) cancel() {
2631	if s.timer != nil {
2632		if s.timer.Stop() {
2633			s.resc <- nil
2634		}
2635	}
2636}
2637
2638func (s bodyWriterState) on100() {
2639	if s.timer == nil {
2640		// If we didn't do a delayed write, ignore the server's
2641		// bogus 100 continue response.
2642		return
2643	}
2644	s.timer.Stop()
2645	go func() { s.fnonce.Do(s.fn) }()
2646}
2647
2648// scheduleBodyWrite starts writing the body, either immediately (in
2649// the common case) or after the delay timeout. It should not be
2650// called until after the headers have been written.
2651func (s bodyWriterState) scheduleBodyWrite() {
2652	if s.timer == nil {
2653		// We're not doing a delayed write (see
2654		// getBodyWriterState), so just start the writing
2655		// goroutine immediately.
2656		go s.fn()
2657		return
2658	}
2659	traceWait100Continue(s.cs.trace)
2660	if s.timer.Stop() {
2661		s.timer.Reset(s.delay)
2662	}
2663}
2664
2665// isConnectionCloseRequest reports whether req should use its own
2666// connection for a single request and then close the connection.
2667func isConnectionCloseRequest(req *http.Request) bool {
2668	return req.Close || httpguts.HeaderValuesContainsToken(req.Header["Connection"], "close")
2669}
2670
2671// registerHTTPSProtocol calls Transport.RegisterProtocol but
2672// converting panics into errors.
2673func registerHTTPSProtocol(t *http.Transport, rt noDialH2RoundTripper) (err error) {
2674	defer func() {
2675		if e := recover(); e != nil {
2676			err = fmt.Errorf("%v", e)
2677		}
2678	}()
2679	t.RegisterProtocol("https", rt)
2680	return nil
2681}
2682
2683// noDialH2RoundTripper is a RoundTripper which only tries to complete the request
2684// if there's already has a cached connection to the host.
2685// (The field is exported so it can be accessed via reflect from net/http; tested
2686// by TestNoDialH2RoundTripperType)
2687type noDialH2RoundTripper struct{ *Transport }
2688
2689func (rt noDialH2RoundTripper) RoundTrip(req *http.Request) (*http.Response, error) {
2690	res, err := rt.Transport.RoundTrip(req)
2691	if isNoCachedConnError(err) {
2692		return nil, http.ErrSkipAltProtocol
2693	}
2694	return res, err
2695}
2696
2697func (t *Transport) idleConnTimeout() time.Duration {
2698	if t.t1 != nil {
2699		return t.t1.IdleConnTimeout
2700	}
2701	return 0
2702}
2703
2704func traceGetConn(req *http.Request, hostPort string) {
2705	trace := httptrace.ContextClientTrace(req.Context())
2706	if trace == nil || trace.GetConn == nil {
2707		return
2708	}
2709	trace.GetConn(hostPort)
2710}
2711
2712func traceGotConn(req *http.Request, cc *ClientConn, reused bool) {
2713	trace := httptrace.ContextClientTrace(req.Context())
2714	if trace == nil || trace.GotConn == nil {
2715		return
2716	}
2717	ci := httptrace.GotConnInfo{Conn: cc.tconn}
2718	ci.Reused = reused
2719	cc.mu.Lock()
2720	ci.WasIdle = len(cc.streams) == 0 && reused
2721	if ci.WasIdle && !cc.lastActive.IsZero() {
2722		ci.IdleTime = time.Now().Sub(cc.lastActive)
2723	}
2724	cc.mu.Unlock()
2725
2726	trace.GotConn(ci)
2727}
2728
2729func traceWroteHeaders(trace *httptrace.ClientTrace) {
2730	if trace != nil && trace.WroteHeaders != nil {
2731		trace.WroteHeaders()
2732	}
2733}
2734
2735func traceGot100Continue(trace *httptrace.ClientTrace) {
2736	if trace != nil && trace.Got100Continue != nil {
2737		trace.Got100Continue()
2738	}
2739}
2740
2741func traceWait100Continue(trace *httptrace.ClientTrace) {
2742	if trace != nil && trace.Wait100Continue != nil {
2743		trace.Wait100Continue()
2744	}
2745}
2746
2747func traceWroteRequest(trace *httptrace.ClientTrace, err error) {
2748	if trace != nil && trace.WroteRequest != nil {
2749		trace.WroteRequest(httptrace.WroteRequestInfo{Err: err})
2750	}
2751}
2752
2753func traceFirstResponseByte(trace *httptrace.ClientTrace) {
2754	if trace != nil && trace.GotFirstResponseByte != nil {
2755		trace.GotFirstResponseByte()
2756	}
2757}
2758