1 /*
2  * This code implements the MD5 message-digest algorithm.
3  * The algorithm is due to Ron Rivest.  This code was
4  * written by Colin Plumb in 1993, no copyright is claimed.
5  * This code is in the public domain; do with it what you wish.
6  *
7  * Equivalent code is available from RSA Data Security, Inc.
8  * This code has been tested against that, and is equivalent,
9  * except that you don't need to include two pages of legalese
10  * with every copy.
11  *
12  * To compute the message digest of a chunk of bytes, declare an
13  * MD5Context structure, pass it to MD5Init, call MD5Update as
14  * needed on buffers full of bytes, and then call MD5Final, which
15  * will fill a supplied 16-byte array with the digest.
16  */
17 
18 /* Minor tweaks for use from Omega:
19  *
20  * + Use WORDS_BIGENDIAN (probed by autoconf) to check endianness.
21  * + uint32 -> uint32_t (as defined by netinet/in.h).
22  * + Internal functions are now static.
23  * + Fix sizeof(ctx) to sizeof(*ctx) (bug picked up by Stanford checker on
24  *   this code incorporated into the Linux kernel).
25  * + Renamed to .cc and compiled as C++.
26  * + Changed MD5Context.in to uint32_t instead of unsigned char, and
27  *   byteReverse to take "uint32_t *" instead of "unsigned char *".
28  */
29 
30 #include <config.h>
31 
32 #include <cstring>		/* for memcpy() */
33 #include "md5.h"
34 
35 using namespace std;
36 
37 #ifndef WORDS_BIGENDIAN
38 #define byteReverse(buf, len)	/* Nothing */
39 #else
40 static void byteReverse(uint32_t *buf, unsigned longs);
41 
42 #ifndef ASM_MD5
43 /*
44  * Note: this code is harmless on little-endian machines.
45  */
byteReverse(uint32_t * buf,unsigned longs)46 static void byteReverse(uint32_t *buf, unsigned longs)
47 {
48     uint32_t t;
49     do {
50 	unsigned char * p = (unsigned char *)buf;
51 	t = (uint32_t) ((unsigned) p[3] << 8 | p[2]) << 16 |
52 	    ((unsigned) p[1] << 8 | p[0]);
53 	*buf++ = t;
54     } while (--longs);
55 }
56 #endif
57 #endif
58 
59 static void MD5Transform(uint32_t buf[4], uint32_t const in[16]);
60 
61 /*
62  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
63  * initialization constants.
64  */
MD5Init(struct MD5Context * ctx)65 void MD5Init(struct MD5Context *ctx)
66 {
67     ctx->buf[0] = 0x67452301;
68     ctx->buf[1] = 0xefcdab89;
69     ctx->buf[2] = 0x98badcfe;
70     ctx->buf[3] = 0x10325476;
71 
72     ctx->bits[0] = 0;
73     ctx->bits[1] = 0;
74 }
75 
76 /*
77  * Update context to reflect the concatenation of another buffer full
78  * of bytes.
79  */
MD5Update(struct MD5Context * ctx,unsigned char const * buf,unsigned len)80 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
81 {
82     uint32_t t;
83 
84     /* Update bitcount */
85 
86     t = ctx->bits[0];
87     if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
88 	ctx->bits[1]++;		/* Carry from low to high */
89     ctx->bits[1] += len >> 29;
90 
91     t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */
92 
93     /* Handle any leading odd-sized chunks */
94 
95     if (t) {
96 	unsigned char *p = (unsigned char *) ctx->in + t;
97 
98 	t = 64 - t;
99 	if (len < t) {
100 	    memcpy(p, buf, len);
101 	    return;
102 	}
103 	memcpy(p, buf, t);
104 	byteReverse(ctx->in, 16);
105 	MD5Transform(ctx->buf, ctx->in);
106 	buf += t;
107 	len -= t;
108     }
109     /* Process data in 64-byte chunks */
110 
111     while (len >= 64) {
112 	memcpy(ctx->in, buf, 64);
113 	byteReverse(ctx->in, 16);
114 	MD5Transform(ctx->buf, ctx->in);
115 	buf += 64;
116 	len -= 64;
117     }
118 
119     /* Handle any remaining bytes of data. */
120 
121     memcpy(ctx->in, buf, len);
122 }
123 
124 /*
125  * Final wrapup - pad to 64-byte boundary with the bit pattern
126  * 1 0* (64-bit count of bits processed, MSB-first)
127  */
MD5Final(unsigned char digest[16],struct MD5Context * ctx)128 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
129 {
130     unsigned count;
131     unsigned char *p;
132 
133     /* Compute number of bytes mod 64 */
134     count = (ctx->bits[0] >> 3) & 0x3F;
135 
136     /* Set the first char of padding to 0x80.  This is safe since there is
137        always at least one byte free */
138     p = (unsigned char *)ctx->in + count;
139     *p++ = 0x80;
140 
141     /* Bytes of padding needed to make 64 bytes */
142     count = 64 - 1 - count;
143 
144     /* Pad out to 56 mod 64 */
145     if (count < 8) {
146 	/* Two lots of padding:  Pad the first block to 64 bytes */
147 	memset(p, 0, count);
148 	byteReverse(ctx->in, 16);
149 	MD5Transform(ctx->buf, ctx->in);
150 
151 	/* Now fill the next block with 56 bytes */
152 	memset(ctx->in, 0, 56);
153     } else {
154 	/* Pad block to 56 bytes */
155 	memset(p, 0, count - 8);
156 	byteReverse(ctx->in, 14);
157     }
158 
159     /* Append length in bits and transform */
160     ctx->in[14] = ctx->bits[0];
161     ctx->in[15] = ctx->bits[1];
162 
163     MD5Transform(ctx->buf, ctx->in);
164     byteReverse(ctx->buf, 4);
165     memcpy(digest, ctx->buf, 16);
166     memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
167 }
168 
169 #ifndef ASM_MD5
170 
171 /* The four core functions - F1 is optimized somewhat */
172 
173 /* #define F1(x, y, z) (x & y | ~x & z) */
174 #define F1(x, y, z) (z ^ (x & (y ^ z)))
175 #define F2(x, y, z) F1(z, x, y)
176 #define F3(x, y, z) (x ^ y ^ z)
177 #define F4(x, y, z) (y ^ (x | ~z))
178 
179 /* This is the central step in the MD5 algorithm. */
180 #define MD5STEP(f, w, x, y, z, data, s) \
181 	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
182 
183 /*
184  * The core of the MD5 algorithm, this alters an existing MD5 hash to
185  * reflect the addition of 16 longwords of new data.  MD5Update blocks
186  * the data and converts bytes into longwords for this routine.
187  */
MD5Transform(uint32_t buf[4],uint32_t const in[16])188 static void MD5Transform(uint32_t buf[4], uint32_t const in[16])
189 {
190     uint32_t a, b, c, d;
191 
192     a = buf[0];
193     b = buf[1];
194     c = buf[2];
195     d = buf[3];
196 
197     MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
198     MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
199     MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
200     MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
201     MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
202     MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
203     MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
204     MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
205     MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
206     MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
207     MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
208     MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
209     MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
210     MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
211     MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
212     MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
213 
214     MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
215     MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
216     MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
217     MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
218     MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
219     MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
220     MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
221     MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
222     MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
223     MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
224     MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
225     MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
226     MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
227     MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
228     MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
229     MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
230 
231     MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
232     MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
233     MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
234     MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
235     MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
236     MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
237     MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
238     MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
239     MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
240     MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
241     MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
242     MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
243     MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
244     MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
245     MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
246     MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
247 
248     MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
249     MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
250     MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
251     MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
252     MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
253     MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
254     MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
255     MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
256     MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
257     MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
258     MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
259     MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
260     MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
261     MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
262     MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
263     MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
264 
265     buf[0] += a;
266     buf[1] += b;
267     buf[2] += c;
268     buf[3] += d;
269 }
270 
271 #endif
272