1 /*
2  * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
3  * ALL RIGHTS RESERVED
4  * Permission to use, copy, modify, and distribute this software for
5  * any purpose and without fee is hereby granted, provided that the above
6  * copyright notice appear in all copies and that both the copyright notice
7  * and this permission notice appear in supporting documentation, and that
8  * the name of Silicon Graphics, Inc. not be used in advertising
9  * or publicity pertaining to distribution of the software without specific,
10  * written prior permission.
11  *
12  * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
13  * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
14  * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
15  * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
16  * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
17  * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
18  * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
19  * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
20  * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
21  * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
22  * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
23  * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
24  *
25  * US Government Users Restricted Rights
26  * Use, duplication, or disclosure by the Government is subject to
27  * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
28  * (c)(1)(ii) of the Rights in Technical Data and Computer Software
29  * clause at DFARS 252.227-7013 and/or in similar or successor
30  * clauses in the FAR or the DOD or NASA FAR Supplement.
31  * Unpublished-- rights reserved under the copyright laws of the
32  * United States.  Contractor/manufacturer is Silicon Graphics,
33  * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
34  *
35  * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
36  */
37 /*
38  * Trackball code:
39  *
40  * Implementation of a virtual trackball.
41  * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
42  *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
43  *
44  * Vector manip code:
45  *
46  * Original code from:
47  * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
48  *
49  * Much mucking with by:
50  * Gavin Bell
51  */
52 #include <math.h>
53 #include "trackball.h"
54 
55 /*
56  * This size should really be based on the distance from the center of
57  * rotation to the point on the object underneath the mouse.  That
58  * point would then track the mouse as closely as possible.  This is a
59  * simple example, though, so that is left as an Exercise for the
60  * Programmer.
61  */
62 #define TRACKBALLSIZE  (0.8)
63 
64 /*
65  * Local function prototypes (not defined in trackball.h)
66  */
67 static float tb_project_to_sphere(float, float, float);
68 static void normalize_quat(float [4]);
69 
70 void
vzero(float * v)71 vzero(float *v)
72 {
73     v[0] = 0.0;
74     v[1] = 0.0;
75     v[2] = 0.0;
76 }
77 
78 void
vset(float * v,float x,float y,float z)79 vset(float *v, float x, float y, float z)
80 {
81     v[0] = x;
82     v[1] = y;
83     v[2] = z;
84 }
85 
86 void
vsub(const float * src1,const float * src2,float * dst)87 vsub(const float *src1, const float *src2, float *dst)
88 {
89     dst[0] = src1[0] - src2[0];
90     dst[1] = src1[1] - src2[1];
91     dst[2] = src1[2] - src2[2];
92 }
93 
94 void
vcopy(const float * v1,float * v2)95 vcopy(const float *v1, float *v2)
96 {
97     register int i;
98     for (i = 0 ; i < 3 ; i++)
99         v2[i] = v1[i];
100 }
101 
102 void
vcross(const float * v1,const float * v2,float * cross)103 vcross(const float *v1, const float *v2, float *cross)
104 {
105     float temp[3];
106 
107     temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
108     temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
109     temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
110     vcopy(temp, cross);
111 }
112 
113 float
vlength(const float * v)114 vlength(const float *v)
115 {
116     return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
117 }
118 
119 void
vscale(float * v,float div)120 vscale(float *v, float div)
121 {
122     v[0] *= div;
123     v[1] *= div;
124     v[2] *= div;
125 }
126 
127 void
vnormal(float * v)128 vnormal(float *v)
129 {
130     vscale(v,1.0/vlength(v));
131 }
132 
133 float
vdot(const float * v1,const float * v2)134 vdot(const float *v1, const float *v2)
135 {
136     return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
137 }
138 
139 void
vadd(const float * src1,const float * src2,float * dst)140 vadd(const float *src1, const float *src2, float *dst)
141 {
142     dst[0] = src1[0] + src2[0];
143     dst[1] = src1[1] + src2[1];
144     dst[2] = src1[2] + src2[2];
145 }
146 
147 /*
148  * Ok, simulate a track-ball.  Project the points onto the virtual
149  * trackball, then figure out the axis of rotation, which is the cross
150  * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
151  * Note:  This is a deformed trackball-- is a trackball in the center,
152  * but is deformed into a hyperbolic sheet of rotation away from the
153  * center.  This particular function was chosen after trying out
154  * several variations.
155  *
156  * It is assumed that the arguments to this routine are in the range
157  * (-1.0 ... 1.0)
158  */
159 void
trackball(float q[4],float p1x,float p1y,float p2x,float p2y)160 trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
161 {
162     float a[3]; /* Axis of rotation */
163     float phi;  /* how much to rotate about axis */
164     float p1[3], p2[3], d[3];
165     float t;
166 
167     if (p1x == p2x && p1y == p2y) {
168         /* Zero rotation */
169         vzero(q);
170         q[3] = 1.0;
171         return;
172     }
173 
174     /*
175      * First, figure out z-coordinates for projection of P1 and P2 to
176      * deformed sphere
177      */
178     vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
179     vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
180 
181     /*
182      *  Now, we want the cross product of P1 and P2
183      */
184     vcross(p2,p1,a);
185 
186     /*
187      *  Figure out how much to rotate around that axis.
188      */
189     vsub(p1,p2,d);
190     t = vlength(d) / (2.0*TRACKBALLSIZE);
191 
192     /*
193      * Avoid problems with out-of-control values...
194      */
195     if (t > 1.0) t = 1.0;
196     if (t < -1.0) t = -1.0;
197     phi = 2.0 * asin(t);
198 
199     axis_to_quat(a,phi,q);
200 }
201 
202 /*
203  *  Given an axis and angle, compute quaternion.
204  */
205 void
axis_to_quat(float a[3],float phi,float q[4])206 axis_to_quat(float a[3], float phi, float q[4])
207 {
208     vnormal(a);
209     vcopy(a,q);
210     vscale(q,sin(phi/2.0));
211     q[3] = cos(phi/2.0);
212 }
213 
214 /*
215  * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
216  * if we are away from the center of the sphere.
217  */
218 static float
tb_project_to_sphere(float r,float x,float y)219 tb_project_to_sphere(float r, float x, float y)
220 {
221     float d, t, z;
222 
223     d = sqrt(x*x + y*y);
224     if (d < r * 0.70710678118654752440) {    /* Inside sphere */
225         z = sqrt(r*r - d*d);
226     } else {           /* On hyperbola */
227         t = r / 1.41421356237309504880;
228         z = t*t / d;
229     }
230     return z;
231 }
232 
233 /*
234  * Given two rotations, e1 and e2, expressed as quaternion rotations,
235  * figure out the equivalent single rotation and stuff it into dest.
236  *
237  * This routine also normalizes the result every RENORMCOUNT times it is
238  * called, to keep error from creeping in.
239  *
240  * NOTE: This routine is written so that q1 or q2 may be the same
241  * as dest (or each other).
242  */
243 
244 #define RENORMCOUNT 97
245 
246 void
add_quats(float q1[4],float q2[4],float dest[4])247 add_quats(float q1[4], float q2[4], float dest[4])
248 {
249     static int count=0;
250     float t1[4], t2[4], t3[4];
251     float tf[4];
252 
253     vcopy(q1,t1);
254     vscale(t1,q2[3]);
255 
256     vcopy(q2,t2);
257     vscale(t2,q1[3]);
258 
259     vcross(q2,q1,t3);
260     vadd(t1,t2,tf);
261     vadd(t3,tf,tf);
262     tf[3] = q1[3] * q2[3] - vdot(q1,q2);
263 
264     dest[0] = tf[0];
265     dest[1] = tf[1];
266     dest[2] = tf[2];
267     dest[3] = tf[3];
268 
269     if (++count > RENORMCOUNT) {
270         count = 0;
271         normalize_quat(dest);
272     }
273 }
274 
275 /*
276  * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
277  * If they don't add up to 1.0, dividing by their magnitued will
278  * renormalize them.
279  *
280  * Note: See the following for more information on quaternions:
281  *
282  * - Shoemake, K., Animating rotation with quaternion curves, Computer
283  *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
284  * - Pletinckx, D., Quaternion calculus as a basic tool in computer
285  *   graphics, The Visual Computer 5, 2-13, 1989.
286  */
287 static void
normalize_quat(float q[4])288 normalize_quat(float q[4])
289 {
290     int i;
291     float mag;
292 
293     mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
294     for (i = 0; i < 4; i++) q[i] /= mag;
295 }
296 
297 /*
298  * Build a rotation matrix, given a quaternion rotation.
299  *
300  */
301 void
build_rotmatrix(float m[4][4],float q[4])302 build_rotmatrix(float m[4][4], float q[4])
303 {
304     m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
305     m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
306     m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
307     m[0][3] = 0.0;
308 
309     m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
310     m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
311     m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
312     m[1][3] = 0.0;
313 
314     m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
315     m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
316     m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
317     m[2][3] = 0.0;
318 
319     m[3][0] = 0.0;
320     m[3][1] = 0.0;
321     m[3][2] = 0.0;
322     m[3][3] = 1.0;
323 }
324 
325