1 // Copyright (C) 2002-2012 Nikolaus Gebhardt / Thomas Alten
2 // This file is part of the "Irrlicht Engine".
3 // For conditions of distribution and use, see copyright notice in irrlicht.h
4 
5 #include "IrrCompileConfig.h"
6 #include "IBurningShader.h"
7 
8 #ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
9 
10 // compile flag for this file
11 #undef USE_ZBUFFER
12 #undef IPOL_Z
13 #undef CMP_Z
14 #undef WRITE_Z
15 
16 #undef IPOL_W
17 #undef CMP_W
18 #undef WRITE_W
19 
20 #undef SUBTEXEL
21 #undef INVERSE_W
22 
23 #undef IPOL_C0
24 #undef IPOL_T0
25 #undef IPOL_T1
26 
27 // define render case
28 #define SUBTEXEL
29 //#define INVERSE_W
30 
31 //#define USE_ZBUFFER
32 //#define IPOL_W
33 //#define CMP_W
34 //#define WRITE_W
35 
36 #define IPOL_C0
37 //#define IPOL_T0
38 //#define IPOL_T1
39 
40 // apply global override
41 #ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
42 	#undef INVERSE_W
43 #endif
44 
45 #ifndef SOFTWARE_DRIVER_2_SUBTEXEL
46 	#undef SUBTEXEL
47 #endif
48 
49 #ifndef SOFTWARE_DRIVER_2_USE_VERTEX_COLOR
50 	#undef IPOL_C0
51 #endif
52 
53 #if !defined ( SOFTWARE_DRIVER_2_USE_WBUFFER ) && defined ( USE_ZBUFFER )
54 	#ifndef SOFTWARE_DRIVER_2_PERSPECTIVE_CORRECT
55 		#undef IPOL_W
56 	#endif
57 	//#define IPOL_Z
58 
59 	#ifdef CMP_W
60 		#undef CMP_W
61 		#define CMP_Z
62 	#endif
63 
64 	#ifdef WRITE_W
65 		#undef WRITE_W
66 		#define WRITE_Z
67 	#endif
68 
69 #endif
70 
71 
72 
73 namespace irr
74 {
75 
76 namespace video
77 {
78 
79 class CTRGouraudAlphaNoZ2 : public IBurningShader
80 {
81 public:
82 
83 	//! constructor
84 	CTRGouraudAlphaNoZ2(CBurningVideoDriver* driver);
85 
86 	//! draws an indexed triangle list
87 	virtual void drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c );
88 
89 
90 private:
91 	void scanline_bilinear ();
92 	sScanConvertData scan;
93 	sScanLineData line;
94 
95 };
96 
97 //! constructor
CTRGouraudAlphaNoZ2(CBurningVideoDriver * driver)98 CTRGouraudAlphaNoZ2::CTRGouraudAlphaNoZ2(CBurningVideoDriver* driver)
99 : IBurningShader(driver)
100 {
101 	#ifdef _DEBUG
102 	setDebugName("CTRGouraudAlphaNoZ2");
103 	#endif
104 }
105 
106 
107 
108 /*!
109 */
scanline_bilinear()110 void CTRGouraudAlphaNoZ2::scanline_bilinear ()
111 {
112 	tVideoSample *dst;
113 
114 #ifdef USE_ZBUFFER
115 	fp24 *z;
116 #endif
117 
118 	s32 xStart;
119 	s32 xEnd;
120 	s32 dx;
121 
122 
123 #ifdef SUBTEXEL
124 	f32 subPixel;
125 #endif
126 
127 #ifdef IPOL_Z
128 	f32 slopeZ;
129 #endif
130 #ifdef IPOL_W
131 	fp24 slopeW;
132 #endif
133 #ifdef IPOL_C0
134 	sVec4 slopeC;
135 #endif
136 #ifdef IPOL_T0
137 	sVec2 slopeT[BURNING_MATERIAL_MAX_TEXTURES];
138 #endif
139 
140 	// apply top-left fill-convention, left
141 	xStart = core::ceil32( line.x[0] );
142 	xEnd = core::ceil32( line.x[1] ) - 1;
143 
144 	dx = xEnd - xStart;
145 
146 	if ( dx < 0 )
147 		return;
148 
149 	// slopes
150 	const f32 invDeltaX = core::reciprocal_approxim ( line.x[1] - line.x[0] );
151 
152 #ifdef IPOL_Z
153 	slopeZ = (line.z[1] - line.z[0]) * invDeltaX;
154 #endif
155 #ifdef IPOL_W
156 	slopeW = (line.w[1] - line.w[0]) * invDeltaX;
157 #endif
158 #ifdef IPOL_C0
159 	slopeC = (line.c[0][1] - line.c[0][0]) * invDeltaX;
160 #endif
161 #ifdef IPOL_T0
162 	slopeT[0] = (line.t[0][1] - line.t[0][0]) * invDeltaX;
163 #endif
164 #ifdef IPOL_T1
165 	slopeT[1] = (line.t[1][1] - line.t[1][0]) * invDeltaX;
166 #endif
167 
168 #ifdef SUBTEXEL
169 	subPixel = ( (f32) xStart ) - line.x[0];
170 #ifdef IPOL_Z
171 	line.z[0] += slopeZ * subPixel;
172 #endif
173 #ifdef IPOL_W
174 	line.w[0] += slopeW * subPixel;
175 #endif
176 #ifdef IPOL_C0
177 	line.c[0][0] += slopeC * subPixel;
178 #endif
179 #ifdef IPOL_T0
180 	line.t[0][0] += slopeT[0] * subPixel;
181 #endif
182 #ifdef IPOL_T1
183 	line.t[1][0] += slopeT[1] * subPixel;
184 #endif
185 #endif
186 
187 	dst = (tVideoSample*)RenderTarget->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
188 
189 #ifdef USE_ZBUFFER
190 	z = (fp24*) DepthBuffer->lock() + ( line.y * RenderTarget->getDimension().Width ) + xStart;
191 #endif
192 
193 
194 
195 #ifdef IPOL_C0
196 
197 #ifdef INVERSE_W
198 	f32 inversew;
199 #endif
200 
201 	tFixPoint a0;
202 	tFixPoint r0, g0, b0;
203 	tFixPoint r1, g1, b1;
204 	tFixPoint r2, g2, b2;
205 #endif
206 
207 	for ( s32 i = 0; i <= dx; ++i )
208 	{
209 #ifdef CMP_Z
210 		if ( line.z[0] < z[i] )
211 #endif
212 #ifdef CMP_W
213 		if ( line.w[0] >= z[i] )
214 #endif
215 		{
216 
217 #ifdef WRITE_Z
218 			z[i] = line.z[0];
219 #endif
220 
221 #ifdef WRITE_W
222 			z[i] = line.w[0];
223 #endif
224 
225 #ifdef IPOL_C0
226 #ifdef IPOL_W
227 			inversew = core::reciprocal ( line.w[0] );
228 
229 			getSample_color ( a0, r0, g0, b0, line.c[0][0] * inversew );
230 #else
231 			getSample_color ( a0, r0, g0, b0, line.c[0][0] );
232 #endif
233 
234 			color_to_fix ( r1, g1, b1, dst[i] );
235 
236 			r2 = r1 + imulFix ( a0, r0 - r1 );
237 			g2 = g1 + imulFix ( a0, g0 - g1 );
238 			b2 = b1 + imulFix ( a0, b0 - b1 );
239 
240 			dst[i] = fix_to_color ( r2, g2, b2 );
241 #else
242 			dst[i] = COLOR_BRIGHT_WHITE;
243 #endif
244 
245 
246 		}
247 
248 #ifdef IPOL_Z
249 		line.z[0] += slopeZ;
250 #endif
251 #ifdef IPOL_W
252 		line.w[0] += slopeW;
253 #endif
254 #ifdef IPOL_C0
255 		line.c[0][0] += slopeC;
256 #endif
257 #ifdef IPOL_T0
258 		line.t[0][0] += slopeT[0];
259 #endif
260 #ifdef IPOL_T1
261 		line.t[1][0] += slopeT[1];
262 #endif
263 	}
264 
265 }
266 
drawTriangle(const s4DVertex * a,const s4DVertex * b,const s4DVertex * c)267 void CTRGouraudAlphaNoZ2::drawTriangle ( const s4DVertex *a,const s4DVertex *b,const s4DVertex *c )
268 {
269 	// sort on height, y
270 	if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
271 	if ( F32_A_GREATER_B ( b->Pos.y , c->Pos.y ) ) swapVertexPointer(&b, &c);
272 	if ( F32_A_GREATER_B ( a->Pos.y , b->Pos.y ) ) swapVertexPointer(&a, &b);
273 
274 	const f32 ca = c->Pos.y - a->Pos.y;
275 	const f32 ba = b->Pos.y - a->Pos.y;
276 	const f32 cb = c->Pos.y - b->Pos.y;
277 	// calculate delta y of the edges
278 	scan.invDeltaY[0] = core::reciprocal( ca );
279 	scan.invDeltaY[1] = core::reciprocal( ba );
280 	scan.invDeltaY[2] = core::reciprocal( cb );
281 
282 	if ( F32_LOWER_EQUAL_0 ( scan.invDeltaY[0] ) )
283 		return;
284 
285 	// find if the major edge is left or right aligned
286 	f32 temp[4];
287 
288 	temp[0] = a->Pos.x - c->Pos.x;
289 	temp[1] = -ca;
290 	temp[2] = b->Pos.x - a->Pos.x;
291 	temp[3] = ba;
292 
293 	scan.left = ( temp[0] * temp[3] - temp[1] * temp[2] ) > 0.f ? 0 : 1;
294 	scan.right = 1 - scan.left;
295 
296 	// calculate slopes for the major edge
297 	scan.slopeX[0] = (c->Pos.x - a->Pos.x) * scan.invDeltaY[0];
298 	scan.x[0] = a->Pos.x;
299 
300 #ifdef IPOL_Z
301 	scan.slopeZ[0] = (c->Pos.z - a->Pos.z) * scan.invDeltaY[0];
302 	scan.z[0] = a->Pos.z;
303 #endif
304 
305 #ifdef IPOL_W
306 	scan.slopeW[0] = (c->Pos.w - a->Pos.w) * scan.invDeltaY[0];
307 	scan.w[0] = a->Pos.w;
308 #endif
309 
310 #ifdef IPOL_C0
311 	scan.slopeC[0][0] = (c->Color[0] - a->Color[0]) * scan.invDeltaY[0];
312 	scan.c[0][0] = a->Color[0];
313 #endif
314 
315 #ifdef IPOL_T0
316 	scan.slopeT[0][0] = (c->Tex[0] - a->Tex[0]) * scan.invDeltaY[0];
317 	scan.t[0][0] = a->Tex[0];
318 #endif
319 
320 #ifdef IPOL_T1
321 	scan.slopeT[1][0] = (c->Tex[1] - a->Tex[1]) * scan.invDeltaY[0];
322 	scan.t[1][0] = a->Tex[1];
323 #endif
324 
325 	// top left fill convention y run
326 	s32 yStart;
327 	s32 yEnd;
328 
329 #ifdef SUBTEXEL
330 	f32 subPixel;
331 #endif
332 
333 	// rasterize upper sub-triangle
334 	if ( (f32) 0.0 != scan.invDeltaY[1]  )
335 	{
336 		// calculate slopes for top edge
337 		scan.slopeX[1] = (b->Pos.x - a->Pos.x) * scan.invDeltaY[1];
338 		scan.x[1] = a->Pos.x;
339 
340 #ifdef IPOL_Z
341 		scan.slopeZ[1] = (b->Pos.z - a->Pos.z) * scan.invDeltaY[1];
342 		scan.z[1] = a->Pos.z;
343 #endif
344 
345 #ifdef IPOL_W
346 		scan.slopeW[1] = (b->Pos.w - a->Pos.w) * scan.invDeltaY[1];
347 		scan.w[1] = a->Pos.w;
348 #endif
349 
350 #ifdef IPOL_C0
351 		scan.slopeC[0][1] = (b->Color[0] - a->Color[0]) * scan.invDeltaY[1];
352 		scan.c[0][1] = a->Color[0];
353 #endif
354 
355 #ifdef IPOL_T0
356 		scan.slopeT[0][1] = (b->Tex[0] - a->Tex[0]) * scan.invDeltaY[1];
357 		scan.t[0][1] = a->Tex[0];
358 #endif
359 
360 #ifdef IPOL_T1
361 		scan.slopeT[1][1] = (b->Tex[1] - a->Tex[1]) * scan.invDeltaY[1];
362 		scan.t[1][1] = a->Tex[1];
363 #endif
364 
365 		// apply top-left fill convention, top part
366 		yStart = core::ceil32( a->Pos.y );
367 		yEnd = core::ceil32( b->Pos.y ) - 1;
368 
369 #ifdef SUBTEXEL
370 		subPixel = ( (f32) yStart ) - a->Pos.y;
371 
372 		// correct to pixel center
373 		scan.x[0] += scan.slopeX[0] * subPixel;
374 		scan.x[1] += scan.slopeX[1] * subPixel;
375 
376 #ifdef IPOL_Z
377 		scan.z[0] += scan.slopeZ[0] * subPixel;
378 		scan.z[1] += scan.slopeZ[1] * subPixel;
379 #endif
380 
381 #ifdef IPOL_W
382 		scan.w[0] += scan.slopeW[0] * subPixel;
383 		scan.w[1] += scan.slopeW[1] * subPixel;
384 #endif
385 
386 #ifdef IPOL_C0
387 		scan.c[0][0] += scan.slopeC[0][0] * subPixel;
388 		scan.c[0][1] += scan.slopeC[0][1] * subPixel;
389 #endif
390 
391 #ifdef IPOL_T0
392 		scan.t[0][0] += scan.slopeT[0][0] * subPixel;
393 		scan.t[0][1] += scan.slopeT[0][1] * subPixel;
394 #endif
395 
396 #ifdef IPOL_T1
397 		scan.t[1][0] += scan.slopeT[1][0] * subPixel;
398 		scan.t[1][1] += scan.slopeT[1][1] * subPixel;
399 #endif
400 
401 #endif
402 
403 		// rasterize the edge scanlines
404 		for( line.y = yStart; line.y <= yEnd; ++line.y)
405 		{
406 			line.x[scan.left] = scan.x[0];
407 			line.x[scan.right] = scan.x[1];
408 
409 #ifdef IPOL_Z
410 			line.z[scan.left] = scan.z[0];
411 			line.z[scan.right] = scan.z[1];
412 #endif
413 
414 #ifdef IPOL_W
415 			line.w[scan.left] = scan.w[0];
416 			line.w[scan.right] = scan.w[1];
417 #endif
418 
419 #ifdef IPOL_C0
420 			line.c[0][scan.left] = scan.c[0][0];
421 			line.c[0][scan.right] = scan.c[0][1];
422 #endif
423 
424 #ifdef IPOL_T0
425 			line.t[0][scan.left] = scan.t[0][0];
426 			line.t[0][scan.right] = scan.t[0][1];
427 #endif
428 
429 #ifdef IPOL_T1
430 			line.t[1][scan.left] = scan.t[1][0];
431 			line.t[1][scan.right] = scan.t[1][1];
432 #endif
433 
434 			// render a scanline
435 			scanline_bilinear ();
436 
437 			scan.x[0] += scan.slopeX[0];
438 			scan.x[1] += scan.slopeX[1];
439 
440 #ifdef IPOL_Z
441 			scan.z[0] += scan.slopeZ[0];
442 			scan.z[1] += scan.slopeZ[1];
443 #endif
444 
445 #ifdef IPOL_W
446 			scan.w[0] += scan.slopeW[0];
447 			scan.w[1] += scan.slopeW[1];
448 #endif
449 
450 #ifdef IPOL_C0
451 			scan.c[0][0] += scan.slopeC[0][0];
452 			scan.c[0][1] += scan.slopeC[0][1];
453 #endif
454 
455 #ifdef IPOL_T0
456 			scan.t[0][0] += scan.slopeT[0][0];
457 			scan.t[0][1] += scan.slopeT[0][1];
458 #endif
459 
460 #ifdef IPOL_T1
461 			scan.t[1][0] += scan.slopeT[1][0];
462 			scan.t[1][1] += scan.slopeT[1][1];
463 #endif
464 
465 		}
466 	}
467 
468 	// rasterize lower sub-triangle
469 	if ( (f32) 0.0 != scan.invDeltaY[2] )
470 	{
471 		// advance to middle point
472 		if( (f32) 0.0 != scan.invDeltaY[1] )
473 		{
474 			temp[0] = b->Pos.y - a->Pos.y;	// dy
475 
476 			scan.x[0] = a->Pos.x + scan.slopeX[0] * temp[0];
477 #ifdef IPOL_Z
478 			scan.z[0] = a->Pos.z + scan.slopeZ[0] * temp[0];
479 #endif
480 #ifdef IPOL_W
481 			scan.w[0] = a->Pos.w + scan.slopeW[0] * temp[0];
482 #endif
483 #ifdef IPOL_C0
484 			scan.c[0][0] = a->Color[0] + scan.slopeC[0][0] * temp[0];
485 #endif
486 #ifdef IPOL_T0
487 			scan.t[0][0] = a->Tex[0] + scan.slopeT[0][0] * temp[0];
488 #endif
489 #ifdef IPOL_T1
490 			scan.t[1][0] = a->Tex[1] + scan.slopeT[1][0] * temp[0];
491 #endif
492 
493 		}
494 
495 		// calculate slopes for bottom edge
496 		scan.slopeX[1] = (c->Pos.x - b->Pos.x) * scan.invDeltaY[2];
497 		scan.x[1] = b->Pos.x;
498 
499 #ifdef IPOL_Z
500 		scan.slopeZ[1] = (c->Pos.z - b->Pos.z) * scan.invDeltaY[2];
501 		scan.z[1] = b->Pos.z;
502 #endif
503 
504 #ifdef IPOL_W
505 		scan.slopeW[1] = (c->Pos.w - b->Pos.w) * scan.invDeltaY[2];
506 		scan.w[1] = b->Pos.w;
507 #endif
508 
509 #ifdef IPOL_C0
510 		scan.slopeC[0][1] = (c->Color[0] - b->Color[0]) * scan.invDeltaY[2];
511 		scan.c[0][1] = b->Color[0];
512 #endif
513 
514 #ifdef IPOL_T0
515 		scan.slopeT[0][1] = (c->Tex[0] - b->Tex[0]) * scan.invDeltaY[2];
516 		scan.t[0][1] = b->Tex[0];
517 #endif
518 
519 #ifdef IPOL_T1
520 		scan.slopeT[1][1] = (c->Tex[1] - b->Tex[1]) * scan.invDeltaY[2];
521 		scan.t[1][1] = b->Tex[1];
522 #endif
523 
524 		// apply top-left fill convention, top part
525 		yStart = core::ceil32( b->Pos.y );
526 		yEnd = core::ceil32( c->Pos.y ) - 1;
527 
528 #ifdef SUBTEXEL
529 
530 		subPixel = ( (f32) yStart ) - b->Pos.y;
531 
532 		// correct to pixel center
533 		scan.x[0] += scan.slopeX[0] * subPixel;
534 		scan.x[1] += scan.slopeX[1] * subPixel;
535 
536 #ifdef IPOL_Z
537 		scan.z[0] += scan.slopeZ[0] * subPixel;
538 		scan.z[1] += scan.slopeZ[1] * subPixel;
539 #endif
540 
541 #ifdef IPOL_W
542 		scan.w[0] += scan.slopeW[0] * subPixel;
543 		scan.w[1] += scan.slopeW[1] * subPixel;
544 #endif
545 
546 #ifdef IPOL_C0
547 		scan.c[0][0] += scan.slopeC[0][0] * subPixel;
548 		scan.c[0][1] += scan.slopeC[0][1] * subPixel;
549 #endif
550 
551 #ifdef IPOL_T0
552 		scan.t[0][0] += scan.slopeT[0][0] * subPixel;
553 		scan.t[0][1] += scan.slopeT[0][1] * subPixel;
554 #endif
555 
556 #ifdef IPOL_T1
557 		scan.t[1][0] += scan.slopeT[1][0] * subPixel;
558 		scan.t[1][1] += scan.slopeT[1][1] * subPixel;
559 #endif
560 
561 #endif
562 
563 		// rasterize the edge scanlines
564 		for( line.y = yStart; line.y <= yEnd; ++line.y)
565 		{
566 			line.x[scan.left] = scan.x[0];
567 			line.x[scan.right] = scan.x[1];
568 
569 #ifdef IPOL_Z
570 			line.z[scan.left] = scan.z[0];
571 			line.z[scan.right] = scan.z[1];
572 #endif
573 
574 #ifdef IPOL_W
575 			line.w[scan.left] = scan.w[0];
576 			line.w[scan.right] = scan.w[1];
577 #endif
578 
579 #ifdef IPOL_C0
580 			line.c[0][scan.left] = scan.c[0][0];
581 			line.c[0][scan.right] = scan.c[0][1];
582 #endif
583 
584 #ifdef IPOL_T0
585 			line.t[0][scan.left] = scan.t[0][0];
586 			line.t[0][scan.right] = scan.t[0][1];
587 #endif
588 
589 #ifdef IPOL_T1
590 			line.t[1][scan.left] = scan.t[1][0];
591 			line.t[1][scan.right] = scan.t[1][1];
592 #endif
593 
594 			// render a scanline
595 			scanline_bilinear ();
596 
597 			scan.x[0] += scan.slopeX[0];
598 			scan.x[1] += scan.slopeX[1];
599 
600 #ifdef IPOL_Z
601 			scan.z[0] += scan.slopeZ[0];
602 			scan.z[1] += scan.slopeZ[1];
603 #endif
604 
605 #ifdef IPOL_W
606 			scan.w[0] += scan.slopeW[0];
607 			scan.w[1] += scan.slopeW[1];
608 #endif
609 
610 #ifdef IPOL_C0
611 			scan.c[0][0] += scan.slopeC[0][0];
612 			scan.c[0][1] += scan.slopeC[0][1];
613 #endif
614 
615 #ifdef IPOL_T0
616 			scan.t[0][0] += scan.slopeT[0][0];
617 			scan.t[0][1] += scan.slopeT[0][1];
618 #endif
619 
620 #ifdef IPOL_T1
621 			scan.t[1][0] += scan.slopeT[1][0];
622 			scan.t[1][1] += scan.slopeT[1][1];
623 #endif
624 
625 		}
626 	}
627 
628 }
629 
630 } // end namespace video
631 } // end namespace irr
632 
633 #endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
634 
635 namespace irr
636 {
637 namespace video
638 {
639 
640 //! creates a flat triangle renderer
createTRGouraudAlphaNoZ2(CBurningVideoDriver * driver)641 IBurningShader* createTRGouraudAlphaNoZ2(CBurningVideoDriver* driver)
642 {
643 	#ifdef _IRR_COMPILE_WITH_BURNINGSVIDEO_
644 	return new CTRGouraudAlphaNoZ2(driver);
645 	#else
646 	return 0;
647 	#endif // _IRR_COMPILE_WITH_BURNINGSVIDEO_
648 }
649 
650 
651 } // end namespace video
652 } // end namespace irr
653 
654 
655