1 /*
2  * freeglut_geometry.c
3  *
4  * Freeglut geometry rendering methods.
5  *
6  * Copyright (c) 1999-2010 Pawel W. Olszta. All Rights Reserved.
7  * Written by Pawel W. Olszta, <olszta@sourceforge.net>
8  * Creation date: Fri Dec 3 1999
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a
11  * copy of this software and associated documentation files (the "Software"),
12  * to deal in the Software without restriction, including without limitation
13  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
14  * and/or sell copies of the Software, and to permit persons to whom the
15  * Software is furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included
18  * in all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
23  * PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
24  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
25  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  */
27 
28 #include <FL/glut.H>
29 #include <FL/math.h>
30 #include <stdlib.h>
31 
32 /*
33  * TODO BEFORE THE STABLE RELEASE:
34  *
35  * Following functions have been contributed by Andreas Umbach.
36  *
37  *      glutWireCube()          -- looks OK
38  *      glutSolidCube()         -- OK
39  *
40  * Those functions have been implemented by John Fay.
41  *
42  *      glutWireTorus()         -- looks OK
43  *      glutSolidTorus()        -- looks OK
44  *      glutWireDodecahedron()  -- looks OK
45  *      glutSolidDodecahedron() -- looks OK
46  *      glutWireOctahedron()    -- looks OK
47  *      glutSolidOctahedron()   -- looks OK
48  *      glutWireTetrahedron()   -- looks OK
49  *      glutSolidTetrahedron()  -- looks OK
50  *      glutWireIcosahedron()   -- looks OK
51  *      glutSolidIcosahedron()  -- looks OK
52  *
53  *  The Following functions have been updated by Nigel Stewart, based
54  *  on FreeGLUT 2.0.0 implementations:
55  *
56  *      glutWireSphere()        -- looks OK
57  *      glutSolidSphere()       -- looks OK
58  *      glutWireCone()          -- looks OK
59  *      glutSolidCone()         -- looks OK
60  */
61 
62 
63 /* -- INTERFACE FUNCTIONS -------------------------------------------------- */
64 
65 /*
66  * Draws a wireframed cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
67  */
glutWireCube(GLdouble dSize)68 void glutWireCube( GLdouble dSize )
69 {
70     double size = dSize * 0.5;
71 
72 #   define V(a,b,c) glVertex3d( a size, b size, c size );
73 #   define N(a,b,c) glNormal3d( a, b, c );
74 
75     /* PWO: I dared to convert the code to use macros... */
76     glBegin( GL_LINE_LOOP ); N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); glEnd();
77     glBegin( GL_LINE_LOOP ); N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); glEnd();
78     glBegin( GL_LINE_LOOP ); N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); glEnd();
79     glBegin( GL_LINE_LOOP ); N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); glEnd();
80     glBegin( GL_LINE_LOOP ); N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); glEnd();
81     glBegin( GL_LINE_LOOP ); N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); glEnd();
82 
83 #   undef V
84 #   undef N
85 }
86 
87 /*
88  * Draws a solid cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
89  */
glutSolidCube(GLdouble dSize)90 void glutSolidCube( GLdouble dSize )
91 {
92     double size = dSize * 0.5;
93 
94 #   define V(a,b,c) glVertex3d( a size, b size, c size );
95 #   define N(a,b,c) glNormal3d( a, b, c );
96 
97     /* PWO: Again, I dared to convert the code to use macros... */
98     glBegin( GL_QUADS );
99         N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+);
100         N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+);
101         N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+);
102         N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-);
103         N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+);
104         N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-);
105     glEnd();
106 
107 #   undef V
108 #   undef N
109 }
110 
111 /*
112  * Compute lookup table of cos and sin values forming a cirle
113  *
114  * Notes:
115  *    It is the responsibility of the caller to free these tables
116  *    The size of the table is (n+1) to form a connected loop
117  *    The last entry is exactly the same as the first
118  *    The sign of n can be flipped to get the reverse loop
119  */
120 
fghCircleTable(double ** sint,double ** cost,const int n)121 static void fghCircleTable(double **sint,double **cost,const int n)
122 {
123     int i;
124 
125     /* Table size, the sign of n flips the circle direction */
126 
127     const int size = abs(n);
128 
129     /* Determine the angle between samples */
130 
131     const double angle = 2*M_PI/(double)( ( n == 0 ) ? 1 : n );
132 
133     /* Allocate memory for n samples, plus duplicate of first entry at the end */
134 
135     *sint = (double *) calloc(sizeof(double), size+1);
136     *cost = (double *) calloc(sizeof(double), size+1);
137 
138     /* Bail out if memory allocation fails, fgError never returns */
139 
140     if (!(*sint) || !(*cost))
141     {
142       if (*sint) free(*sint);
143       if (*cost) free(*cost);
144       return;
145     }
146 
147     /* Compute cos and sin around the circle */
148 
149     (*sint)[0] = 0.0;
150     (*cost)[0] = 1.0;
151 
152     for (i=1; i<size; i++)
153     {
154         (*sint)[i] = sin(angle*i);
155         (*cost)[i] = cos(angle*i);
156     }
157 
158     /* Last sample is duplicate of the first */
159 
160     (*sint)[size] = (*sint)[0];
161     (*cost)[size] = (*cost)[0];
162 }
163 
164 /*
165  * Draws a solid sphere
166  */
glutSolidSphere(GLdouble radius,GLint slices,GLint stacks)167 void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)
168 {
169     int i,j;
170 
171     /* Adjust z and radius as stacks are drawn. */
172 
173     double z0,z1;
174     double r0,r1;
175 
176     /* Pre-computed circle */
177 
178     double *sint1,*cost1;
179     double *sint2,*cost2;
180 
181     fghCircleTable(&sint1,&cost1,-slices);
182     fghCircleTable(&sint2,&cost2,stacks*2);
183 
184     /* The top stack is covered with a triangle fan */
185 
186     z0 = 1.0;
187     z1 = cost2[(stacks>0)?1:0];
188     r0 = 0.0;
189     r1 = sint2[(stacks>0)?1:0];
190 
191     glBegin(GL_TRIANGLE_FAN);
192 
193         glNormal3d(0,0,1);
194         glVertex3d(0,0,radius);
195 
196         for (j=slices; j>=0; j--)
197         {
198             glNormal3d(cost1[j]*r1,        sint1[j]*r1,        z1       );
199             glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
200         }
201 
202     glEnd();
203 
204     /* Cover each stack with a quad strip, except the top and bottom stacks */
205 
206     for( i=1; i<stacks-1; i++ )
207     {
208         z0 = z1; z1 = cost2[i+1];
209         r0 = r1; r1 = sint2[i+1];
210 
211         glBegin(GL_QUAD_STRIP);
212 
213             for(j=0; j<=slices; j++)
214             {
215                 glNormal3d(cost1[j]*r1,        sint1[j]*r1,        z1       );
216                 glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius);
217                 glNormal3d(cost1[j]*r0,        sint1[j]*r0,        z0       );
218                 glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
219             }
220 
221         glEnd();
222     }
223 
224     /* The bottom stack is covered with a triangle fan */
225 
226     z0 = z1;
227     r0 = r1;
228 
229     glBegin(GL_TRIANGLE_FAN);
230 
231         glNormal3d(0,0,-1);
232         glVertex3d(0,0,-radius);
233 
234         for (j=0; j<=slices; j++)
235         {
236             glNormal3d(cost1[j]*r0,        sint1[j]*r0,        z0       );
237             glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius);
238         }
239 
240     glEnd();
241 
242     /* Release sin and cos tables */
243 
244     free(sint1);
245     free(cost1);
246     free(sint2);
247     free(cost2);
248 }
249 
250 /*
251  * Draws a wire sphere
252  */
glutWireSphere(GLdouble radius,GLint slices,GLint stacks)253 void glutWireSphere(GLdouble radius, GLint slices, GLint stacks)
254 {
255     int i,j;
256 
257     /* Adjust z and radius as stacks and slices are drawn. */
258 
259     double r;
260     double x,y,z;
261 
262     /* Pre-computed circle */
263 
264     double *sint1,*cost1;
265     double *sint2,*cost2;
266 
267     fghCircleTable(&sint1,&cost1,-slices  );
268     fghCircleTable(&sint2,&cost2, stacks*2);
269 
270     /* Draw a line loop for each stack */
271 
272     for (i=1; i<stacks; i++)
273     {
274         z = cost2[i];
275         r = sint2[i];
276 
277         glBegin(GL_LINE_LOOP);
278 
279             for(j=0; j<=slices; j++)
280             {
281                 x = cost1[j];
282                 y = sint1[j];
283 
284                 glNormal3d(x,y,z);
285                 glVertex3d(x*r*radius,y*r*radius,z*radius);
286             }
287 
288         glEnd();
289     }
290 
291     /* Draw a line loop for each slice */
292 
293     for (i=0; i<slices; i++)
294     {
295         glBegin(GL_LINE_STRIP);
296 
297             for(j=0; j<=stacks; j++)
298             {
299                 x = cost1[i]*sint2[j];
300                 y = sint1[i]*sint2[j];
301                 z = cost2[j];
302 
303                 glNormal3d(x,y,z);
304                 glVertex3d(x*radius,y*radius,z*radius);
305             }
306 
307         glEnd();
308     }
309 
310     /* Release sin and cos tables */
311 
312     free(sint1);
313     free(cost1);
314     free(sint2);
315     free(cost2);
316 }
317 
318 /*
319  * Draws a solid cone
320  */
glutSolidCone(GLdouble base,GLdouble height,GLint slices,GLint stacks)321 void glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
322 {
323     int i,j;
324 
325     /* Step in z and radius as stacks are drawn. */
326 
327     double z0,z1;
328     double r0,r1;
329 
330     const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
331     const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
332 
333     /* Scaling factors for vertex normals */
334 
335     const double cosn = ( height / sqrt ( height * height + base * base ));
336     const double sinn = ( base   / sqrt ( height * height + base * base ));
337 
338     /* Pre-computed circle */
339 
340     double *sint,*cost;
341 
342     fghCircleTable(&sint,&cost,-slices);
343 
344     /* Cover the circular base with a triangle fan... */
345 
346     z0 = 0.0;
347     z1 = zStep;
348 
349     r0 = base;
350     r1 = r0 - rStep;
351 
352     glBegin(GL_TRIANGLE_FAN);
353 
354         glNormal3d(0.0,0.0,-1.0);
355         glVertex3d(0.0,0.0, z0 );
356 
357         for (j=0; j<=slices; j++)
358             glVertex3d(cost[j]*r0, sint[j]*r0, z0);
359 
360     glEnd();
361 
362     /* Cover each stack with a quad strip, except the top stack */
363 
364     for( i=0; i<stacks-1; i++ )
365     {
366         glBegin(GL_QUAD_STRIP);
367 
368             for(j=0; j<=slices; j++)
369             {
370                 glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
371                 glVertex3d(cost[j]*r0,   sint[j]*r0,   z0  );
372                 glVertex3d(cost[j]*r1,   sint[j]*r1,   z1  );
373             }
374 
375             z0 = z1; z1 += zStep;
376             r0 = r1; r1 -= rStep;
377 
378         glEnd();
379     }
380 
381     /* The top stack is covered with individual triangles */
382 
383     glBegin(GL_TRIANGLES);
384 
385         glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn);
386 
387         for (j=0; j<slices; j++)
388         {
389             glVertex3d(cost[j+0]*r0,   sint[j+0]*r0,   z0    );
390             glVertex3d(0,              0,              height);
391             glNormal3d(cost[j+1]*sinn, sint[j+1]*sinn, cosn  );
392             glVertex3d(cost[j+1]*r0,   sint[j+1]*r0,   z0    );
393         }
394 
395     glEnd();
396 
397     /* Release sin and cos tables */
398 
399     free(sint);
400     free(cost);
401 }
402 
403 /*
404  * Draws a wire cone
405  */
glutWireCone(GLdouble base,GLdouble height,GLint slices,GLint stacks)406 void glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks)
407 {
408     int i,j;
409 
410     /* Step in z and radius as stacks are drawn. */
411 
412     double z = 0.0;
413     double r = base;
414 
415     const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
416     const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 );
417 
418     /* Scaling factors for vertex normals */
419 
420     const double cosn = ( height / sqrt ( height * height + base * base ));
421     const double sinn = ( base   / sqrt ( height * height + base * base ));
422 
423     /* Pre-computed circle */
424 
425     double *sint,*cost;
426 
427     fghCircleTable(&sint,&cost,-slices);
428 
429     /* Draw the stacks... */
430 
431     for (i=0; i<stacks; i++)
432     {
433         glBegin(GL_LINE_LOOP);
434 
435             for( j=0; j<slices; j++ )
436             {
437                 glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn);
438                 glVertex3d(cost[j]*r,    sint[j]*r,    z   );
439             }
440 
441         glEnd();
442 
443         z += zStep;
444         r -= rStep;
445     }
446 
447     /* Draw the slices */
448 
449     r = base;
450 
451     glBegin(GL_LINES);
452 
453         for (j=0; j<slices; j++)
454         {
455             glNormal3d(cost[j]*sinn, sint[j]*sinn, cosn  );
456             glVertex3d(cost[j]*r,    sint[j]*r,    0.0   );
457             glVertex3d(0.0,          0.0,          height);
458         }
459 
460     glEnd();
461 
462     /* Release sin and cos tables */
463 
464     free(sint);
465     free(cost);
466 }
467 
468 
469 /*
470  * Draws a solid cylinder
471  */
glutSolidCylinder(GLdouble radius,GLdouble height,GLint slices,GLint stacks)472 void glutSolidCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
473 {
474     int i,j;
475 
476     /* Step in z and radius as stacks are drawn. */
477 
478     double z0,z1;
479     const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
480 
481     /* Pre-computed circle */
482 
483     double *sint,*cost;
484 
485     fghCircleTable(&sint,&cost,-slices);
486 
487     /* Cover the base and top */
488 
489     glBegin(GL_TRIANGLE_FAN);
490         glNormal3d(0.0, 0.0, -1.0 );
491         glVertex3d(0.0, 0.0,  0.0 );
492         for (j=0; j<=slices; j++)
493           glVertex3d(cost[j]*radius, sint[j]*radius, 0.0);
494     glEnd();
495 
496     glBegin(GL_TRIANGLE_FAN);
497         glNormal3d(0.0, 0.0, 1.0   );
498         glVertex3d(0.0, 0.0, height);
499         for (j=slices; j>=0; j--)
500           glVertex3d(cost[j]*radius, sint[j]*radius, height);
501     glEnd();
502 
503     /* Do the stacks */
504 
505     z0 = 0.0;
506     z1 = zStep;
507 
508     for (i=1; i<=stacks; i++)
509     {
510         if (i==stacks)
511             z1 = height;
512 
513         glBegin(GL_QUAD_STRIP);
514             for (j=0; j<=slices; j++ )
515             {
516                 glNormal3d(cost[j],        sint[j],        0.0 );
517                 glVertex3d(cost[j]*radius, sint[j]*radius, z0  );
518                 glVertex3d(cost[j]*radius, sint[j]*radius, z1  );
519             }
520         glEnd();
521 
522         z0 = z1; z1 += zStep;
523     }
524 
525     /* Release sin and cos tables */
526 
527     free(sint);
528     free(cost);
529 }
530 
531 /*
532  * Draws a wire cylinder
533  */
glutWireCylinder(GLdouble radius,GLdouble height,GLint slices,GLint stacks)534 void glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks)
535 {
536     int i,j;
537 
538     /* Step in z and radius as stacks are drawn. */
539 
540           double z = 0.0;
541     const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 );
542 
543     /* Pre-computed circle */
544 
545     double *sint,*cost;
546 
547     fghCircleTable(&sint,&cost,-slices);
548 
549     /* Draw the stacks... */
550 
551     for (i=0; i<=stacks; i++)
552     {
553         if (i==stacks)
554             z = height;
555 
556         glBegin(GL_LINE_LOOP);
557 
558             for( j=0; j<slices; j++ )
559             {
560                 glNormal3d(cost[j],        sint[j],        0.0);
561                 glVertex3d(cost[j]*radius, sint[j]*radius, z  );
562             }
563 
564         glEnd();
565 
566         z += zStep;
567     }
568 
569     /* Draw the slices */
570 
571     glBegin(GL_LINES);
572 
573         for (j=0; j<slices; j++)
574         {
575             glNormal3d(cost[j],        sint[j],        0.0   );
576             glVertex3d(cost[j]*radius, sint[j]*radius, 0.0   );
577             glVertex3d(cost[j]*radius, sint[j]*radius, height);
578         }
579 
580     glEnd();
581 
582     /* Release sin and cos tables */
583 
584     free(sint);
585     free(cost);
586 }
587 
588 /*
589  * Draws a wire torus
590  */
glutWireTorus(GLdouble dInnerRadius,GLdouble dOuterRadius,GLint nSides,GLint nRings)591 void glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
592 {
593   double  iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
594   double *vertex, *normal;
595   int    i, j;
596   double spsi, cpsi, sphi, cphi ;
597 
598   if ( nSides < 1 ) nSides = 1;
599   if ( nRings < 1 ) nRings = 1;
600 
601   /* Allocate the vertices array */
602   vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
603   normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
604 
605   glPushMatrix();
606 
607   dpsi =  2.0 * M_PI / (double)nRings ;
608   dphi = -2.0 * M_PI / (double)nSides ;
609   psi  = 0.0;
610 
611   for( j=0; j<nRings; j++ )
612   {
613     cpsi = cos ( psi ) ;
614     spsi = sin ( psi ) ;
615     phi = 0.0;
616 
617     for( i=0; i<nSides; i++ )
618     {
619       int offset = 3 * ( j * nSides + i ) ;
620       cphi = cos ( phi ) ;
621       sphi = sin ( phi ) ;
622       *(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
623       *(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
624       *(vertex + offset + 2) =                    sphi * iradius  ;
625       *(normal + offset + 0) = cpsi * cphi ;
626       *(normal + offset + 1) = spsi * cphi ;
627       *(normal + offset + 2) =        sphi ;
628       phi += dphi;
629     }
630 
631     psi += dpsi;
632   }
633 
634   for( i=0; i<nSides; i++ )
635   {
636     glBegin( GL_LINE_LOOP );
637 
638     for( j=0; j<nRings; j++ )
639     {
640       int offset = 3 * ( j * nSides + i ) ;
641       glNormal3dv( normal + offset );
642       glVertex3dv( vertex + offset );
643     }
644 
645     glEnd();
646   }
647 
648   for( j=0; j<nRings; j++ )
649   {
650     glBegin(GL_LINE_LOOP);
651 
652     for( i=0; i<nSides; i++ )
653     {
654       int offset = 3 * ( j * nSides + i ) ;
655       glNormal3dv( normal + offset );
656       glVertex3dv( vertex + offset );
657     }
658 
659     glEnd();
660   }
661 
662   free ( vertex ) ;
663   free ( normal ) ;
664   glPopMatrix();
665 }
666 
667 /*
668  * Draws a solid torus
669  */
glutSolidTorus(GLdouble dInnerRadius,GLdouble dOuterRadius,GLint nSides,GLint nRings)670 void glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
671 {
672   double  iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
673   double *vertex, *normal;
674   int    i, j;
675   double spsi, cpsi, sphi, cphi ;
676 
677   if ( nSides < 1 ) nSides = 1;
678   if ( nRings < 1 ) nRings = 1;
679 
680   /* Increment the number of sides and rings to allow for one more point than surface */
681   nSides ++ ;
682   nRings ++ ;
683 
684   /* Allocate the vertices array */
685   vertex = (double *)calloc( sizeof(double), 3 * nSides * nRings );
686   normal = (double *)calloc( sizeof(double), 3 * nSides * nRings );
687 
688   glPushMatrix();
689 
690   dpsi =  2.0 * M_PI / (double)(nRings - 1) ;
691   dphi = -2.0 * M_PI / (double)(nSides - 1) ;
692   psi  = 0.0;
693 
694   for( j=0; j<nRings; j++ )
695   {
696     cpsi = cos ( psi ) ;
697     spsi = sin ( psi ) ;
698     phi = 0.0;
699 
700     for( i=0; i<nSides; i++ )
701     {
702       int offset = 3 * ( j * nSides + i ) ;
703       cphi = cos ( phi ) ;
704       sphi = sin ( phi ) ;
705       *(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
706       *(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
707       *(vertex + offset + 2) =                    sphi * iradius  ;
708       *(normal + offset + 0) = cpsi * cphi ;
709       *(normal + offset + 1) = spsi * cphi ;
710       *(normal + offset + 2) =        sphi ;
711       phi += dphi;
712     }
713 
714     psi += dpsi;
715   }
716 
717     glBegin( GL_QUADS );
718   for( i=0; i<nSides-1; i++ )
719   {
720     for( j=0; j<nRings-1; j++ )
721     {
722       int offset = 3 * ( j * nSides + i ) ;
723       glNormal3dv( normal + offset );
724       glVertex3dv( vertex + offset );
725       glNormal3dv( normal + offset + 3 );
726       glVertex3dv( vertex + offset + 3 );
727       glNormal3dv( normal + offset + 3 * nSides + 3 );
728       glVertex3dv( vertex + offset + 3 * nSides + 3 );
729       glNormal3dv( normal + offset + 3 * nSides );
730       glVertex3dv( vertex + offset + 3 * nSides );
731     }
732   }
733 
734   glEnd();
735 
736   free ( vertex ) ;
737   free ( normal ) ;
738   glPopMatrix();
739 }
740 
741 /*
742  *
743  */
glutWireDodecahedron(void)744 void glutWireDodecahedron( void )
745 {
746   /* Magic Numbers:  It is possible to create a dodecahedron by attaching two pentagons to each face of
747    * of a cube.  The coordinates of the points are:
748    *   (+-x,0, z); (+-1, 1, 1); (0, z, x )
749    * where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2  or
750    *       x = 0.61803398875 and z = 1.61803398875.
751    */
752   glBegin ( GL_LINE_LOOP ) ;
753   glNormal3d (  0.0,  0.525731112119,  0.850650808354 ) ; glVertex3d (  0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( -0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d (  0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
754   glEnd () ;
755   glBegin ( GL_LINE_LOOP ) ;
756   glNormal3d (  0.0,  0.525731112119, -0.850650808354 ) ; glVertex3d (  0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d (  0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
757   glEnd () ;
758   glBegin ( GL_LINE_LOOP ) ;
759   glNormal3d (  0.0, -0.525731112119,  0.850650808354 ) ; glVertex3d (  0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d (  0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
760   glEnd () ;
761   glBegin ( GL_LINE_LOOP ) ;
762   glNormal3d (  0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d (  0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d (  0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
763   glEnd () ;
764 
765   glBegin ( GL_LINE_LOOP ) ;
766   glNormal3d (  0.850650808354,  0.0,  0.525731112119 ) ; glVertex3d (  0.61803398875,  0.0,  1.61803398875 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d (  1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d (  1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
767   glEnd () ;
768   glBegin ( GL_LINE_LOOP ) ;
769   glNormal3d ( -0.850650808354,  0.0,  0.525731112119 ) ; glVertex3d ( -0.61803398875,  0.0,  1.61803398875 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
770   glEnd () ;
771   glBegin ( GL_LINE_LOOP ) ;
772   glNormal3d (  0.850650808354,  0.0, -0.525731112119 ) ; glVertex3d (  0.61803398875,  0.0, -1.61803398875 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d (  1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d (  1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
773   glEnd () ;
774   glBegin ( GL_LINE_LOOP ) ;
775   glNormal3d ( -0.850650808354,  0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875,  0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
776   glEnd () ;
777 
778   glBegin ( GL_LINE_LOOP ) ;
779   glNormal3d (  0.525731112119,  0.850650808354,  0.0 ) ; glVertex3d (  1.61803398875,  0.61803398875,  0.0 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d ( 0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
780   glEnd () ;
781   glBegin ( GL_LINE_LOOP ) ;
782   glNormal3d (  0.525731112119, -0.850650808354,  0.0 ) ; glVertex3d (  1.61803398875, -0.61803398875,  0.0 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d ( 0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
783   glEnd () ;
784   glBegin ( GL_LINE_LOOP ) ;
785   glNormal3d ( -0.525731112119,  0.850650808354,  0.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875,  0.0 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( 0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d ( 0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
786   glEnd () ;
787   glBegin ( GL_LINE_LOOP ) ;
788   glNormal3d ( -0.525731112119, -0.850650808354,  0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875,  0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
789   glEnd () ;
790 }
791 
792 /*
793  *
794  */
glutSolidDodecahedron(void)795 void glutSolidDodecahedron( void )
796 {
797   /* Magic Numbers:  It is possible to create a dodecahedron by attaching two pentagons to each face of
798    * of a cube.  The coordinates of the points are:
799    *   (+-x,0, z); (+-1, 1, 1); (0, z, x )
800    * where x = (-1 + sqrt(5))/2, z = (1 + sqrt(5))/2 or
801    *       x = 0.61803398875 and z = 1.61803398875.
802    */
803   glBegin ( GL_POLYGON ) ;
804   glNormal3d (  0.0,  0.525731112119,  0.850650808354 ) ; glVertex3d (  0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( -0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d (  0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
805   glEnd () ;
806   glBegin ( GL_POLYGON ) ;
807   glNormal3d (  0.0,  0.525731112119, -0.850650808354 ) ; glVertex3d (  0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d (  0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
808   glEnd () ;
809   glBegin ( GL_POLYGON ) ;
810   glNormal3d (  0.0, -0.525731112119,  0.850650808354 ) ; glVertex3d (  0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d (  0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0,  1.61803398875 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
811   glEnd () ;
812   glBegin ( GL_POLYGON ) ;
813   glNormal3d (  0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d (  0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d (  0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
814   glEnd () ;
815 
816   glBegin ( GL_POLYGON ) ;
817   glNormal3d (  0.850650808354,  0.0,  0.525731112119 ) ; glVertex3d (  0.61803398875,  0.0,  1.61803398875 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d (  1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d (  1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
818   glEnd () ;
819   glBegin ( GL_POLYGON ) ;
820   glNormal3d ( -0.850650808354,  0.0,  0.525731112119 ) ; glVertex3d ( -0.61803398875,  0.0,  1.61803398875 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
821   glEnd () ;
822   glBegin ( GL_POLYGON ) ;
823   glNormal3d (  0.850650808354,  0.0, -0.525731112119 ) ; glVertex3d (  0.61803398875,  0.0, -1.61803398875 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d (  1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d (  1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
824   glEnd () ;
825   glBegin ( GL_POLYGON ) ;
826   glNormal3d ( -0.850650808354,  0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875,  0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875, 0.0 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
827   glEnd () ;
828 
829   glBegin ( GL_POLYGON ) ;
830   glNormal3d (  0.525731112119,  0.850650808354,  0.0 ) ; glVertex3d (  1.61803398875,  0.61803398875,  0.0 ) ; glVertex3d (  1.0,  1.0, -1.0 ) ; glVertex3d ( 0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d (  1.0,  1.0,  1.0 ) ;
831   glEnd () ;
832   glBegin ( GL_POLYGON ) ;
833   glNormal3d (  0.525731112119, -0.850650808354,  0.0 ) ; glVertex3d (  1.61803398875, -0.61803398875,  0.0 ) ; glVertex3d (  1.0, -1.0,  1.0 ) ; glVertex3d ( 0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d (  1.0, -1.0, -1.0 ) ;
834   glEnd () ;
835   glBegin ( GL_POLYGON ) ;
836   glNormal3d ( -0.525731112119,  0.850650808354,  0.0 ) ; glVertex3d ( -1.61803398875,  0.61803398875,  0.0 ) ; glVertex3d ( -1.0,  1.0,  1.0 ) ; glVertex3d ( 0.0,  1.61803398875,  0.61803398875 ) ; glVertex3d ( 0.0,  1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0,  1.0, -1.0 ) ;
837   glEnd () ;
838   glBegin ( GL_POLYGON ) ;
839   glNormal3d ( -0.525731112119, -0.850650808354,  0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875,  0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875,  0.61803398875 ) ; glVertex3d ( -1.0, -1.0,  1.0 ) ;
840   glEnd () ;
841 }
842 
843 /*
844  *
845  */
glutWireOctahedron(void)846 void glutWireOctahedron( void )
847 {
848 #define RADIUS    1.0f
849   glBegin( GL_LINE_LOOP );
850     glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
851     glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
852     glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
853     glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
854     glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
855     glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
856     glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
857     glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
858   glEnd();
859 #undef RADIUS
860 }
861 
862 /*
863  *
864  */
glutSolidOctahedron(void)865 void glutSolidOctahedron( void )
866 {
867 #define RADIUS    1.0f
868   glBegin( GL_TRIANGLES );
869     glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
870     glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
871     glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
872     glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
873     glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS ); glVertex3d( 0.0, RADIUS, 0.0 );
874     glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
875     glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
876     glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS ); glVertex3d( 0.0,-RADIUS, 0.0 );
877   glEnd();
878 #undef RADIUS
879 }
880 
881 /* Magic Numbers:  r0 = ( 1, 0, 0 )
882  *                 r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
883  *                 r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
884  *                 r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
885  * |r0| = |r1| = |r2| = |r3| = 1
886  * Distance between any two points is 2 sqrt(6) / 3
887  *
888  * Normals:  The unit normals are simply the negative of the coordinates of the point not on the surface.
889  */
890 
891 #define NUM_TETR_FACES     4
892 
893 static GLdouble tet_r[4][3] = { {             1.0,             0.0,             0.0 },
894                                 { -0.333333333333,  0.942809041582,             0.0 },
895                                 { -0.333333333333, -0.471404520791,  0.816496580928 },
896                                 { -0.333333333333, -0.471404520791, -0.816496580928 } } ;
897 
898 static GLint tet_i[4][3] =  /* Vertex indices */
899 {
900   { 1, 3, 2 }, { 0, 2, 3 }, { 0, 3, 1 }, { 0, 1, 2 }
901 } ;
902 
903 /*
904  *
905  */
glutWireTetrahedron(void)906 void glutWireTetrahedron( void )
907 {
908   glBegin( GL_LINE_LOOP ) ;
909     glNormal3d ( -tet_r[0][0], -tet_r[0][1], -tet_r[0][2] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[2] ) ;
910     glNormal3d ( -tet_r[1][0], -tet_r[1][1], -tet_r[1][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[2] ) ; glVertex3dv ( tet_r[3] ) ;
911     glNormal3d ( -tet_r[2][0], -tet_r[2][1], -tet_r[2][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[1] ) ;
912     glNormal3d ( -tet_r[3][0], -tet_r[3][1], -tet_r[3][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[2] ) ;
913   glEnd() ;
914 }
915 
916 /*
917  *
918  */
glutSolidTetrahedron(void)919 void glutSolidTetrahedron( void )
920 {
921   glBegin( GL_TRIANGLES ) ;
922     glNormal3d ( -tet_r[0][0], -tet_r[0][1], -tet_r[0][2] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[2] ) ;
923     glNormal3d ( -tet_r[1][0], -tet_r[1][1], -tet_r[1][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[2] ) ; glVertex3dv ( tet_r[3] ) ;
924     glNormal3d ( -tet_r[2][0], -tet_r[2][1], -tet_r[2][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[3] ) ; glVertex3dv ( tet_r[1] ) ;
925     glNormal3d ( -tet_r[3][0], -tet_r[3][1], -tet_r[3][2] ) ; glVertex3dv ( tet_r[0] ) ; glVertex3dv ( tet_r[1] ) ; glVertex3dv ( tet_r[2] ) ;
926   glEnd() ;
927 }
928 
929 /*
930  *
931  */
932 double icos_r[12][3] = { { 1.0, 0.0, 0.0 },
933   {  0.447213595500,  0.894427191000, 0.0 }, {  0.447213595500,  0.276393202252, 0.850650808354 }, {  0.447213595500, -0.723606797748, 0.525731112119 }, {  0.447213595500, -0.723606797748, -0.525731112119 }, {  0.447213595500,  0.276393202252, -0.850650808354 },
934   { -0.447213595500, -0.894427191000, 0.0 }, { -0.447213595500, -0.276393202252, 0.850650808354 }, { -0.447213595500,  0.723606797748, 0.525731112119 }, { -0.447213595500,  0.723606797748, -0.525731112119 }, { -0.447213595500, -0.276393202252, -0.850650808354 },
935   { -1.0, 0.0, 0.0 } } ;
936 int icos_v [20][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 4 }, { 0, 4, 5 }, { 0, 5, 1 },
937                        { 1, 8, 2 }, { 2, 7, 3 }, { 3, 6, 4 }, { 4, 10, 5 }, { 5, 9, 1 },
938                        { 1, 9, 8 }, { 2, 8, 7 }, { 3, 7, 6 }, { 4, 6, 10 }, { 5, 10, 9 },
939                        { 11, 9, 10 }, { 11, 8, 9 }, { 11, 7, 8 }, { 11, 6, 7 }, { 11, 10, 6 } } ;
940 
glutWireIcosahedron(void)941 void glutWireIcosahedron( void )
942 {
943   int i ;
944 
945   for ( i = 0; i < 20; i++ )
946   {
947     double normal[3] ;
948     normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
949     normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
950     normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
951     glBegin ( GL_LINE_LOOP ) ;
952       glNormal3dv ( normal ) ;
953       glVertex3dv ( icos_r[icos_v[i][0]] ) ;
954       glVertex3dv ( icos_r[icos_v[i][1]] ) ;
955       glVertex3dv ( icos_r[icos_v[i][2]] ) ;
956     glEnd () ;
957   }
958 }
959 
960 /*
961  *
962  */
glutSolidIcosahedron(void)963 void glutSolidIcosahedron( void )
964 {
965   int i ;
966 
967   glBegin ( GL_TRIANGLES ) ;
968   for ( i = 0; i < 20; i++ )
969   {
970     double normal[3] ;
971     normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
972     normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
973     normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
974       glNormal3dv ( normal ) ;
975       glVertex3dv ( icos_r[icos_v[i][0]] ) ;
976       glVertex3dv ( icos_r[icos_v[i][1]] ) ;
977       glVertex3dv ( icos_r[icos_v[i][2]] ) ;
978   }
979 
980   glEnd () ;
981 }
982 
983 /*
984  *
985  */
986 double rdod_r[14][3] = { { 0.0, 0.0, 1.0 },
987   {  0.707106781187,  0.000000000000,  0.5 }, {  0.000000000000,  0.707106781187,  0.5 }, { -0.707106781187,  0.000000000000,  0.5 }, {  0.000000000000, -0.707106781187,  0.5 },
988   {  0.707106781187,  0.707106781187,  0.0 }, { -0.707106781187,  0.707106781187,  0.0 }, { -0.707106781187, -0.707106781187,  0.0 }, {  0.707106781187, -0.707106781187,  0.0 },
989   {  0.707106781187,  0.000000000000, -0.5 }, {  0.000000000000,  0.707106781187, -0.5 }, { -0.707106781187,  0.000000000000, -0.5 }, {  0.000000000000, -0.707106781187, -0.5 },
990   {  0.0, 0.0, -1.0 } } ;
991 int rdod_v [12][4] = { { 0,  1,  5,  2 }, { 0,  2,  6,  3 }, { 0,  3,  7,  4 }, { 0,  4,  8, 1 },
992                        { 5, 10,  6,  2 }, { 6, 11,  7,  3 }, { 7, 12,  8,  4 }, { 8,  9,  5, 1 },
993                        { 5,  9, 13, 10 }, { 6, 10, 13, 11 }, { 7, 11, 13, 12 }, { 8, 12, 13, 9 } } ;
994 double rdod_n[12][3] = {
995   {  0.353553390594,  0.353553390594,  0.5 }, { -0.353553390594,  0.353553390594,  0.5 }, { -0.353553390594, -0.353553390594,  0.5 }, {  0.353553390594, -0.353553390594,  0.5 },
996   {  0.000000000000,  1.000000000000,  0.0 }, { -1.000000000000,  0.000000000000,  0.0 }, {  0.000000000000, -1.000000000000,  0.0 }, {  1.000000000000,  0.000000000000,  0.0 },
997   {  0.353553390594,  0.353553390594, -0.5 }, { -0.353553390594,  0.353553390594, -0.5 }, { -0.353553390594, -0.353553390594, -0.5 }, {  0.353553390594, -0.353553390594, -0.5 }
998   } ;
999 
glutWireRhombicDodecahedron(void)1000 void glutWireRhombicDodecahedron( void )
1001 {
1002   int i ;
1003 
1004   for ( i = 0; i < 12; i++ )
1005   {
1006     glBegin ( GL_LINE_LOOP ) ;
1007       glNormal3dv ( rdod_n[i] ) ;
1008       glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
1009       glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
1010       glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
1011       glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
1012     glEnd () ;
1013   }
1014 }
1015 
1016 /*
1017  *
1018  */
glutSolidRhombicDodecahedron(void)1019 void glutSolidRhombicDodecahedron( void )
1020 {
1021   int i ;
1022 
1023   glBegin ( GL_QUADS ) ;
1024   for ( i = 0; i < 12; i++ )
1025   {
1026       glNormal3dv ( rdod_n[i] ) ;
1027       glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
1028       glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
1029       glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
1030       glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
1031   }
1032 
1033   glEnd () ;
1034 }
1035 
glutWireSierpinskiSponge(int num_levels,GLdouble offset[3],GLdouble scale)1036 void glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
1037 {
1038   int i, j ;
1039 
1040   if ( num_levels == 0 )
1041   {
1042 
1043     for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
1044     {
1045       glBegin ( GL_LINE_LOOP ) ;
1046       glNormal3d ( -tet_r[i][0], -tet_r[i][1], -tet_r[i][2] ) ;
1047       for ( j = 0; j < 3; j++ )
1048       {
1049         double x = offset[0] + scale * tet_r[tet_i[i][j]][0] ;
1050         double y = offset[1] + scale * tet_r[tet_i[i][j]][1] ;
1051         double z = offset[2] + scale * tet_r[tet_i[i][j]][2] ;
1052         glVertex3d ( x, y, z ) ;
1053       }
1054 
1055       glEnd () ;
1056     }
1057   }
1058   else
1059   {
1060     GLdouble local_offset[3] ;  /* Use a local variable to avoid buildup of roundoff errors */
1061     num_levels -- ;
1062     scale /= 2.0 ;
1063     for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
1064     {
1065       local_offset[0] = offset[0] + scale * tet_r[i][0] ;
1066       local_offset[1] = offset[1] + scale * tet_r[i][1] ;
1067       local_offset[2] = offset[2] + scale * tet_r[i][2] ;
1068       glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
1069     }
1070   }
1071 }
1072 
glutSolidSierpinskiSponge(int num_levels,GLdouble offset[3],GLdouble scale)1073 void glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
1074 {
1075   int i, j ;
1076 
1077   if ( num_levels == 0 )
1078   {
1079     glBegin ( GL_TRIANGLES ) ;
1080 
1081     for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
1082     {
1083       glNormal3d ( -tet_r[i][0], -tet_r[i][1], -tet_r[i][2] ) ;
1084       for ( j = 0; j < 3; j++ )
1085       {
1086         double x = offset[0] + scale * tet_r[tet_i[i][j]][0] ;
1087         double y = offset[1] + scale * tet_r[tet_i[i][j]][1] ;
1088         double z = offset[2] + scale * tet_r[tet_i[i][j]][2] ;
1089         glVertex3d ( x, y, z ) ;
1090       }
1091     }
1092 
1093     glEnd () ;
1094   }
1095   else
1096   {
1097     GLdouble local_offset[3] ;  /* Use a local variable to avoid buildup of roundoff errors */
1098     num_levels -- ;
1099     scale /= 2.0 ;
1100     for ( i = 0 ; i < NUM_TETR_FACES ; i++ )
1101     {
1102       local_offset[0] = offset[0] + scale * tet_r[i][0] ;
1103       local_offset[1] = offset[1] + scale * tet_r[i][1] ;
1104       local_offset[2] = offset[2] + scale * tet_r[i][2] ;
1105       glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
1106     }
1107   }
1108 }
1109 
1110 /*** END OF FILE ***/
1111