1 /* $Header$ */
2 
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <assert.h>
34 #include <stdio.h>
35 
36 static	int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static	int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static	int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static	int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
40 static	int pickTileContigCase(TIFFRGBAImage*);
41 static	int pickTileSeparateCase(TIFFRGBAImage*);
42 
43 static	const char photoTag[] = "PhotometricInterpretation";
44 
45 /*
46  * Helper constants used in Orientation tag handling
47  */
48 #define FLIP_VERTICALLY 0x01
49 #define FLIP_HORIZONTALLY 0x02
50 
51 /*
52  * Color conversion constants. We will define display types here.
53  */
54 
55 TIFFDisplay display_sRGB = {
56 	{			/* XYZ -> luminance matrix */
57 		{  3.2410F, -1.5374F, -0.4986F },
58 		{  -0.9692F, 1.8760F, 0.0416F },
59 		{  0.0556F, -0.2040F, 1.0570F }
60 	},
61 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
62 	255, 255, 255,		/* Pixel values for ref. white */
63 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
64 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
65 };
66 
67 /*
68  * Check the image to see if TIFFReadRGBAImage can deal with it.
69  * 1/0 is returned according to whether or not the image can
70  * be handled.  If 0 is returned, emsg contains the reason
71  * why it is being rejected.
72  */
73 int
TIFFRGBAImageOK(TIFF * tif,char emsg[1024])74 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
75 {
76     TIFFDirectory* td = &tif->tif_dir;
77     uint16 photometric;
78     int colorchannels;
79 
80     if (!tif->tif_decodestatus) {
81 	sprintf(emsg, "Sorry, requested compression method is not configured");
82 	return (0);
83     }
84     switch (td->td_bitspersample) {
85     case 1: case 2: case 4:
86     case 8: case 16:
87 	break;
88     default:
89 	sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
90 	    td->td_bitspersample);
91 	return (0);
92     }
93     colorchannels = td->td_samplesperpixel - td->td_extrasamples;
94     if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
95 	switch (colorchannels) {
96 	case 1:
97 	    photometric = PHOTOMETRIC_MINISBLACK;
98 	    break;
99 	case 3:
100 	    photometric = PHOTOMETRIC_RGB;
101 	    break;
102 	default:
103 	    sprintf(emsg, "Missing needed %s tag", photoTag);
104 	    return (0);
105 	}
106     }
107     switch (photometric) {
108     case PHOTOMETRIC_MINISWHITE:
109     case PHOTOMETRIC_MINISBLACK:
110     case PHOTOMETRIC_PALETTE:
111 	if (td->td_planarconfig == PLANARCONFIG_CONTIG
112             && td->td_samplesperpixel != 1
113             && td->td_bitspersample < 8 ) {
114 	    sprintf(emsg,
115                     "Sorry, can not handle contiguous data with %s=%d, "
116                     "and %s=%d and Bits/Sample=%d",
117                     photoTag, photometric,
118                     "Samples/pixel", td->td_samplesperpixel,
119                     td->td_bitspersample);
120 	    return (0);
121 	}
122         /*
123         ** We should likely validate that any extra samples are either
124         ** to be ignored, or are alpha, and if alpha we should try to use
125         ** them.  But for now we won't bother with this.
126         */
127 	break;
128     case PHOTOMETRIC_YCBCR:
129 	if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
130 	    sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
131 		"Planarconfiguration", td->td_planarconfig);
132 	    return (0);
133 	}
134 	break;
135     case PHOTOMETRIC_RGB:
136 	if (colorchannels < 3) {
137 	    sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
138 		"Color channels", colorchannels);
139 	    return (0);
140 	}
141 	break;
142     case PHOTOMETRIC_SEPARATED:
143 	if (td->td_inkset != INKSET_CMYK) {
144 	    sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
145 		"InkSet", td->td_inkset);
146 	    return (0);
147 	}
148 	if (td->td_samplesperpixel < 4) {
149 	    sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
150 		"Samples/pixel", td->td_samplesperpixel);
151 	    return (0);
152 	}
153 	break;
154     case PHOTOMETRIC_LOGL:
155 	if (td->td_compression != COMPRESSION_SGILOG) {
156 	    sprintf(emsg, "Sorry, LogL data must have %s=%d",
157 		"Compression", COMPRESSION_SGILOG);
158 	    return (0);
159 	}
160 	break;
161     case PHOTOMETRIC_LOGLUV:
162 	if (td->td_compression != COMPRESSION_SGILOG &&
163 		td->td_compression != COMPRESSION_SGILOG24) {
164 	    sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
165 		"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
166 	    return (0);
167 	}
168 	if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
169 	    sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
170 		"Planarconfiguration", td->td_planarconfig);
171 	    return (0);
172 	}
173 	break;
174     case PHOTOMETRIC_CIELAB:
175 	break;
176     default:
177 	sprintf(emsg, "Sorry, can not handle image with %s=%d",
178 	    photoTag, photometric);
179 	return (0);
180     }
181     return (1);
182 }
183 
184 void
TIFFRGBAImageEnd(TIFFRGBAImage * img)185 TIFFRGBAImageEnd(TIFFRGBAImage* img)
186 {
187 	if (img->Map)
188 		_TIFFfree(img->Map), img->Map = NULL;
189 	if (img->BWmap)
190 		_TIFFfree(img->BWmap), img->BWmap = NULL;
191 	if (img->PALmap)
192 		_TIFFfree(img->PALmap), img->PALmap = NULL;
193 	if (img->ycbcr)
194 		_TIFFfree(img->ycbcr), img->ycbcr = NULL;
195 	if (img->cielab)
196 		_TIFFfree(img->cielab), img->cielab = NULL;
197 
198 	if( img->redcmap ) {
199 		_TIFFfree( img->redcmap );
200 		_TIFFfree( img->greencmap );
201 		_TIFFfree( img->bluecmap );
202 	}
203 }
204 
205 static int
isCCITTCompression(TIFF * tif)206 isCCITTCompression(TIFF* tif)
207 {
208     uint16 compress;
209     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
210     return (compress == COMPRESSION_CCITTFAX3 ||
211 	    compress == COMPRESSION_CCITTFAX4 ||
212 	    compress == COMPRESSION_CCITTRLE ||
213 	    compress == COMPRESSION_CCITTRLEW);
214 }
215 
216 int
TIFFRGBAImageBegin(TIFFRGBAImage * img,TIFF * tif,int stop,char emsg[1024])217 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
218 {
219     uint16* sampleinfo;
220     uint16 extrasamples;
221     uint16 planarconfig;
222     uint16 compress;
223     int colorchannels;
224     uint16	*red_orig, *green_orig, *blue_orig;
225     int		n_color;
226 
227     /* Initialize to normal values */
228     img->row_offset = 0;
229     img->col_offset = 0;
230     img->redcmap = NULL;
231     img->greencmap = NULL;
232     img->bluecmap = NULL;
233     img->req_orientation = ORIENTATION_BOTLEFT;	    /* It is the default */
234 
235     img->tif = tif;
236     img->stoponerr = stop;
237     TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
238     switch (img->bitspersample) {
239     case 1: case 2: case 4:
240     case 8: case 16:
241 	break;
242     default:
243 	sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
244 	    img->bitspersample);
245 	return (0);
246     }
247     img->alpha = 0;
248     TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
249     TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
250 	&extrasamples, &sampleinfo);
251     if (extrasamples == 1)
252     {
253 	switch (sampleinfo[0]) {
254 	case EXTRASAMPLE_UNSPECIFIED:	/* Workaround for some images without */
255 		if (img->samplesperpixel == 4)	/* correct info about alpha channel */
256 			img->alpha = EXTRASAMPLE_ASSOCALPHA;
257 		break;
258 	case EXTRASAMPLE_ASSOCALPHA:	/* data is pre-multiplied */
259 	case EXTRASAMPLE_UNASSALPHA:	/* data is not pre-multiplied */
260 		img->alpha = sampleinfo[0];
261 		break;
262 	}
263     }
264 
265 #if DEFAULT_EXTRASAMPLE_AS_ALPHA == 1
266     if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
267         img->photometric = PHOTOMETRIC_MINISWHITE;
268 
269     if( extrasamples == 0
270         && img->samplesperpixel == 4
271         && img->photometric == PHOTOMETRIC_RGB )
272     {
273         img->alpha = EXTRASAMPLE_ASSOCALPHA;
274         extrasamples = 1;
275     }
276 #endif
277 
278     colorchannels = img->samplesperpixel - extrasamples;
279     TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
280     TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
281     if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
282 	switch (colorchannels) {
283 	case 1:
284 	    if (isCCITTCompression(tif))
285 		img->photometric = PHOTOMETRIC_MINISWHITE;
286 	    else
287 		img->photometric = PHOTOMETRIC_MINISBLACK;
288 	    break;
289 	case 3:
290 	    img->photometric = PHOTOMETRIC_RGB;
291 	    break;
292 	default:
293 	    sprintf(emsg, "Missing needed %s tag", photoTag);
294 	    return (0);
295 	}
296     }
297     switch (img->photometric) {
298     case PHOTOMETRIC_PALETTE:
299 	if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
300 	    &red_orig, &green_orig, &blue_orig)) {
301 	    TIFFError(TIFFFileName(tif), "Missing required \"Colormap\" tag");
302 	    return (0);
303 	}
304 
305         /* copy the colormaps so we can modify them */
306         n_color = (1L << img->bitspersample);
307         img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
308         img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
309         img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
310         if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
311 	    TIFFError(TIFFFileName(tif), "Out of memory for colormap copy");
312 	    return (0);
313         }
314 
315         memcpy( img->redcmap, red_orig, n_color * 2 );
316         memcpy( img->greencmap, green_orig, n_color * 2 );
317         memcpy( img->bluecmap, blue_orig, n_color * 2 );
318 
319 	/* fall thru... */
320     case PHOTOMETRIC_MINISWHITE:
321     case PHOTOMETRIC_MINISBLACK:
322 	if (planarconfig == PLANARCONFIG_CONTIG
323             && img->samplesperpixel != 1
324             && img->bitspersample < 8 ) {
325 	    sprintf(emsg,
326                     "Sorry, can not handle contiguous data with %s=%d, "
327                     "and %s=%d and Bits/Sample=%d",
328                     photoTag, img->photometric,
329                     "Samples/pixel", img->samplesperpixel,
330                     img->bitspersample);
331 	    return (0);
332 	}
333 	break;
334     case PHOTOMETRIC_YCBCR:
335 	if (planarconfig != PLANARCONFIG_CONTIG) {
336 	    sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d",
337 		"Planarconfiguration", planarconfig);
338 	    return (0);
339 	}
340 	/* It would probably be nice to have a reality check here. */
341 	if (planarconfig == PLANARCONFIG_CONTIG)
342 	    /* can rely on libjpeg to convert to RGB */
343 	    /* XXX should restore current state on exit */
344 	    switch (compress) {
345 		case COMPRESSION_OJPEG:
346 		case COMPRESSION_JPEG:
347 		    TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
348 		    img->photometric = PHOTOMETRIC_RGB;
349                     break;
350 
351                 default:
352                     /* do nothing */;
353                     break;
354 	    }
355 	break;
356     case PHOTOMETRIC_RGB:
357 	if (colorchannels < 3) {
358 	    sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
359 		"Color channels", colorchannels);
360 	    return (0);
361 	}
362 	break;
363     case PHOTOMETRIC_SEPARATED: {
364 	uint16 inkset;
365 	TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
366 	if (inkset != INKSET_CMYK) {
367 	    sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
368 		"InkSet", inkset);
369 	    return (0);
370 	}
371 	if (img->samplesperpixel < 4) {
372 	    sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
373 		"Samples/pixel", img->samplesperpixel);
374 	    return (0);
375 	}
376 	break;
377     }
378     case PHOTOMETRIC_LOGL:
379 	if (compress != COMPRESSION_SGILOG) {
380 	    sprintf(emsg, "Sorry, LogL data must have %s=%d",
381 		"Compression", COMPRESSION_SGILOG);
382 	    return (0);
383 	}
384 	TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
385 	img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
386 	img->bitspersample = 8;
387 	break;
388     case PHOTOMETRIC_LOGLUV:
389 	if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
390 	    sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
391 		"Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
392 	    return (0);
393 	}
394 	if (planarconfig != PLANARCONFIG_CONTIG) {
395 	    sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
396 		"Planarconfiguration", planarconfig);
397 	    return (0);
398 	}
399 	TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
400 	img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
401 	img->bitspersample = 8;
402 	break;
403     case PHOTOMETRIC_CIELAB:
404 	break;
405     default:
406 	sprintf(emsg, "Sorry, can not handle image with %s=%d",
407 	    photoTag, img->photometric);
408 	return (0);
409     }
410     img->Map = NULL;
411     img->BWmap = NULL;
412     img->PALmap = NULL;
413     img->ycbcr = NULL;
414     img->cielab = NULL;
415     TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
416     TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
417     TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
418     img->isContig =
419 	!(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1);
420     if (img->isContig) {
421 	img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig;
422 	return pickTileContigCase(img);
423     } else {
424 	img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate;
425 	return pickTileSeparateCase(img);
426     }
427 }
428 
429 int
TIFFRGBAImageGet(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)430 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
431 {
432     if (img->get == NULL) {
433 	TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup");
434 	return (0);
435     }
436     if (img->put.any == NULL) {
437 	TIFFError(TIFFFileName(img->tif),
438 	    "No \"put\" routine setupl; probably can not handle image format");
439 	return (0);
440     }
441     return (*img->get)(img, raster, w, h);
442 }
443 
444 /*
445  * Read the specified image into an ABGR-format rastertaking in account
446  * specified orientation.
447  */
448 int
TIFFReadRGBAImageOriented(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int orientation,int stop)449 TIFFReadRGBAImageOriented(TIFF* tif,
450 			  uint32 rwidth, uint32 rheight, uint32* raster,
451 			  int orientation, int stop)
452 {
453     char emsg[1024];
454     TIFFRGBAImage img;
455     int ok;
456 
457     if (TIFFRGBAImageOK(tif, emsg) &&
458 	TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
459 	img.req_orientation = orientation;
460 	/* XXX verify rwidth and rheight against width and height */
461 	ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
462 	    rwidth, img.height);
463 	TIFFRGBAImageEnd(&img);
464     } else {
465 	TIFFError(TIFFFileName(tif), emsg);
466 	ok = 0;
467     }
468     return (ok);
469 }
470 
471 /*
472  * Read the specified image into an ABGR-format raster. Use bottom left
473  * origin for raster by default.
474  */
475 int
TIFFReadRGBAImage(TIFF * tif,uint32 rwidth,uint32 rheight,uint32 * raster,int stop)476 TIFFReadRGBAImage(TIFF* tif,
477 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
478 {
479 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
480 					 ORIENTATION_BOTLEFT, stop);
481 }
482 
483 static int
setorientation(TIFFRGBAImage * img)484 setorientation(TIFFRGBAImage* img)
485 {
486 	switch (img->orientation) {
487 		case ORIENTATION_TOPLEFT:
488 		case ORIENTATION_LEFTTOP:
489 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
490 			    img->req_orientation == ORIENTATION_RIGHTTOP)
491 				return FLIP_HORIZONTALLY;
492 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
493 			    img->req_orientation == ORIENTATION_RIGHTBOT)
494 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
495 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
496 			    img->req_orientation == ORIENTATION_LEFTBOT)
497 				return FLIP_VERTICALLY;
498 			else
499 				return 0;
500 		case ORIENTATION_TOPRIGHT:
501 		case ORIENTATION_RIGHTTOP:
502 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
503 			    img->req_orientation == ORIENTATION_LEFTTOP)
504 				return FLIP_HORIZONTALLY;
505 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
506 			    img->req_orientation == ORIENTATION_RIGHTBOT)
507 				return FLIP_VERTICALLY;
508 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
509 			    img->req_orientation == ORIENTATION_LEFTBOT)
510 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
511 			else
512 				return 0;
513 		case ORIENTATION_BOTRIGHT:
514 		case ORIENTATION_RIGHTBOT:
515 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
516 			    img->req_orientation == ORIENTATION_LEFTTOP)
517 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
518 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
519 			    img->req_orientation == ORIENTATION_RIGHTTOP)
520 				return FLIP_VERTICALLY;
521 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
522 			    img->req_orientation == ORIENTATION_LEFTBOT)
523 				return FLIP_HORIZONTALLY;
524 			else
525 				return 0;
526 		case ORIENTATION_BOTLEFT:
527 		case ORIENTATION_LEFTBOT:
528 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
529 			    img->req_orientation == ORIENTATION_LEFTTOP)
530 				return FLIP_VERTICALLY;
531 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
532 			    img->req_orientation == ORIENTATION_RIGHTTOP)
533 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
534 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
535 			    img->req_orientation == ORIENTATION_RIGHTBOT)
536 				return FLIP_HORIZONTALLY;
537 			else
538 				return 0;
539 		default:	/* NOTREACHED */
540 			return 0;
541 	}
542 }
543 
544 /*
545  * Get an tile-organized image that has
546  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
547  * or
548  *	SamplesPerPixel == 1
549  */
550 static int
gtTileContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)551 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
552 {
553     TIFF* tif = img->tif;
554     tileContigRoutine put = img->put.contig;
555     uint32 col, row, y, rowstoread;
556     uint32 pos;
557     uint32 tw, th;
558     u_char* buf;
559     int32 fromskew, toskew;
560     uint32 nrow;
561     int ret = 1, flip;
562 
563     buf = (u_char*) _TIFFmalloc(TIFFTileSize(tif));
564     if (buf == 0) {
565 	TIFFError(TIFFFileName(tif), "No space for tile buffer");
566 	return (0);
567     }
568     _TIFFmemset(buf, 0, TIFFTileSize(tif));
569     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
570     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
571 
572     flip = setorientation(img);
573     if (flip & FLIP_VERTICALLY) {
574 	    y = h - 1;
575 	    toskew = -(int32)(tw + w);
576     }
577     else {
578 	    y = 0;
579 	    toskew = -(int32)(tw - w);
580     }
581 
582     for (row = 0; row < h; row += nrow)
583     {
584         rowstoread = th - (row + img->row_offset) % th;
585     	nrow = (row + rowstoread > h ? h - row : rowstoread);
586 	for (col = 0; col < w; col += tw)
587         {
588             if (TIFFReadTile(tif, buf, col+img->col_offset,
589                              row+img->row_offset, 0, 0) < 0 && img->stoponerr)
590             {
591                 ret = 0;
592                 break;
593             }
594 
595             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
596 
597     	    if (col + tw > w)
598             {
599                 /*
600                  * Tile is clipped horizontally.  Calculate
601                  * visible portion and skewing factors.
602                  */
603                 uint32 npix = w - col;
604                 fromskew = tw - npix;
605                 (*put)(img, raster+y*w+col, col, y,
606                        npix, nrow, fromskew, toskew + fromskew, buf + pos);
607             }
608             else
609             {
610                 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos);
611             }
612         }
613 
614         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
615     }
616     _TIFFfree(buf);
617 
618     if (flip & FLIP_HORIZONTALLY) {
619 	    uint32 line;
620 
621 	    for (line = 0; line < h; line++) {
622 		    uint32 *left = raster + (line * w);
623 		    uint32 *right = left + w - 1;
624 
625 		    while ( left < right ) {
626 			    uint32 temp = *left;
627 			    *left = *right;
628 			    *right = temp;
629 			    left++, right--;
630 		    }
631 	    }
632     }
633 
634     return (ret);
635 }
636 
637 /*
638  * Get an tile-organized image that has
639  *	 SamplesPerPixel > 1
640  *	 PlanarConfiguration separated
641  * We assume that all such images are RGB.
642  */
643 static int
gtTileSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)644 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
645 {
646     TIFF* tif = img->tif;
647     tileSeparateRoutine put = img->put.separate;
648     uint32 col, row, y, rowstoread;
649     uint32 pos;
650     uint32 tw, th;
651     u_char* buf;
652     u_char* r;
653     u_char* g;
654     u_char* b;
655     u_char* a;
656     tsize_t tilesize;
657     int32 fromskew, toskew;
658     int alpha = img->alpha;
659     uint32 nrow;
660     int ret = 1, flip;
661 
662     tilesize = TIFFTileSize(tif);
663     buf = (u_char*) _TIFFmalloc(4*tilesize);
664     if (buf == 0) {
665 	TIFFError(TIFFFileName(tif), "No space for tile buffer");
666 	return (0);
667     }
668     _TIFFmemset(buf, 0, 4*tilesize);
669     r = buf;
670     g = r + tilesize;
671     b = g + tilesize;
672     a = b + tilesize;
673     if (!alpha)
674 	memset(a, 0xff, tilesize);
675     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
676     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
677 
678     flip = setorientation(img);
679     if (flip & FLIP_VERTICALLY) {
680 	    y = h - 1;
681 	    toskew = -(int32)(tw + w);
682     }
683     else {
684 	    y = 0;
685 	    toskew = -(int32)(tw - w);
686     }
687 
688     for (row = 0; row < h; row += nrow)
689     {
690         rowstoread = th - (row + img->row_offset) % th;
691     	nrow = (row + rowstoread > h ? h - row : rowstoread);
692         for (col = 0; col < w; col += tw)
693         {
694             if (TIFFReadTile(tif, r, col+img->col_offset,
695                              row+img->row_offset,0,0) < 0 && img->stoponerr)
696             {
697                 ret = 0;
698                 break;
699             }
700             if (TIFFReadTile(tif, g, col+img->col_offset,
701                              row+img->row_offset,0,1) < 0 && img->stoponerr)
702             {
703                 ret = 0;
704                 break;
705             }
706             if (TIFFReadTile(tif, b, col+img->col_offset,
707                              row+img->row_offset,0,2) < 0 && img->stoponerr)
708             {
709                 ret = 0;
710                 break;
711             }
712             if (alpha && TIFFReadTile(tif,a,col+img->col_offset,
713                                       row+img->row_offset,0,3) < 0 && img->stoponerr)
714             {
715                 ret = 0;
716                 break;
717             }
718 
719             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);
720 
721             if (col + tw > w)
722             {
723                 /*
724                  * Tile is clipped horizontally.  Calculate
725                  * visible portion and skewing factors.
726                  */
727                 uint32 npix = w - col;
728                 fromskew = tw - npix;
729                 (*put)(img, raster+y*w+col, col, y,
730                        npix, nrow, fromskew, toskew + fromskew,
731                        r + pos, g + pos, b + pos, a + pos);
732             } else {
733                 (*put)(img, raster+y*w+col, col, y,
734                        tw, nrow, 0, toskew, r + pos, g + pos, b + pos, a + pos);
735             }
736         }
737 
738         y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
739     }
740 
741     if (flip & FLIP_HORIZONTALLY) {
742 	    uint32 line;
743 
744 	    for (line = 0; line < h; line++) {
745 		    uint32 *left = raster + (line * w);
746 		    uint32 *right = left + w - 1;
747 
748 		    while ( left < right ) {
749 			    uint32 temp = *left;
750 			    *left = *right;
751 			    *right = temp;
752 			    left++, right--;
753 		    }
754 	    }
755     }
756 
757     _TIFFfree(buf);
758     return (ret);
759 }
760 
761 /*
762  * Get a strip-organized image that has
763  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
764  * or
765  *	SamplesPerPixel == 1
766  */
767 static int
gtStripContig(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)768 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
769 {
770     TIFF* tif = img->tif;
771     tileContigRoutine put = img->put.contig;
772     uint32 row, y, nrow, rowstoread;
773     uint32 pos;
774     u_char* buf;
775     uint32 rowsperstrip;
776     uint32 imagewidth = img->width;
777     tsize_t scanline;
778     int32 fromskew, toskew;
779     int ret = 1, flip;
780 
781     buf = (u_char*) _TIFFmalloc(TIFFStripSize(tif));
782     if (buf == 0) {
783 	TIFFError(TIFFFileName(tif), "No space for strip buffer");
784 	return (0);
785     }
786     _TIFFmemset(buf, 0, TIFFStripSize(tif));
787 
788     flip = setorientation(img);
789     if (flip & FLIP_VERTICALLY) {
790 	    y = h - 1;
791 	    toskew = -(int32)(w + w);
792     } else {
793 	    y = 0;
794 	    toskew = -(int32)(w - w);
795     }
796 
797     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
798     scanline = TIFFScanlineSize(tif);
799     fromskew = (w < imagewidth ? imagewidth - w : 0);
800     for (row = 0; row < h; row += nrow)
801     {
802         rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
803         nrow = (row + rowstoread > h ? h - row : rowstoread);
804         if (TIFFReadEncodedStrip(tif,
805                                  TIFFComputeStrip(tif,row+img->row_offset, 0),
806                                  buf,
807                                  ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0
808             && img->stoponerr)
809         {
810             ret = 0;
811             break;
812         }
813 
814         pos = ((row + img->row_offset) % rowsperstrip) * scanline;
815         (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
816         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
817     }
818 
819     if (flip & FLIP_HORIZONTALLY) {
820 	    uint32 line;
821 
822 	    for (line = 0; line < h; line++) {
823 		    uint32 *left = raster + (line * w);
824 		    uint32 *right = left + w - 1;
825 
826 		    while ( left < right ) {
827 			    uint32 temp = *left;
828 			    *left = *right;
829 			    *right = temp;
830 			    left++, right--;
831 		    }
832 	    }
833     }
834 
835     _TIFFfree(buf);
836     return (ret);
837 }
838 
839 /*
840  * Get a strip-organized image with
841  *	 SamplesPerPixel > 1
842  *	 PlanarConfiguration separated
843  * We assume that all such images are RGB.
844  */
845 static int
gtStripSeparate(TIFFRGBAImage * img,uint32 * raster,uint32 w,uint32 h)846 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
847 {
848     TIFF* tif = img->tif;
849     tileSeparateRoutine put = img->put.separate;
850     u_char *buf;
851     u_char *r, *g, *b, *a;
852     uint32 row, y, nrow, rowstoread;
853     uint32 pos;
854     tsize_t scanline;
855     uint32 rowsperstrip, offset_row;
856     uint32 imagewidth = img->width;
857     tsize_t stripsize;
858     int32 fromskew, toskew;
859     int alpha = img->alpha;
860     int	ret = 1, flip;
861 
862     stripsize = TIFFStripSize(tif);
863     r = buf = (u_char *)_TIFFmalloc(4*stripsize);
864     if (buf == 0) {
865 	TIFFError(TIFFFileName(tif), "No space for tile buffer");
866 	return (0);
867     }
868     _TIFFmemset(buf, 0, 4*stripsize);
869     g = r + stripsize;
870     b = g + stripsize;
871     a = b + stripsize;
872     if (!alpha)
873 	memset(a, 0xff, stripsize);
874 
875     flip = setorientation(img);
876     if (flip & FLIP_VERTICALLY) {
877 	    y = h - 1;
878 	    toskew = -(int32)(w + w);
879     }
880     else {
881 	    y = 0;
882 	    toskew = -(int32)(w - w);
883     }
884 
885     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
886     scanline = TIFFScanlineSize(tif);
887     fromskew = (w < imagewidth ? imagewidth - w : 0);
888     for (row = 0; row < h; row += nrow)
889     {
890         rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
891         nrow = (row + rowstoread > h ? h - row : rowstoread);
892         offset_row = row + img->row_offset;
893     	if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
894                                  r, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0
895             && img->stoponerr)
896         {
897             ret = 0;
898             break;
899         }
900         if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
901                                  g, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0
902             && img->stoponerr)
903         {
904             ret = 0;
905             break;
906         }
907         if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
908                                  b, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0
909             && img->stoponerr)
910         {
911             ret = 0;
912             break;
913         }
914         if (alpha &&
915             (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3),
916                                   a, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0
917              && img->stoponerr))
918         {
919             ret = 0;
920             break;
921         }
922 
923         pos = ((row + img->row_offset) % rowsperstrip) * scanline;
924         (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r + pos, g + pos,
925                b + pos, a + pos);
926         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
927     }
928 
929     if (flip & FLIP_HORIZONTALLY) {
930 	    uint32 line;
931 
932 	    for (line = 0; line < h; line++) {
933 		    uint32 *left = raster + (line * w);
934 		    uint32 *right = left + w - 1;
935 
936 		    while ( left < right ) {
937 			    uint32 temp = *left;
938 			    *left = *right;
939 			    *right = temp;
940 			    left++, right--;
941 		    }
942 	    }
943     }
944 
945     _TIFFfree(buf);
946     return (ret);
947 }
948 
949 /*
950  * The following routines move decoded data returned
951  * from the TIFF library into rasters filled with packed
952  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
953  *
954  * The routines have been created according to the most
955  * important cases and optimized.  pickTileContigCase and
956  * pickTileSeparateCase analyze the parameters and select
957  * the appropriate "put" routine to use.
958  */
959 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
960 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
961 #define	REPEAT2(op)	op; op
962 #define	CASE8(x,op)			\
963     switch (x) {			\
964     case 7: op; case 6: op; case 5: op;	\
965     case 4: op; case 3: op; case 2: op;	\
966     case 1: op;				\
967     }
968 #define	CASE4(x,op)	switch (x) { case 3: op; case 2: op; case 1: op; }
969 #define	NOP
970 
971 #define	UNROLL8(w, op1, op2) {		\
972     uint32 _x;				\
973     for (_x = w; _x >= 8; _x -= 8) {	\
974 	op1;				\
975 	REPEAT8(op2);			\
976     }					\
977     if (_x > 0) {			\
978 	op1;				\
979 	CASE8(_x,op2);			\
980     }					\
981 }
982 #define	UNROLL4(w, op1, op2) {		\
983     uint32 _x;				\
984     for (_x = w; _x >= 4; _x -= 4) {	\
985 	op1;				\
986 	REPEAT4(op2);			\
987     }					\
988     if (_x > 0) {			\
989 	op1;				\
990 	CASE4(_x,op2);			\
991     }					\
992 }
993 #define	UNROLL2(w, op1, op2) {		\
994     uint32 _x;				\
995     for (_x = w; _x >= 2; _x -= 2) {	\
996 	op1;				\
997 	REPEAT2(op2);			\
998     }					\
999     if (_x) {				\
1000 	op1;				\
1001 	op2;				\
1002     }					\
1003 }
1004 
1005 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
1006 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
1007 
1008 #define A1 ((uint32)(0xffL<<24))
1009 #define	PACK(r,g,b)	\
1010 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1011 #define	PACK4(r,g,b,a)	\
1012 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1013 #define W2B(v) (((v)>>8)&0xff)
1014 #define	PACKW(r,g,b)	\
1015 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1016 #define	PACKW4(r,g,b,a)	\
1017 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1018 
1019 #define	DECLAREContigPutFunc(name) \
1020 static void name(\
1021     TIFFRGBAImage* img, \
1022     uint32* cp, \
1023     uint32 x, uint32 y, \
1024     uint32 w, uint32 h, \
1025     int32 fromskew, int32 toskew, \
1026     u_char* pp \
1027 )
1028 
1029 /*
1030  * 8-bit palette => colormap/RGB
1031  */
DECLAREContigPutFunc(put8bitcmaptile)1032 DECLAREContigPutFunc(put8bitcmaptile)
1033 {
1034     uint32** PALmap = img->PALmap;
1035     int samplesperpixel = img->samplesperpixel;
1036 
1037     (void) y;
1038     while (h-- > 0) {
1039 	for (x = w; x-- > 0;)
1040         {
1041 	    *cp++ = PALmap[*pp][0];
1042             pp += samplesperpixel;
1043         }
1044 	cp += toskew;
1045 	pp += fromskew;
1046     }
1047 }
1048 
1049 /*
1050  * 4-bit palette => colormap/RGB
1051  */
DECLAREContigPutFunc(put4bitcmaptile)1052 DECLAREContigPutFunc(put4bitcmaptile)
1053 {
1054     uint32** PALmap = img->PALmap;
1055 
1056     (void) x; (void) y;
1057     fromskew /= 2;
1058     while (h-- > 0) {
1059 	uint32* bw;
1060 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1061 	cp += toskew;
1062 	pp += fromskew;
1063     }
1064 }
1065 
1066 /*
1067  * 2-bit palette => colormap/RGB
1068  */
DECLAREContigPutFunc(put2bitcmaptile)1069 DECLAREContigPutFunc(put2bitcmaptile)
1070 {
1071     uint32** PALmap = img->PALmap;
1072 
1073     (void) x; (void) y;
1074     fromskew /= 4;
1075     while (h-- > 0) {
1076 	uint32* bw;
1077 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1078 	cp += toskew;
1079 	pp += fromskew;
1080     }
1081 }
1082 
1083 /*
1084  * 1-bit palette => colormap/RGB
1085  */
DECLAREContigPutFunc(put1bitcmaptile)1086 DECLAREContigPutFunc(put1bitcmaptile)
1087 {
1088     uint32** PALmap = img->PALmap;
1089 
1090     (void) x; (void) y;
1091     fromskew /= 8;
1092     while (h-- > 0) {
1093 	uint32* bw;
1094 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1095 	cp += toskew;
1096 	pp += fromskew;
1097     }
1098 }
1099 
1100 /*
1101  * 8-bit greyscale => colormap/RGB
1102  */
DECLAREContigPutFunc(putgreytile)1103 DECLAREContigPutFunc(putgreytile)
1104 {
1105     int samplesperpixel = img->samplesperpixel;
1106     uint32** BWmap = img->BWmap;
1107 
1108     (void) y;
1109     while (h-- > 0) {
1110 	for (x = w; x-- > 0;)
1111         {
1112 	    *cp++ = BWmap[*pp][0];
1113             pp += samplesperpixel;
1114         }
1115 	cp += toskew;
1116 	pp += fromskew;
1117     }
1118 }
1119 
1120 /*
1121  * 16-bit greyscale => colormap/RGB
1122  */
DECLAREContigPutFunc(put16bitbwtile)1123 DECLAREContigPutFunc(put16bitbwtile)
1124 {
1125     int samplesperpixel = img->samplesperpixel;
1126     uint32** BWmap = img->BWmap;
1127 
1128     (void) y;
1129     while (h-- > 0) {
1130         uint16 *wp = (uint16 *) pp;
1131 
1132 	for (x = w; x-- > 0;)
1133         {
1134             /* use high order byte of 16bit value */
1135 
1136 	    *cp++ = BWmap[*wp >> 8][0];
1137             pp += 2 * samplesperpixel;
1138             wp += samplesperpixel;
1139         }
1140 	cp += toskew;
1141 	pp += fromskew;
1142     }
1143 }
1144 
1145 /*
1146  * 1-bit bilevel => colormap/RGB
1147  */
DECLAREContigPutFunc(put1bitbwtile)1148 DECLAREContigPutFunc(put1bitbwtile)
1149 {
1150     uint32** BWmap = img->BWmap;
1151 
1152     (void) x; (void) y;
1153     fromskew /= 8;
1154     while (h-- > 0) {
1155 	uint32* bw;
1156 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1157 	cp += toskew;
1158 	pp += fromskew;
1159     }
1160 }
1161 
1162 /*
1163  * 2-bit greyscale => colormap/RGB
1164  */
DECLAREContigPutFunc(put2bitbwtile)1165 DECLAREContigPutFunc(put2bitbwtile)
1166 {
1167     uint32** BWmap = img->BWmap;
1168 
1169     (void) x; (void) y;
1170     fromskew /= 4;
1171     while (h-- > 0) {
1172 	uint32* bw;
1173 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1174 	cp += toskew;
1175 	pp += fromskew;
1176     }
1177 }
1178 
1179 /*
1180  * 4-bit greyscale => colormap/RGB
1181  */
DECLAREContigPutFunc(put4bitbwtile)1182 DECLAREContigPutFunc(put4bitbwtile)
1183 {
1184     uint32** BWmap = img->BWmap;
1185 
1186     (void) x; (void) y;
1187     fromskew /= 2;
1188     while (h-- > 0) {
1189 	uint32* bw;
1190 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1191 	cp += toskew;
1192 	pp += fromskew;
1193     }
1194 }
1195 
1196 /*
1197  * 8-bit packed samples, no Map => RGB
1198  */
DECLAREContigPutFunc(putRGBcontig8bittile)1199 DECLAREContigPutFunc(putRGBcontig8bittile)
1200 {
1201     int samplesperpixel = img->samplesperpixel;
1202 
1203     (void) x; (void) y;
1204     fromskew *= samplesperpixel;
1205     while (h-- > 0) {
1206 	UNROLL8(w, NOP,
1207 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
1208 	    pp += samplesperpixel);
1209 	cp += toskew;
1210 	pp += fromskew;
1211     }
1212 }
1213 
1214 /*
1215  * 8-bit packed samples, w/ Map => RGB
1216  */
DECLAREContigPutFunc(putRGBcontig8bitMaptile)1217 DECLAREContigPutFunc(putRGBcontig8bitMaptile)
1218 {
1219     TIFFRGBValue* Map = img->Map;
1220     int samplesperpixel = img->samplesperpixel;
1221 
1222     (void) y;
1223     fromskew *= samplesperpixel;
1224     while (h-- > 0) {
1225 	for (x = w; x-- > 0;) {
1226 	    *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]);
1227 	    pp += samplesperpixel;
1228 	}
1229 	pp += fromskew;
1230 	cp += toskew;
1231     }
1232 }
1233 
1234 /*
1235  * 8-bit packed samples => RGBA w/ associated alpha
1236  * (known to have Map == NULL)
1237  */
DECLAREContigPutFunc(putRGBAAcontig8bittile)1238 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1239 {
1240     int samplesperpixel = img->samplesperpixel;
1241 
1242     (void) x; (void) y;
1243     fromskew *= samplesperpixel;
1244     while (h-- > 0) {
1245 	UNROLL8(w, NOP,
1246 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1247 	    pp += samplesperpixel);
1248 	cp += toskew;
1249 	pp += fromskew;
1250     }
1251 }
1252 
1253 /*
1254  * 8-bit packed samples => RGBA w/ unassociated alpha
1255  * (known to have Map == NULL)
1256  */
DECLAREContigPutFunc(putRGBUAcontig8bittile)1257 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1258 {
1259     int samplesperpixel = img->samplesperpixel;
1260 
1261     (void) y;
1262     fromskew *= samplesperpixel;
1263     while (h-- > 0) {
1264 	uint32 r, g, b, a;
1265 	for (x = w; x-- > 0;) {
1266 	    a = pp[3];
1267 	    r = (pp[0] * a) / 255;
1268 	    g = (pp[1] * a) / 255;
1269 	    b = (pp[2] * a) / 255;
1270 	    *cp++ = PACK4(r,g,b,a);
1271 	    pp += samplesperpixel;
1272 	}
1273 	cp += toskew;
1274 	pp += fromskew;
1275     }
1276 }
1277 
1278 /*
1279  * 16-bit packed samples => RGB
1280  */
DECLAREContigPutFunc(putRGBcontig16bittile)1281 DECLAREContigPutFunc(putRGBcontig16bittile)
1282 {
1283     int samplesperpixel = img->samplesperpixel;
1284     uint16 *wp = (uint16 *)pp;
1285 
1286     (void) y;
1287     fromskew *= samplesperpixel;
1288     while (h-- > 0) {
1289 	for (x = w; x-- > 0;) {
1290 	    *cp++ = PACKW(wp[0], wp[1], wp[2]);
1291 	    wp += samplesperpixel;
1292 	}
1293 	cp += toskew;
1294 	wp += fromskew;
1295     }
1296 }
1297 
1298 /*
1299  * 16-bit packed samples => RGBA w/ associated alpha
1300  * (known to have Map == NULL)
1301  */
DECLAREContigPutFunc(putRGBAAcontig16bittile)1302 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1303 {
1304     int samplesperpixel = img->samplesperpixel;
1305     uint16 *wp = (uint16 *)pp;
1306 
1307     (void) y;
1308     fromskew *= samplesperpixel;
1309     while (h-- > 0) {
1310 	for (x = w; x-- > 0;) {
1311 	    *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]);
1312 	    wp += samplesperpixel;
1313 	}
1314 	cp += toskew;
1315 	wp += fromskew;
1316     }
1317 }
1318 
1319 /*
1320  * 16-bit packed samples => RGBA w/ unassociated alpha
1321  * (known to have Map == NULL)
1322  */
DECLAREContigPutFunc(putRGBUAcontig16bittile)1323 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1324 {
1325     int samplesperpixel = img->samplesperpixel;
1326     uint16 *wp = (uint16 *)pp;
1327 
1328     (void) y;
1329     fromskew *= samplesperpixel;
1330     while (h-- > 0) {
1331 	uint32 r,g,b,a;
1332 	/*
1333 	 * We shift alpha down four bits just in case unsigned
1334 	 * arithmetic doesn't handle the full range.
1335 	 * We still have plenty of accuracy, since the output is 8 bits.
1336 	 * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
1337 	 * Since we want r*a * 0xff for eight bit output,
1338 	 * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
1339 	 */
1340 	for (x = w; x-- > 0;) {
1341 	    a = wp[3] >> 4;
1342 	    r = (wp[0] * a) / 0x10eff;
1343 	    g = (wp[1] * a) / 0x10eff;
1344 	    b = (wp[2] * a) / 0x10eff;
1345 	    *cp++ = PACK4(r,g,b,a);
1346 	    wp += samplesperpixel;
1347 	}
1348 	cp += toskew;
1349 	wp += fromskew;
1350     }
1351 }
1352 
1353 /*
1354  * 8-bit packed CMYK samples w/o Map => RGB
1355  *
1356  * NB: The conversion of CMYK->RGB is *very* crude.
1357  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)1358 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1359 {
1360     int samplesperpixel = img->samplesperpixel;
1361     uint16 r, g, b, k;
1362 
1363     (void) x; (void) y;
1364     fromskew *= samplesperpixel;
1365     while (h-- > 0) {
1366 	UNROLL8(w, NOP,
1367 	    k = 255 - pp[3];
1368 	    r = (k*(255-pp[0]))/255;
1369 	    g = (k*(255-pp[1]))/255;
1370 	    b = (k*(255-pp[2]))/255;
1371 	    *cp++ = PACK(r, g, b);
1372 	    pp += samplesperpixel);
1373 	cp += toskew;
1374 	pp += fromskew;
1375     }
1376 }
1377 
1378 /*
1379  * 8-bit packed CMYK samples w/Map => RGB
1380  *
1381  * NB: The conversion of CMYK->RGB is *very* crude.
1382  */
DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)1383 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1384 {
1385     int samplesperpixel = img->samplesperpixel;
1386     TIFFRGBValue* Map = img->Map;
1387     uint16 r, g, b, k;
1388 
1389     (void) y;
1390     fromskew *= samplesperpixel;
1391     while (h-- > 0) {
1392 	for (x = w; x-- > 0;) {
1393 	    k = 255 - pp[3];
1394 	    r = (k*(255-pp[0]))/255;
1395 	    g = (k*(255-pp[1]))/255;
1396 	    b = (k*(255-pp[2]))/255;
1397 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
1398 	    pp += samplesperpixel;
1399 	}
1400 	pp += fromskew;
1401 	cp += toskew;
1402     }
1403 }
1404 
1405 #define	DECLARESepPutFunc(name) \
1406 static void name(\
1407     TIFFRGBAImage* img,\
1408     uint32* cp,\
1409     uint32 x, uint32 y, \
1410     uint32 w, uint32 h,\
1411     int32 fromskew, int32 toskew,\
1412     u_char* r, u_char* g, u_char* b, u_char* a\
1413 )
1414 
1415 /*
1416  * 8-bit unpacked samples => RGB
1417  */
DECLARESepPutFunc(putRGBseparate8bittile)1418 DECLARESepPutFunc(putRGBseparate8bittile)
1419 {
1420     (void) img; (void) x; (void) y; (void) a;
1421     while (h-- > 0) {
1422 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1423 	SKEW(r, g, b, fromskew);
1424 	cp += toskew;
1425     }
1426 }
1427 
1428 /*
1429  * 8-bit unpacked samples => RGB
1430  */
DECLARESepPutFunc(putRGBseparate8bitMaptile)1431 DECLARESepPutFunc(putRGBseparate8bitMaptile)
1432 {
1433     TIFFRGBValue* Map = img->Map;
1434 
1435     (void) y; (void) a;
1436     while (h-- > 0) {
1437 	for (x = w; x > 0; x--)
1438 	    *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]);
1439 	SKEW(r, g, b, fromskew);
1440 	cp += toskew;
1441     }
1442 }
1443 
1444 /*
1445  * 8-bit unpacked samples => RGBA w/ associated alpha
1446  */
DECLARESepPutFunc(putRGBAAseparate8bittile)1447 DECLARESepPutFunc(putRGBAAseparate8bittile)
1448 {
1449     (void) img; (void) x; (void) y;
1450     while (h-- > 0) {
1451 	UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1452 	SKEW4(r, g, b, a, fromskew);
1453 	cp += toskew;
1454     }
1455 }
1456 
1457 /*
1458  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1459  */
DECLARESepPutFunc(putRGBUAseparate8bittile)1460 DECLARESepPutFunc(putRGBUAseparate8bittile)
1461 {
1462     (void) img; (void) y;
1463     while (h-- > 0) {
1464 	uint32 rv, gv, bv, av;
1465 	for (x = w; x-- > 0;) {
1466 	    av = *a++;
1467 	    rv = (*r++ * av) / 255;
1468 	    gv = (*g++ * av) / 255;
1469 	    bv = (*b++ * av) / 255;
1470 	    *cp++ = PACK4(rv,gv,bv,av);
1471 	}
1472 	SKEW4(r, g, b, a, fromskew);
1473 	cp += toskew;
1474     }
1475 }
1476 
1477 /*
1478  * 16-bit unpacked samples => RGB
1479  */
DECLARESepPutFunc(putRGBseparate16bittile)1480 DECLARESepPutFunc(putRGBseparate16bittile)
1481 {
1482     uint16 *wr = (uint16*) r;
1483     uint16 *wg = (uint16*) g;
1484     uint16 *wb = (uint16*) b;
1485 
1486     (void) img; (void) y; (void) a;
1487     while (h-- > 0) {
1488 	for (x = 0; x < w; x++)
1489 	    *cp++ = PACKW(*wr++, *wg++, *wb++);
1490 	SKEW(wr, wg, wb, fromskew);
1491 	cp += toskew;
1492     }
1493 }
1494 
1495 /*
1496  * 16-bit unpacked samples => RGBA w/ associated alpha
1497  */
DECLARESepPutFunc(putRGBAAseparate16bittile)1498 DECLARESepPutFunc(putRGBAAseparate16bittile)
1499 {
1500     uint16 *wr = (uint16*) r;
1501     uint16 *wg = (uint16*) g;
1502     uint16 *wb = (uint16*) b;
1503     uint16 *wa = (uint16*) a;
1504 
1505     (void) img; (void) y;
1506     while (h-- > 0) {
1507 	for (x = 0; x < w; x++)
1508 	    *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++);
1509 	SKEW4(wr, wg, wb, wa, fromskew);
1510 	cp += toskew;
1511     }
1512 }
1513 
1514 /*
1515  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1516  */
DECLARESepPutFunc(putRGBUAseparate16bittile)1517 DECLARESepPutFunc(putRGBUAseparate16bittile)
1518 {
1519     uint16 *wr = (uint16*) r;
1520     uint16 *wg = (uint16*) g;
1521     uint16 *wb = (uint16*) b;
1522     uint16 *wa = (uint16*) a;
1523 
1524     (void) img; (void) y;
1525     while (h-- > 0) {
1526 	uint32 r,g,b,a;
1527 	/*
1528 	 * We shift alpha down four bits just in case unsigned
1529 	 * arithmetic doesn't handle the full range.
1530 	 * We still have plenty of accuracy, since the output is 8 bits.
1531 	 * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff)
1532 	 * Since we want r*a * 0xff for eight bit output,
1533 	 * we divide by (0xffff * 0xfff) / 0xff == 0x10eff.
1534 	 */
1535 	for (x = w; x-- > 0;) {
1536 	    a = *wa++ >> 4;
1537 	    r = (*wr++ * a) / 0x10eff;
1538 	    g = (*wg++ * a) / 0x10eff;
1539 	    b = (*wb++ * a) / 0x10eff;
1540 	    *cp++ = PACK4(r,g,b,a);
1541 	}
1542 	SKEW4(wr, wg, wb, wa, fromskew);
1543 	cp += toskew;
1544     }
1545 }
1546 
1547 /*
1548  * 8-bit packed CIE L*a*b 1976 samples => RGB
1549  */
DECLAREContigPutFunc(putcontig8bitCIELab)1550 DECLAREContigPutFunc(putcontig8bitCIELab)
1551 {
1552 	float X, Y, Z;
1553 	uint32 r, g, b;
1554 	(void) y;
1555 	fromskew *= 3;
1556 	while (h-- > 0) {
1557 		for (x = w; x-- > 0;) {
1558 			TIFFCIELabToXYZ(img->cielab,
1559 					(u_char)pp[0],
1560 					(signed char)pp[1],
1561 					(signed char)pp[2],
1562 					&X, &Y, &Z);
1563 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1564 			*cp++ = PACK(r, g, b);
1565 			pp += 3;
1566 		}
1567 		cp += toskew;
1568 		pp += fromskew;
1569 	}
1570 }
1571 
1572 /*
1573  * YCbCr -> RGB conversion and packing routines.
1574  */
1575 
1576 #define	YCbCrtoRGB(dst, Y) {						\
1577 	uint32 r, g, b;							\
1578 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
1579 	dst = PACK(r, g, b);						\
1580 }
1581 
1582 /*
1583  * 8-bit packed YCbCr samples => RGB
1584  * This function is generic for different sampling sizes,
1585  * and can handle blocks sizes that aren't multiples of the
1586  * sampling size.  However, it is substantially less optimized
1587  * than the specific sampling cases.  It is used as a fallback
1588  * for difficult blocks.
1589  */
1590 #ifdef notdef
putcontig8bitYCbCrGenericTile(TIFFRGBAImage * img,uint32 * cp,uint32 x,uint32 y,uint32 w,uint32 h,int32 fromskew,int32 toskew,u_char * pp,int h_group,int v_group)1591 static void putcontig8bitYCbCrGenericTile(
1592     TIFFRGBAImage* img,
1593     uint32* cp,
1594     uint32 x, uint32 y,
1595     uint32 w, uint32 h,
1596     int32 fromskew, int32 toskew,
1597     u_char* pp,
1598     int h_group,
1599     int v_group )
1600 
1601 {
1602     uint32* cp1 = cp+w+toskew;
1603     uint32* cp2 = cp1+w+toskew;
1604     uint32* cp3 = cp2+w+toskew;
1605     int32 incr = 3*w+4*toskew;
1606     int32   Cb, Cr;
1607     int     group_size = v_group * h_group + 2;
1608 
1609     (void) y;
1610     fromskew = (fromskew * group_size) / h_group;
1611 
1612     for( yy = 0; yy < h; yy++ )
1613     {
1614         u_char *pp_line;
1615         int     y_line_group = yy / v_group;
1616         int     y_remainder = yy - y_line_group * v_group;
1617 
1618         pp_line = pp + v_line_group *
1619 
1620 
1621         for( xx = 0; xx < w; xx++ )
1622         {
1623             Cb = pp
1624         }
1625     }
1626     for (; h >= 4; h -= 4) {
1627 	x = w>>2;
1628 	do {
1629 	    Cb = pp[16];
1630 	    Cr = pp[17];
1631 
1632 	    YCbCrtoRGB(cp [0], pp[ 0]);
1633 	    YCbCrtoRGB(cp [1], pp[ 1]);
1634 	    YCbCrtoRGB(cp [2], pp[ 2]);
1635 	    YCbCrtoRGB(cp [3], pp[ 3]);
1636 	    YCbCrtoRGB(cp1[0], pp[ 4]);
1637 	    YCbCrtoRGB(cp1[1], pp[ 5]);
1638 	    YCbCrtoRGB(cp1[2], pp[ 6]);
1639 	    YCbCrtoRGB(cp1[3], pp[ 7]);
1640 	    YCbCrtoRGB(cp2[0], pp[ 8]);
1641 	    YCbCrtoRGB(cp2[1], pp[ 9]);
1642 	    YCbCrtoRGB(cp2[2], pp[10]);
1643 	    YCbCrtoRGB(cp2[3], pp[11]);
1644 	    YCbCrtoRGB(cp3[0], pp[12]);
1645 	    YCbCrtoRGB(cp3[1], pp[13]);
1646 	    YCbCrtoRGB(cp3[2], pp[14]);
1647 	    YCbCrtoRGB(cp3[3], pp[15]);
1648 
1649 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1650 	    pp += 18;
1651 	} while (--x);
1652 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1653 	pp += fromskew;
1654     }
1655 }
1656 #endif
1657 
1658 /*
1659  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1660  */
DECLAREContigPutFunc(putcontig8bitYCbCr44tile)1661 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1662 {
1663     uint32* cp1 = cp+w+toskew;
1664     uint32* cp2 = cp1+w+toskew;
1665     uint32* cp3 = cp2+w+toskew;
1666     int32 incr = 3*w+4*toskew;
1667 
1668     (void) y;
1669     /* adjust fromskew */
1670     fromskew = (fromskew * 18) / 4;
1671     if ((h & 3) == 0 && (w & 3) == 0) {
1672         for (; h >= 4; h -= 4) {
1673             x = w>>2;
1674             do {
1675                 int32 Cb = pp[16];
1676                 int32 Cr = pp[17];
1677 
1678                 YCbCrtoRGB(cp [0], pp[ 0]);
1679                 YCbCrtoRGB(cp [1], pp[ 1]);
1680                 YCbCrtoRGB(cp [2], pp[ 2]);
1681                 YCbCrtoRGB(cp [3], pp[ 3]);
1682                 YCbCrtoRGB(cp1[0], pp[ 4]);
1683                 YCbCrtoRGB(cp1[1], pp[ 5]);
1684                 YCbCrtoRGB(cp1[2], pp[ 6]);
1685                 YCbCrtoRGB(cp1[3], pp[ 7]);
1686                 YCbCrtoRGB(cp2[0], pp[ 8]);
1687                 YCbCrtoRGB(cp2[1], pp[ 9]);
1688                 YCbCrtoRGB(cp2[2], pp[10]);
1689                 YCbCrtoRGB(cp2[3], pp[11]);
1690                 YCbCrtoRGB(cp3[0], pp[12]);
1691                 YCbCrtoRGB(cp3[1], pp[13]);
1692                 YCbCrtoRGB(cp3[2], pp[14]);
1693                 YCbCrtoRGB(cp3[3], pp[15]);
1694 
1695                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1696                 pp += 18;
1697             } while (--x);
1698             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1699             pp += fromskew;
1700         }
1701     } else {
1702         while (h > 0) {
1703             for (x = w; x > 0;) {
1704                 int32 Cb = pp[16];
1705                 int32 Cr = pp[17];
1706                 switch (x) {
1707                 default:
1708                     switch (h) {
1709                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1710                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1711                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1712                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1713                     }                                    /* FALLTHROUGH */
1714                 case 3:
1715                     switch (h) {
1716                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1717                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1718                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1719                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1720                     }                                    /* FALLTHROUGH */
1721                 case 2:
1722                     switch (h) {
1723                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1724                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1725                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1726                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1727                     }                                    /* FALLTHROUGH */
1728                 case 1:
1729                     switch (h) {
1730                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1731                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1732                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1733                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1734                     }                                    /* FALLTHROUGH */
1735                 }
1736                 if (x < 4) {
1737                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1738                     x = 0;
1739                 }
1740                 else {
1741                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1742                     x -= 4;
1743                 }
1744                 pp += 18;
1745             }
1746             if (h <= 4)
1747                 break;
1748             h -= 4;
1749             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1750             pp += fromskew;
1751         }
1752     }
1753 }
1754 
1755 /*
1756  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1757  */
DECLAREContigPutFunc(putcontig8bitYCbCr42tile)1758 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1759 {
1760     uint32* cp1 = cp+w+toskew;
1761     int32 incr = 2*toskew+w;
1762 
1763     (void) y;
1764     fromskew = (fromskew * 10) / 4;
1765     if ((h & 3) == 0 && (w & 1) == 0) {
1766         for (; h >= 2; h -= 2) {
1767             x = w>>2;
1768             do {
1769                 int32 Cb = pp[8];
1770                 int32 Cr = pp[9];
1771 
1772                 YCbCrtoRGB(cp [0], pp[0]);
1773                 YCbCrtoRGB(cp [1], pp[1]);
1774                 YCbCrtoRGB(cp [2], pp[2]);
1775                 YCbCrtoRGB(cp [3], pp[3]);
1776                 YCbCrtoRGB(cp1[0], pp[4]);
1777                 YCbCrtoRGB(cp1[1], pp[5]);
1778                 YCbCrtoRGB(cp1[2], pp[6]);
1779                 YCbCrtoRGB(cp1[3], pp[7]);
1780 
1781                 cp += 4, cp1 += 4;
1782                 pp += 10;
1783             } while (--x);
1784             cp += incr, cp1 += incr;
1785             pp += fromskew;
1786         }
1787     } else {
1788         while (h > 0) {
1789             for (x = w; x > 0;) {
1790                 int32 Cb = pp[8];
1791                 int32 Cr = pp[9];
1792                 switch (x) {
1793                 default:
1794                     switch (h) {
1795                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1796                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1797                     }                                    /* FALLTHROUGH */
1798                 case 3:
1799                     switch (h) {
1800                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1801                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1802                     }                                    /* FALLTHROUGH */
1803                 case 2:
1804                     switch (h) {
1805                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1806                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1807                     }                                    /* FALLTHROUGH */
1808                 case 1:
1809                     switch (h) {
1810                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1811                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1812                     }                                    /* FALLTHROUGH */
1813                 }
1814                 if (x < 4) {
1815                     cp += x; cp1 += x;
1816                     x = 0;
1817                 }
1818                 else {
1819                     cp += 4; cp1 += 4;
1820                     x -= 4;
1821                 }
1822                 pp += 10;
1823             }
1824             if (h <= 2)
1825                 break;
1826             h -= 2;
1827             cp += incr, cp1 += incr;
1828             pp += fromskew;
1829         }
1830     }
1831 }
1832 
1833 /*
1834  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
1835  */
DECLAREContigPutFunc(putcontig8bitYCbCr41tile)1836 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
1837 {
1838     (void) y;
1839     /* XXX adjust fromskew */
1840     do {
1841 	x = w>>2;
1842 	do {
1843 	    int32 Cb = pp[4];
1844 	    int32 Cr = pp[5];
1845 
1846 	    YCbCrtoRGB(cp [0], pp[0]);
1847 	    YCbCrtoRGB(cp [1], pp[1]);
1848 	    YCbCrtoRGB(cp [2], pp[2]);
1849 	    YCbCrtoRGB(cp [3], pp[3]);
1850 
1851 	    cp += 4;
1852 	    pp += 6;
1853 	} while (--x);
1854 
1855         if( (w&3) != 0 )
1856         {
1857 	    int32 Cb = pp[4];
1858 	    int32 Cr = pp[5];
1859 
1860             switch( (w&3) ) {
1861               case 3: YCbCrtoRGB(cp [2], pp[2]);
1862               case 2: YCbCrtoRGB(cp [1], pp[1]);
1863               case 1: YCbCrtoRGB(cp [0], pp[0]);
1864               case 0: break;
1865             }
1866 
1867             cp += (w&3);
1868             pp += 6;
1869         }
1870 
1871 	cp += toskew;
1872 	pp += fromskew;
1873     } while (--h);
1874 
1875 }
1876 
1877 /*
1878  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
1879  */
DECLAREContigPutFunc(putcontig8bitYCbCr22tile)1880 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
1881 {
1882     uint32* cp1 = cp+w+toskew;
1883     int32 incr = 2*toskew+w;
1884 
1885     (void) y;
1886     fromskew = (fromskew * 6) / 2;
1887     if ((h & 1) == 0 && (w & 1) == 0) {
1888         for (; h >= 2; h -= 2) {
1889             x = w>>1;
1890             do {
1891                 int32 Cb = pp[4];
1892                 int32 Cr = pp[5];
1893 
1894                 YCbCrtoRGB(cp [0], pp[0]);
1895                 YCbCrtoRGB(cp [1], pp[1]);
1896                 YCbCrtoRGB(cp1[0], pp[2]);
1897                 YCbCrtoRGB(cp1[1], pp[3]);
1898 
1899                 cp += 2, cp1 += 2;
1900                 pp += 6;
1901             } while (--x);
1902             cp += incr, cp1 += incr;
1903             pp += fromskew;
1904         }
1905     } else {
1906         while (h > 0) {
1907             for (x = w; x > 0;) {
1908                 int32 Cb = pp[4];
1909                 int32 Cr = pp[5];
1910                 switch (x) {
1911                 default:
1912                     switch (h) {
1913                     default: YCbCrtoRGB(cp1[1], pp[ 3]); /* FALLTHROUGH */
1914                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1915                     }                                    /* FALLTHROUGH */
1916                 case 1:
1917                     switch (h) {
1918                     default: YCbCrtoRGB(cp1[0], pp[ 2]); /* FALLTHROUGH */
1919                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1920                     }                                    /* FALLTHROUGH */
1921                 }
1922                 if (x < 2) {
1923                     cp += x; cp1 += x;
1924                     x = 0;
1925                 }
1926                 else {
1927                     cp += 2; cp1 += 2;
1928                     x -= 2;
1929                 }
1930                 pp += 6;
1931             }
1932             if (h <= 2)
1933                 break;
1934             h -= 2;
1935             cp += incr, cp1 += incr;
1936             pp += fromskew;
1937         }
1938     }
1939 }
1940 
1941 /*
1942  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
1943  */
DECLAREContigPutFunc(putcontig8bitYCbCr21tile)1944 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
1945 {
1946     (void) y;
1947     fromskew = (fromskew * 4) / 2;
1948     do {
1949 	x = w>>1;
1950 	do {
1951 	    int32 Cb = pp[2];
1952 	    int32 Cr = pp[3];
1953 
1954 	    YCbCrtoRGB(cp[0], pp[0]);
1955 	    YCbCrtoRGB(cp[1], pp[1]);
1956 
1957 	    cp += 2;
1958 	    pp += 4;
1959 	} while (--x);
1960 
1961         if( (w&1) != 0 )
1962         {
1963 	    int32 Cb = pp[2];
1964 	    int32 Cr = pp[3];
1965 
1966             YCbCrtoRGB(cp [0], pp[0]);
1967 
1968 	    cp += 1;
1969 	    pp += 4;
1970         }
1971 
1972 	cp += toskew;
1973 	pp += fromskew;
1974     } while (--h);
1975 }
1976 
1977 /*
1978  * 8-bit packed YCbCr samples w/ no subsampling => RGB
1979  */
DECLAREContigPutFunc(putcontig8bitYCbCr11tile)1980 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
1981 {
1982     (void) y;
1983     fromskew *= 3;
1984     do {
1985         x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
1986 	do {
1987 	    int32 Cb = pp[1];
1988 	    int32 Cr = pp[2];
1989 
1990 	    YCbCrtoRGB(*cp++, pp[0]);
1991 
1992 	    pp += 3;
1993 	} while (--x);
1994 	cp += toskew;
1995 	pp += fromskew;
1996     } while (--h);
1997 }
1998 #undef	YCbCrtoRGB
1999 
2000 static tileContigRoutine
initYCbCrConversion(TIFFRGBAImage * img)2001 initYCbCrConversion(TIFFRGBAImage* img)
2002 {
2003 	static char module[] = "initCIELabConversion";
2004 
2005 	float *luma, *refBlackWhite;
2006 	uint16 hs, vs;
2007 
2008 	if (img->ycbcr == NULL) {
2009 	    img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2010 		    TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long))
2011 		    + 4*256*sizeof (TIFFRGBValue)
2012 		    + 2*256*sizeof (int)
2013 		    + 3*256*sizeof (int32)
2014 	    );
2015 	    if (img->ycbcr == NULL) {
2016 		    TIFFError(module,
2017 			      "No space for YCbCr->RGB conversion state");
2018 		    return (NULL);
2019 	    }
2020 	}
2021 
2022 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2023 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2024 			      &refBlackWhite);
2025 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2026 		return NULL;
2027 
2028 	/*
2029 	 * The 6.0 spec says that subsampling must be
2030 	 * one of 1, 2, or 4, and that vertical subsampling
2031 	 * must always be <= horizontal subsampling; so
2032 	 * there are only a few possibilities and we just
2033 	 * enumerate the cases.
2034 	 */
2035 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2036 	switch ((hs<<4)|vs) {
2037 		case 0x44: return (&putcontig8bitYCbCr44tile);
2038 		case 0x42: return (&putcontig8bitYCbCr42tile);
2039 		case 0x41: return (&putcontig8bitYCbCr41tile);
2040 		case 0x22: return (&putcontig8bitYCbCr22tile);
2041 		case 0x21: return (&putcontig8bitYCbCr21tile);
2042 		case 0x11: return (&putcontig8bitYCbCr11tile);
2043 	}
2044 
2045 	return (NULL);
2046 }
2047 
2048 static tileContigRoutine
initCIELabConversion(TIFFRGBAImage * img)2049 initCIELabConversion(TIFFRGBAImage* img)
2050 {
2051 	static char module[] = "initCIELabConversion";
2052 
2053 	float   *whitePoint;
2054 	float   refWhite[3];
2055 
2056 	if (!img->cielab) {
2057 		img->cielab = (TIFFCIELabToRGB *)
2058 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
2059 		if (!img->cielab) {
2060 			TIFFError(module,
2061 			    "No space for CIE L*a*b*->RGB conversion state.");
2062 			return NULL;
2063 		}
2064 	}
2065 
2066 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2067 	refWhite[1] = 100.0F;
2068 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2069 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2070 		      / whitePoint[1] * refWhite[1];
2071 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2072 		TIFFError(module,
2073 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
2074 		_TIFFfree(img->cielab);
2075 		return NULL;
2076 	}
2077 
2078 	return &putcontig8bitCIELab;
2079 }
2080 
2081 /*
2082  * Greyscale images with less than 8 bits/sample are handled
2083  * with a table to avoid lots of shifts and masks.  The table
2084  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2085  * pixel values simply by indexing into the table with one
2086  * number.
2087  */
2088 static int
makebwmap(TIFFRGBAImage * img)2089 makebwmap(TIFFRGBAImage* img)
2090 {
2091     TIFFRGBValue* Map = img->Map;
2092     int bitspersample = img->bitspersample;
2093     int nsamples = 8 / bitspersample;
2094     int i;
2095     uint32* p;
2096 
2097     if( nsamples == 0 )
2098         nsamples = 1;
2099 
2100     img->BWmap = (uint32**) _TIFFmalloc(
2101 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2102     if (img->BWmap == NULL) {
2103 	TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table");
2104 	return (0);
2105     }
2106     p = (uint32*)(img->BWmap + 256);
2107     for (i = 0; i < 256; i++) {
2108 	TIFFRGBValue c;
2109 	img->BWmap[i] = p;
2110 	switch (bitspersample) {
2111 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
2112 	case 1:
2113 	    GREY(i>>7);
2114 	    GREY((i>>6)&1);
2115 	    GREY((i>>5)&1);
2116 	    GREY((i>>4)&1);
2117 	    GREY((i>>3)&1);
2118 	    GREY((i>>2)&1);
2119 	    GREY((i>>1)&1);
2120 	    GREY(i&1);
2121 	    break;
2122 	case 2:
2123 	    GREY(i>>6);
2124 	    GREY((i>>4)&3);
2125 	    GREY((i>>2)&3);
2126 	    GREY(i&3);
2127 	    break;
2128 	case 4:
2129 	    GREY(i>>4);
2130 	    GREY(i&0xf);
2131 	    break;
2132 	case 8:
2133         case 16:
2134 	    GREY(i);
2135 	    break;
2136 	}
2137 #undef	GREY
2138     }
2139     return (1);
2140 }
2141 
2142 /*
2143  * Construct a mapping table to convert from the range
2144  * of the data samples to [0,255] --for display.  This
2145  * process also handles inverting B&W images when needed.
2146  */
2147 static int
setupMap(TIFFRGBAImage * img)2148 setupMap(TIFFRGBAImage* img)
2149 {
2150     int32 x, range;
2151 
2152     range = (int32)((1L<<img->bitspersample)-1);
2153 
2154     /* treat 16 bit the same as eight bit */
2155     if( img->bitspersample == 16 )
2156         range = (int32) 255;
2157 
2158     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2159     if (img->Map == NULL) {
2160 	TIFFError(TIFFFileName(img->tif),
2161 	    "No space for photometric conversion table");
2162 	return (0);
2163     }
2164     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2165 	for (x = 0; x <= range; x++)
2166 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2167     } else {
2168 	for (x = 0; x <= range; x++)
2169 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2170     }
2171     if (img->bitspersample <= 16 &&
2172 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
2173 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
2174 	/*
2175 	 * Use photometric mapping table to construct
2176 	 * unpacking tables for samples <= 8 bits.
2177 	 */
2178 	if (!makebwmap(img))
2179 	    return (0);
2180 	/* no longer need Map, free it */
2181 	_TIFFfree(img->Map), img->Map = NULL;
2182     }
2183     return (1);
2184 }
2185 
2186 static int
checkcmap(TIFFRGBAImage * img)2187 checkcmap(TIFFRGBAImage* img)
2188 {
2189     uint16* r = img->redcmap;
2190     uint16* g = img->greencmap;
2191     uint16* b = img->bluecmap;
2192     long n = 1L<<img->bitspersample;
2193 
2194     while (n-- > 0)
2195 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2196 	    return (16);
2197     return (8);
2198 }
2199 
2200 static void
cvtcmap(TIFFRGBAImage * img)2201 cvtcmap(TIFFRGBAImage* img)
2202 {
2203     uint16* r = img->redcmap;
2204     uint16* g = img->greencmap;
2205     uint16* b = img->bluecmap;
2206     long i;
2207 
2208     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2209 #define	CVT(x)		((uint16)((x)>>8))
2210 	r[i] = CVT(r[i]);
2211 	g[i] = CVT(g[i]);
2212 	b[i] = CVT(b[i]);
2213 #undef	CVT
2214     }
2215 }
2216 
2217 /*
2218  * Palette images with <= 8 bits/sample are handled
2219  * with a table to avoid lots of shifts and masks.  The table
2220  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2221  * pixel values simply by indexing into the table with one
2222  * number.
2223  */
2224 static int
makecmap(TIFFRGBAImage * img)2225 makecmap(TIFFRGBAImage* img)
2226 {
2227     int bitspersample = img->bitspersample;
2228     int nsamples = 8 / bitspersample;
2229     uint16* r = img->redcmap;
2230     uint16* g = img->greencmap;
2231     uint16* b = img->bluecmap;
2232     uint32 *p;
2233     int i;
2234 
2235     img->PALmap = (uint32**) _TIFFmalloc(
2236 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2237     if (img->PALmap == NULL) {
2238 	TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table");
2239 	return (0);
2240     }
2241     p = (uint32*)(img->PALmap + 256);
2242     for (i = 0; i < 256; i++) {
2243 	TIFFRGBValue c;
2244 	img->PALmap[i] = p;
2245 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2246 	switch (bitspersample) {
2247 	case 1:
2248 	    CMAP(i>>7);
2249 	    CMAP((i>>6)&1);
2250 	    CMAP((i>>5)&1);
2251 	    CMAP((i>>4)&1);
2252 	    CMAP((i>>3)&1);
2253 	    CMAP((i>>2)&1);
2254 	    CMAP((i>>1)&1);
2255 	    CMAP(i&1);
2256 	    break;
2257 	case 2:
2258 	    CMAP(i>>6);
2259 	    CMAP((i>>4)&3);
2260 	    CMAP((i>>2)&3);
2261 	    CMAP(i&3);
2262 	    break;
2263 	case 4:
2264 	    CMAP(i>>4);
2265 	    CMAP(i&0xf);
2266 	    break;
2267 	case 8:
2268 	    CMAP(i);
2269 	    break;
2270 	}
2271 #undef CMAP
2272     }
2273     return (1);
2274 }
2275 
2276 /*
2277  * Construct any mapping table used
2278  * by the associated put routine.
2279  */
2280 static int
buildMap(TIFFRGBAImage * img)2281 buildMap(TIFFRGBAImage* img)
2282 {
2283     switch (img->photometric) {
2284     case PHOTOMETRIC_RGB:
2285     case PHOTOMETRIC_YCBCR:
2286     case PHOTOMETRIC_SEPARATED:
2287 	if (img->bitspersample == 8)
2288 	    break;
2289 	/* fall thru... */
2290     case PHOTOMETRIC_MINISBLACK:
2291     case PHOTOMETRIC_MINISWHITE:
2292 	if (!setupMap(img))
2293 	    return (0);
2294 	break;
2295     case PHOTOMETRIC_PALETTE:
2296 	/*
2297 	 * Convert 16-bit colormap to 8-bit (unless it looks
2298 	 * like an old-style 8-bit colormap).
2299 	 */
2300 	if (checkcmap(img) == 16)
2301 	    cvtcmap(img);
2302 	else
2303 	    TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap");
2304 	/*
2305 	 * Use mapping table and colormap to construct
2306 	 * unpacking tables for samples < 8 bits.
2307 	 */
2308 	if (img->bitspersample <= 8 && !makecmap(img))
2309 	    return (0);
2310 	break;
2311     }
2312     return (1);
2313 }
2314 
2315 /*
2316  * Select the appropriate conversion routine for packed data.
2317  */
2318 static int
pickTileContigCase(TIFFRGBAImage * img)2319 pickTileContigCase(TIFFRGBAImage* img)
2320 {
2321     tileContigRoutine put = 0;
2322 
2323     if (buildMap(img)) {
2324 	switch (img->photometric) {
2325 	case PHOTOMETRIC_RGB:
2326 	    switch (img->bitspersample) {
2327 	    case 8:
2328 		if (!img->Map) {
2329 		    if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2330 			put = putRGBAAcontig8bittile;
2331 		    else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2332 			put = putRGBUAcontig8bittile;
2333 		    else
2334 			put = putRGBcontig8bittile;
2335 		} else
2336 		    put = putRGBcontig8bitMaptile;
2337 		break;
2338 	    case 16:
2339 		put = putRGBcontig16bittile;
2340 		if (!img->Map) {
2341 		    if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2342 			put = putRGBAAcontig16bittile;
2343 		    else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2344 			put = putRGBUAcontig16bittile;
2345 		}
2346 		break;
2347 	    }
2348 	    break;
2349 	case PHOTOMETRIC_SEPARATED:
2350 	    if (img->bitspersample == 8) {
2351 		if (!img->Map)
2352 		    put = putRGBcontig8bitCMYKtile;
2353 		else
2354 		    put = putRGBcontig8bitCMYKMaptile;
2355 	    }
2356 	    break;
2357 	case PHOTOMETRIC_PALETTE:
2358 	    switch (img->bitspersample) {
2359 	    case 8:	put = put8bitcmaptile; break;
2360 	    case 4: put = put4bitcmaptile; break;
2361 	    case 2: put = put2bitcmaptile; break;
2362 	    case 1: put = put1bitcmaptile; break;
2363 	    }
2364 	    break;
2365 	case PHOTOMETRIC_MINISWHITE:
2366 	case PHOTOMETRIC_MINISBLACK:
2367 	    switch (img->bitspersample) {
2368             case 16: put = put16bitbwtile; break;
2369 	    case 8:  put = putgreytile; break;
2370 	    case 4:  put = put4bitbwtile; break;
2371 	    case 2:  put = put2bitbwtile; break;
2372 	    case 1:  put = put1bitbwtile; break;
2373 	    }
2374 	    break;
2375 	case PHOTOMETRIC_YCBCR:
2376 	    if (img->bitspersample == 8)
2377 		put = initYCbCrConversion(img);
2378 	    break;
2379 	case PHOTOMETRIC_CIELAB:
2380 	    if (img->bitspersample == 8)
2381 		put = initCIELabConversion(img);
2382 	    break;
2383 	}
2384     }
2385     return ((img->put.contig = put) != 0);
2386 }
2387 
2388 /*
2389  * Select the appropriate conversion routine for unpacked data.
2390  *
2391  * NB: we assume that unpacked single channel data is directed
2392  *	 to the "packed routines.
2393  */
2394 static int
pickTileSeparateCase(TIFFRGBAImage * img)2395 pickTileSeparateCase(TIFFRGBAImage* img)
2396 {
2397     tileSeparateRoutine put = 0;
2398 
2399     if (buildMap(img)) {
2400 	switch (img->photometric) {
2401 	case PHOTOMETRIC_RGB:
2402 	    switch (img->bitspersample) {
2403 	    case 8:
2404 		if (!img->Map) {
2405 		    if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2406 			put = putRGBAAseparate8bittile;
2407 		    else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2408 			put = putRGBUAseparate8bittile;
2409 		    else
2410 			put = putRGBseparate8bittile;
2411 		} else
2412 		    put = putRGBseparate8bitMaptile;
2413 		break;
2414 	    case 16:
2415 		put = putRGBseparate16bittile;
2416 		if (!img->Map) {
2417 		    if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2418 			put = putRGBAAseparate16bittile;
2419 		    else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2420 			put = putRGBUAseparate16bittile;
2421 		}
2422 		break;
2423 	    }
2424 	    break;
2425 	}
2426     }
2427     return ((img->put.separate = put) != 0);
2428 }
2429 
2430 /*
2431  * Read a whole strip off data from the file, and convert to RGBA form.
2432  * If this is the last strip, then it will only contain the portion of
2433  * the strip that is actually within the image space.  The result is
2434  * organized in bottom to top form.
2435  */
2436 
2437 
2438 int
TIFFReadRGBAStrip(TIFF * tif,uint32 row,uint32 * raster)2439 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2440 
2441 {
2442     char 	emsg[1024];
2443     TIFFRGBAImage img;
2444     int 	ok;
2445     uint32	rowsperstrip, rows_to_read;
2446 
2447     if( TIFFIsTiled( tif ) )
2448     {
2449         TIFFError(TIFFFileName(tif),
2450                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2451 	return (0);
2452     }
2453 
2454     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2455     if( (row % rowsperstrip) != 0 )
2456     {
2457         TIFFError(TIFFFileName(tif),
2458                 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2459 	return (0);
2460     }
2461 
2462     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2463 
2464         img.row_offset = row;
2465         img.col_offset = 0;
2466 
2467         if( row + rowsperstrip > img.height )
2468             rows_to_read = img.height - row;
2469         else
2470             rows_to_read = rowsperstrip;
2471 
2472 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2473 
2474 	TIFFRGBAImageEnd(&img);
2475     } else {
2476 	TIFFError(TIFFFileName(tif), emsg);
2477 	ok = 0;
2478     }
2479 
2480     return (ok);
2481 }
2482 
2483 /*
2484  * Read a whole tile off data from the file, and convert to RGBA form.
2485  * The returned RGBA data is organized from bottom to top of tile,
2486  * and may include zeroed areas if the tile extends off the image.
2487  */
2488 
2489 int
TIFFReadRGBATile(TIFF * tif,uint32 col,uint32 row,uint32 * raster)2490 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2491 
2492 {
2493     char 	emsg[1024];
2494     TIFFRGBAImage img;
2495     int 	ok;
2496     uint32	tile_xsize, tile_ysize;
2497     uint32	read_xsize, read_ysize;
2498     uint32	i_row;
2499 
2500     /*
2501      * Verify that our request is legal - on a tile file, and on a
2502      * tile boundary.
2503      */
2504 
2505     if( !TIFFIsTiled( tif ) )
2506     {
2507         TIFFError(TIFFFileName(tif),
2508                   "Can't use TIFFReadRGBATile() with stripped file.");
2509 	return (0);
2510     }
2511 
2512     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2513     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2514     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2515     {
2516         TIFFError(TIFFFileName(tif),
2517                   "Row/col passed to TIFFReadRGBATile() must be top"
2518                   "left corner of a tile.");
2519 	return (0);
2520     }
2521 
2522     /*
2523      * Setup the RGBA reader.
2524      */
2525 
2526     if (!TIFFRGBAImageOK(tif, emsg)
2527 	|| !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2528 	    TIFFError(TIFFFileName(tif), emsg);
2529 	    return( 0 );
2530     }
2531 
2532     /*
2533      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2534      * edge of the image, even to fill an otherwise valid tile.  So we
2535      * figure out how much we can read, and fix up the tile buffer to
2536      * a full tile configuration afterwards.
2537      */
2538 
2539     if( row + tile_ysize > img.height )
2540         read_ysize = img.height - row;
2541     else
2542         read_ysize = tile_ysize;
2543 
2544     if( col + tile_xsize > img.width )
2545         read_xsize = img.width - col;
2546     else
2547         read_xsize = tile_xsize;
2548 
2549     /*
2550      * Read the chunk of imagery.
2551      */
2552 
2553     img.row_offset = row;
2554     img.col_offset = col;
2555 
2556     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
2557 
2558     TIFFRGBAImageEnd(&img);
2559 
2560     /*
2561      * If our read was incomplete we will need to fix up the tile by
2562      * shifting the data around as if a full tile of data is being returned.
2563      *
2564      * This is all the more complicated because the image is organized in
2565      * bottom to top format.
2566      */
2567 
2568     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
2569         return( ok );
2570 
2571     for( i_row = 0; i_row < read_ysize; i_row++ ) {
2572         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
2573                  raster + (read_ysize - i_row - 1) * read_xsize,
2574                  read_xsize * sizeof(uint32) );
2575         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
2576                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
2577     }
2578 
2579     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
2580         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
2581                      0, sizeof(uint32) * tile_xsize );
2582     }
2583 
2584     return (ok);
2585 }
2586