1 /*
2  * Copyright (c) 1996-1997 Sam Leffler
3  * Copyright (c) 1996 Pixar
4  *
5  * Permission to use, copy, modify, distribute, and sell this software and
6  * its documentation for any purpose is hereby granted without fee, provided
7  * that (i) the above copyright notices and this permission notice appear in
8  * all copies of the software and related documentation, and (ii) the names of
9  * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
10  * publicity relating to the software without the specific, prior written
11  * permission of Pixar, Sam Leffler and Silicon Graphics.
12  *
13  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
14  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
15  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
18  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
19  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
20  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
21  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22  * OF THIS SOFTWARE.
23  */
24 
25 #include "tiffiop.h"
26 #ifdef PIXARLOG_SUPPORT
27 
28 /*
29  * TIFF Library.
30  * PixarLog Compression Support
31  *
32  * Contributed by Dan McCoy.
33  *
34  * PixarLog film support uses the TIFF library to store companded
35  * 11 bit values into a tiff file, which are compressed using the
36  * zip compressor.
37  *
38  * The codec can take as input and produce as output 32-bit IEEE float values
39  * as well as 16-bit or 8-bit unsigned integer values.
40  *
41  * On writing any of the above are converted into the internal
42  * 11-bit log format.   In the case of  8 and 16 bit values, the
43  * input is assumed to be unsigned linear color values that represent
44  * the range 0-1.  In the case of IEEE values, the 0-1 range is assumed to
45  * be the normal linear color range, in addition over 1 values are
46  * accepted up to a value of about 25.0 to encode "hot" highlights and such.
47  * The encoding is lossless for 8-bit values, slightly lossy for the
48  * other bit depths.  The actual color precision should be better
49  * than the human eye can perceive with extra room to allow for
50  * error introduced by further image computation.  As with any quantized
51  * color format, it is possible to perform image calculations which
52  * expose the quantization error. This format should certainly be less
53  * susceptable to such errors than standard 8-bit encodings, but more
54  * susceptable than straight 16-bit or 32-bit encodings.
55  *
56  * On reading the internal format is converted to the desired output format.
57  * The program can request which format it desires by setting the internal
58  * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
59  *  PIXARLOGDATAFMT_FLOAT     = provide IEEE float values.
60  *  PIXARLOGDATAFMT_16BIT     = provide unsigned 16-bit integer values
61  *  PIXARLOGDATAFMT_8BIT      = provide unsigned 8-bit integer values
62  *
63  * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
64  * values with the difference that if there are exactly three or four channels
65  * (rgb or rgba) it swaps the channel order (bgr or abgr).
66  *
67  * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
68  * packed in 16-bit values.   However no tools are supplied for interpreting
69  * these values.
70  *
71  * "hot" (over 1.0) areas written in floating point get clamped to
72  * 1.0 in the integer data types.
73  *
74  * When the file is closed after writing, the bit depth and sample format
75  * are set always to appear as if 8-bit data has been written into it.
76  * That way a naive program unaware of the particulars of the encoding
77  * gets the format it is most likely able to handle.
78  *
79  * The codec does it's own horizontal differencing step on the coded
80  * values so the libraries predictor stuff should be turned off.
81  * The codec also handle byte swapping the encoded values as necessary
82  * since the library does not have the information necessary
83  * to know the bit depth of the raw unencoded buffer.
84  *
85  */
86 
87 #include "tif_predict.h"
88 #include "zlib.h"
89 
90 #include <stdio.h>
91 #include <assert.h>
92 #include <stdlib.h>
93 #include <math.h>
94 
95 /* Tables for converting to/from 11 bit coded values */
96 
97 #define  TSIZE	 2048		/* decode table size (11-bit tokens) */
98 #define  TSIZEP1 2049		/* Plus one for slop */
99 #define  ONE	 1250		/* token value of 1.0 exactly */
100 #define  RATIO	 1.004		/* nominal ratio for log part */
101 
102 #define CODE_MASK 0x7ff         /* 11 bits. */
103 
104 static float  Fltsize;
105 static float  LogK1, LogK2;
106 
107 #define REPEAT(n, op)   { int i; i=n; do { i--; op; } while (i>0); }
108 
109 static void
horizontalAccumulateF(uint16 * wp,int n,int stride,float * op,float * ToLinearF)110 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
111 	float *ToLinearF)
112 {
113     register unsigned int  cr, cg, cb, ca, mask;
114     register float  t0, t1, t2, t3;
115 
116     if (n >= stride) {
117 	mask = CODE_MASK;
118 	if (stride == 3) {
119 	    t0 = ToLinearF[cr = wp[0]];
120 	    t1 = ToLinearF[cg = wp[1]];
121 	    t2 = ToLinearF[cb = wp[2]];
122 	    op[0] = t0;
123 	    op[1] = t1;
124 	    op[2] = t2;
125 	    n -= 3;
126 	    while (n > 0) {
127 		wp += 3;
128 		op += 3;
129 		n -= 3;
130 		t0 = ToLinearF[(cr += wp[0]) & mask];
131 		t1 = ToLinearF[(cg += wp[1]) & mask];
132 		t2 = ToLinearF[(cb += wp[2]) & mask];
133 		op[0] = t0;
134 		op[1] = t1;
135 		op[2] = t2;
136 	    }
137 	} else if (stride == 4) {
138 	    t0 = ToLinearF[cr = wp[0]];
139 	    t1 = ToLinearF[cg = wp[1]];
140 	    t2 = ToLinearF[cb = wp[2]];
141 	    t3 = ToLinearF[ca = wp[3]];
142 	    op[0] = t0;
143 	    op[1] = t1;
144 	    op[2] = t2;
145 	    op[3] = t3;
146 	    n -= 4;
147 	    while (n > 0) {
148 		wp += 4;
149 		op += 4;
150 		n -= 4;
151 		t0 = ToLinearF[(cr += wp[0]) & mask];
152 		t1 = ToLinearF[(cg += wp[1]) & mask];
153 		t2 = ToLinearF[(cb += wp[2]) & mask];
154 		t3 = ToLinearF[(ca += wp[3]) & mask];
155 		op[0] = t0;
156 		op[1] = t1;
157 		op[2] = t2;
158 		op[3] = t3;
159 	    }
160 	} else {
161 	    REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
162 	    n -= stride;
163 	    while (n > 0) {
164 		REPEAT(stride,
165 		    wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
166 		n -= stride;
167 	    }
168 	}
169     }
170 }
171 
172 static void
horizontalAccumulate12(uint16 * wp,int n,int stride,int16 * op,float * ToLinearF)173 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
174 	float *ToLinearF)
175 {
176     register unsigned int  cr, cg, cb, ca, mask;
177     register float  t0, t1, t2, t3;
178 
179 #define SCALE12 2048.0
180 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
181 
182     if (n >= stride) {
183 	mask = CODE_MASK;
184 	if (stride == 3) {
185 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
186 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
187 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
188 	    op[0] = CLAMP12(t0);
189 	    op[1] = CLAMP12(t1);
190 	    op[2] = CLAMP12(t2);
191 	    n -= 3;
192 	    while (n > 0) {
193 		wp += 3;
194 		op += 3;
195 		n -= 3;
196 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
197 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
198 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
199 		op[0] = CLAMP12(t0);
200 		op[1] = CLAMP12(t1);
201 		op[2] = CLAMP12(t2);
202 	    }
203 	} else if (stride == 4) {
204 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
205 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
206 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
207 	    t3 = ToLinearF[ca = wp[3]] * SCALE12;
208 	    op[0] = CLAMP12(t0);
209 	    op[1] = CLAMP12(t1);
210 	    op[2] = CLAMP12(t2);
211 	    op[3] = CLAMP12(t3);
212 	    n -= 4;
213 	    while (n > 0) {
214 		wp += 4;
215 		op += 4;
216 		n -= 4;
217 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
218 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
219 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
220 		t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
221 		op[0] = CLAMP12(t0);
222 		op[1] = CLAMP12(t1);
223 		op[2] = CLAMP12(t2);
224 		op[3] = CLAMP12(t3);
225 	    }
226 	} else {
227 	    REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
228                            *op = CLAMP12(t0); wp++; op++)
229 	    n -= stride;
230 	    while (n > 0) {
231 		REPEAT(stride,
232 		    wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
233 		    *op = CLAMP12(t0);  wp++; op++)
234 		n -= stride;
235 	    }
236 	}
237     }
238 }
239 
240 static void
horizontalAccumulate16(uint16 * wp,int n,int stride,uint16 * op,uint16 * ToLinear16)241 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
242 	uint16 *ToLinear16)
243 {
244     register unsigned int  cr, cg, cb, ca, mask;
245 
246     if (n >= stride) {
247 	mask = CODE_MASK;
248 	if (stride == 3) {
249 	    op[0] = ToLinear16[cr = wp[0]];
250 	    op[1] = ToLinear16[cg = wp[1]];
251 	    op[2] = ToLinear16[cb = wp[2]];
252 	    n -= 3;
253 	    while (n > 0) {
254 		wp += 3;
255 		op += 3;
256 		n -= 3;
257 		op[0] = ToLinear16[(cr += wp[0]) & mask];
258 		op[1] = ToLinear16[(cg += wp[1]) & mask];
259 		op[2] = ToLinear16[(cb += wp[2]) & mask];
260 	    }
261 	} else if (stride == 4) {
262 	    op[0] = ToLinear16[cr = wp[0]];
263 	    op[1] = ToLinear16[cg = wp[1]];
264 	    op[2] = ToLinear16[cb = wp[2]];
265 	    op[3] = ToLinear16[ca = wp[3]];
266 	    n -= 4;
267 	    while (n > 0) {
268 		wp += 4;
269 		op += 4;
270 		n -= 4;
271 		op[0] = ToLinear16[(cr += wp[0]) & mask];
272 		op[1] = ToLinear16[(cg += wp[1]) & mask];
273 		op[2] = ToLinear16[(cb += wp[2]) & mask];
274 		op[3] = ToLinear16[(ca += wp[3]) & mask];
275 	    }
276 	} else {
277 	    REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
278 	    n -= stride;
279 	    while (n > 0) {
280 		REPEAT(stride,
281 		    wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
282 		n -= stride;
283 	    }
284 	}
285     }
286 }
287 
288 /*
289  * Returns the log encoded 11-bit values with the horizontal
290  * differencing undone.
291  */
292 static void
horizontalAccumulate11(uint16 * wp,int n,int stride,uint16 * op)293 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
294 {
295     register unsigned int  cr, cg, cb, ca, mask;
296 
297     if (n >= stride) {
298 	mask = CODE_MASK;
299 	if (stride == 3) {
300 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];  op[2] = cb = wp[2];
301 	    n -= 3;
302 	    while (n > 0) {
303 		wp += 3;
304 		op += 3;
305 		n -= 3;
306 		op[0] = (cr += wp[0]) & mask;
307 		op[1] = (cg += wp[1]) & mask;
308 		op[2] = (cb += wp[2]) & mask;
309 	    }
310 	} else if (stride == 4) {
311 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];
312 	    op[2] = cb = wp[2];  op[3] = ca = wp[3];
313 	    n -= 4;
314 	    while (n > 0) {
315 		wp += 4;
316 		op += 4;
317 		n -= 4;
318 		op[0] = (cr += wp[0]) & mask;
319 		op[1] = (cg += wp[1]) & mask;
320 		op[2] = (cb += wp[2]) & mask;
321 		op[3] = (ca += wp[3]) & mask;
322 	    }
323 	} else {
324 	    REPEAT(stride, *op = *wp&mask; wp++; op++)
325 	    n -= stride;
326 	    while (n > 0) {
327 		REPEAT(stride,
328 		    wp[stride] += *wp; *op = *wp&mask; wp++; op++)
329 	    	n -= stride;
330 	    }
331 	}
332     }
333 }
334 
335 static void
horizontalAccumulate8(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)336 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
337 	unsigned char *ToLinear8)
338 {
339     register unsigned int  cr, cg, cb, ca, mask;
340 
341     if (n >= stride) {
342 	mask = CODE_MASK;
343 	if (stride == 3) {
344 	    op[0] = ToLinear8[cr = wp[0]];
345 	    op[1] = ToLinear8[cg = wp[1]];
346 	    op[2] = ToLinear8[cb = wp[2]];
347 	    n -= 3;
348 	    while (n > 0) {
349 		n -= 3;
350 		wp += 3;
351 		op += 3;
352 		op[0] = ToLinear8[(cr += wp[0]) & mask];
353 		op[1] = ToLinear8[(cg += wp[1]) & mask];
354 		op[2] = ToLinear8[(cb += wp[2]) & mask];
355 	    }
356 	} else if (stride == 4) {
357 	    op[0] = ToLinear8[cr = wp[0]];
358 	    op[1] = ToLinear8[cg = wp[1]];
359 	    op[2] = ToLinear8[cb = wp[2]];
360 	    op[3] = ToLinear8[ca = wp[3]];
361 	    n -= 4;
362 	    while (n > 0) {
363 		n -= 4;
364 		wp += 4;
365 		op += 4;
366 		op[0] = ToLinear8[(cr += wp[0]) & mask];
367 		op[1] = ToLinear8[(cg += wp[1]) & mask];
368 		op[2] = ToLinear8[(cb += wp[2]) & mask];
369 		op[3] = ToLinear8[(ca += wp[3]) & mask];
370 	    }
371 	} else {
372 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
373 	    n -= stride;
374 	    while (n > 0) {
375 		REPEAT(stride,
376 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
377 		n -= stride;
378 	    }
379 	}
380     }
381 }
382 
383 
384 static void
horizontalAccumulate8abgr(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)385 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
386 	unsigned char *ToLinear8)
387 {
388     register unsigned int  cr, cg, cb, ca, mask;
389     register unsigned char  t0, t1, t2, t3;
390 
391     if (n >= stride) {
392 	mask = CODE_MASK;
393 	if (stride == 3) {
394 	    op[0] = 0;
395 	    t1 = ToLinear8[cb = wp[2]];
396 	    t2 = ToLinear8[cg = wp[1]];
397 	    t3 = ToLinear8[cr = wp[0]];
398 	    op[1] = t1;
399 	    op[2] = t2;
400 	    op[3] = t3;
401 	    n -= 3;
402 	    while (n > 0) {
403 		n -= 3;
404 		wp += 3;
405 		op += 4;
406 		op[0] = 0;
407 		t1 = ToLinear8[(cb += wp[2]) & mask];
408 		t2 = ToLinear8[(cg += wp[1]) & mask];
409 		t3 = ToLinear8[(cr += wp[0]) & mask];
410 		op[1] = t1;
411 		op[2] = t2;
412 		op[3] = t3;
413 	    }
414 	} else if (stride == 4) {
415 	    t0 = ToLinear8[ca = wp[3]];
416 	    t1 = ToLinear8[cb = wp[2]];
417 	    t2 = ToLinear8[cg = wp[1]];
418 	    t3 = ToLinear8[cr = wp[0]];
419 	    op[0] = t0;
420 	    op[1] = t1;
421 	    op[2] = t2;
422 	    op[3] = t3;
423 	    n -= 4;
424 	    while (n > 0) {
425 		n -= 4;
426 		wp += 4;
427 		op += 4;
428 		t0 = ToLinear8[(ca += wp[3]) & mask];
429 		t1 = ToLinear8[(cb += wp[2]) & mask];
430 		t2 = ToLinear8[(cg += wp[1]) & mask];
431 		t3 = ToLinear8[(cr += wp[0]) & mask];
432 		op[0] = t0;
433 		op[1] = t1;
434 		op[2] = t2;
435 		op[3] = t3;
436 	    }
437 	} else {
438 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
439 	    n -= stride;
440 	    while (n > 0) {
441 		REPEAT(stride,
442 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
443 		n -= stride;
444 	    }
445 	}
446     }
447 }
448 
449 /*
450  * State block for each open TIFF
451  * file using PixarLog compression/decompression.
452  */
453 typedef	struct {
454 	TIFFPredictorState	predict;
455 	z_stream		stream;
456 	uint16			*tbuf;
457 	uint16			stride;
458 	int			state;
459 	int			user_datafmt;
460 	int			quality;
461 #define PLSTATE_INIT 1
462 
463 	TIFFVSetMethod		vgetparent;	/* super-class method */
464 	TIFFVSetMethod		vsetparent;	/* super-class method */
465 
466 	float *ToLinearF;
467 	uint16 *ToLinear16;
468 	unsigned char *ToLinear8;
469 	uint16  *FromLT2;
470 	uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
471 	uint16  *From8;
472 
473 } PixarLogState;
474 
475 static int
PixarLogMakeTables(PixarLogState * sp)476 PixarLogMakeTables(PixarLogState *sp)
477 {
478 
479 /*
480  *    We make several tables here to convert between various external
481  *    representations (float, 16-bit, and 8-bit) and the internal
482  *    11-bit companded representation.  The 11-bit representation has two
483  *    distinct regions.  A linear bottom end up through .018316 in steps
484  *    of about .000073, and a region of constant ratio up to about 25.
485  *    These floating point numbers are stored in the main table ToLinearF.
486  *    All other tables are derived from this one.  The tables (and the
487  *    ratios) are continuous at the internal seam.
488  */
489 
490     int  nlin, lt2size;
491     int  i, j;
492     double  b, c, linstep, v;
493     float *ToLinearF;
494     uint16 *ToLinear16;
495     unsigned char *ToLinear8;
496     uint16  *FromLT2;
497     uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
498     uint16  *From8;
499 
500     c = log(RATIO);
501     nlin = (int)1./c;	/* nlin must be an integer */
502     c = 1./nlin;
503     b = exp(-c*ONE);	/* multiplicative scale factor [b*exp(c*ONE) = 1] */
504     linstep = b*c*exp(1.);
505 
506     LogK1 = 1./c;	/* if (v >= 2)  token = k1*log(v*k2) */
507     LogK2 = 1./b;
508     lt2size = (int)(2./linstep) + 1;
509     FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
510     From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
511     From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
512     ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
513     ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
514     ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
515     if (FromLT2 == NULL || From14  == NULL || From8   == NULL ||
516 	 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
517 	if (FromLT2) _TIFFfree(FromLT2);
518 	if (From14) _TIFFfree(From14);
519 	if (From8) _TIFFfree(From8);
520 	if (ToLinearF) _TIFFfree(ToLinearF);
521 	if (ToLinear16) _TIFFfree(ToLinear16);
522 	if (ToLinear8) _TIFFfree(ToLinear8);
523 	sp->FromLT2 = NULL;
524 	sp->From14 = NULL;
525 	sp->From8 = NULL;
526 	sp->ToLinearF = NULL;
527 	sp->ToLinear16 = NULL;
528 	sp->ToLinear8 = NULL;
529 	return 0;
530     }
531 
532     j = 0;
533 
534     for (i = 0; i < nlin; i++)  {
535 	v = i * linstep;
536 	ToLinearF[j++] = v;
537     }
538 
539     for (i = nlin; i < TSIZE; i++)
540 	ToLinearF[j++] = b*exp(c*i);
541 
542     ToLinearF[2048] = ToLinearF[2047];
543 
544     for (i = 0; i < TSIZEP1; i++)  {
545 	v = ToLinearF[i]*65535.0 + 0.5;
546 	ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
547 	v = ToLinearF[i]*255.0  + 0.5;
548 	ToLinear8[i]  = (v > 255.0) ? 255 : (unsigned char)v;
549     }
550 
551     j = 0;
552     for (i = 0; i < lt2size; i++)  {
553 	if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
554 	    j++;
555 	FromLT2[i] = j;
556     }
557 
558     /*
559      * Since we lose info anyway on 16-bit data, we set up a 14-bit
560      * table and shift 16-bit values down two bits on input.
561      * saves a little table space.
562      */
563     j = 0;
564     for (i = 0; i < 16384; i++)  {
565 	while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
566 	    j++;
567 	From14[i] = j;
568     }
569 
570     j = 0;
571     for (i = 0; i < 256; i++)  {
572 	while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
573 	    j++;
574 	From8[i] = j;
575     }
576 
577     Fltsize = lt2size/2;
578 
579     sp->ToLinearF = ToLinearF;
580     sp->ToLinear16 = ToLinear16;
581     sp->ToLinear8 = ToLinear8;
582     sp->FromLT2 = FromLT2;
583     sp->From14 = From14;
584     sp->From8 = From8;
585 
586     return 1;
587 }
588 
589 #define	DecoderState(tif)	((PixarLogState*) (tif)->tif_data)
590 #define	EncoderState(tif)	((PixarLogState*) (tif)->tif_data)
591 
592 static	int PixarLogEncode(TIFF*, tidata_t, tsize_t, tsample_t);
593 static	int PixarLogDecode(TIFF*, tidata_t, tsize_t, tsample_t);
594 
595 #define N(a)   (sizeof(a)/sizeof(a[0]))
596 #define PIXARLOGDATAFMT_UNKNOWN	-1
597 
598 static int
PixarLogGuessDataFmt(TIFFDirectory * td)599 PixarLogGuessDataFmt(TIFFDirectory *td)
600 {
601 	int guess = PIXARLOGDATAFMT_UNKNOWN;
602 	int format = td->td_sampleformat;
603 
604 	/* If the user didn't tell us his datafmt,
605 	 * take our best guess from the bitspersample.
606 	 */
607 	switch (td->td_bitspersample) {
608 	 case 32:
609 		if (format == SAMPLEFORMAT_IEEEFP)
610 			guess = PIXARLOGDATAFMT_FLOAT;
611 		break;
612 	 case 16:
613 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
614 			guess = PIXARLOGDATAFMT_16BIT;
615 		break;
616 	 case 12:
617 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
618 			guess = PIXARLOGDATAFMT_12BITPICIO;
619 		break;
620 	 case 11:
621 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
622 			guess = PIXARLOGDATAFMT_11BITLOG;
623 		break;
624 	 case 8:
625 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
626 			guess = PIXARLOGDATAFMT_8BIT;
627 		break;
628 	}
629 
630 	return guess;
631 }
632 
633 static uint32
multiply(size_t m1,size_t m2)634 multiply(size_t m1, size_t m2)
635 {
636 	uint32	bytes = m1 * m2;
637 
638 	if (m1 && bytes / m1 != m2)
639 		bytes = 0;
640 
641 	return bytes;
642 }
643 
644 static int
PixarLogSetupDecode(TIFF * tif)645 PixarLogSetupDecode(TIFF* tif)
646 {
647 	TIFFDirectory *td = &tif->tif_dir;
648 	PixarLogState* sp = DecoderState(tif);
649 	tsize_t tbuf_size;
650 	static const char module[] = "PixarLogSetupDecode";
651 
652 	assert(sp != NULL);
653 
654 	/* Make sure no byte swapping happens on the data
655 	 * after decompression. */
656 	tif->tif_postdecode = _TIFFNoPostDecode;
657 
658 	/* for some reason, we can't do this in TIFFInitPixarLog */
659 
660 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
661 	    td->td_samplesperpixel : 1);
662 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
663 				      td->td_rowsperstrip), sizeof(uint16));
664 	if (tbuf_size == 0)
665 		return (0);
666 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
667 	if (sp->tbuf == NULL)
668 		return (0);
669 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
670 		sp->user_datafmt = PixarLogGuessDataFmt(td);
671 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
672 		TIFFError(module,
673 			"PixarLog compression can't handle bits depth/data format combination (depth: %d)",
674 			td->td_bitspersample);
675 		return (0);
676 	}
677 
678 	if (inflateInit(&sp->stream) != Z_OK) {
679 		TIFFError(module, "%s: %s", tif->tif_name, sp->stream.msg);
680 		return (0);
681 	} else {
682 		sp->state |= PLSTATE_INIT;
683 		return (1);
684 	}
685 }
686 
687 /*
688  * Setup state for decoding a strip.
689  */
690 static int
PixarLogPreDecode(TIFF * tif,tsample_t s)691 PixarLogPreDecode(TIFF* tif, tsample_t s)
692 {
693 	PixarLogState* sp = DecoderState(tif);
694 
695 	(void) s;
696 	assert(sp != NULL);
697 	sp->stream.next_in = tif->tif_rawdata;
698 	sp->stream.avail_in = tif->tif_rawcc;
699 	return (inflateReset(&sp->stream) == Z_OK);
700 }
701 
702 static int
PixarLogDecode(TIFF * tif,tidata_t op,tsize_t occ,tsample_t s)703 PixarLogDecode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
704 {
705 	TIFFDirectory *td = &tif->tif_dir;
706 	PixarLogState* sp = DecoderState(tif);
707 	static const char module[] = "PixarLogDecode";
708 	int i, nsamples, llen;
709 	uint16 *up;
710 
711 	switch (sp->user_datafmt) {
712 	case PIXARLOGDATAFMT_FLOAT:
713 		nsamples = occ / sizeof(float);	/* XXX float == 32 bits */
714 		break;
715 	case PIXARLOGDATAFMT_16BIT:
716 	case PIXARLOGDATAFMT_12BITPICIO:
717 	case PIXARLOGDATAFMT_11BITLOG:
718 		nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
719 		break;
720 	case PIXARLOGDATAFMT_8BIT:
721 	case PIXARLOGDATAFMT_8BITABGR:
722 		nsamples = occ;
723 		break;
724 	default:
725 		TIFFError(tif->tif_name,
726 			"%d bit input not supported in PixarLog",
727 			td->td_bitspersample);
728 		return 0;
729 	}
730 
731 	llen = sp->stride * td->td_imagewidth;
732 
733 	(void) s;
734 	assert(sp != NULL);
735 	sp->stream.next_out = (unsigned char *) sp->tbuf;
736 	sp->stream.avail_out = nsamples * sizeof(uint16);
737 	do {
738 		int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
739 		if (state == Z_STREAM_END) {
740 			break;			/* XXX */
741 		}
742 		if (state == Z_DATA_ERROR) {
743 			TIFFError(module,
744 			    "%s: Decoding error at scanline %d, %s",
745 			    tif->tif_name, tif->tif_row, sp->stream.msg);
746 			if (inflateSync(&sp->stream) != Z_OK)
747 				return (0);
748 			continue;
749 		}
750 		if (state != Z_OK) {
751 			TIFFError(module, "%s: zlib error: %s",
752 			    tif->tif_name, sp->stream.msg);
753 			return (0);
754 		}
755 	} while (sp->stream.avail_out > 0);
756 
757 	/* hopefully, we got all the bytes we needed */
758 	if (sp->stream.avail_out != 0) {
759 		TIFFError(module,
760 		    "%s: Not enough data at scanline %d (short %d bytes)",
761 		    tif->tif_name, tif->tif_row, sp->stream.avail_out);
762 		return (0);
763 	}
764 
765 	up = sp->tbuf;
766 	/* Swap bytes in the data if from a different endian machine. */
767 	if (tif->tif_flags & TIFF_SWAB)
768 		TIFFSwabArrayOfShort(up, nsamples);
769 
770 	for (i = 0; i < nsamples; i += llen, up += llen) {
771 		switch (sp->user_datafmt)  {
772 		case PIXARLOGDATAFMT_FLOAT:
773 			horizontalAccumulateF(up, llen, sp->stride,
774 					(float *)op, sp->ToLinearF);
775 			op += llen * sizeof(float);
776 			break;
777 		case PIXARLOGDATAFMT_16BIT:
778 			horizontalAccumulate16(up, llen, sp->stride,
779 					(uint16 *)op, sp->ToLinear16);
780 			op += llen * sizeof(uint16);
781 			break;
782 		case PIXARLOGDATAFMT_12BITPICIO:
783 			horizontalAccumulate12(up, llen, sp->stride,
784 					(int16 *)op, sp->ToLinearF);
785 			op += llen * sizeof(int16);
786 			break;
787 		case PIXARLOGDATAFMT_11BITLOG:
788 			horizontalAccumulate11(up, llen, sp->stride,
789 					(uint16 *)op);
790 			op += llen * sizeof(uint16);
791 			break;
792 		case PIXARLOGDATAFMT_8BIT:
793 			horizontalAccumulate8(up, llen, sp->stride,
794 					(unsigned char *)op, sp->ToLinear8);
795 			op += llen * sizeof(unsigned char);
796 			break;
797 		case PIXARLOGDATAFMT_8BITABGR:
798 			horizontalAccumulate8abgr(up, llen, sp->stride,
799 					(unsigned char *)op, sp->ToLinear8);
800 			op += llen * sizeof(unsigned char);
801 			break;
802 		default:
803 			TIFFError(tif->tif_name,
804 				  "PixarLogDecode: unsupported bits/sample: %d",
805 				  td->td_bitspersample);
806 			return (0);
807 		}
808 	}
809 
810 	return (1);
811 }
812 
813 static int
PixarLogSetupEncode(TIFF * tif)814 PixarLogSetupEncode(TIFF* tif)
815 {
816 	TIFFDirectory *td = &tif->tif_dir;
817 	PixarLogState* sp = EncoderState(tif);
818 	tsize_t tbuf_size;
819 	static const char module[] = "PixarLogSetupEncode";
820 
821 	assert(sp != NULL);
822 
823 	/* for some reason, we can't do this in TIFFInitPixarLog */
824 
825 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
826 	    td->td_samplesperpixel : 1);
827 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
828 				      td->td_rowsperstrip), sizeof(uint16));
829 	if (tbuf_size == 0)
830 		return (0);
831 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
832 	if (sp->tbuf == NULL)
833 		return (0);
834 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
835 		sp->user_datafmt = PixarLogGuessDataFmt(td);
836 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
837 		TIFFError(module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
838 		return (0);
839 	}
840 
841 	if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
842 		TIFFError(module, "%s: %s", tif->tif_name, sp->stream.msg);
843 		return (0);
844 	} else {
845 		sp->state |= PLSTATE_INIT;
846 		return (1);
847 	}
848 }
849 
850 /*
851  * Reset encoding state at the start of a strip.
852  */
853 static int
PixarLogPreEncode(TIFF * tif,tsample_t s)854 PixarLogPreEncode(TIFF* tif, tsample_t s)
855 {
856 	PixarLogState *sp = EncoderState(tif);
857 
858 	(void) s;
859 	assert(sp != NULL);
860 	sp->stream.next_out = tif->tif_rawdata;
861 	sp->stream.avail_out = tif->tif_rawdatasize;
862 	return (deflateReset(&sp->stream) == Z_OK);
863 }
864 
865 static void
horizontalDifferenceF(float * ip,int n,int stride,uint16 * wp,uint16 * FromLT2)866 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
867 {
868 
869     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
870     register float  fltsize = Fltsize;
871 
872 #define  CLAMP(v) ( (v<(float)0.)   ? 0				\
873 		  : (v<(float)2.)   ? FromLT2[(int)(v*fltsize)]	\
874 		  : (v>(float)24.2) ? 2047			\
875 		  : LogK1*log(v*LogK2) + 0.5 )
876 
877     mask = CODE_MASK;
878     if (n >= stride) {
879 	if (stride == 3) {
880 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
881 	    b2 = wp[2] = CLAMP(ip[2]);
882 	    n -= 3;
883 	    while (n > 0) {
884 		n -= 3;
885 		wp += 3;
886 		ip += 3;
887 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
888 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
889 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
890 	    }
891 	} else if (stride == 4) {
892 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
893 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
894 	    n -= 4;
895 	    while (n > 0) {
896 		n -= 4;
897 		wp += 4;
898 		ip += 4;
899 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
900 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
901 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
902 		a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
903 	    }
904 	} else {
905 	    ip += n - 1;	/* point to last one */
906 	    wp += n - 1;	/* point to last one */
907 	    n -= stride;
908 	    while (n > 0) {
909 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
910 				wp[stride] -= wp[0];
911 				wp[stride] &= mask;
912 				wp--; ip--)
913 		n -= stride;
914 	    }
915 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
916 	}
917     }
918 }
919 
920 static void
horizontalDifference16(unsigned short * ip,int n,int stride,unsigned short * wp,uint16 * From14)921 horizontalDifference16(unsigned short *ip, int n, int stride,
922 	unsigned short *wp, uint16 *From14)
923 {
924     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
925 
926 /* assumption is unsigned pixel values */
927 #undef   CLAMP
928 #define  CLAMP(v) From14[(v) >> 2]
929 
930     mask = CODE_MASK;
931     if (n >= stride) {
932 	if (stride == 3) {
933 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
934 	    b2 = wp[2] = CLAMP(ip[2]);
935 	    n -= 3;
936 	    while (n > 0) {
937 		n -= 3;
938 		wp += 3;
939 		ip += 3;
940 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
941 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
942 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
943 	    }
944 	} else if (stride == 4) {
945 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
946 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
947 	    n -= 4;
948 	    while (n > 0) {
949 		n -= 4;
950 		wp += 4;
951 		ip += 4;
952 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
953 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
954 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
955 		a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
956 	    }
957 	} else {
958 	    ip += n - 1;	/* point to last one */
959 	    wp += n - 1;	/* point to last one */
960 	    n -= stride;
961 	    while (n > 0) {
962 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
963 				wp[stride] -= wp[0];
964 				wp[stride] &= mask;
965 				wp--; ip--)
966 		n -= stride;
967 	    }
968 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
969 	}
970     }
971 }
972 
973 
974 static void
horizontalDifference8(unsigned char * ip,int n,int stride,unsigned short * wp,uint16 * From8)975 horizontalDifference8(unsigned char *ip, int n, int stride,
976 	unsigned short *wp, uint16 *From8)
977 {
978     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
979 
980 #undef	 CLAMP
981 #define  CLAMP(v) (From8[(v)])
982 
983     mask = CODE_MASK;
984     if (n >= stride) {
985 	if (stride == 3) {
986 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
987 	    b2 = wp[2] = CLAMP(ip[2]);
988 	    n -= 3;
989 	    while (n > 0) {
990 		n -= 3;
991 		r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
992 		g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
993 		b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
994 		wp += 3;
995 		ip += 3;
996 	    }
997 	} else if (stride == 4) {
998 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
999 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
1000 	    n -= 4;
1001 	    while (n > 0) {
1002 		n -= 4;
1003 		r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1004 		g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1005 		b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1006 		a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1007 		wp += 4;
1008 		ip += 4;
1009 	    }
1010 	} else {
1011 	    wp += n + stride - 1;	/* point to last one */
1012 	    ip += n + stride - 1;	/* point to last one */
1013 	    n -= stride;
1014 	    while (n > 0) {
1015 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
1016 				wp[stride] -= wp[0];
1017 				wp[stride] &= mask;
1018 				wp--; ip--)
1019 		n -= stride;
1020 	    }
1021 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1022 	}
1023     }
1024 }
1025 
1026 /*
1027  * Encode a chunk of pixels.
1028  */
1029 static int
PixarLogEncode(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)1030 PixarLogEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1031 {
1032 	TIFFDirectory *td = &tif->tif_dir;
1033 	PixarLogState *sp = EncoderState(tif);
1034 	static const char module[] = "PixarLogEncode";
1035 	int 	i, n, llen;
1036 	unsigned short * up;
1037 
1038 	(void) s;
1039 
1040 	switch (sp->user_datafmt) {
1041 	case PIXARLOGDATAFMT_FLOAT:
1042 		n = cc / sizeof(float);		/* XXX float == 32 bits */
1043 		break;
1044 	case PIXARLOGDATAFMT_16BIT:
1045 	case PIXARLOGDATAFMT_12BITPICIO:
1046 	case PIXARLOGDATAFMT_11BITLOG:
1047 		n = cc / sizeof(uint16);	/* XXX uint16 == 16 bits */
1048 		break;
1049 	case PIXARLOGDATAFMT_8BIT:
1050 	case PIXARLOGDATAFMT_8BITABGR:
1051 		n = cc;
1052 		break;
1053 	default:
1054 		TIFFError(tif->tif_name,
1055 			"%d bit input not supported in PixarLog",
1056 			td->td_bitspersample);
1057 		return 0;
1058 	}
1059 
1060 	llen = sp->stride * td->td_imagewidth;
1061 
1062 	for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1063 		switch (sp->user_datafmt)  {
1064 		case PIXARLOGDATAFMT_FLOAT:
1065 			horizontalDifferenceF((float *)bp, llen,
1066 				sp->stride, up, sp->FromLT2);
1067 			bp += llen * sizeof(float);
1068 			break;
1069 		case PIXARLOGDATAFMT_16BIT:
1070 			horizontalDifference16((uint16 *)bp, llen,
1071 				sp->stride, up, sp->From14);
1072 			bp += llen * sizeof(uint16);
1073 			break;
1074 		case PIXARLOGDATAFMT_8BIT:
1075 			horizontalDifference8((unsigned char *)bp, llen,
1076 				sp->stride, up, sp->From8);
1077 			bp += llen * sizeof(unsigned char);
1078 			break;
1079 		default:
1080 			TIFFError(tif->tif_name,
1081 				"%d bit input not supported in PixarLog",
1082 				td->td_bitspersample);
1083 			return 0;
1084 		}
1085 	}
1086 
1087 	sp->stream.next_in = (unsigned char *) sp->tbuf;
1088 	sp->stream.avail_in = n * sizeof(uint16);
1089 
1090 	do {
1091 		if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1092 			TIFFError(module, "%s: Encoder error: %s",
1093 			    tif->tif_name, sp->stream.msg);
1094 			return (0);
1095 		}
1096 		if (sp->stream.avail_out == 0) {
1097 			tif->tif_rawcc = tif->tif_rawdatasize;
1098 			TIFFFlushData1(tif);
1099 			sp->stream.next_out = tif->tif_rawdata;
1100 			sp->stream.avail_out = tif->tif_rawdatasize;
1101 		}
1102 	} while (sp->stream.avail_in > 0);
1103 	return (1);
1104 }
1105 
1106 /*
1107  * Finish off an encoded strip by flushing the last
1108  * string and tacking on an End Of Information code.
1109  */
1110 
1111 static int
PixarLogPostEncode(TIFF * tif)1112 PixarLogPostEncode(TIFF* tif)
1113 {
1114 	PixarLogState *sp = EncoderState(tif);
1115 	static const char module[] = "PixarLogPostEncode";
1116 	int state;
1117 
1118 	sp->stream.avail_in = 0;
1119 
1120 	do {
1121 		state = deflate(&sp->stream, Z_FINISH);
1122 		switch (state) {
1123 		case Z_STREAM_END:
1124 		case Z_OK:
1125 		    if (sp->stream.avail_out != tif->tif_rawdatasize) {
1126 			    tif->tif_rawcc =
1127 				tif->tif_rawdatasize - sp->stream.avail_out;
1128 			    TIFFFlushData1(tif);
1129 			    sp->stream.next_out = tif->tif_rawdata;
1130 			    sp->stream.avail_out = tif->tif_rawdatasize;
1131 		    }
1132 		    break;
1133 		default:
1134 		    TIFFError(module, "%s: zlib error: %s",
1135 			tif->tif_name, sp->stream.msg);
1136 		    return (0);
1137 		}
1138 	} while (state != Z_STREAM_END);
1139 	return (1);
1140 }
1141 
1142 static void
PixarLogClose(TIFF * tif)1143 PixarLogClose(TIFF* tif)
1144 {
1145 	TIFFDirectory *td = &tif->tif_dir;
1146 
1147 	/* In a really sneaky maneuver, on close, we covertly modify both
1148 	 * bitspersample and sampleformat in the directory to indicate
1149 	 * 8-bit linear.  This way, the decode "just works" even for
1150 	 * readers that don't know about PixarLog, or how to set
1151 	 * the PIXARLOGDATFMT pseudo-tag.
1152 	 */
1153 	td->td_bitspersample = 8;
1154 	td->td_sampleformat = SAMPLEFORMAT_UINT;
1155 }
1156 
1157 static void
PixarLogCleanup(TIFF * tif)1158 PixarLogCleanup(TIFF* tif)
1159 {
1160 	PixarLogState* sp = (PixarLogState*) tif->tif_data;
1161 
1162 	if (sp) {
1163 		if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1164 		if (sp->From14) _TIFFfree(sp->From14);
1165 		if (sp->From8) _TIFFfree(sp->From8);
1166 		if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1167 		if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1168 		if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1169 		if (sp->state&PLSTATE_INIT) {
1170 			if (tif->tif_mode == O_RDONLY)
1171 				inflateEnd(&sp->stream);
1172 			else
1173 				deflateEnd(&sp->stream);
1174 		}
1175 		if (sp->tbuf)
1176 			_TIFFfree(sp->tbuf);
1177 		_TIFFfree(sp);
1178 		tif->tif_data = NULL;
1179 	}
1180 }
1181 
1182 static int
PixarLogVSetField(TIFF * tif,ttag_t tag,va_list ap)1183 PixarLogVSetField(TIFF* tif, ttag_t tag, va_list ap)
1184 {
1185     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1186     int result;
1187     static const char module[] = "PixarLogVSetField";
1188 
1189     switch (tag) {
1190      case TIFFTAG_PIXARLOGQUALITY:
1191 		sp->quality = va_arg(ap, int);
1192 		if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1193 			if (deflateParams(&sp->stream,
1194 			    sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1195 				TIFFError(module, "%s: zlib error: %s",
1196 					tif->tif_name, sp->stream.msg);
1197 				return (0);
1198 			}
1199 		}
1200 		return (1);
1201      case TIFFTAG_PIXARLOGDATAFMT:
1202 	sp->user_datafmt = va_arg(ap, int);
1203 	/* Tweak the TIFF header so that the rest of libtiff knows what
1204 	 * size of data will be passed between app and library, and
1205 	 * assume that the app knows what it is doing and is not
1206 	 * confused by these header manipulations...
1207 	 */
1208 	switch (sp->user_datafmt) {
1209 	 case PIXARLOGDATAFMT_8BIT:
1210 	 case PIXARLOGDATAFMT_8BITABGR:
1211 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1212 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1213 	    break;
1214 	 case PIXARLOGDATAFMT_11BITLOG:
1215 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1216 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1217 	    break;
1218 	 case PIXARLOGDATAFMT_12BITPICIO:
1219 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1220 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1221 	    break;
1222 	 case PIXARLOGDATAFMT_16BIT:
1223 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1224 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1225 	    break;
1226 	 case PIXARLOGDATAFMT_FLOAT:
1227 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1228 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1229 	    break;
1230 	}
1231 	/*
1232 	 * Must recalculate sizes should bits/sample change.
1233 	 */
1234 	tif->tif_tilesize = TIFFTileSize(tif);
1235 	tif->tif_scanlinesize = TIFFScanlineSize(tif);
1236 	result = 1;		/* NB: pseudo tag */
1237 	break;
1238      default:
1239 	result = (*sp->vsetparent)(tif, tag, ap);
1240     }
1241     return (result);
1242 }
1243 
1244 static int
PixarLogVGetField(TIFF * tif,ttag_t tag,va_list ap)1245 PixarLogVGetField(TIFF* tif, ttag_t tag, va_list ap)
1246 {
1247     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1248 
1249     switch (tag) {
1250      case TIFFTAG_PIXARLOGQUALITY:
1251 	*va_arg(ap, int*) = sp->quality;
1252 	break;
1253      case TIFFTAG_PIXARLOGDATAFMT:
1254 	*va_arg(ap, int*) = sp->user_datafmt;
1255 	break;
1256      default:
1257 	return (*sp->vgetparent)(tif, tag, ap);
1258     }
1259     return (1);
1260 }
1261 
1262 static const TIFFFieldInfo pixarlogFieldInfo[] = {
1263     {TIFFTAG_PIXARLOGDATAFMT,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""},
1264     {TIFFTAG_PIXARLOGQUALITY,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""}
1265 };
1266 
1267 int
TIFFInitPixarLog(TIFF * tif,int scheme)1268 TIFFInitPixarLog(TIFF* tif, int scheme)
1269 {
1270 	PixarLogState* sp;
1271 
1272 	assert(scheme == COMPRESSION_PIXARLOG);
1273 
1274 	/*
1275 	 * Allocate state block so tag methods have storage to record values.
1276 	 */
1277 	tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (PixarLogState));
1278 	if (tif->tif_data == NULL)
1279 		goto bad;
1280 	sp = (PixarLogState*) tif->tif_data;
1281 	memset(sp, 0, sizeof (*sp));
1282 	sp->stream.data_type = Z_BINARY;
1283 	sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1284 
1285 	/*
1286 	 * Install codec methods.
1287 	 */
1288 	tif->tif_setupdecode = PixarLogSetupDecode;
1289 	tif->tif_predecode = PixarLogPreDecode;
1290 	tif->tif_decoderow = PixarLogDecode;
1291 	tif->tif_decodestrip = PixarLogDecode;
1292 	tif->tif_decodetile = PixarLogDecode;
1293 	tif->tif_setupencode = PixarLogSetupEncode;
1294 	tif->tif_preencode = PixarLogPreEncode;
1295 	tif->tif_postencode = PixarLogPostEncode;
1296 	tif->tif_encoderow = PixarLogEncode;
1297 	tif->tif_encodestrip = PixarLogEncode;
1298 	tif->tif_encodetile = PixarLogEncode;
1299 	tif->tif_close = PixarLogClose;
1300 	tif->tif_cleanup = PixarLogCleanup;
1301 
1302 	/* Override SetField so we can handle our private pseudo-tag */
1303 	_TIFFMergeFieldInfo(tif, pixarlogFieldInfo, N(pixarlogFieldInfo));
1304 	sp->vgetparent = tif->tif_tagmethods.vgetfield;
1305 	tif->tif_tagmethods.vgetfield = PixarLogVGetField;   /* hook for codec tags */
1306 	sp->vsetparent = tif->tif_tagmethods.vsetfield;
1307 	tif->tif_tagmethods.vsetfield = PixarLogVSetField;   /* hook for codec tags */
1308 
1309 	/* Default values for codec-specific fields */
1310 	sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1311 	sp->state = 0;
1312 
1313 	/* we don't wish to use the predictor,
1314 	 * the default is none, which predictor value 1
1315 	 */
1316 	(void) TIFFPredictorInit(tif);
1317 
1318 	/*
1319 	 * build the companding tables
1320 	 */
1321 	PixarLogMakeTables(sp);
1322 
1323 	return (1);
1324 bad:
1325 	TIFFError("TIFFInitPixarLog", "No space for PixarLog state block");
1326 	return (0);
1327 }
1328 #endif /* PIXARLOG_SUPPORT */
1329