1 /////////////////////////////////////////////////////////////////////////////
2 // Name:        mathstuff.cpp
3 // Purpose:     Some maths used for pyramid sample
4 // Author:      Manuel Martin
5 // Created:     2015/01/31
6 // Copyright:   (c) 2015 Manuel Martin
7 // Licence:     wxWindows licence
8 /////////////////////////////////////////////////////////////////////////////
9 
10 #include <cmath>
11 
12 #include "mathstuff.h"
13 
14 // Overload of "-" operator
operator -(const myVec3 & v1,const myVec3 & v2)15 myVec3 operator- (const myVec3& v1, const myVec3& v2)
16 {
17     return myVec3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
18 }
19 
20 // Vector normalization
MyNormalize(const myVec3 & v)21 myVec3 MyNormalize(const myVec3& v)
22 {
23     double mo = sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
24     if ( mo > 1E-20 )
25         return myVec3(v.x / mo, v.y / mo, v.z / mo);
26     else
27         return myVec3();
28 }
29 
30 // Dot product
MyDot(const myVec3 & v1,const myVec3 & v2)31 double MyDot(const myVec3& v1, const myVec3& v2)
32 {
33     return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z ;
34 }
35 
36 // Cross product
MyCross(const myVec3 & v1,const myVec3 & v2)37 myVec3 MyCross(const myVec3& v1, const myVec3& v2)
38 {
39     return myVec3( v1.y * v2.z - v2.y * v1.z,
40                    v1.z * v2.x - v2.z * v1.x,
41                    v1.x * v2.y - v2.x * v1.y );
42 }
43 
44 // Distance between two points
MyDistance(const myVec3 & v1,const myVec3 & v2)45 double MyDistance(const myVec3& v1, const myVec3& v2)
46 {
47     double rx = v1.x -v2.x;
48     double ry = v1.y -v2.y;
49     double rz = v1.z -v2.z;
50 
51     return sqrt(rx*rx + ry*ry + rz*rz);
52 }
53 
54 // Angle between two normalized vectors, in radians
AngleBetween(const myVec3 & v1,const myVec3 & v2)55 double AngleBetween(const myVec3& v1, const myVec3& v2)
56 {
57     double angle = MyDot(v1, v2);
58     // Prevent issues due to numerical precision
59     if (angle > 1.0)
60         angle = 1.0;
61     if (angle < -1.0)
62         angle = -1.0;
63 
64     return acos(angle);
65 }
66 
67 // Matrix 4x4 by 4x1 multiplication
68 // Attention: No bounds check!
MyMatMul4x1(const double * m1,const myVec4 & v)69 myVec4 MyMatMul4x1(const double *m1, const myVec4& v)
70 {
71     myVec4 mmv;
72     mmv.x = m1[0] * v.x + m1[4] * v.y +  m1[8] * v.z + m1[12] * v.w ;
73     mmv.y = m1[1] * v.x + m1[5] * v.y +  m1[9] * v.z + m1[13] * v.w ;
74     mmv.z = m1[2] * v.x + m1[6] * v.y + m1[10] * v.z + m1[14] * v.w ;
75     mmv.w = m1[3] * v.x + m1[7] * v.y + m1[11] * v.z + m1[15] * v.w ;
76 
77     return mmv;
78 }
79 
80 // Matrix 4x4 multiplication
81 // Attention: No bounds check!
MyMatMul4x4(const double * m1,const double * m2,double * mm)82 void MyMatMul4x4(const double *m1, const double *m2, double* mm)
83 {
84      mm[0] = m1[0] *  m2[0] + m1[4] *  m2[1] +  m1[8] *  m2[2] + m1[12] *  m2[3] ;
85      mm[1] = m1[1] *  m2[0] + m1[5] *  m2[1] +  m1[9] *  m2[2] + m1[13] *  m2[3] ;
86      mm[2] = m1[2] *  m2[0] + m1[6] *  m2[1] + m1[10] *  m2[2] + m1[14] *  m2[3] ;
87      mm[3] = m1[3] *  m2[0] + m1[7] *  m2[1] + m1[11] *  m2[2] + m1[15] *  m2[3] ;
88      mm[4] = m1[0] *  m2[4] + m1[4] *  m2[5] +  m1[8] *  m2[6] + m1[12] *  m2[7] ;
89      mm[5] = m1[1] *  m2[4] + m1[5] *  m2[5] +  m1[9] *  m2[6] + m1[13] *  m2[7] ;
90      mm[6] = m1[2] *  m2[4] + m1[6] *  m2[5] + m1[10] *  m2[6] + m1[14] *  m2[7] ;
91      mm[7] = m1[3] *  m2[4] + m1[7] *  m2[5] + m1[11] *  m2[6] + m1[15] *  m2[7] ;
92      mm[8] = m1[0] *  m2[8] + m1[4] *  m2[9] +  m1[8] * m2[10] + m1[12] * m2[11] ;
93      mm[9] = m1[1] *  m2[8] + m1[5] *  m2[9] +  m1[9] * m2[10] + m1[13] * m2[11] ;
94     mm[10] = m1[2] *  m2[8] + m1[6] *  m2[9] + m1[10] * m2[10] + m1[14] * m2[11] ;
95     mm[11] = m1[3] *  m2[8] + m1[7] *  m2[9] + m1[11] * m2[10] + m1[15] * m2[11] ;
96     mm[12] = m1[0] * m2[12] + m1[4] * m2[13] +  m1[8] * m2[14] + m1[12] * m2[15] ;
97     mm[13] = m1[1] * m2[12] + m1[5] * m2[13] +  m1[9] * m2[14] + m1[13] * m2[15] ;
98     mm[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15] ;
99     mm[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15] ;
100 }
101 
102 // Matrix 4x4 inverse. Returns the determinant.
103 // Attention: No bounds check!
104 // Method used is "adjugate matrix" with "cofactors".
105 // A faster method, such as "LU decomposition", isn't much faster than this code.
MyMatInverse(const double * m,double * minv)106 double MyMatInverse(const double *m, double *minv)
107 {
108     double det;
109     double cof[16], sdt[19];
110 
111     // The 2x2 determinants used for cofactors
112     sdt[0]  = m[10] * m[15] - m[14] * m[11] ;
113     sdt[1]  =  m[9] * m[15] - m[13] * m[11] ;
114     sdt[2]  =  m[9] * m[14] - m[13] * m[10] ;
115     sdt[3]  =  m[8] * m[15] - m[12] * m[11] ;
116     sdt[4]  =  m[8] * m[14] - m[12] * m[10] ;
117     sdt[5]  =  m[8] * m[13] - m[12] *  m[9] ;
118     sdt[6]  =  m[6] * m[15] - m[14] *  m[7] ;
119     sdt[7]  =  m[5] * m[15] - m[13] *  m[7] ;
120     sdt[8]  =  m[5] * m[14] - m[13] *  m[6] ;
121     sdt[9]  =  m[4] * m[15] - m[12] *  m[7] ;
122     sdt[10] =  m[4] * m[14] - m[12] *  m[6] ;
123     sdt[11] =  m[5] * m[15] - m[13] *  m[7] ;
124     sdt[12] =  m[4] * m[13] - m[12] *  m[5] ;
125     sdt[13] =  m[6] * m[11] - m[10] *  m[7] ;
126     sdt[14] =  m[5] * m[11] -  m[9] *  m[7] ;
127     sdt[15] =  m[5] * m[10] -  m[9] *  m[6] ;
128     sdt[16] =  m[4] * m[11] -  m[8] *  m[7] ;
129     sdt[17] =  m[4] * m[10] -  m[8] *  m[6] ;
130     sdt[18] =  m[4] *  m[9] -  m[8] *  m[5] ;
131     // The cofactors, transposed
132     cof[0]  =   m[5] *  sdt[0] - m[6] *  sdt[1] + m[7] *  sdt[2] ;
133     cof[1]  = - m[1] *  sdt[0] + m[2] *  sdt[1] - m[3] *  sdt[2] ;
134     cof[2]  =   m[1] *  sdt[6] - m[2] *  sdt[7] + m[3] *  sdt[8] ;
135     cof[3]  = - m[1] * sdt[13] + m[2] * sdt[14] - m[3] * sdt[15] ;
136     cof[4]  = - m[4] *  sdt[0] + m[6] *  sdt[3] - m[7] *  sdt[4] ;
137     cof[5]  =   m[0] *  sdt[0] - m[2] *  sdt[3] + m[3] *  sdt[4] ;
138     cof[6]  = - m[0] *  sdt[6] + m[2] *  sdt[9] - m[3] * sdt[10] ;
139     cof[7]  =   m[0] * sdt[13] - m[2] * sdt[16] + m[3] * sdt[17] ;
140     cof[8]  =   m[4] *  sdt[1] - m[5] *  sdt[3] + m[7] *  sdt[5] ;
141     cof[9]  = - m[0] *  sdt[1] + m[1] *  sdt[3] - m[3] *  sdt[5] ;
142     cof[10] =   m[0] * sdt[11] - m[1] *  sdt[9] + m[3] * sdt[12] ;
143     cof[11] = - m[0] * sdt[14] + m[1] * sdt[16] - m[3] * sdt[18] ;
144     cof[12] = - m[4] *  sdt[2] + m[5] *  sdt[4] - m[6] *  sdt[5] ;
145     cof[13] =   m[0] *  sdt[2] - m[1] *  sdt[4] + m[2] *  sdt[5] ;
146     cof[14] = - m[0] *  sdt[8] + m[1] * sdt[10] - m[2] * sdt[12] ;
147     cof[15] =   m[0] * sdt[15] - m[1] * sdt[17] + m[2] * sdt[18] ;
148 
149     det = m[0] * cof[0] + m[1] * cof[4] + m[2] * cof[8] + m[3] * cof[12] ;
150 
151     if ( fabs(det) > 10E-9 ) // Some precision value
152     {
153         double invdet = 1.0 / det;
154         for (int i = 0; i < 16; ++i)
155             minv[i] = cof[i] * invdet;
156     }
157     else
158     {
159         // Enable comparison with 0
160         det = 0.0;
161     }
162 
163     return det;
164 }
165 
166 // Matrix of rotation around an axis in the origin.
167 // angle is positive if follows axis (right-hand rule)
168 // Attention: No bounds check!
MyRotate(const myVec3 & axis,double angle,double * mrot)169 void MyRotate(const myVec3& axis, double angle, double *mrot)
170 {
171     double c = cos(angle);
172     double s = sin(angle);
173     double t = 1.0 - c;
174 
175     // Normalize the axis vector
176     myVec3 uv = MyNormalize(axis);
177 
178     // Store the matrix in column order
179     mrot[0]  = t * uv.x * uv.x + c ;
180     mrot[1]  = t * uv.x * uv.y + s * uv.z ;
181     mrot[2]  = t * uv.x * uv.z - s * uv.y ;
182     mrot[3]  = 0.0 ;
183     mrot[4]  = t * uv.y * uv.x - s * uv.z ;
184     mrot[5]  = t * uv.y * uv.y + c ;
185     mrot[6]  = t * uv.y * uv.z + s * uv.x ;
186     mrot[7]  = 0.0 ;
187     mrot[8]  = t * uv.z * uv.x + s * uv.y ;
188     mrot[9]  = t * uv.z * uv.y - s * uv.x ;
189     mrot[10] = t * uv.z * uv.z + c ;
190     mrot[11] = 0.0 ;
191     mrot[12] = mrot[13] = mrot[14] = 0.0 ;
192     mrot[15] = 1.0 ;
193 }
194 
195 // Matrix for defining the viewing transformation
196 // Attention: No bounds check!
197 // Unchecked conditions:
198 //   camPos != targ  && camUp != {0,0,0}
199 //   camUo can't be parallel to camPos - targ
MyLookAt(const myVec3 & camPos,const myVec3 & camUp,const myVec3 & targ,double * mt)200 void MyLookAt(const myVec3& camPos, const myVec3& camUp, const myVec3& targ, double *mt)
201 {
202     myVec3 tc = MyNormalize(targ - camPos);
203     myVec3 up = MyNormalize(camUp);
204     // Normalize tc x up for the case where up is not perpendicular to tc
205     myVec3  s = MyNormalize(MyCross(tc, up));
206     myVec3  u = MyNormalize(MyCross(s, tc)); //Normalize to improve accuracy
207 
208     // Store the matrix in column order
209     mt[0]  = s.x ;
210     mt[1]  = u.x ;
211     mt[2]  = - tc.x ;
212     mt[3]  = 0.0 ;
213     mt[4]  = s.y ;
214     mt[5]  = u.y ;
215     mt[6]  = - tc.y ;
216     mt[7]  = 0.0 ;
217     mt[8]  = s.z ;
218     mt[9]  = u.z ;
219     mt[10] = - tc.z ;
220     mt[11] = 0.0 ;
221     mt[12] = - MyDot(s, camPos) ;
222     mt[13] = - MyDot(u, camPos) ;
223     mt[14] =   MyDot(tc, camPos) ;
224     mt[15] = 1.0 ;
225 }
226 
227 // Matrix for defining the perspective projection with symmetric frustum
228 // From camera coordinates to canonical (2x2x2 cube) coordinates.
229 // Attention: No bounds check!
230 // Unchecked conditions: fov > 0 && zNear > 0 && zFar > zNear && aspect > 0
MyPerspective(double fov,double aspect,double zNear,double zFar,double * mp)231 void MyPerspective(double fov, double aspect, double zNear, double zFar, double *mp)
232 {
233     double f = 1.0 / tan(fov / 2.0);
234 
235     // Store the matrix in column order
236     mp[0]  = f / aspect ;
237     mp[1]  = mp[2] = mp[3]  = 0.0 ;
238     mp[4]  = 0.0 ;
239     mp[5]  = f ;
240     mp[6]  = mp[7] = 0.0 ;
241     mp[8]  = mp[9] = 0.0 ;
242     mp[10] = (zNear + zFar) / (zNear - zFar) ;
243     mp[11] = -1.0 ;
244     mp[12] = mp[13] = 0.0 ;
245     mp[14] = 2.0 * zNear * zFar / (zNear - zFar) ;
246     mp[15] = 0.0 ;
247 }
248 
249 // Matrix for defining the orthogonal projection with symmetric frustum
250 // From camera coordinates to canonical (2x2x2 cube) coordinates.
251 // Attention: No bounds check!
252 // Unchecked conditions: left != right && bottom != top && zNear != zFar
MyOrtho(double left,double right,double bottom,double top,double zNear,double zFar,double * mo)253 void MyOrtho(double left, double right, double bottom, double top,
254              double zNear, double zFar, double *mo)
255 {
256     // Store the matrix in column order
257     mo[0]  = 2.0 / (right - left) ;
258     mo[1]  = mo[2] = mo[3] = mo[4] = 0.0 ;
259     mo[5]  = 2.0 / (top - bottom) ;
260     mo[6]  = mo[7] = mo[8]  = mo[9] = 0.0 ;
261     mo[10] = 2.0 / (zNear - zFar) ;
262     mo[11] = 0.0 ;
263     mo[12] = -(right + left) / (right - left) ;
264     mo[13] = -(top + bottom) / (top - bottom) ;
265     mo[14] = (zNear + zFar) / (zNear - zFar) ;
266     mo[15] = 1.0 ;
267 }
268 
269