1 /* -*- Mode: C; tab-width: 4 -*- */
2 /* apollonian --- Apollonian Circles */
3 
4 #if 0
5 static const char sccsid[] = "@(#)apollonian.c	5.02 2001/07/01 xlockmore";
6 #endif
7 
8 /*-
9  * Copyright (c) 2000, 2001 by Allan R. Wilks <allan@research.att.com>.
10  *
11  * Permission to use, copy, modify, and distribute this software and its
12  * documentation for any purpose and without fee is hereby granted,
13  * provided that the above copyright notice appear in all copies and that
14  * both that copyright notice and this permission notice appear in
15  * supporting documentation.
16  *
17  * This file is provided AS IS with no warranties of any kind.  The author
18  * shall have no liability with respect to the infringement of copyrights,
19  * trade secrets or any patents by this file or any part thereof.  In no
20  * event will the author be liable for any lost revenue or profits or
21  * other special, indirect and consequential damages.
22  *
23  * radius r = 1 / c (curvature)
24  *
25  * Descartes Circle Theorem: (a, b, c, d are curvatures of tangential circles)
26  * Let a, b, c, d be the curvatures of for mutually (externally) tangent
27  * circles in the plane.  Then
28  * a^2 + b^2 + c^2 + d^2 = (a + b + c + d)^2 / 2
29  *
30  * Complex Descartes Theorem:  If the oriented curvatues and (complex) centers
31  * of an oriented Descrates configuration in the plane are a, b, c, d and
32  * w, x, y, z respectively, then
33  * a^2*w^2 + b^2*x^2 + c^2*y^2 + d^2*z^2 = (aw + bx + cy + dz)^2 / 2
34  * In addition these quantities satisfy
35  * a^2*w + b^2*x + c^2*y + d^2*z = (aw + bx + cy + dz)(a + b + c + d) /  2
36  *
37  * Enumerate root integer Descartes quadruples (a,b,c,d) satisfying the
38  * Descartes condition:
39  *      2(a^2+b^2+c^2+d^2) = (a+b+c+d)^2
40  * i.e., quadruples for which no application of the "pollinate" operator
41  *      z <- 2(a+b+c+d) - 3*z,
42  * where z is in {a,b,c,d}, gives a quad of strictly smaller sum.  This
43  * is equivalent to the condition:
44  *      sum(a,b,c,d) >= 2*max(a,b,c,d)
45  * which, because of the Descartes condition, is equivalent to
46  *      sum(a^2,b^2,c^2,d^2) >= 2*max(a,b,c,d)^2
47  *
48  *
49  * Todo:
50  * Add a small font
51  *
52  * Revision History:
53  * 25-Jun-2001: Converted from C and Postscript code by David Bagley
54  *              Original code by Allan R. Wilks <allan@research.att.com>.
55  *
56  * From Circle Math Science News April 21, 2001 VOL. 254-255
57  * http://www.sciencenews.org/20010421/toc.asp
58  * Apollonian Circle Packings Assorted papers from Ronald L Graham,
59  * Jeffrey Lagarias, Colin Mallows, Allan Wilks, Catherine Yan
60  *      http://front.math.ucdavis.edu/math.NT/0009113
61  *      http://front.math.ucdavis.edu/math.MG/0101066
62  *      http://front.math.ucdavis.edu/math.MG/0010298
63  *      http://front.math.ucdavis.edu/math.MG/0010302
64  *      http://front.math.ucdavis.edu/math.MG/0010324
65  */
66 
67 #ifdef STANDALONE
68 # define MODE_apollonian
69 # define DEFAULTS	"*delay:   1000000 \n" \
70 					"*count:   64      \n" \
71 					"*cycles:  20      \n" \
72 					"*ncolors: 64      \n" \
73 					"*font:    fixed" "\n" \
74 					"*fpsTop: true     \n" \
75 					"*fpsSolid: true   \n" \
76 					"*ignoreRotation: True" \
77 
78 # define release_apollonian 0
79 # define reshape_apollonian 0
80 # define apollonian_handle_event 0
81 # include "xlockmore.h"		/* in xscreensaver distribution */
82 #else /* STANDALONE */
83 # include "xlock.h"		/* in xlockmore distribution */
84 #endif /* STANDALONE */
85 
86 #ifdef MODE_apollonian
87 
88 #define DEF_ALTGEOM  "True"
89 #define DEF_LABEL  "True"
90 
91 static Bool altgeom;
92 static Bool label;
93 
94 static XrmOptionDescRec opts[] =
95 {
96 	{"-altgeom", ".apollonian.altgeom", XrmoptionNoArg, "on"},
97 	{"+altgeom", ".apollonian.altgeom", XrmoptionNoArg, "off"},
98 	{"-label", ".apollonian.label", XrmoptionNoArg, "on"},
99 	{"+label", ".apollonian.label", XrmoptionNoArg, "off"},
100 };
101 static argtype vars[] =
102 {
103 	{&altgeom, "altgeom", "AltGeom", DEF_ALTGEOM, t_Bool},
104 	{&label,   "label",   "Label",   DEF_LABEL,   t_Bool},
105 };
106 static OptionStruct desc[] =
107 {
108         {"-/+altgeom", "turn on/off alternate geometries (off euclidean space, on includes spherical and hyperbolic)"},
109         {"-/+label", "turn on/off alternate space and number labeling"},
110 };
111 
112 ENTRYPOINT ModeSpecOpt apollonian_opts =
113 {sizeof opts / sizeof opts[0], opts, sizeof vars / sizeof vars[0], vars, desc};
114 
115 #ifdef DOFONT
116 extern XFontStruct *getFont(Display * display);
117 #endif
118 
119 #ifdef USE_MODULES
120 ModStruct   apollonian_description =
121 {"apollonian", "init_apollonian", "draw_apollonian", (char *) NULL,
122  "init_apollonian", "init_apollonian", "free_apollonian", &apollonian_opts,
123  1000000, 64, 20, 1, 64, 1.0, "",
124  "Shows Apollonian Circles", 0, NULL};
125 
126 #endif
127 
128 typedef struct {
129 	int a, b, c, d;
130 } apollonian_quadruple;
131 
132 typedef struct {
133         double e;       /* euclidean bend */
134         double s;       /* spherical bend */
135         double h;       /* hyperbolic bend */
136         double x, y;    /* euclidean bend times euclidean position */
137 } circle;
138 enum space {
139   euclidean = 0, spherical, hyperbolic
140 };
141 
142 static const char * space_string[] = {
143   "euclidean",
144   "spherical",
145   "hyperbolic"
146 };
147 
148 /*
149 Generate Apollonian packing starting with a quadruple of circles.
150 The four input lines each contain the 5-tuple (e,s,h,x,y) representing
151 the circle with radius 1/e and center (x/e,y/e).  The s and h is propagated
152 like e, x and y, but can differ from e so as to represent different
153 geometries, spherical and hyperbolic, respectively.  The "standard" picture,
154 for example (-1, 2, 2, 3), can be labeled for the three geometries.
155 Origins of circles z1, z2, z3, z4
156 a * z1 = 0
157 b * z2 = (a+b)/a
158 c * z3 = (q123 + a * i)^2/(a*(a+b)) where q123 = sqrt(a*b+a*c+b*c)
159 d * z4 = (q124 + a * i)^2/(a*(a+b)) where q124 = q123 - a - b
160 If (e,x,y) represents the Euclidean circle (1/e,x/e,y/e) (so that e is
161 the label in the standard picture) then the "spherical label" is
162 (e^2+x^2+y^2-1)/(2*e) (an integer!)  and the "hyperbolic label", is
163 calulated by h + s = e.
164 */
165 static circle examples[][4] = {
166 { /* double semi-bounded */
167 	{ 0, 0, 0,   0,  1},
168 	{ 0, 0, 0,   0, -1},
169 	{ 1, 1, 1,  -1,  0},
170 	{ 1, 1, 1,   1,  0}
171 },
172 #if 0
173 { /* standard */
174 	{-1, 0, -1,   0,  0},
175 	{ 2, 1,  1,   1,  0},
176 	{ 2, 1,  1,  -1,  0},
177 	{ 3, 2,  1,   0,  2}
178 },
179 { /* next simplest */
180 	{-2, -1, -1,   0.0,  0},
181 	{ 3,  2,  1,   0.5,  0},
182 	{ 6,  3,  3,  -2.0,  0},
183 	{ 7,  4,  3,  -1.5,  2}
184 },
185 { /*  */
186 	{-3, -2, -1,         0.0,  0},
187 	{ 4,  3,  1,   1.0 / 3.0,  0},
188 	{12,  7,  5,        -3.0,  0},
189 	{13,  8,  5,  -8.0 / 3.0,  2}
190 },
191 { /* Mickey */
192 	{-3, -2, -1,         0.0,  0},
193 	{ 5,  4,  1,   2.0 / 3.0,  0},
194 	{ 8,  5,  3,  -4.0 / 3.0, -1},
195 	{ 8,  5,  3,  -4.0 / 3.0,  1}
196 },
197 { /*  */
198 	{-4, -3, -1,   0.00,  0},
199 	{ 5,  4,  1,   0.25,  0},
200 	{20, 13,  7,  -4.00,  0},
201 	{21, 14,  7,  -3.75,  2}
202 },
203 { /* Mickey2 */
204 	{-4, -2, -2,    0.0,  0},
205 	{ 8,  4,  4,    1.0,  0},
206 	{ 9,  5,  4,  -0.75, -1},
207 	{ 9,  5,  4,  -0.75,  1}
208 },
209 { /* Mickey3 */
210 	{-5,  -4, -1,   0.0,  0},
211 	{ 7,   6,  1,   0.4,  0},
212 	{18,  13,  5,  -2.4, -1},
213 	{18,  13,  5,  -2.4,  1}
214 },
215 { /*  */
216 	{-6, -5, -1,          0.0,  0},
217 	{ 7,  6,  1,    1.0 / 6.0,  0},
218 	{42, 31, 11,         -6.0,  0},
219 	{43, 32, 11,  -35.0 / 6.0,  2}
220 },
221 { /*  */
222 	{-6, -3, -3,         0.0,  0},
223 	{10,  5,  5,   2.0 / 3.0,  0},
224 	{15,  8,  7,        -1.5,  0},
225 	{19, 10,  9,  -5.0 / 6.0,  2}
226 },
227 { /* asymmetric */
228 	{-6, -5, -1,           0.0,  0.0},
229 	{11, 10,  1,     5.0 / 6.0,  0.0},
230 	{14, 11,  3,  -16.0 / 15.0, -0.8},
231 	{15, 12,  3,          -0.9,  1.2}
232 },
233 #endif
234 /* Non integer stuff */
235 #define DELTA 2.154700538 /* ((3+2*sqrt(3))/3) */
236 { /* 3 fold symmetric bounded (x, y calculated later) */
237 	{   -1,    -1,    -1,   0.0,  0.0},
238 	{DELTA, DELTA, DELTA,   1.0,  0.0},
239 	{DELTA, DELTA, DELTA,   1.0, -1.0},
240 	{DELTA, DELTA, DELTA,  -1.0,  1.0}
241 },
242 { /* semi-bounded (x, y calculated later) */
243 #define ALPHA 2.618033989 /* ((3+sqrt(5))/2) */
244 	{              1.0,               1.0,               1.0,   0,  0},
245 	{              0.0,               0.0,               0.0,   0, -1},
246 	{1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA), 1.0/(ALPHA*ALPHA),  -1,  0},
247 	{        1.0/ALPHA,         1.0/ALPHA,         1.0/ALPHA,  -1,  0}
248 },
249 { /* unbounded (x, y calculated later) */
250 /* #define PHI 1.618033989 *//* ((1+sqrt(5))/2) */
251 #define BETA 2.890053638 /* (PHI+sqrt(PHI)) */
252 	{                 1.0,                  1.0,                  1.0,  0,  0},
253 	{1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA), 1.0/(BETA*BETA*BETA),  1,  0},
254 	{     1.0/(BETA*BETA),      1.0/(BETA*BETA),      1.0/(BETA*BETA),  1,  0},
255 	{            1.0/BETA,             1.0/BETA,             1.0/BETA,  1,  0}
256 }
257 };
258 
259 #define PREDEF_CIRCLE_GAMES  (sizeof (examples) / (4 * sizeof (circle)))
260 
261 #if 0
262 Euclidean
263 0, 0, 1, 1
264 -1, 2, 2, 3
265 -2, 3, 6, 7
266 -3, 5, 8, 8
267 -4, 8, 9, 9
268 -3, 4, 12, 13
269 -6, 11, 14, 15
270  -5, 7, 18, 18
271  -6, 10, 15, 19
272  -7, 12, 17, 20
273  -4, 5, 20, 21
274  -9, 18, 19, 22
275  -8, 13, 21, 24
276 Spherical
277 0, 1, 1, 2
278  -1, 2, 3, 4
279  -2, 4, 5, 5
280  -2, 3, 7, 8
281 Hyperbolic
282 -1, 1, 1, 1
283  0, 0, 1, 3
284  -2, 3, 5, 6
285  -3, 6, 6, 7
286 #endif
287 
288 typedef struct {
289 	int         size;
290 	XPoint      offset;
291 	int         geometry;
292 	circle      c1, c2, c3, c4;
293 	int         color_offset;
294 	int         count;
295 	Bool        label, altgeom;
296 	apollonian_quadruple  *quad;
297 #ifdef DOFONT
298 	XFontStruct *font;
299 #endif
300 	int         time;
301 	int         game;
302 } apollonianstruct;
303 
304 static apollonianstruct *apollonians = (apollonianstruct *) NULL;
305 
306 #define FONT_HEIGHT 19
307 #define FONT_WIDTH 15
308 #define FONT_LENGTH 20
309 #define MAX_CHAR 10
310 #define K       2.15470053837925152902  /* 1+2/sqrt(3) */
311 #define MAXBEND 100 /* Do not want configurable by user since it will take too
312 	much time if increased. */
313 
314 static int
gcd(int a,int b)315 gcd(int a, int b)
316 {
317 	int r;
318 
319 	while (b) {
320 		r = a % b;
321 		a = b;
322 		b = r;
323        	}
324 	return a;
325 }
326 
327 static int
isqrt(int n)328 isqrt(int n)
329 {
330 	int y;
331 
332 	if (n < 0)
333 		return -1;
334 	y = (int) (sqrt((double) n) + 0.5);
335 	return ((n == y*y) ? y : -1);
336 }
337 
338 static void
dquad(int n,apollonian_quadruple * quad)339 dquad(int n, apollonian_quadruple *quad)
340 {
341 	int a, b, c, d;
342 	int counter = 0, B, C;
343 
344 	for (a = 0; a < MAXBEND; a++) {
345 		B = (int) (K * a);
346 		for (b = a + 1; b <= B; b++) {
347 			C = (int) (((a + b) * (a + b)) / (4.0 * (b - a)));
348 			for (c = b; c <= C; c++) {
349 				d = isqrt(b*c-a*(b+c));
350 				if (d >= 0 && (gcd(a,gcd(b,c)) <= 1)) {
351  					quad[counter].a = -a;
352  					quad[counter].b = b;
353  					quad[counter].c = c;
354 					quad[counter].d = -a+b+c-2*d;
355 					if (++counter >= n) {
356 						return;
357 					}
358 				}
359 			}
360 		}
361 	}
362 	(void) printf("found only %d below maximum bend of %d\n",
363 		counter, MAXBEND);
364 	for (; counter < n; counter++) {
365  		quad[counter].a = -1;
366  		quad[counter].b = 2;
367  		quad[counter].c = 2;
368 		quad[counter].d = 3;
369 	}
370 	return;
371 }
372 
373 /*
374  * Given a Descartes quadruple of bends (a,b,c,d), with a<0, find a
375  * quadruple of circles, represented by (bend,bend*x,bend*y), such
376  * that the circles have the given bends and the bends times the
377  * centers are integers.
378  *
379  * This just performs an exaustive search, assuming that the outer
380  * circle has center in the unit square.
381  *
382  * It is always sufficient to look in {(x,y):0<=y<=x<=1/2} for the
383  * center of the outer circle, but this may not lead to a packing
384  * that can be labelled with integer spherical and hyperbolic labels.
385  * To effect the smaller search, replace FOR(a) with
386  *
387  *      for (pa = ea/2; pa <= 0; pa++) for (qa = pa; qa <= 0; qa++)
388  */
389 
390 #define For(v,l,h)	for (v = l; v <= h; v++)
391 #define FOR(z)		For(p##z,lop##z,hip##z) For(q##z,loq##z,hiq##z)
392 #define H(z)		((e##z*e##z+p##z*p##z+q##z*q##z)%2)
393 #define UNIT(z)		((abs(e##z)-1)*(abs(e##z)-1) >= p##z*p##z+q##z*q##z)
394 #define T(z,w)		is_tangent(e##z,p##z,q##z,e##w,p##w,q##w)
395 #define LO(r,z)		lo##r##z = iceil(e##z*(r##a+1),ea)-1
396 #define HI(r,z)		hi##r##z = iflor(e##z*(r##a-1),ea)-1
397 #define B(z)		LO(p,z); HI(p,z); LO(q,z); HI(q,z)
398 
399 static int
is_quad(int a,int b,int c,int d)400 is_quad(int a, int b, int c, int d)
401 {
402 	int s;
403 
404 	s = a+b+c+d;
405 	return 2*(a*a+b*b+c*c+d*d) == s*s;
406 }
407 
408 static Bool
is_tangent(int e1,int p1,int q1,int e2,int p2,int q2)409 is_tangent(int e1, int p1, int q1, int e2, int p2, int q2)
410 {
411 	int dx, dy, s;
412 
413 	dx = p1*e2 - p2*e1;
414 	dy = q1*e2 - q2*e1;
415 	s = e1 + e2;
416 	return dx*dx + dy*dy == s*s;
417 }
418 
419 static int
iflor(int a,int b)420 iflor(int a, int b)
421 {
422 	int q;
423 
424 	if (b == 0) {
425 		(void) printf("iflor: b = 0\n");
426 		return 0;
427 	}
428 	if (a%b == 0)
429 		return a/b;
430 	q = abs(a)/abs(b);
431 	return ((a<0)^(b<0)) ? -q-1 : q;
432 }
433 
434 static int
iceil(int a,int b)435 iceil(int a, int b)
436 {
437 	int q;
438 
439 	if (b == 0) {
440 		(void) printf("iceil: b = 0\n");
441 		return 0;
442 	}
443 	if (a%b == 0)
444 		return a/b;
445 	q = abs(a)/abs(b);
446 	return ((a<0)^(b<0)) ? -q : 1+q;
447 }
448 
449 static double
geom(int geometry,int e,int p,int q)450 geom(int geometry, int e, int p, int q)
451 {
452 	int g = (geometry == spherical) ? -1 :
453 		(geometry == hyperbolic) ? 1 : 0;
454 
455 	if (g)
456 		return (e*e + (1.0 - p*p - q*q) * g) / (2.0*e);
457 	(void) printf("geom: g = 0\n");
458 	return e;
459 }
460 
461 static void
cquad(circle * c1,circle * c2,circle * c3,circle * c4)462 cquad(circle *c1, circle *c2, circle *c3, circle *c4)
463 {
464 	int ea, eb, ec, ed;
465 	int pa, pb, pc, pd;
466 	int qa, qb, qc, qd;
467 	int lopa, lopb, lopc, lopd;
468 	int hipa, hipb, hipc, hipd;
469 	int loqa, loqb, loqc, loqd;
470 	int hiqa, hiqb, hiqc, hiqd;
471 
472 	ea = (int) c1->e;
473 	eb = (int) c2->e;
474 	ec = (int) c3->e;
475 	ed = (int) c4->e;
476 	if (ea >= 0)
477 		(void) printf("ea = %d\n", ea);
478 	if (!is_quad(ea,eb,ec,ed))
479 		(void) printf("Error not quad %d %d %d %d\n", ea, eb, ec, ed);
480 	lopa = loqa = ea;
481 	hipa = hiqa = 0;
482 	FOR(a) {
483 		B(b); B(c); B(d);
484 		if (H(a) && UNIT(a)) FOR(b) {
485 			if (H(b) && T(a,b)) FOR(c) {
486 				if (H(c) && T(a,c) && T(b,c)) FOR(d) {
487 				  if (H(d) && T(a,d) && T(b,d) && T(c,d)) {
488 				    c1->s = geom(spherical, ea, pa, qa);
489 				    c1->h = geom(hyperbolic, ea, pa, qa);
490 				    c2->s = geom(spherical, eb, pb, qb);
491 				    c2->h = geom(hyperbolic, eb, pb, qb);
492 				    c3->s = geom(spherical, ec, pc, qc);
493 				    c3->h = geom(hyperbolic, ec, pc, qc);
494 				    c4->s = geom(spherical, ed, pd, qd);
495 				    c4->h = geom(hyperbolic, ed, pd, qd);
496 				  }
497 				}
498 			}
499 		}
500 	}
501 }
502 
503 static void
p(ModeInfo * mi,circle c)504 p(ModeInfo *mi, circle c)
505 {
506 	apollonianstruct *cp = &apollonians[MI_SCREEN(mi)];
507 	char string[15];
508 	double g, e;
509 	int g_width;
510 
511 #ifdef DEBUG
512 	(void) printf("c.e=%g c.s=%g c.h=%g  c.x=%g c.y=%g\n",
513 		c.e, c.s, c.h, c.x, c.y);
514 #endif
515 	g = (cp->geometry == spherical) ? c.s : (cp->geometry == hyperbolic) ?
516 		c.h : c.e;
517 	if (c.e < 0.0) {
518 		if (g < 0.0)
519 			g = -g;
520 		if (MI_NPIXELS(mi) <= 2)
521 			XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
522 				MI_WHITE_PIXEL(mi));
523 		else
524 			XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
525 				MI_PIXEL(mi, ((int) ((g + cp->color_offset) *
526 					g)) % MI_NPIXELS(mi)));
527 		XDrawArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
528 			((int) (cp->size * (-cp->c1.e) * (c.x - 1.0) /
529 				(-2.0 * c.e) + cp->size / 2.0 + cp->offset.x)),
530 			((int) (cp->size * (-cp->c1.e) * (c.y - 1.0) /
531 				(-2.0 * c.e) + cp->size / 2.0 + cp->offset.y)),
532 			(int) (cp->c1.e * cp->size / c.e),
533 			(int) (cp->c1.e * cp->size / c.e), 0, 23040);
534 		if (!cp->label) {
535 #ifdef DEBUG
536 			(void) printf("%g\n", -g);
537 #endif
538 			return;
539 		}
540 		(void) sprintf(string, "%g", (g == 0.0) ? 0 : -g);
541 		if (cp->size >= 10 * FONT_WIDTH) {
542 		  /* hard code these to corners */
543 		  XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
544 			((int) (cp->size * c.x / (2.0 * c.e))) + cp->offset.x,
545 			((int) (cp->size * c.y / (2.0 * c.e))) + FONT_HEIGHT,
546 			string, (g == 0.0) ? 1 : ((g < 10.0) ? 2 :
547 				((g < 100.0) ? 3 : 4)));
548 		}
549 		if (cp->altgeom && MI_HEIGHT(mi) >= 30 * FONT_WIDTH) {
550 		  XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
551 			((int) (cp->size * c.x / (2.0 * c.e) + cp->offset.x)),
552 			((int) (cp->size * c.y / (2.0 * c.e) + MI_HEIGHT(mi) -
553 			FONT_HEIGHT / 2)), (char *) space_string[cp->geometry],
554 			strlen(space_string[cp->geometry]));
555 		}
556 		return;
557 	}
558 	if (MI_NPIXELS(mi) <= 2)
559 		XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi));
560 	else
561 		XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
562 			MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g)) %
563 				MI_NPIXELS(mi)));
564 	if (c.e == 0.0) {
565 		if (c.x == 0.0 && c.y != 0.0) {
566 			XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
567 				0, (int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y),
568 				MI_WIDTH(mi),
569 				(int) ((c.y + 1.0) * cp->size / 2.0 + cp->offset.y));
570 		} else if (c.y == 0.0 && c.x != 0.0) {
571 			XDrawLine(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
572 				(int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x), 0,
573 				(int) ((c.x + 1.0) * cp->size / 2.0 + cp->offset.x),
574 				MI_HEIGHT(mi));
575 		}
576 		return;
577 	}
578 	e = (cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e;
579 	XFillArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
580 		((int) (cp->size * e * (c.x - 1.0) / (2.0 * c.e) +
581 			cp->size / 2.0 + cp->offset.x)),
582 		((int) (cp->size * e * (c.y - 1.0) / (2.0 * c.e) +
583 			cp->size / 2.0 + cp->offset.y)),
584 		(int) (e * cp->size / c.e), (int) (e * cp->size / c.e),
585 		0, 23040);
586 	if (!cp->label) {
587 #ifdef DEBUG
588 		(void) printf("%g\n", g);
589 #endif
590 		return;
591 	}
592 	if (MI_NPIXELS(mi) <= 2)
593 		XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_BLACK_PIXEL(mi));
594 	else
595 		XSetForeground(MI_DISPLAY(mi), MI_GC(mi),
596 			MI_PIXEL(mi, ((int) ((g + cp->color_offset) * g) +
597 				MI_NPIXELS(mi) / 2) % MI_NPIXELS(mi)));
598 	g_width = (g < 10.0) ? 1: ((g < 100.0) ? 2 : 3);
599 	if (c.e < e * cp->size / (FONT_LENGTH + 5 * g_width) && g < 1000.0) {
600 		(void) sprintf(string, "%g", g);
601 		XDrawString(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
602 			((int) (cp->size * e * c.x / (2.0 * c.e) +
603 				cp->size / 2.0 + cp->offset.x)) -
604 				g_width * FONT_WIDTH / 2,
605 			((int) (cp->size * e * c.y / (2.0 * c.e) +
606 				cp->size / 2.0 + cp->offset.y)) +
607 				FONT_HEIGHT / 2,
608 			string, g_width);
609         }
610 }
611 
612 #define BIG 7
613 static void
f(ModeInfo * mi,circle c1,circle c2,circle c3,circle c4,int depth)614 f(ModeInfo *mi, circle c1, circle c2, circle c3, circle c4, int depth)
615 {
616 	apollonianstruct *cp = &apollonians[MI_SCREEN(mi)];
617 	int e = (int) ((cp->c1.e >= 0.0) ? 1.0 : -cp->c1.e);
618         circle c;
619 
620 	if (depth > mi->recursion_depth) mi->recursion_depth = depth;
621 
622         c.e = 2*(c1.e+c2.e+c3.e) - c4.e;
623         c.s = 2*(c1.s+c2.s+c3.s) - c4.s;
624         c.h = 2*(c1.h+c2.h+c3.h) - c4.h;
625         c.x = 2*(c1.x+c2.x+c3.x) - c4.x;
626         c.y = 2*(c1.y+c2.y+c3.y) - c4.y;
627         if (c.e == 0 ||
628             c.e > cp->size * e || c.x / c.e > BIG || c.y / c.e > BIG ||
629             c.x / c.e < -BIG || c.y / c.e < -BIG)
630                 return;
631         p(mi, c);
632         f(mi, c2, c3, c, c1, depth+1);
633         f(mi, c1, c3, c, c2, depth+1);
634         f(mi, c1, c2, c, c3, depth+1);
635 }
636 
637 ENTRYPOINT void
free_apollonian(ModeInfo * mi)638 free_apollonian (ModeInfo * mi)
639 {
640 	apollonianstruct *cp = &apollonians[MI_SCREEN(mi)];
641 
642 	if (cp->quad != NULL) {
643 		(void) free((void *) cp->quad);
644 		cp->quad = (apollonian_quadruple *) NULL;
645 	}
646 #ifdef DOFONT
647 	if (cp->gc != None) {
648 		XFreeGC(display, cp->gc);
649 		cp->gc = None;
650 	}
651 	if (cp->font != None) {
652 		XFreeFont(display, cp->font);
653 		cp->font = None;
654 	}
655 #endif
656 }
657 
658 #ifndef DEBUG
659 static void
randomize_c(int randomize,circle * c)660 randomize_c(int randomize, circle * c)
661 {
662   if (randomize / 2) {
663     double temp;
664 
665     temp = c->x;
666     c->x = c->y;
667     c->y = temp;
668   }
669   if (randomize % 2) {
670     c->x = -c->x;
671     c->y = -c->y;
672   }
673 }
674 #endif
675 
676 ENTRYPOINT void
init_apollonian(ModeInfo * mi)677 init_apollonian (ModeInfo * mi)
678 {
679 	apollonianstruct *cp;
680 	int i;
681 
682 	MI_INIT (mi, apollonians);
683 	cp = &apollonians[MI_SCREEN(mi)];
684 
685 	cp->size = MAX(MIN(MI_WIDTH(mi), MI_HEIGHT(mi)) - 1, 1);
686 	cp->offset.x = (MI_WIDTH(mi) - cp->size) / 2;
687 	cp->offset.y = (MI_HEIGHT(mi) - cp->size) / 2;
688 	cp->color_offset = NRAND(MI_NPIXELS(mi));
689 
690 #ifdef DOFONT
691 	if (cp->font == None) {
692 		if ((cp->font = getFont(MI_DISPLAY(mi))) == None)
693 			return False;
694 	}
695 #endif
696 	cp->label = label;
697 	cp->altgeom = cp->label && altgeom;
698 
699 	if (cp->quad == NULL) {
700 		cp->count = ABS(MI_COUNT(mi));
701 		if ((cp->quad = (apollonian_quadruple *) malloc(cp->count *
702 			sizeof (apollonian_quadruple))) == NULL) {
703 			return;
704 		}
705 		dquad(cp->count, cp->quad);
706 	}
707 	cp->game = NRAND(PREDEF_CIRCLE_GAMES + cp->count);
708 	cp->geometry = (cp->game && cp->altgeom) ? NRAND(3) : 0;
709 
710 	if (cp->game < PREDEF_CIRCLE_GAMES) {
711 		cp->c1 = examples[cp->game][0];
712 		cp->c2 = examples[cp->game][1];
713 		cp->c3 = examples[cp->game][2];
714 		cp->c4 = examples[cp->game][3];
715 		/* do not label non int */
716 		cp->label = cp->label && (cp->c4.e == (int) cp->c4.e);
717 	} else { /* uses results of dquad, all int */
718 		i = cp->game - PREDEF_CIRCLE_GAMES;
719 		cp->c1.e = cp->quad[i].a;
720 		cp->c2.e = cp->quad[i].b;
721 		cp->c3.e = cp->quad[i].c;
722 		cp->c4.e = cp->quad[i].d;
723 		if (cp->geometry)
724 			cquad(&(cp->c1), &(cp->c2), &(cp->c3), &(cp->c4));
725 	}
726 	cp->time = 0;
727 	MI_CLEARWINDOW(mi);
728 	if (cp->game != 0) {
729 		double q123;
730 
731 		if (cp->c1.e == 0.0 || cp->c1.e == -cp->c2.e)
732 			return;
733 		cp->c1.x = 0.0;
734 		cp->c1.y = 0.0;
735 		cp->c2.x = -(cp->c1.e + cp->c2.e) / cp->c1.e;
736 		cp->c2.y = 0;
737 		q123 = sqrt(cp->c1.e * cp->c2.e + cp->c1.e * cp->c3.e +
738 			cp->c2.e * cp->c3.e);
739 #ifdef DEBUG
740 		(void) printf("q123 = %g, ", q123);
741 #endif
742 		cp->c3.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e *
743 			(cp->c1.e + cp->c2.e));
744 		cp->c3.y = -2.0 * q123 / (cp->c1.e + cp->c2.e);
745 		q123 = -cp->c1.e - cp->c2.e + q123;
746 		cp->c4.x = (cp->c1.e * cp->c1.e - q123 * q123) / (cp->c1.e *
747 			(cp->c1.e + cp->c2.e));
748 		cp->c4.y = -2.0 * q123 / (cp->c1.e + cp->c2.e);
749 #ifdef DEBUG
750 		(void) printf("q124 = %g\n", q123);
751 		(void) printf("%g %g %g %g %g %g %g %g\n",
752 			cp->c1.x, cp->c1.y, cp->c2.x, cp->c2.y,
753 			cp->c3.x, cp->c3.y, cp->c4.x, cp->c4.y);
754 #endif
755 	}
756 #ifndef DEBUG
757 	if (LRAND() & 1) {
758 		cp->c3.y = -cp->c3.y;
759 		cp->c4.y = -cp->c4.y;
760 	}
761 	i = NRAND(4);
762 	randomize_c(i, &(cp->c1));
763 	randomize_c(i, &(cp->c2));
764 	randomize_c(i, &(cp->c3));
765 	randomize_c(i, &(cp->c4));
766 #endif
767 
768     mi->recursion_depth = -1;
769 }
770 
771 ENTRYPOINT void
draw_apollonian(ModeInfo * mi)772 draw_apollonian (ModeInfo * mi)
773 {
774 	apollonianstruct *cp;
775 
776 	if (apollonians == NULL)
777 		return;
778 	cp = &apollonians[MI_SCREEN(mi)];
779 
780 
781 	MI_IS_DRAWN(mi) = True;
782 
783 	if (cp->time < 5) {
784 		switch (cp->time) {
785 		case 0:
786 			p(mi, cp->c1);
787 			p(mi, cp->c2);
788 			p(mi, cp->c3);
789 			p(mi, cp->c4);
790 			break;
791 		case 1:
792 			f(mi, cp->c1, cp->c2, cp->c3, cp->c4, 0);
793 			break;
794 		case 2:
795 			f(mi, cp->c1, cp->c2, cp->c4, cp->c3, 0);
796 			break;
797 		case 3:
798 			f(mi, cp->c1, cp->c3, cp->c4, cp->c2, 0);
799 			break;
800 		case 4:
801 			f(mi, cp->c2, cp->c3, cp->c4, cp->c1, 0);
802 		}
803 	}
804 	if (++cp->time > MI_CYCLES(mi))
805 		init_apollonian(mi);
806 }
807 
808 XSCREENSAVER_MODULE ("Apollonian", apollonian)
809 
810 #endif /* MODE_apollonian */
811