xref: /dragonfly/contrib/gcc-4.7/gcc/resource.c (revision e4b17023)
1 /* Definitions for computing resource usage of specific insns.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3    2009, 2010 Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
38 
39 /* This structure is used to record liveness information at the targets or
40    fallthrough insns of branches.  We will most likely need the information
41    at targets again, so save them in a hash table rather than recomputing them
42    each time.  */
43 
44 struct target_info
45 {
46   int uid;			/* INSN_UID of target.  */
47   struct target_info *next;	/* Next info for same hash bucket.  */
48   HARD_REG_SET live_regs;	/* Registers live at target.  */
49   int block;			/* Basic block number containing target.  */
50   int bb_tick;			/* Generation count of basic block info.  */
51 };
52 
53 #define TARGET_HASH_PRIME 257
54 
55 /* Indicates what resources are required at the beginning of the epilogue.  */
56 static struct resources start_of_epilogue_needs;
57 
58 /* Indicates what resources are required at function end.  */
59 static struct resources end_of_function_needs;
60 
61 /* Define the hash table itself.  */
62 static struct target_info **target_hash_table = NULL;
63 
64 /* For each basic block, we maintain a generation number of its basic
65    block info, which is updated each time we move an insn from the
66    target of a jump.  This is the generation number indexed by block
67    number.  */
68 
69 static int *bb_ticks;
70 
71 /* Marks registers possibly live at the current place being scanned by
72    mark_target_live_regs.  Also used by update_live_status.  */
73 
74 static HARD_REG_SET current_live_regs;
75 
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77    Also only used by the next two functions.  */
78 
79 static HARD_REG_SET pending_dead_regs;
80 
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 				       rtx*, int, struct resources,
86 				       struct resources);
87 
88 /* Utility function called from mark_target_live_regs via note_stores.
89    It deadens any CLOBBERed registers and livens any SET registers.  */
90 
91 static void
update_live_status(rtx dest,const_rtx x,void * data ATTRIBUTE_UNUSED)92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93 {
94   int first_regno, last_regno;
95   int i;
96 
97   if (!REG_P (dest)
98       && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99     return;
100 
101   if (GET_CODE (dest) == SUBREG)
102     {
103       first_regno = subreg_regno (dest);
104       last_regno = first_regno + subreg_nregs (dest);
105 
106     }
107   else
108     {
109       first_regno = REGNO (dest);
110       last_regno = END_HARD_REGNO (dest);
111     }
112 
113   if (GET_CODE (x) == CLOBBER)
114     for (i = first_regno; i < last_regno; i++)
115       CLEAR_HARD_REG_BIT (current_live_regs, i);
116   else
117     for (i = first_regno; i < last_regno; i++)
118       {
119 	SET_HARD_REG_BIT (current_live_regs, i);
120 	CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121       }
122 }
123 
124 /* Find the number of the basic block with correct live register
125    information that starts closest to INSN.  Return -1 if we couldn't
126    find such a basic block or the beginning is more than
127    SEARCH_LIMIT instructions before INSN.  Use SEARCH_LIMIT = -1 for
128    an unlimited search.
129 
130    The delay slot filling code destroys the control-flow graph so,
131    instead of finding the basic block containing INSN, we search
132    backwards toward a BARRIER where the live register information is
133    correct.  */
134 
135 static int
find_basic_block(rtx insn,int search_limit)136 find_basic_block (rtx insn, int search_limit)
137 {
138   /* Scan backwards to the previous BARRIER.  Then see if we can find a
139      label that starts a basic block.  Return the basic block number.  */
140   for (insn = prev_nonnote_insn (insn);
141        insn && !BARRIER_P (insn) && search_limit != 0;
142        insn = prev_nonnote_insn (insn), --search_limit)
143     ;
144 
145   /* The closest BARRIER is too far away.  */
146   if (search_limit == 0)
147     return -1;
148 
149   /* The start of the function.  */
150   else if (insn == 0)
151     return ENTRY_BLOCK_PTR->next_bb->index;
152 
153   /* See if any of the upcoming CODE_LABELs start a basic block.  If we reach
154      anything other than a CODE_LABEL or note, we can't find this code.  */
155   for (insn = next_nonnote_insn (insn);
156        insn && LABEL_P (insn);
157        insn = next_nonnote_insn (insn))
158     if (BLOCK_FOR_INSN (insn))
159       return BLOCK_FOR_INSN (insn)->index;
160 
161   return -1;
162 }
163 
164 /* Similar to next_insn, but ignores insns in the delay slots of
165    an annulled branch.  */
166 
167 static rtx
next_insn_no_annul(rtx insn)168 next_insn_no_annul (rtx insn)
169 {
170   if (insn)
171     {
172       /* If INSN is an annulled branch, skip any insns from the target
173 	 of the branch.  */
174       if (JUMP_P (insn)
175 	  && INSN_ANNULLED_BRANCH_P (insn)
176 	  && NEXT_INSN (PREV_INSN (insn)) != insn)
177 	{
178 	  rtx next = NEXT_INSN (insn);
179 	  enum rtx_code code = GET_CODE (next);
180 
181 	  while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 		 && INSN_FROM_TARGET_P (next))
183 	    {
184 	      insn = next;
185 	      next = NEXT_INSN (insn);
186 	      code = GET_CODE (next);
187 	    }
188 	}
189 
190       insn = NEXT_INSN (insn);
191       if (insn && NONJUMP_INSN_P (insn)
192 	  && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 	insn = XVECEXP (PATTERN (insn), 0, 0);
194     }
195 
196   return insn;
197 }
198 
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200    which resources are referenced by the insn.  If INCLUDE_DELAYED_EFFECTS
201    is TRUE, resources used by the called routine will be included for
202    CALL_INSNs.  */
203 
204 void
mark_referenced_resources(rtx x,struct resources * res,bool include_delayed_effects)205 mark_referenced_resources (rtx x, struct resources *res,
206 			   bool include_delayed_effects)
207 {
208   enum rtx_code code = GET_CODE (x);
209   int i, j;
210   unsigned int r;
211   const char *format_ptr;
212 
213   /* Handle leaf items for which we set resource flags.  Also, special-case
214      CALL, SET and CLOBBER operators.  */
215   switch (code)
216     {
217     case CONST:
218     case CONST_INT:
219     case CONST_DOUBLE:
220     case CONST_FIXED:
221     case CONST_VECTOR:
222     case PC:
223     case SYMBOL_REF:
224     case LABEL_REF:
225       return;
226 
227     case SUBREG:
228       if (!REG_P (SUBREG_REG (x)))
229 	mark_referenced_resources (SUBREG_REG (x), res, false);
230       else
231 	{
232 	  unsigned int regno = subreg_regno (x);
233 	  unsigned int last_regno = regno + subreg_nregs (x);
234 
235 	  gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 	  for (r = regno; r < last_regno; r++)
237 	    SET_HARD_REG_BIT (res->regs, r);
238 	}
239       return;
240 
241     case REG:
242       gcc_assert (HARD_REGISTER_P (x));
243       add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244       return;
245 
246     case MEM:
247       /* If this memory shouldn't change, it really isn't referencing
248 	 memory.  */
249       if (MEM_READONLY_P (x))
250 	res->unch_memory = 1;
251       else
252 	res->memory = 1;
253       res->volatil |= MEM_VOLATILE_P (x);
254 
255       /* Mark registers used to access memory.  */
256       mark_referenced_resources (XEXP (x, 0), res, false);
257       return;
258 
259     case CC0:
260       res->cc = 1;
261       return;
262 
263     case UNSPEC_VOLATILE:
264     case TRAP_IF:
265     case ASM_INPUT:
266       /* Traditional asm's are always volatile.  */
267       res->volatil = 1;
268       break;
269 
270     case ASM_OPERANDS:
271       res->volatil |= MEM_VOLATILE_P (x);
272 
273       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274 	 We can not just fall through here since then we would be confused
275 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276 	 traditional asms unlike their normal usage.  */
277 
278       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279 	mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
280       return;
281 
282     case CALL:
283       /* The first operand will be a (MEM (xxx)) but doesn't really reference
284 	 memory.  The second operand may be referenced, though.  */
285       mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
286       mark_referenced_resources (XEXP (x, 1), res, false);
287       return;
288 
289     case SET:
290       /* Usually, the first operand of SET is set, not referenced.  But
291 	 registers used to access memory are referenced.  SET_DEST is
292 	 also referenced if it is a ZERO_EXTRACT.  */
293 
294       mark_referenced_resources (SET_SRC (x), res, false);
295 
296       x = SET_DEST (x);
297       if (GET_CODE (x) == ZERO_EXTRACT
298 	  || GET_CODE (x) == STRICT_LOW_PART)
299 	mark_referenced_resources (x, res, false);
300       else if (GET_CODE (x) == SUBREG)
301 	x = SUBREG_REG (x);
302       if (MEM_P (x))
303 	mark_referenced_resources (XEXP (x, 0), res, false);
304       return;
305 
306     case CLOBBER:
307       return;
308 
309     case CALL_INSN:
310       if (include_delayed_effects)
311 	{
312 	  /* A CALL references memory, the frame pointer if it exists, the
313 	     stack pointer, any global registers and any registers given in
314 	     USE insns immediately in front of the CALL.
315 
316 	     However, we may have moved some of the parameter loading insns
317 	     into the delay slot of this CALL.  If so, the USE's for them
318 	     don't count and should be skipped.  */
319 	  rtx insn = PREV_INSN (x);
320 	  rtx sequence = 0;
321 	  int seq_size = 0;
322 	  int i;
323 
324 	  /* If we are part of a delay slot sequence, point at the SEQUENCE.  */
325 	  if (NEXT_INSN (insn) != x)
326 	    {
327 	      sequence = PATTERN (NEXT_INSN (insn));
328 	      seq_size = XVECLEN (sequence, 0);
329 	      gcc_assert (GET_CODE (sequence) == SEQUENCE);
330 	    }
331 
332 	  res->memory = 1;
333 	  SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334 	  if (frame_pointer_needed)
335 	    {
336 	      SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
338 	      SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339 #endif
340 	    }
341 
342 	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 	    if (global_regs[i])
344 	      SET_HARD_REG_BIT (res->regs, i);
345 
346 	  /* Check for a REG_SETJMP.  If it exists, then we must
347 	     assume that this call can need any register.
348 
349 	     This is done to be more conservative about how we handle setjmp.
350 	     We assume that they both use and set all registers.  Using all
351 	     registers ensures that a register will not be considered dead
352 	     just because it crosses a setjmp call.  A register should be
353 	     considered dead only if the setjmp call returns nonzero.  */
354 	  if (find_reg_note (x, REG_SETJMP, NULL))
355 	    SET_HARD_REG_SET (res->regs);
356 
357 	  {
358 	    rtx link;
359 
360 	    for (link = CALL_INSN_FUNCTION_USAGE (x);
361 		 link;
362 		 link = XEXP (link, 1))
363 	      if (GET_CODE (XEXP (link, 0)) == USE)
364 		{
365 		  for (i = 1; i < seq_size; i++)
366 		    {
367 		      rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368 		      if (GET_CODE (slot_pat) == SET
369 			  && rtx_equal_p (SET_DEST (slot_pat),
370 					  XEXP (XEXP (link, 0), 0)))
371 			break;
372 		    }
373 		  if (i >= seq_size)
374 		    mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375 					       res, false);
376 		}
377 	  }
378 	}
379 
380       /* ... fall through to other INSN processing ...  */
381 
382     case INSN:
383     case JUMP_INSN:
384 
385 #ifdef INSN_REFERENCES_ARE_DELAYED
386       if (! include_delayed_effects
387 	  && INSN_REFERENCES_ARE_DELAYED (x))
388 	return;
389 #endif
390 
391       /* No special processing, just speed up.  */
392       mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393       return;
394 
395     default:
396       break;
397     }
398 
399   /* Process each sub-expression and flag what it needs.  */
400   format_ptr = GET_RTX_FORMAT (code);
401   for (i = 0; i < GET_RTX_LENGTH (code); i++)
402     switch (*format_ptr++)
403       {
404       case 'e':
405 	mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406 	break;
407 
408       case 'E':
409 	for (j = 0; j < XVECLEN (x, i); j++)
410 	  mark_referenced_resources (XVECEXP (x, i, j), res,
411 				     include_delayed_effects);
412 	break;
413       }
414 }
415 
416 /* A subroutine of mark_target_live_regs.  Search forward from TARGET
417    looking for registers that are set before they are used.  These are dead.
418    Stop after passing a few conditional jumps, and/or a small
419    number of unconditional branches.  */
420 
421 static rtx
find_dead_or_set_registers(rtx target,struct resources * res,rtx * jump_target,int jump_count,struct resources set,struct resources needed)422 find_dead_or_set_registers (rtx target, struct resources *res,
423 			    rtx *jump_target, int jump_count,
424 			    struct resources set, struct resources needed)
425 {
426   HARD_REG_SET scratch;
427   rtx insn, next;
428   rtx jump_insn = 0;
429   int i;
430 
431   for (insn = target; insn; insn = next)
432     {
433       rtx this_jump_insn = insn;
434 
435       next = NEXT_INSN (insn);
436 
437       /* If this instruction can throw an exception, then we don't
438 	 know where we might end up next.  That means that we have to
439 	 assume that whatever we have already marked as live really is
440 	 live.  */
441       if (can_throw_internal (insn))
442 	break;
443 
444       switch (GET_CODE (insn))
445 	{
446 	case CODE_LABEL:
447 	  /* After a label, any pending dead registers that weren't yet
448 	     used can be made dead.  */
449 	  AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450 	  AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451 	  CLEAR_HARD_REG_SET (pending_dead_regs);
452 
453 	  continue;
454 
455 	case BARRIER:
456 	case NOTE:
457 	  continue;
458 
459 	case INSN:
460 	  if (GET_CODE (PATTERN (insn)) == USE)
461 	    {
462 	      /* If INSN is a USE made by update_block, we care about the
463 		 underlying insn.  Any registers set by the underlying insn
464 		 are live since the insn is being done somewhere else.  */
465 	      if (INSN_P (XEXP (PATTERN (insn), 0)))
466 		mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 				    MARK_SRC_DEST_CALL);
468 
469 	      /* All other USE insns are to be ignored.  */
470 	      continue;
471 	    }
472 	  else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 	    continue;
474 	  else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
475 	    {
476 	      /* An unconditional jump can be used to fill the delay slot
477 		 of a call, so search for a JUMP_INSN in any position.  */
478 	      for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
479 		{
480 		  this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481 		  if (JUMP_P (this_jump_insn))
482 		    break;
483 		}
484 	    }
485 
486 	default:
487 	  break;
488 	}
489 
490       if (JUMP_P (this_jump_insn))
491 	{
492 	  if (jump_count++ < 10)
493 	    {
494 	      if (any_uncondjump_p (this_jump_insn)
495 		  || ANY_RETURN_P (PATTERN (this_jump_insn)))
496 		{
497 		  next = JUMP_LABEL (this_jump_insn);
498 		  if (ANY_RETURN_P (next))
499 		    next = NULL_RTX;
500 		  if (jump_insn == 0)
501 		    {
502 		      jump_insn = insn;
503 		      if (jump_target)
504 			*jump_target = JUMP_LABEL (this_jump_insn);
505 		    }
506 		}
507 	      else if (any_condjump_p (this_jump_insn))
508 		{
509 		  struct resources target_set, target_res;
510 		  struct resources fallthrough_res;
511 
512 		  /* We can handle conditional branches here by following
513 		     both paths, and then IOR the results of the two paths
514 		     together, which will give us registers that are dead
515 		     on both paths.  Since this is expensive, we give it
516 		     a much higher cost than unconditional branches.  The
517 		     cost was chosen so that we will follow at most 1
518 		     conditional branch.  */
519 
520 		  jump_count += 4;
521 		  if (jump_count >= 10)
522 		    break;
523 
524 		  mark_referenced_resources (insn, &needed, true);
525 
526 		  /* For an annulled branch, mark_set_resources ignores slots
527 		     filled by instructions from the target.  This is correct
528 		     if the branch is not taken.  Since we are following both
529 		     paths from the branch, we must also compute correct info
530 		     if the branch is taken.  We do this by inverting all of
531 		     the INSN_FROM_TARGET_P bits, calling mark_set_resources,
532 		     and then inverting the INSN_FROM_TARGET_P bits again.  */
533 
534 		  if (GET_CODE (PATTERN (insn)) == SEQUENCE
535 		      && INSN_ANNULLED_BRANCH_P (this_jump_insn))
536 		    {
537 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
538 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
539 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
540 
541 		      target_set = set;
542 		      mark_set_resources (insn, &target_set, 0,
543 					  MARK_SRC_DEST_CALL);
544 
545 		      for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
546 			INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
547 			  = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
548 
549 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
550 		    }
551 		  else
552 		    {
553 		      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
554 		      target_set = set;
555 		    }
556 
557 		  target_res = *res;
558 		  COPY_HARD_REG_SET (scratch, target_set.regs);
559 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
560 		  AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
561 
562 		  fallthrough_res = *res;
563 		  COPY_HARD_REG_SET (scratch, set.regs);
564 		  AND_COMPL_HARD_REG_SET (scratch, needed.regs);
565 		  AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
566 
567 		  if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
568 		    find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
569 						&target_res, 0, jump_count,
570 						target_set, needed);
571 		  find_dead_or_set_registers (next,
572 					      &fallthrough_res, 0, jump_count,
573 					      set, needed);
574 		  IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
575 		  AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
576 		  break;
577 		}
578 	      else
579 		break;
580 	    }
581 	  else
582 	    {
583 	      /* Don't try this optimization if we expired our jump count
584 		 above, since that would mean there may be an infinite loop
585 		 in the function being compiled.  */
586 	      jump_insn = 0;
587 	      break;
588 	    }
589 	}
590 
591       mark_referenced_resources (insn, &needed, true);
592       mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
593 
594       COPY_HARD_REG_SET (scratch, set.regs);
595       AND_COMPL_HARD_REG_SET (scratch, needed.regs);
596       AND_COMPL_HARD_REG_SET (res->regs, scratch);
597     }
598 
599   return jump_insn;
600 }
601 
602 /* Given X, a part of an insn, and a pointer to a `struct resource',
603    RES, indicate which resources are modified by the insn. If
604    MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
605    set by the called routine.
606 
607    If IN_DEST is nonzero, it means we are inside a SET.  Otherwise,
608    objects are being referenced instead of set.
609 
610    We never mark the insn as modifying the condition code unless it explicitly
611    SETs CC0 even though this is not totally correct.  The reason for this is
612    that we require a SET of CC0 to immediately precede the reference to CC0.
613    So if some other insn sets CC0 as a side-effect, we know it cannot affect
614    our computation and thus may be placed in a delay slot.  */
615 
616 void
mark_set_resources(rtx x,struct resources * res,int in_dest,enum mark_resource_type mark_type)617 mark_set_resources (rtx x, struct resources *res, int in_dest,
618 		    enum mark_resource_type mark_type)
619 {
620   enum rtx_code code;
621   int i, j;
622   unsigned int r;
623   const char *format_ptr;
624 
625  restart:
626 
627   code = GET_CODE (x);
628 
629   switch (code)
630     {
631     case NOTE:
632     case BARRIER:
633     case CODE_LABEL:
634     case USE:
635     case CONST_INT:
636     case CONST_DOUBLE:
637     case CONST_FIXED:
638     case CONST_VECTOR:
639     case LABEL_REF:
640     case SYMBOL_REF:
641     case CONST:
642     case PC:
643       /* These don't set any resources.  */
644       return;
645 
646     case CC0:
647       if (in_dest)
648 	res->cc = 1;
649       return;
650 
651     case CALL_INSN:
652       /* Called routine modifies the condition code, memory, any registers
653 	 that aren't saved across calls, global registers and anything
654 	 explicitly CLOBBERed immediately after the CALL_INSN.  */
655 
656       if (mark_type == MARK_SRC_DEST_CALL)
657 	{
658 	  rtx link;
659 
660 	  res->cc = res->memory = 1;
661 
662 	  IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
663 
664 	  for (link = CALL_INSN_FUNCTION_USAGE (x);
665 	       link; link = XEXP (link, 1))
666 	    if (GET_CODE (XEXP (link, 0)) == CLOBBER)
667 	      mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
668 				  MARK_SRC_DEST);
669 
670 	  /* Check for a REG_SETJMP.  If it exists, then we must
671 	     assume that this call can clobber any register.  */
672 	  if (find_reg_note (x, REG_SETJMP, NULL))
673 	    SET_HARD_REG_SET (res->regs);
674 	}
675 
676       /* ... and also what its RTL says it modifies, if anything.  */
677 
678     case JUMP_INSN:
679     case INSN:
680 
681 	/* An insn consisting of just a CLOBBER (or USE) is just for flow
682 	   and doesn't actually do anything, so we ignore it.  */
683 
684 #ifdef INSN_SETS_ARE_DELAYED
685       if (mark_type != MARK_SRC_DEST_CALL
686 	  && INSN_SETS_ARE_DELAYED (x))
687 	return;
688 #endif
689 
690       x = PATTERN (x);
691       if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
692 	goto restart;
693       return;
694 
695     case SET:
696       /* If the source of a SET is a CALL, this is actually done by
697 	 the called routine.  So only include it if we are to include the
698 	 effects of the calling routine.  */
699 
700       mark_set_resources (SET_DEST (x), res,
701 			  (mark_type == MARK_SRC_DEST_CALL
702 			   || GET_CODE (SET_SRC (x)) != CALL),
703 			  mark_type);
704 
705       mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
706       return;
707 
708     case CLOBBER:
709       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
710       return;
711 
712     case SEQUENCE:
713       {
714         rtx control = XVECEXP (x, 0, 0);
715         bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
716 
717         mark_set_resources (control, res, 0, mark_type);
718         for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
719 	  {
720 	    rtx elt = XVECEXP (x, 0, i);
721 	    if (!annul_p && INSN_FROM_TARGET_P (elt))
722 	      mark_set_resources (elt, res, 0, mark_type);
723 	  }
724       }
725       return;
726 
727     case POST_INC:
728     case PRE_INC:
729     case POST_DEC:
730     case PRE_DEC:
731       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
732       return;
733 
734     case PRE_MODIFY:
735     case POST_MODIFY:
736       mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
737       mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
738       mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
739       return;
740 
741     case SIGN_EXTRACT:
742     case ZERO_EXTRACT:
743       mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
744       mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
745       mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
746       return;
747 
748     case MEM:
749       if (in_dest)
750 	{
751 	  res->memory = 1;
752 	  res->unch_memory |= MEM_READONLY_P (x);
753 	  res->volatil |= MEM_VOLATILE_P (x);
754 	}
755 
756       mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
757       return;
758 
759     case SUBREG:
760       if (in_dest)
761 	{
762 	  if (!REG_P (SUBREG_REG (x)))
763 	    mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
764 	  else
765 	    {
766 	      unsigned int regno = subreg_regno (x);
767 	      unsigned int last_regno = regno + subreg_nregs (x);
768 
769 	      gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
770 	      for (r = regno; r < last_regno; r++)
771 		SET_HARD_REG_BIT (res->regs, r);
772 	    }
773 	}
774       return;
775 
776     case REG:
777       if (in_dest)
778 	{
779 	  gcc_assert (HARD_REGISTER_P (x));
780 	  add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
781 	}
782       return;
783 
784     case UNSPEC_VOLATILE:
785     case ASM_INPUT:
786       /* Traditional asm's are always volatile.  */
787       res->volatil = 1;
788       return;
789 
790     case TRAP_IF:
791       res->volatil = 1;
792       break;
793 
794     case ASM_OPERANDS:
795       res->volatil |= MEM_VOLATILE_P (x);
796 
797       /* For all ASM_OPERANDS, we must traverse the vector of input operands.
798 	 We can not just fall through here since then we would be confused
799 	 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
800 	 traditional asms unlike their normal usage.  */
801 
802       for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
803 	mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
804 			    MARK_SRC_DEST);
805       return;
806 
807     default:
808       break;
809     }
810 
811   /* Process each sub-expression and flag what it needs.  */
812   format_ptr = GET_RTX_FORMAT (code);
813   for (i = 0; i < GET_RTX_LENGTH (code); i++)
814     switch (*format_ptr++)
815       {
816       case 'e':
817 	mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
818 	break;
819 
820       case 'E':
821 	for (j = 0; j < XVECLEN (x, i); j++)
822 	  mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
823 	break;
824       }
825 }
826 
827 /* Return TRUE if INSN is a return, possibly with a filled delay slot.  */
828 
829 static bool
return_insn_p(const_rtx insn)830 return_insn_p (const_rtx insn)
831 {
832   if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
833     return true;
834 
835   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
836     return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
837 
838   return false;
839 }
840 
841 /* Set the resources that are live at TARGET.
842 
843    If TARGET is zero, we refer to the end of the current function and can
844    return our precomputed value.
845 
846    Otherwise, we try to find out what is live by consulting the basic block
847    information.  This is tricky, because we must consider the actions of
848    reload and jump optimization, which occur after the basic block information
849    has been computed.
850 
851    Accordingly, we proceed as follows::
852 
853    We find the previous BARRIER and look at all immediately following labels
854    (with no intervening active insns) to see if any of them start a basic
855    block.  If we hit the start of the function first, we use block 0.
856 
857    Once we have found a basic block and a corresponding first insn, we can
858    accurately compute the live status (by starting at a label following a
859    BARRIER, we are immune to actions taken by reload and jump.)  Then we
860    scan all insns between that point and our target.  For each CLOBBER (or
861    for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
862    registers are dead.  For a SET, mark them as live.
863 
864    We have to be careful when using REG_DEAD notes because they are not
865    updated by such things as find_equiv_reg.  So keep track of registers
866    marked as dead that haven't been assigned to, and mark them dead at the
867    next CODE_LABEL since reload and jump won't propagate values across labels.
868 
869    If we cannot find the start of a basic block (should be a very rare
870    case, if it can happen at all), mark everything as potentially live.
871 
872    Next, scan forward from TARGET looking for things set or clobbered
873    before they are used.  These are not live.
874 
875    Because we can be called many times on the same target, save our results
876    in a hash table indexed by INSN_UID.  This is only done if the function
877    init_resource_info () was invoked before we are called.  */
878 
879 void
mark_target_live_regs(rtx insns,rtx target,struct resources * res)880 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
881 {
882   int b = -1;
883   unsigned int i;
884   struct target_info *tinfo = NULL;
885   rtx insn;
886   rtx jump_insn = 0;
887   rtx jump_target;
888   HARD_REG_SET scratch;
889   struct resources set, needed;
890 
891   /* Handle end of function.  */
892   if (target == 0 || ANY_RETURN_P (target))
893     {
894       *res = end_of_function_needs;
895       return;
896     }
897 
898   /* Handle return insn.  */
899   else if (return_insn_p (target))
900     {
901       *res = end_of_function_needs;
902       mark_referenced_resources (target, res, false);
903       return;
904     }
905 
906   /* We have to assume memory is needed, but the CC isn't.  */
907   res->memory = 1;
908   res->volatil = res->unch_memory = 0;
909   res->cc = 0;
910 
911   /* See if we have computed this value already.  */
912   if (target_hash_table != NULL)
913     {
914       for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
915 	   tinfo; tinfo = tinfo->next)
916 	if (tinfo->uid == INSN_UID (target))
917 	  break;
918 
919       /* Start by getting the basic block number.  If we have saved
920 	 information, we can get it from there unless the insn at the
921 	 start of the basic block has been deleted.  */
922       if (tinfo && tinfo->block != -1
923 	  && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
924 	b = tinfo->block;
925     }
926 
927   if (b == -1)
928     b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
929 
930   if (target_hash_table != NULL)
931     {
932       if (tinfo)
933 	{
934 	  /* If the information is up-to-date, use it.  Otherwise, we will
935 	     update it below.  */
936 	  if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
937 	    {
938 	      COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
939 	      return;
940 	    }
941 	}
942       else
943 	{
944 	  /* Allocate a place to put our results and chain it into the
945 	     hash table.  */
946 	  tinfo = XNEW (struct target_info);
947 	  tinfo->uid = INSN_UID (target);
948 	  tinfo->block = b;
949 	  tinfo->next
950 	    = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
951 	  target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
952 	}
953     }
954 
955   CLEAR_HARD_REG_SET (pending_dead_regs);
956 
957   /* If we found a basic block, get the live registers from it and update
958      them with anything set or killed between its start and the insn before
959      TARGET; this custom life analysis is really about registers so we need
960      to use the LR problem.  Otherwise, we must assume everything is live.  */
961   if (b != -1)
962     {
963       regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
964       rtx start_insn, stop_insn;
965 
966       /* Compute hard regs live at start of block.  */
967       REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
968 
969       /* Get starting and ending insn, handling the case where each might
970 	 be a SEQUENCE.  */
971       start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
972 		    insns : BB_HEAD (BASIC_BLOCK (b)));
973       stop_insn = target;
974 
975       if (NONJUMP_INSN_P (start_insn)
976 	  && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
977 	start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
978 
979       if (NONJUMP_INSN_P (stop_insn)
980 	  && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
981 	stop_insn = next_insn (PREV_INSN (stop_insn));
982 
983       for (insn = start_insn; insn != stop_insn;
984 	   insn = next_insn_no_annul (insn))
985 	{
986 	  rtx link;
987 	  rtx real_insn = insn;
988 	  enum rtx_code code = GET_CODE (insn);
989 
990 	  if (DEBUG_INSN_P (insn))
991 	    continue;
992 
993 	  /* If this insn is from the target of a branch, it isn't going to
994 	     be used in the sequel.  If it is used in both cases, this
995 	     test will not be true.  */
996 	  if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
997 	      && INSN_FROM_TARGET_P (insn))
998 	    continue;
999 
1000 	  /* If this insn is a USE made by update_block, we care about the
1001 	     underlying insn.  */
1002 	  if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1003 	      && INSN_P (XEXP (PATTERN (insn), 0)))
1004 	      real_insn = XEXP (PATTERN (insn), 0);
1005 
1006 	  if (CALL_P (real_insn))
1007 	    {
1008 	      /* CALL clobbers all call-used regs that aren't fixed except
1009 		 sp, ap, and fp.  Do this before setting the result of the
1010 		 call live.  */
1011 	      AND_COMPL_HARD_REG_SET (current_live_regs,
1012 				      regs_invalidated_by_call);
1013 
1014 	      /* A CALL_INSN sets any global register live, since it may
1015 		 have been modified by the call.  */
1016 	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1017 		if (global_regs[i])
1018 		  SET_HARD_REG_BIT (current_live_regs, i);
1019 	    }
1020 
1021 	  /* Mark anything killed in an insn to be deadened at the next
1022 	     label.  Ignore USE insns; the only REG_DEAD notes will be for
1023 	     parameters.  But they might be early.  A CALL_INSN will usually
1024 	     clobber registers used for parameters.  It isn't worth bothering
1025 	     with the unlikely case when it won't.  */
1026 	  if ((NONJUMP_INSN_P (real_insn)
1027 	       && GET_CODE (PATTERN (real_insn)) != USE
1028 	       && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1029 	      || JUMP_P (real_insn)
1030 	      || CALL_P (real_insn))
1031 	    {
1032 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1033 		if (REG_NOTE_KIND (link) == REG_DEAD
1034 		    && REG_P (XEXP (link, 0))
1035 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1036 		  add_to_hard_reg_set (&pending_dead_regs,
1037 				      GET_MODE (XEXP (link, 0)),
1038 				      REGNO (XEXP (link, 0)));
1039 
1040 	      note_stores (PATTERN (real_insn), update_live_status, NULL);
1041 
1042 	      /* If any registers were unused after this insn, kill them.
1043 		 These notes will always be accurate.  */
1044 	      for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1045 		if (REG_NOTE_KIND (link) == REG_UNUSED
1046 		    && REG_P (XEXP (link, 0))
1047 		    && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1048 		  remove_from_hard_reg_set (&current_live_regs,
1049 					   GET_MODE (XEXP (link, 0)),
1050 					   REGNO (XEXP (link, 0)));
1051 	    }
1052 
1053 	  else if (LABEL_P (real_insn))
1054 	    {
1055 	      basic_block bb;
1056 
1057 	      /* A label clobbers the pending dead registers since neither
1058 		 reload nor jump will propagate a value across a label.  */
1059 	      AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1060 	      CLEAR_HARD_REG_SET (pending_dead_regs);
1061 
1062 	      /* We must conservatively assume that all registers that used
1063 		 to be live here still are.  The fallthrough edge may have
1064 		 left a live register uninitialized.  */
1065 	      bb = BLOCK_FOR_INSN (real_insn);
1066 	      if (bb)
1067 		{
1068 		  HARD_REG_SET extra_live;
1069 
1070 		  REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1071 		  IOR_HARD_REG_SET (current_live_regs, extra_live);
1072 		}
1073 	    }
1074 
1075 	  /* The beginning of the epilogue corresponds to the end of the
1076 	     RTL chain when there are no epilogue insns.  Certain resources
1077 	     are implicitly required at that point.  */
1078 	  else if (NOTE_P (real_insn)
1079 		   && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1080 	    IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1081 	}
1082 
1083       COPY_HARD_REG_SET (res->regs, current_live_regs);
1084       if (tinfo != NULL)
1085 	{
1086 	  tinfo->block = b;
1087 	  tinfo->bb_tick = bb_ticks[b];
1088 	}
1089     }
1090   else
1091     /* We didn't find the start of a basic block.  Assume everything
1092        in use.  This should happen only extremely rarely.  */
1093     SET_HARD_REG_SET (res->regs);
1094 
1095   CLEAR_RESOURCE (&set);
1096   CLEAR_RESOURCE (&needed);
1097 
1098   jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1099 					  set, needed);
1100 
1101   /* If we hit an unconditional branch, we have another way of finding out
1102      what is live: we can see what is live at the branch target and include
1103      anything used but not set before the branch.  We add the live
1104      resources found using the test below to those found until now.  */
1105 
1106   if (jump_insn)
1107     {
1108       struct resources new_resources;
1109       rtx stop_insn = next_active_insn (jump_insn);
1110 
1111       if (!ANY_RETURN_P (jump_target))
1112 	jump_target = next_active_insn (jump_target);
1113       mark_target_live_regs (insns, jump_target, &new_resources);
1114       CLEAR_RESOURCE (&set);
1115       CLEAR_RESOURCE (&needed);
1116 
1117       /* Include JUMP_INSN in the needed registers.  */
1118       for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1119 	{
1120 	  mark_referenced_resources (insn, &needed, true);
1121 
1122 	  COPY_HARD_REG_SET (scratch, needed.regs);
1123 	  AND_COMPL_HARD_REG_SET (scratch, set.regs);
1124 	  IOR_HARD_REG_SET (new_resources.regs, scratch);
1125 
1126 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1127 	}
1128 
1129       IOR_HARD_REG_SET (res->regs, new_resources.regs);
1130     }
1131 
1132   if (tinfo != NULL)
1133     {
1134       COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1135     }
1136 }
1137 
1138 /* Initialize the resources required by mark_target_live_regs ().
1139    This should be invoked before the first call to mark_target_live_regs.  */
1140 
1141 void
init_resource_info(rtx epilogue_insn)1142 init_resource_info (rtx epilogue_insn)
1143 {
1144   int i;
1145   basic_block bb;
1146 
1147   /* Indicate what resources are required to be valid at the end of the current
1148      function.  The condition code never is and memory always is.
1149      The stack pointer is needed unless EXIT_IGNORE_STACK is true
1150      and there is an epilogue that restores the original stack pointer
1151      from the frame pointer.  Registers used to return the function value
1152      are needed.  Registers holding global variables are needed.  */
1153 
1154   end_of_function_needs.cc = 0;
1155   end_of_function_needs.memory = 1;
1156   end_of_function_needs.unch_memory = 0;
1157   CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1158 
1159   if (frame_pointer_needed)
1160     {
1161       SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1162 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1163       SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1164 #endif
1165     }
1166   if (!(frame_pointer_needed
1167 	&& EXIT_IGNORE_STACK
1168 	&& epilogue_insn
1169 	&& !current_function_sp_is_unchanging))
1170     SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1171 
1172   if (crtl->return_rtx != 0)
1173     mark_referenced_resources (crtl->return_rtx,
1174 			       &end_of_function_needs, true);
1175 
1176   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1177     if (global_regs[i]
1178 #ifdef EPILOGUE_USES
1179 	|| EPILOGUE_USES (i)
1180 #endif
1181 	)
1182       SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1183 
1184   /* The registers required to be live at the end of the function are
1185      represented in the flow information as being dead just prior to
1186      reaching the end of the function.  For example, the return of a value
1187      might be represented by a USE of the return register immediately
1188      followed by an unconditional jump to the return label where the
1189      return label is the end of the RTL chain.  The end of the RTL chain
1190      is then taken to mean that the return register is live.
1191 
1192      This sequence is no longer maintained when epilogue instructions are
1193      added to the RTL chain.  To reconstruct the original meaning, the
1194      start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1195      point where these registers become live (start_of_epilogue_needs).
1196      If epilogue instructions are present, the registers set by those
1197      instructions won't have been processed by flow.  Thus, those
1198      registers are additionally required at the end of the RTL chain
1199      (end_of_function_needs).  */
1200 
1201   start_of_epilogue_needs = end_of_function_needs;
1202 
1203   while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1204     {
1205       mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1206 			  MARK_SRC_DEST_CALL);
1207       if (return_insn_p (epilogue_insn))
1208 	break;
1209     }
1210 
1211   /* Allocate and initialize the tables used by mark_target_live_regs.  */
1212   target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1213   bb_ticks = XCNEWVEC (int, last_basic_block);
1214 
1215   /* Set the BLOCK_FOR_INSN of each label that starts a basic block.  */
1216   FOR_EACH_BB (bb)
1217     if (LABEL_P (BB_HEAD (bb)))
1218       BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1219 }
1220 
1221 /* Free up the resources allocated to mark_target_live_regs ().  This
1222    should be invoked after the last call to mark_target_live_regs ().  */
1223 
1224 void
free_resource_info(void)1225 free_resource_info (void)
1226 {
1227   basic_block bb;
1228 
1229   if (target_hash_table != NULL)
1230     {
1231       int i;
1232 
1233       for (i = 0; i < TARGET_HASH_PRIME; ++i)
1234 	{
1235 	  struct target_info *ti = target_hash_table[i];
1236 
1237 	  while (ti)
1238 	    {
1239 	      struct target_info *next = ti->next;
1240 	      free (ti);
1241 	      ti = next;
1242 	    }
1243 	}
1244 
1245       free (target_hash_table);
1246       target_hash_table = NULL;
1247     }
1248 
1249   if (bb_ticks != NULL)
1250     {
1251       free (bb_ticks);
1252       bb_ticks = NULL;
1253     }
1254 
1255   FOR_EACH_BB (bb)
1256     if (LABEL_P (BB_HEAD (bb)))
1257       BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1258 }
1259 
1260 /* Clear any hashed information that we have stored for INSN.  */
1261 
1262 void
clear_hashed_info_for_insn(rtx insn)1263 clear_hashed_info_for_insn (rtx insn)
1264 {
1265   struct target_info *tinfo;
1266 
1267   if (target_hash_table != NULL)
1268     {
1269       for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1270 	   tinfo; tinfo = tinfo->next)
1271 	if (tinfo->uid == INSN_UID (insn))
1272 	  break;
1273 
1274       if (tinfo)
1275 	tinfo->block = -1;
1276     }
1277 }
1278 
1279 /* Increment the tick count for the basic block that contains INSN.  */
1280 
1281 void
incr_ticks_for_insn(rtx insn)1282 incr_ticks_for_insn (rtx insn)
1283 {
1284   int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1285 
1286   if (b != -1)
1287     bb_ticks[b]++;
1288 }
1289 
1290 /* Add TRIAL to the set of resources used at the end of the current
1291    function.  */
1292 void
mark_end_of_function_resources(rtx trial,bool include_delayed_effects)1293 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1294 {
1295   mark_referenced_resources (trial, &end_of_function_needs,
1296 			     include_delayed_effects);
1297 }
1298