1 /* Functions to determine/estimate number of iterations of a loop.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "intl.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "tree-pass.h"
36 #include "ggc.h"
37 #include "tree-chrec.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-data-ref.h"
40 #include "params.h"
41 #include "flags.h"
42 #include "diagnostic-core.h"
43 #include "tree-inline.h"
44 #include "gmp.h"
45 
46 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
47 
48 /* The maximum number of dominator BBs we search for conditions
49    of loop header copies we use for simplifying a conditional
50    expression.  */
51 #define MAX_DOMINATORS_TO_WALK 8
52 
53 /*
54 
55    Analysis of number of iterations of an affine exit test.
56 
57 */
58 
59 /* Bounds on some value, BELOW <= X <= UP.  */
60 
61 typedef struct
62 {
63   mpz_t below, up;
64 } bounds;
65 
66 
67 /* Splits expression EXPR to a variable part VAR and constant OFFSET.  */
68 
69 static void
split_to_var_and_offset(tree expr,tree * var,mpz_t offset)70 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
71 {
72   tree type = TREE_TYPE (expr);
73   tree op0, op1;
74   double_int off;
75   bool negate = false;
76 
77   *var = expr;
78   mpz_set_ui (offset, 0);
79 
80   switch (TREE_CODE (expr))
81     {
82     case MINUS_EXPR:
83       negate = true;
84       /* Fallthru.  */
85 
86     case PLUS_EXPR:
87     case POINTER_PLUS_EXPR:
88       op0 = TREE_OPERAND (expr, 0);
89       op1 = TREE_OPERAND (expr, 1);
90 
91       if (TREE_CODE (op1) != INTEGER_CST)
92 	break;
93 
94       *var = op0;
95       /* Always sign extend the offset.  */
96       off = tree_to_double_int (op1);
97       off = double_int_sext (off, TYPE_PRECISION (type));
98       mpz_set_double_int (offset, off, false);
99       if (negate)
100 	mpz_neg (offset, offset);
101       break;
102 
103     case INTEGER_CST:
104       *var = build_int_cst_type (type, 0);
105       off = tree_to_double_int (expr);
106       mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
107       break;
108 
109     default:
110       break;
111     }
112 }
113 
114 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
115    in TYPE to MIN and MAX.  */
116 
117 static void
determine_value_range(tree type,tree var,mpz_t off,mpz_t min,mpz_t max)118 determine_value_range (tree type, tree var, mpz_t off,
119 		       mpz_t min, mpz_t max)
120 {
121   /* If the expression is a constant, we know its value exactly.  */
122   if (integer_zerop (var))
123     {
124       mpz_set (min, off);
125       mpz_set (max, off);
126       return;
127     }
128 
129   /* If the computation may wrap, we know nothing about the value, except for
130      the range of the type.  */
131   get_type_static_bounds (type, min, max);
132   if (!nowrap_type_p (type))
133     return;
134 
135   /* Since the addition of OFF does not wrap, if OFF is positive, then we may
136      add it to MIN, otherwise to MAX.  */
137   if (mpz_sgn (off) < 0)
138     mpz_add (max, max, off);
139   else
140     mpz_add (min, min, off);
141 }
142 
143 /* Stores the bounds on the difference of the values of the expressions
144    (var + X) and (var + Y), computed in TYPE, to BNDS.  */
145 
146 static void
bound_difference_of_offsetted_base(tree type,mpz_t x,mpz_t y,bounds * bnds)147 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
148 				    bounds *bnds)
149 {
150   int rel = mpz_cmp (x, y);
151   bool may_wrap = !nowrap_type_p (type);
152   mpz_t m;
153 
154   /* If X == Y, then the expressions are always equal.
155      If X > Y, there are the following possibilities:
156        a) neither of var + X and var + Y overflow or underflow, or both of
157 	  them do.  Then their difference is X - Y.
158        b) var + X overflows, and var + Y does not.  Then the values of the
159 	  expressions are var + X - M and var + Y, where M is the range of
160 	  the type, and their difference is X - Y - M.
161        c) var + Y underflows and var + X does not.  Their difference again
162 	  is M - X + Y.
163        Therefore, if the arithmetics in type does not overflow, then the
164        bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
165      Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
166      (X - Y, X - Y + M).  */
167 
168   if (rel == 0)
169     {
170       mpz_set_ui (bnds->below, 0);
171       mpz_set_ui (bnds->up, 0);
172       return;
173     }
174 
175   mpz_init (m);
176   mpz_set_double_int (m, double_int_mask (TYPE_PRECISION (type)), true);
177   mpz_add_ui (m, m, 1);
178   mpz_sub (bnds->up, x, y);
179   mpz_set (bnds->below, bnds->up);
180 
181   if (may_wrap)
182     {
183       if (rel > 0)
184 	mpz_sub (bnds->below, bnds->below, m);
185       else
186 	mpz_add (bnds->up, bnds->up, m);
187     }
188 
189   mpz_clear (m);
190 }
191 
192 /* From condition C0 CMP C1 derives information regarding the
193    difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
194    and stores it to BNDS.  */
195 
196 static void
refine_bounds_using_guard(tree type,tree varx,mpz_t offx,tree vary,mpz_t offy,tree c0,enum tree_code cmp,tree c1,bounds * bnds)197 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
198 			   tree vary, mpz_t offy,
199 			   tree c0, enum tree_code cmp, tree c1,
200 			   bounds *bnds)
201 {
202   tree varc0, varc1, tmp, ctype;
203   mpz_t offc0, offc1, loffx, loffy, bnd;
204   bool lbound = false;
205   bool no_wrap = nowrap_type_p (type);
206   bool x_ok, y_ok;
207 
208   switch (cmp)
209     {
210     case LT_EXPR:
211     case LE_EXPR:
212     case GT_EXPR:
213     case GE_EXPR:
214       STRIP_SIGN_NOPS (c0);
215       STRIP_SIGN_NOPS (c1);
216       ctype = TREE_TYPE (c0);
217       if (!useless_type_conversion_p (ctype, type))
218 	return;
219 
220       break;
221 
222     case EQ_EXPR:
223       /* We could derive quite precise information from EQ_EXPR, however, such
224 	 a guard is unlikely to appear, so we do not bother with handling
225 	 it.  */
226       return;
227 
228     case NE_EXPR:
229       /* NE_EXPR comparisons do not contain much of useful information, except for
230 	 special case of comparing with the bounds of the type.  */
231       if (TREE_CODE (c1) != INTEGER_CST
232 	  || !INTEGRAL_TYPE_P (type))
233 	return;
234 
235       /* Ensure that the condition speaks about an expression in the same type
236 	 as X and Y.  */
237       ctype = TREE_TYPE (c0);
238       if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
239 	return;
240       c0 = fold_convert (type, c0);
241       c1 = fold_convert (type, c1);
242 
243       if (TYPE_MIN_VALUE (type)
244 	  && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
245 	{
246 	  cmp = GT_EXPR;
247 	  break;
248 	}
249       if (TYPE_MAX_VALUE (type)
250 	  && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
251 	{
252 	  cmp = LT_EXPR;
253 	  break;
254 	}
255 
256       return;
257     default:
258       return;
259     }
260 
261   mpz_init (offc0);
262   mpz_init (offc1);
263   split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
264   split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
265 
266   /* We are only interested in comparisons of expressions based on VARX and
267      VARY.  TODO -- we might also be able to derive some bounds from
268      expressions containing just one of the variables.  */
269 
270   if (operand_equal_p (varx, varc1, 0))
271     {
272       tmp = varc0; varc0 = varc1; varc1 = tmp;
273       mpz_swap (offc0, offc1);
274       cmp = swap_tree_comparison (cmp);
275     }
276 
277   if (!operand_equal_p (varx, varc0, 0)
278       || !operand_equal_p (vary, varc1, 0))
279     goto end;
280 
281   mpz_init_set (loffx, offx);
282   mpz_init_set (loffy, offy);
283 
284   if (cmp == GT_EXPR || cmp == GE_EXPR)
285     {
286       tmp = varx; varx = vary; vary = tmp;
287       mpz_swap (offc0, offc1);
288       mpz_swap (loffx, loffy);
289       cmp = swap_tree_comparison (cmp);
290       lbound = true;
291     }
292 
293   /* If there is no overflow, the condition implies that
294 
295      (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
296 
297      The overflows and underflows may complicate things a bit; each
298      overflow decreases the appropriate offset by M, and underflow
299      increases it by M.  The above inequality would not necessarily be
300      true if
301 
302      -- VARX + OFFX underflows and VARX + OFFC0 does not, or
303 	VARX + OFFC0 overflows, but VARX + OFFX does not.
304 	This may only happen if OFFX < OFFC0.
305      -- VARY + OFFY overflows and VARY + OFFC1 does not, or
306 	VARY + OFFC1 underflows and VARY + OFFY does not.
307 	This may only happen if OFFY > OFFC1.  */
308 
309   if (no_wrap)
310     {
311       x_ok = true;
312       y_ok = true;
313     }
314   else
315     {
316       x_ok = (integer_zerop (varx)
317 	      || mpz_cmp (loffx, offc0) >= 0);
318       y_ok = (integer_zerop (vary)
319 	      || mpz_cmp (loffy, offc1) <= 0);
320     }
321 
322   if (x_ok && y_ok)
323     {
324       mpz_init (bnd);
325       mpz_sub (bnd, loffx, loffy);
326       mpz_add (bnd, bnd, offc1);
327       mpz_sub (bnd, bnd, offc0);
328 
329       if (cmp == LT_EXPR)
330 	mpz_sub_ui (bnd, bnd, 1);
331 
332       if (lbound)
333 	{
334 	  mpz_neg (bnd, bnd);
335 	  if (mpz_cmp (bnds->below, bnd) < 0)
336 	    mpz_set (bnds->below, bnd);
337 	}
338       else
339 	{
340 	  if (mpz_cmp (bnd, bnds->up) < 0)
341 	    mpz_set (bnds->up, bnd);
342 	}
343       mpz_clear (bnd);
344     }
345 
346   mpz_clear (loffx);
347   mpz_clear (loffy);
348 end:
349   mpz_clear (offc0);
350   mpz_clear (offc1);
351 }
352 
353 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
354    The subtraction is considered to be performed in arbitrary precision,
355    without overflows.
356 
357    We do not attempt to be too clever regarding the value ranges of X and
358    Y; most of the time, they are just integers or ssa names offsetted by
359    integer.  However, we try to use the information contained in the
360    comparisons before the loop (usually created by loop header copying).  */
361 
362 static void
bound_difference(struct loop * loop,tree x,tree y,bounds * bnds)363 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
364 {
365   tree type = TREE_TYPE (x);
366   tree varx, vary;
367   mpz_t offx, offy;
368   mpz_t minx, maxx, miny, maxy;
369   int cnt = 0;
370   edge e;
371   basic_block bb;
372   tree c0, c1;
373   gimple cond;
374   enum tree_code cmp;
375 
376   /* Get rid of unnecessary casts, but preserve the value of
377      the expressions.  */
378   STRIP_SIGN_NOPS (x);
379   STRIP_SIGN_NOPS (y);
380 
381   mpz_init (bnds->below);
382   mpz_init (bnds->up);
383   mpz_init (offx);
384   mpz_init (offy);
385   split_to_var_and_offset (x, &varx, offx);
386   split_to_var_and_offset (y, &vary, offy);
387 
388   if (!integer_zerop (varx)
389       && operand_equal_p (varx, vary, 0))
390     {
391       /* Special case VARX == VARY -- we just need to compare the
392          offsets.  The matters are a bit more complicated in the
393 	 case addition of offsets may wrap.  */
394       bound_difference_of_offsetted_base (type, offx, offy, bnds);
395     }
396   else
397     {
398       /* Otherwise, use the value ranges to determine the initial
399 	 estimates on below and up.  */
400       mpz_init (minx);
401       mpz_init (maxx);
402       mpz_init (miny);
403       mpz_init (maxy);
404       determine_value_range (type, varx, offx, minx, maxx);
405       determine_value_range (type, vary, offy, miny, maxy);
406 
407       mpz_sub (bnds->below, minx, maxy);
408       mpz_sub (bnds->up, maxx, miny);
409       mpz_clear (minx);
410       mpz_clear (maxx);
411       mpz_clear (miny);
412       mpz_clear (maxy);
413     }
414 
415   /* If both X and Y are constants, we cannot get any more precise.  */
416   if (integer_zerop (varx) && integer_zerop (vary))
417     goto end;
418 
419   /* Now walk the dominators of the loop header and use the entry
420      guards to refine the estimates.  */
421   for (bb = loop->header;
422        bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
423        bb = get_immediate_dominator (CDI_DOMINATORS, bb))
424     {
425       if (!single_pred_p (bb))
426 	continue;
427       e = single_pred_edge (bb);
428 
429       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
430 	continue;
431 
432       cond = last_stmt (e->src);
433       c0 = gimple_cond_lhs (cond);
434       cmp = gimple_cond_code (cond);
435       c1 = gimple_cond_rhs (cond);
436 
437       if (e->flags & EDGE_FALSE_VALUE)
438 	cmp = invert_tree_comparison (cmp, false);
439 
440       refine_bounds_using_guard (type, varx, offx, vary, offy,
441 				 c0, cmp, c1, bnds);
442       ++cnt;
443     }
444 
445 end:
446   mpz_clear (offx);
447   mpz_clear (offy);
448 }
449 
450 /* Update the bounds in BNDS that restrict the value of X to the bounds
451    that restrict the value of X + DELTA.  X can be obtained as a
452    difference of two values in TYPE.  */
453 
454 static void
bounds_add(bounds * bnds,double_int delta,tree type)455 bounds_add (bounds *bnds, double_int delta, tree type)
456 {
457   mpz_t mdelta, max;
458 
459   mpz_init (mdelta);
460   mpz_set_double_int (mdelta, delta, false);
461 
462   mpz_init (max);
463   mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
464 
465   mpz_add (bnds->up, bnds->up, mdelta);
466   mpz_add (bnds->below, bnds->below, mdelta);
467 
468   if (mpz_cmp (bnds->up, max) > 0)
469     mpz_set (bnds->up, max);
470 
471   mpz_neg (max, max);
472   if (mpz_cmp (bnds->below, max) < 0)
473     mpz_set (bnds->below, max);
474 
475   mpz_clear (mdelta);
476   mpz_clear (max);
477 }
478 
479 /* Update the bounds in BNDS that restrict the value of X to the bounds
480    that restrict the value of -X.  */
481 
482 static void
bounds_negate(bounds * bnds)483 bounds_negate (bounds *bnds)
484 {
485   mpz_t tmp;
486 
487   mpz_init_set (tmp, bnds->up);
488   mpz_neg (bnds->up, bnds->below);
489   mpz_neg (bnds->below, tmp);
490   mpz_clear (tmp);
491 }
492 
493 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1.  */
494 
495 static tree
inverse(tree x,tree mask)496 inverse (tree x, tree mask)
497 {
498   tree type = TREE_TYPE (x);
499   tree rslt;
500   unsigned ctr = tree_floor_log2 (mask);
501 
502   if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
503     {
504       unsigned HOST_WIDE_INT ix;
505       unsigned HOST_WIDE_INT imask;
506       unsigned HOST_WIDE_INT irslt = 1;
507 
508       gcc_assert (cst_and_fits_in_hwi (x));
509       gcc_assert (cst_and_fits_in_hwi (mask));
510 
511       ix = int_cst_value (x);
512       imask = int_cst_value (mask);
513 
514       for (; ctr; ctr--)
515 	{
516 	  irslt *= ix;
517 	  ix *= ix;
518 	}
519       irslt &= imask;
520 
521       rslt = build_int_cst_type (type, irslt);
522     }
523   else
524     {
525       rslt = build_int_cst (type, 1);
526       for (; ctr; ctr--)
527 	{
528 	  rslt = int_const_binop (MULT_EXPR, rslt, x);
529 	  x = int_const_binop (MULT_EXPR, x, x);
530 	}
531       rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
532     }
533 
534   return rslt;
535 }
536 
537 /* Derives the upper bound BND on the number of executions of loop with exit
538    condition S * i <> C.  If NO_OVERFLOW is true, then the control variable of
539    the loop does not overflow.  EXIT_MUST_BE_TAKEN is true if we are guaranteed
540    that the loop ends through this exit, i.e., the induction variable ever
541    reaches the value of C.
542 
543    The value C is equal to final - base, where final and base are the final and
544    initial value of the actual induction variable in the analysed loop.  BNDS
545    bounds the value of this difference when computed in signed type with
546    unbounded range, while the computation of C is performed in an unsigned
547    type with the range matching the range of the type of the induction variable.
548    In particular, BNDS.up contains an upper bound on C in the following cases:
549    -- if the iv must reach its final value without overflow, i.e., if
550       NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
551    -- if final >= base, which we know to hold when BNDS.below >= 0.  */
552 
553 static void
number_of_iterations_ne_max(mpz_t bnd,bool no_overflow,tree c,tree s,bounds * bnds,bool exit_must_be_taken)554 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
555 			     bounds *bnds, bool exit_must_be_taken)
556 {
557   double_int max;
558   mpz_t d;
559   bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
560 		       || mpz_sgn (bnds->below) >= 0);
561 
562   if (multiple_of_p (TREE_TYPE (c), c, s))
563     {
564       /* If C is an exact multiple of S, then its value will be reached before
565 	 the induction variable overflows (unless the loop is exited in some
566 	 other way before).  Note that the actual induction variable in the
567 	 loop (which ranges from base to final instead of from 0 to C) may
568 	 overflow, in which case BNDS.up will not be giving a correct upper
569 	 bound on C; thus, BNDS_U_VALID had to be computed in advance.  */
570       no_overflow = true;
571       exit_must_be_taken = true;
572     }
573 
574   /* If the induction variable can overflow, the number of iterations is at
575      most the period of the control variable (or infinite, but in that case
576      the whole # of iterations analysis will fail).  */
577   if (!no_overflow)
578     {
579       max = double_int_mask (TYPE_PRECISION (TREE_TYPE (c))
580 			     - tree_low_cst (num_ending_zeros (s), 1));
581       mpz_set_double_int (bnd, max, true);
582       return;
583     }
584 
585   /* Now we know that the induction variable does not overflow, so the loop
586      iterates at most (range of type / S) times.  */
587   mpz_set_double_int (bnd, double_int_mask (TYPE_PRECISION (TREE_TYPE (c))),
588 		      true);
589 
590   /* If the induction variable is guaranteed to reach the value of C before
591      overflow, ... */
592   if (exit_must_be_taken)
593     {
594       /* ... then we can strenghten this to C / S, and possibly we can use
595 	 the upper bound on C given by BNDS.  */
596       if (TREE_CODE (c) == INTEGER_CST)
597 	mpz_set_double_int (bnd, tree_to_double_int (c), true);
598       else if (bnds_u_valid)
599 	mpz_set (bnd, bnds->up);
600     }
601 
602   mpz_init (d);
603   mpz_set_double_int (d, tree_to_double_int (s), true);
604   mpz_fdiv_q (bnd, bnd, d);
605   mpz_clear (d);
606 }
607 
608 /* Determines number of iterations of loop whose ending condition
609    is IV <> FINAL.  TYPE is the type of the iv.  The number of
610    iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
611    we know that the exit must be taken eventually, i.e., that the IV
612    ever reaches the value FINAL (we derived this earlier, and possibly set
613    NITER->assumptions to make sure this is the case).  BNDS contains the
614    bounds on the difference FINAL - IV->base.  */
615 
616 static bool
number_of_iterations_ne(tree type,affine_iv * iv,tree final,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)617 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
618 			 struct tree_niter_desc *niter, bool exit_must_be_taken,
619 			 bounds *bnds)
620 {
621   tree niter_type = unsigned_type_for (type);
622   tree s, c, d, bits, assumption, tmp, bound;
623   mpz_t max;
624 
625   niter->control = *iv;
626   niter->bound = final;
627   niter->cmp = NE_EXPR;
628 
629   /* Rearrange the terms so that we get inequality S * i <> C, with S
630      positive.  Also cast everything to the unsigned type.  If IV does
631      not overflow, BNDS bounds the value of C.  Also, this is the
632      case if the computation |FINAL - IV->base| does not overflow, i.e.,
633      if BNDS->below in the result is nonnegative.  */
634   if (tree_int_cst_sign_bit (iv->step))
635     {
636       s = fold_convert (niter_type,
637 			fold_build1 (NEGATE_EXPR, type, iv->step));
638       c = fold_build2 (MINUS_EXPR, niter_type,
639 		       fold_convert (niter_type, iv->base),
640 		       fold_convert (niter_type, final));
641       bounds_negate (bnds);
642     }
643   else
644     {
645       s = fold_convert (niter_type, iv->step);
646       c = fold_build2 (MINUS_EXPR, niter_type,
647 		       fold_convert (niter_type, final),
648 		       fold_convert (niter_type, iv->base));
649     }
650 
651   mpz_init (max);
652   number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
653 			       exit_must_be_taken);
654   niter->max = mpz_get_double_int (niter_type, max, false);
655   mpz_clear (max);
656 
657   /* First the trivial cases -- when the step is 1.  */
658   if (integer_onep (s))
659     {
660       niter->niter = c;
661       return true;
662     }
663 
664   /* Let nsd (step, size of mode) = d.  If d does not divide c, the loop
665      is infinite.  Otherwise, the number of iterations is
666      (inverse(s/d) * (c/d)) mod (size of mode/d).  */
667   bits = num_ending_zeros (s);
668   bound = build_low_bits_mask (niter_type,
669 			       (TYPE_PRECISION (niter_type)
670 				- tree_low_cst (bits, 1)));
671 
672   d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
673 			       build_int_cst (niter_type, 1), bits);
674   s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
675 
676   if (!exit_must_be_taken)
677     {
678       /* If we cannot assume that the exit is taken eventually, record the
679 	 assumptions for divisibility of c.  */
680       assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
681       assumption = fold_build2 (EQ_EXPR, boolean_type_node,
682 				assumption, build_int_cst (niter_type, 0));
683       if (!integer_nonzerop (assumption))
684 	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
685 					  niter->assumptions, assumption);
686     }
687 
688   c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
689   tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
690   niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
691   return true;
692 }
693 
694 /* Checks whether we can determine the final value of the control variable
695    of the loop with ending condition IV0 < IV1 (computed in TYPE).
696    DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
697    of the step.  The assumptions necessary to ensure that the computation
698    of the final value does not overflow are recorded in NITER.  If we
699    find the final value, we adjust DELTA and return TRUE.  Otherwise
700    we return false.  BNDS bounds the value of IV1->base - IV0->base,
701    and will be updated by the same amount as DELTA.  EXIT_MUST_BE_TAKEN is
702    true if we know that the exit must be taken eventually.  */
703 
704 static bool
number_of_iterations_lt_to_ne(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,tree * delta,tree step,bool exit_must_be_taken,bounds * bnds)705 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
706 			       struct tree_niter_desc *niter,
707 			       tree *delta, tree step,
708 			       bool exit_must_be_taken, bounds *bnds)
709 {
710   tree niter_type = TREE_TYPE (step);
711   tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
712   tree tmod;
713   mpz_t mmod;
714   tree assumption = boolean_true_node, bound, noloop;
715   bool ret = false, fv_comp_no_overflow;
716   tree type1 = type;
717   if (POINTER_TYPE_P (type))
718     type1 = sizetype;
719 
720   if (TREE_CODE (mod) != INTEGER_CST)
721     return false;
722   if (integer_nonzerop (mod))
723     mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
724   tmod = fold_convert (type1, mod);
725 
726   mpz_init (mmod);
727   mpz_set_double_int (mmod, tree_to_double_int (mod), true);
728   mpz_neg (mmod, mmod);
729 
730   /* If the induction variable does not overflow and the exit is taken,
731      then the computation of the final value does not overflow.  This is
732      also obviously the case if the new final value is equal to the
733      current one.  Finally, we postulate this for pointer type variables,
734      as the code cannot rely on the object to that the pointer points being
735      placed at the end of the address space (and more pragmatically,
736      TYPE_{MIN,MAX}_VALUE is not defined for pointers).  */
737   if (integer_zerop (mod) || POINTER_TYPE_P (type))
738     fv_comp_no_overflow = true;
739   else if (!exit_must_be_taken)
740     fv_comp_no_overflow = false;
741   else
742     fv_comp_no_overflow =
743 	    (iv0->no_overflow && integer_nonzerop (iv0->step))
744 	    || (iv1->no_overflow && integer_nonzerop (iv1->step));
745 
746   if (integer_nonzerop (iv0->step))
747     {
748       /* The final value of the iv is iv1->base + MOD, assuming that this
749 	 computation does not overflow, and that
750 	 iv0->base <= iv1->base + MOD.  */
751       if (!fv_comp_no_overflow)
752 	{
753 	  bound = fold_build2 (MINUS_EXPR, type1,
754 			       TYPE_MAX_VALUE (type1), tmod);
755 	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
756 				    iv1->base, bound);
757 	  if (integer_zerop (assumption))
758 	    goto end;
759 	}
760       if (mpz_cmp (mmod, bnds->below) < 0)
761 	noloop = boolean_false_node;
762       else if (POINTER_TYPE_P (type))
763 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
764 			      iv0->base,
765 			      fold_build_pointer_plus (iv1->base, tmod));
766       else
767 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
768 			      iv0->base,
769 			      fold_build2 (PLUS_EXPR, type1,
770 					   iv1->base, tmod));
771     }
772   else
773     {
774       /* The final value of the iv is iv0->base - MOD, assuming that this
775 	 computation does not overflow, and that
776 	 iv0->base - MOD <= iv1->base. */
777       if (!fv_comp_no_overflow)
778 	{
779 	  bound = fold_build2 (PLUS_EXPR, type1,
780 			       TYPE_MIN_VALUE (type1), tmod);
781 	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
782 				    iv0->base, bound);
783 	  if (integer_zerop (assumption))
784 	    goto end;
785 	}
786       if (mpz_cmp (mmod, bnds->below) < 0)
787 	noloop = boolean_false_node;
788       else if (POINTER_TYPE_P (type))
789 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
790 			      fold_build_pointer_plus (iv0->base,
791 						       fold_build1 (NEGATE_EXPR,
792 								    type1, tmod)),
793 			      iv1->base);
794       else
795 	noloop = fold_build2 (GT_EXPR, boolean_type_node,
796 			      fold_build2 (MINUS_EXPR, type1,
797 					   iv0->base, tmod),
798 			      iv1->base);
799     }
800 
801   if (!integer_nonzerop (assumption))
802     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
803 				      niter->assumptions,
804 				      assumption);
805   if (!integer_zerop (noloop))
806     niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
807 				      niter->may_be_zero,
808 				      noloop);
809   bounds_add (bnds, tree_to_double_int (mod), type);
810   *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
811 
812   ret = true;
813 end:
814   mpz_clear (mmod);
815   return ret;
816 }
817 
818 /* Add assertions to NITER that ensure that the control variable of the loop
819    with ending condition IV0 < IV1 does not overflow.  Types of IV0 and IV1
820    are TYPE.  Returns false if we can prove that there is an overflow, true
821    otherwise.  STEP is the absolute value of the step.  */
822 
823 static bool
assert_no_overflow_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,tree step)824 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
825 		       struct tree_niter_desc *niter, tree step)
826 {
827   tree bound, d, assumption, diff;
828   tree niter_type = TREE_TYPE (step);
829 
830   if (integer_nonzerop (iv0->step))
831     {
832       /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
833       if (iv0->no_overflow)
834 	return true;
835 
836       /* If iv0->base is a constant, we can determine the last value before
837 	 overflow precisely; otherwise we conservatively assume
838 	 MAX - STEP + 1.  */
839 
840       if (TREE_CODE (iv0->base) == INTEGER_CST)
841 	{
842 	  d = fold_build2 (MINUS_EXPR, niter_type,
843 			   fold_convert (niter_type, TYPE_MAX_VALUE (type)),
844 			   fold_convert (niter_type, iv0->base));
845 	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
846 	}
847       else
848 	diff = fold_build2 (MINUS_EXPR, niter_type, step,
849 			    build_int_cst (niter_type, 1));
850       bound = fold_build2 (MINUS_EXPR, type,
851 			   TYPE_MAX_VALUE (type), fold_convert (type, diff));
852       assumption = fold_build2 (LE_EXPR, boolean_type_node,
853 				iv1->base, bound);
854     }
855   else
856     {
857       /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
858       if (iv1->no_overflow)
859 	return true;
860 
861       if (TREE_CODE (iv1->base) == INTEGER_CST)
862 	{
863 	  d = fold_build2 (MINUS_EXPR, niter_type,
864 			   fold_convert (niter_type, iv1->base),
865 			   fold_convert (niter_type, TYPE_MIN_VALUE (type)));
866 	  diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
867 	}
868       else
869 	diff = fold_build2 (MINUS_EXPR, niter_type, step,
870 			    build_int_cst (niter_type, 1));
871       bound = fold_build2 (PLUS_EXPR, type,
872 			   TYPE_MIN_VALUE (type), fold_convert (type, diff));
873       assumption = fold_build2 (GE_EXPR, boolean_type_node,
874 				iv0->base, bound);
875     }
876 
877   if (integer_zerop (assumption))
878     return false;
879   if (!integer_nonzerop (assumption))
880     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
881 				      niter->assumptions, assumption);
882 
883   iv0->no_overflow = true;
884   iv1->no_overflow = true;
885   return true;
886 }
887 
888 /* Add an assumption to NITER that a loop whose ending condition
889    is IV0 < IV1 rolls.  TYPE is the type of the control iv.  BNDS
890    bounds the value of IV1->base - IV0->base.  */
891 
892 static void
assert_loop_rolls_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bounds * bnds)893 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
894 		      struct tree_niter_desc *niter, bounds *bnds)
895 {
896   tree assumption = boolean_true_node, bound, diff;
897   tree mbz, mbzl, mbzr, type1;
898   bool rolls_p, no_overflow_p;
899   double_int dstep;
900   mpz_t mstep, max;
901 
902   /* We are going to compute the number of iterations as
903      (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
904      variant of TYPE.  This formula only works if
905 
906      -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
907 
908      (where MAX is the maximum value of the unsigned variant of TYPE, and
909      the computations in this formula are performed in full precision,
910      i.e., without overflows).
911 
912      Usually, for loops with exit condition iv0->base + step * i < iv1->base,
913      we have a condition of the form iv0->base - step < iv1->base before the loop,
914      and for loops iv0->base < iv1->base - step * i the condition
915      iv0->base < iv1->base + step, due to loop header copying, which enable us
916      to prove the lower bound.
917 
918      The upper bound is more complicated.  Unless the expressions for initial
919      and final value themselves contain enough information, we usually cannot
920      derive it from the context.  */
921 
922   /* First check whether the answer does not follow from the bounds we gathered
923      before.  */
924   if (integer_nonzerop (iv0->step))
925     dstep = tree_to_double_int (iv0->step);
926   else
927     {
928       dstep = double_int_sext (tree_to_double_int (iv1->step),
929 			       TYPE_PRECISION (type));
930       dstep = double_int_neg (dstep);
931     }
932 
933   mpz_init (mstep);
934   mpz_set_double_int (mstep, dstep, true);
935   mpz_neg (mstep, mstep);
936   mpz_add_ui (mstep, mstep, 1);
937 
938   rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
939 
940   mpz_init (max);
941   mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)), true);
942   mpz_add (max, max, mstep);
943   no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
944 		   /* For pointers, only values lying inside a single object
945 		      can be compared or manipulated by pointer arithmetics.
946 		      Gcc in general does not allow or handle objects larger
947 		      than half of the address space, hence the upper bound
948 		      is satisfied for pointers.  */
949 		   || POINTER_TYPE_P (type));
950   mpz_clear (mstep);
951   mpz_clear (max);
952 
953   if (rolls_p && no_overflow_p)
954     return;
955 
956   type1 = type;
957   if (POINTER_TYPE_P (type))
958     type1 = sizetype;
959 
960   /* Now the hard part; we must formulate the assumption(s) as expressions, and
961      we must be careful not to introduce overflow.  */
962 
963   if (integer_nonzerop (iv0->step))
964     {
965       diff = fold_build2 (MINUS_EXPR, type1,
966 			  iv0->step, build_int_cst (type1, 1));
967 
968       /* We need to know that iv0->base >= MIN + iv0->step - 1.  Since
969 	 0 address never belongs to any object, we can assume this for
970 	 pointers.  */
971       if (!POINTER_TYPE_P (type))
972 	{
973 	  bound = fold_build2 (PLUS_EXPR, type1,
974 			       TYPE_MIN_VALUE (type), diff);
975 	  assumption = fold_build2 (GE_EXPR, boolean_type_node,
976 				    iv0->base, bound);
977 	}
978 
979       /* And then we can compute iv0->base - diff, and compare it with
980 	 iv1->base.  */
981       mbzl = fold_build2 (MINUS_EXPR, type1,
982 			  fold_convert (type1, iv0->base), diff);
983       mbzr = fold_convert (type1, iv1->base);
984     }
985   else
986     {
987       diff = fold_build2 (PLUS_EXPR, type1,
988 			  iv1->step, build_int_cst (type1, 1));
989 
990       if (!POINTER_TYPE_P (type))
991 	{
992 	  bound = fold_build2 (PLUS_EXPR, type1,
993 			       TYPE_MAX_VALUE (type), diff);
994 	  assumption = fold_build2 (LE_EXPR, boolean_type_node,
995 				    iv1->base, bound);
996 	}
997 
998       mbzl = fold_convert (type1, iv0->base);
999       mbzr = fold_build2 (MINUS_EXPR, type1,
1000 			  fold_convert (type1, iv1->base), diff);
1001     }
1002 
1003   if (!integer_nonzerop (assumption))
1004     niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1005 				      niter->assumptions, assumption);
1006   if (!rolls_p)
1007     {
1008       mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1009       niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1010 					niter->may_be_zero, mbz);
1011     }
1012 }
1013 
1014 /* Determines number of iterations of loop whose ending condition
1015    is IV0 < IV1.  TYPE is the type of the iv.  The number of
1016    iterations is stored to NITER.  BNDS bounds the difference
1017    IV1->base - IV0->base.  EXIT_MUST_BE_TAKEN is true if we know
1018    that the exit must be taken eventually.  */
1019 
1020 static bool
number_of_iterations_lt(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)1021 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1022 			 struct tree_niter_desc *niter,
1023 			 bool exit_must_be_taken, bounds *bnds)
1024 {
1025   tree niter_type = unsigned_type_for (type);
1026   tree delta, step, s;
1027   mpz_t mstep, tmp;
1028 
1029   if (integer_nonzerop (iv0->step))
1030     {
1031       niter->control = *iv0;
1032       niter->cmp = LT_EXPR;
1033       niter->bound = iv1->base;
1034     }
1035   else
1036     {
1037       niter->control = *iv1;
1038       niter->cmp = GT_EXPR;
1039       niter->bound = iv0->base;
1040     }
1041 
1042   delta = fold_build2 (MINUS_EXPR, niter_type,
1043 		       fold_convert (niter_type, iv1->base),
1044 		       fold_convert (niter_type, iv0->base));
1045 
1046   /* First handle the special case that the step is +-1.  */
1047   if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1048       || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1049     {
1050       /* for (i = iv0->base; i < iv1->base; i++)
1051 
1052 	 or
1053 
1054 	 for (i = iv1->base; i > iv0->base; i--).
1055 
1056 	 In both cases # of iterations is iv1->base - iv0->base, assuming that
1057 	 iv1->base >= iv0->base.
1058 
1059          First try to derive a lower bound on the value of
1060 	 iv1->base - iv0->base, computed in full precision.  If the difference
1061 	 is nonnegative, we are done, otherwise we must record the
1062 	 condition.  */
1063 
1064       if (mpz_sgn (bnds->below) < 0)
1065 	niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1066 					  iv1->base, iv0->base);
1067       niter->niter = delta;
1068       niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1069       return true;
1070     }
1071 
1072   if (integer_nonzerop (iv0->step))
1073     step = fold_convert (niter_type, iv0->step);
1074   else
1075     step = fold_convert (niter_type,
1076 			 fold_build1 (NEGATE_EXPR, type, iv1->step));
1077 
1078   /* If we can determine the final value of the control iv exactly, we can
1079      transform the condition to != comparison.  In particular, this will be
1080      the case if DELTA is constant.  */
1081   if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1082 				     exit_must_be_taken, bnds))
1083     {
1084       affine_iv zps;
1085 
1086       zps.base = build_int_cst (niter_type, 0);
1087       zps.step = step;
1088       /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1089 	 zps does not overflow.  */
1090       zps.no_overflow = true;
1091 
1092       return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1093     }
1094 
1095   /* Make sure that the control iv does not overflow.  */
1096   if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1097     return false;
1098 
1099   /* We determine the number of iterations as (delta + step - 1) / step.  For
1100      this to work, we must know that iv1->base >= iv0->base - step + 1,
1101      otherwise the loop does not roll.  */
1102   assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1103 
1104   s = fold_build2 (MINUS_EXPR, niter_type,
1105 		   step, build_int_cst (niter_type, 1));
1106   delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1107   niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1108 
1109   mpz_init (mstep);
1110   mpz_init (tmp);
1111   mpz_set_double_int (mstep, tree_to_double_int (step), true);
1112   mpz_add (tmp, bnds->up, mstep);
1113   mpz_sub_ui (tmp, tmp, 1);
1114   mpz_fdiv_q (tmp, tmp, mstep);
1115   niter->max = mpz_get_double_int (niter_type, tmp, false);
1116   mpz_clear (mstep);
1117   mpz_clear (tmp);
1118 
1119   return true;
1120 }
1121 
1122 /* Determines number of iterations of loop whose ending condition
1123    is IV0 <= IV1.  TYPE is the type of the iv.  The number of
1124    iterations is stored to NITER.  EXIT_MUST_BE_TAKEN is true if
1125    we know that this condition must eventually become false (we derived this
1126    earlier, and possibly set NITER->assumptions to make sure this
1127    is the case).  BNDS bounds the difference IV1->base - IV0->base.  */
1128 
1129 static bool
number_of_iterations_le(tree type,affine_iv * iv0,affine_iv * iv1,struct tree_niter_desc * niter,bool exit_must_be_taken,bounds * bnds)1130 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1131 			 struct tree_niter_desc *niter, bool exit_must_be_taken,
1132 			 bounds *bnds)
1133 {
1134   tree assumption;
1135   tree type1 = type;
1136   if (POINTER_TYPE_P (type))
1137     type1 = sizetype;
1138 
1139   /* Say that IV0 is the control variable.  Then IV0 <= IV1 iff
1140      IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1141      value of the type.  This we must know anyway, since if it is
1142      equal to this value, the loop rolls forever.  We do not check
1143      this condition for pointer type ivs, as the code cannot rely on
1144      the object to that the pointer points being placed at the end of
1145      the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1146      not defined for pointers).  */
1147 
1148   if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1149     {
1150       if (integer_nonzerop (iv0->step))
1151 	assumption = fold_build2 (NE_EXPR, boolean_type_node,
1152 				  iv1->base, TYPE_MAX_VALUE (type));
1153       else
1154 	assumption = fold_build2 (NE_EXPR, boolean_type_node,
1155 				  iv0->base, TYPE_MIN_VALUE (type));
1156 
1157       if (integer_zerop (assumption))
1158 	return false;
1159       if (!integer_nonzerop (assumption))
1160 	niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1161 					  niter->assumptions, assumption);
1162     }
1163 
1164   if (integer_nonzerop (iv0->step))
1165     {
1166       if (POINTER_TYPE_P (type))
1167 	iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1168       else
1169 	iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1170 				 build_int_cst (type1, 1));
1171     }
1172   else if (POINTER_TYPE_P (type))
1173     iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1174   else
1175     iv0->base = fold_build2 (MINUS_EXPR, type1,
1176 			     iv0->base, build_int_cst (type1, 1));
1177 
1178   bounds_add (bnds, double_int_one, type1);
1179 
1180   return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1181 				  bnds);
1182 }
1183 
1184 /* Dumps description of affine induction variable IV to FILE.  */
1185 
1186 static void
dump_affine_iv(FILE * file,affine_iv * iv)1187 dump_affine_iv (FILE *file, affine_iv *iv)
1188 {
1189   if (!integer_zerop (iv->step))
1190     fprintf (file, "[");
1191 
1192   print_generic_expr (dump_file, iv->base, TDF_SLIM);
1193 
1194   if (!integer_zerop (iv->step))
1195     {
1196       fprintf (file, ", + , ");
1197       print_generic_expr (dump_file, iv->step, TDF_SLIM);
1198       fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1199     }
1200 }
1201 
1202 /* Determine the number of iterations according to condition (for staying
1203    inside loop) which compares two induction variables using comparison
1204    operator CODE.  The induction variable on left side of the comparison
1205    is IV0, the right-hand side is IV1.  Both induction variables must have
1206    type TYPE, which must be an integer or pointer type.  The steps of the
1207    ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1208 
1209    LOOP is the loop whose number of iterations we are determining.
1210 
1211    ONLY_EXIT is true if we are sure this is the only way the loop could be
1212    exited (including possibly non-returning function calls, exceptions, etc.)
1213    -- in this case we can use the information whether the control induction
1214    variables can overflow or not in a more efficient way.
1215 
1216    The results (number of iterations and assumptions as described in
1217    comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1218    Returns false if it fails to determine number of iterations, true if it
1219    was determined (possibly with some assumptions).  */
1220 
1221 static bool
number_of_iterations_cond(struct loop * loop,tree type,affine_iv * iv0,enum tree_code code,affine_iv * iv1,struct tree_niter_desc * niter,bool only_exit)1222 number_of_iterations_cond (struct loop *loop,
1223 			   tree type, affine_iv *iv0, enum tree_code code,
1224 			   affine_iv *iv1, struct tree_niter_desc *niter,
1225 			   bool only_exit)
1226 {
1227   bool exit_must_be_taken = false, ret;
1228   bounds bnds;
1229 
1230   /* The meaning of these assumptions is this:
1231      if !assumptions
1232        then the rest of information does not have to be valid
1233      if may_be_zero then the loop does not roll, even if
1234        niter != 0.  */
1235   niter->assumptions = boolean_true_node;
1236   niter->may_be_zero = boolean_false_node;
1237   niter->niter = NULL_TREE;
1238   niter->max = double_int_zero;
1239 
1240   niter->bound = NULL_TREE;
1241   niter->cmp = ERROR_MARK;
1242 
1243   /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1244      the control variable is on lhs.  */
1245   if (code == GE_EXPR || code == GT_EXPR
1246       || (code == NE_EXPR && integer_zerop (iv0->step)))
1247     {
1248       SWAP (iv0, iv1);
1249       code = swap_tree_comparison (code);
1250     }
1251 
1252   if (POINTER_TYPE_P (type))
1253     {
1254       /* Comparison of pointers is undefined unless both iv0 and iv1 point
1255 	 to the same object.  If they do, the control variable cannot wrap
1256 	 (as wrap around the bounds of memory will never return a pointer
1257 	 that would be guaranteed to point to the same object, even if we
1258 	 avoid undefined behavior by casting to size_t and back).  */
1259       iv0->no_overflow = true;
1260       iv1->no_overflow = true;
1261     }
1262 
1263   /* If the control induction variable does not overflow and the only exit
1264      from the loop is the one that we analyze, we know it must be taken
1265      eventually.  */
1266   if (only_exit)
1267     {
1268       if (!integer_zerop (iv0->step) && iv0->no_overflow)
1269 	exit_must_be_taken = true;
1270       else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1271 	exit_must_be_taken = true;
1272     }
1273 
1274   /* We can handle the case when neither of the sides of the comparison is
1275      invariant, provided that the test is NE_EXPR.  This rarely occurs in
1276      practice, but it is simple enough to manage.  */
1277   if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1278     {
1279       tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1280       if (code != NE_EXPR)
1281 	return false;
1282 
1283       iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1284 					   iv0->step, iv1->step);
1285       iv0->no_overflow = false;
1286       iv1->step = build_int_cst (step_type, 0);
1287       iv1->no_overflow = true;
1288     }
1289 
1290   /* If the result of the comparison is a constant,  the loop is weird.  More
1291      precise handling would be possible, but the situation is not common enough
1292      to waste time on it.  */
1293   if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1294     return false;
1295 
1296   /* Ignore loops of while (i-- < 10) type.  */
1297   if (code != NE_EXPR)
1298     {
1299       if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1300 	return false;
1301 
1302       if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1303 	return false;
1304     }
1305 
1306   /* If the loop exits immediately, there is nothing to do.  */
1307   if (integer_zerop (fold_build2 (code, boolean_type_node, iv0->base, iv1->base)))
1308     {
1309       niter->niter = build_int_cst (unsigned_type_for (type), 0);
1310       niter->max = double_int_zero;
1311       return true;
1312     }
1313 
1314   /* OK, now we know we have a senseful loop.  Handle several cases, depending
1315      on what comparison operator is used.  */
1316   bound_difference (loop, iv1->base, iv0->base, &bnds);
1317 
1318   if (dump_file && (dump_flags & TDF_DETAILS))
1319     {
1320       fprintf (dump_file,
1321 	       "Analyzing # of iterations of loop %d\n", loop->num);
1322 
1323       fprintf (dump_file, "  exit condition ");
1324       dump_affine_iv (dump_file, iv0);
1325       fprintf (dump_file, " %s ",
1326 	       code == NE_EXPR ? "!="
1327 	       : code == LT_EXPR ? "<"
1328 	       : "<=");
1329       dump_affine_iv (dump_file, iv1);
1330       fprintf (dump_file, "\n");
1331 
1332       fprintf (dump_file, "  bounds on difference of bases: ");
1333       mpz_out_str (dump_file, 10, bnds.below);
1334       fprintf (dump_file, " ... ");
1335       mpz_out_str (dump_file, 10, bnds.up);
1336       fprintf (dump_file, "\n");
1337     }
1338 
1339   switch (code)
1340     {
1341     case NE_EXPR:
1342       gcc_assert (integer_zerop (iv1->step));
1343       ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1344 				     exit_must_be_taken, &bnds);
1345       break;
1346 
1347     case LT_EXPR:
1348       ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1349 				     &bnds);
1350       break;
1351 
1352     case LE_EXPR:
1353       ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1354 				     &bnds);
1355       break;
1356 
1357     default:
1358       gcc_unreachable ();
1359     }
1360 
1361   mpz_clear (bnds.up);
1362   mpz_clear (bnds.below);
1363 
1364   if (dump_file && (dump_flags & TDF_DETAILS))
1365     {
1366       if (ret)
1367 	{
1368 	  fprintf (dump_file, "  result:\n");
1369 	  if (!integer_nonzerop (niter->assumptions))
1370 	    {
1371 	      fprintf (dump_file, "    under assumptions ");
1372 	      print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1373 	      fprintf (dump_file, "\n");
1374 	    }
1375 
1376 	  if (!integer_zerop (niter->may_be_zero))
1377 	    {
1378 	      fprintf (dump_file, "    zero if ");
1379 	      print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1380 	      fprintf (dump_file, "\n");
1381 	    }
1382 
1383 	  fprintf (dump_file, "    # of iterations ");
1384 	  print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1385 	  fprintf (dump_file, ", bounded by ");
1386 	  dump_double_int (dump_file, niter->max, true);
1387 	  fprintf (dump_file, "\n");
1388 	}
1389       else
1390 	fprintf (dump_file, "  failed\n\n");
1391     }
1392   return ret;
1393 }
1394 
1395 /* Substitute NEW for OLD in EXPR and fold the result.  */
1396 
1397 static tree
simplify_replace_tree(tree expr,tree old,tree new_tree)1398 simplify_replace_tree (tree expr, tree old, tree new_tree)
1399 {
1400   unsigned i, n;
1401   tree ret = NULL_TREE, e, se;
1402 
1403   if (!expr)
1404     return NULL_TREE;
1405 
1406   /* Do not bother to replace constants.  */
1407   if (CONSTANT_CLASS_P (old))
1408     return expr;
1409 
1410   if (expr == old
1411       || operand_equal_p (expr, old, 0))
1412     return unshare_expr (new_tree);
1413 
1414   if (!EXPR_P (expr))
1415     return expr;
1416 
1417   n = TREE_OPERAND_LENGTH (expr);
1418   for (i = 0; i < n; i++)
1419     {
1420       e = TREE_OPERAND (expr, i);
1421       se = simplify_replace_tree (e, old, new_tree);
1422       if (e == se)
1423 	continue;
1424 
1425       if (!ret)
1426 	ret = copy_node (expr);
1427 
1428       TREE_OPERAND (ret, i) = se;
1429     }
1430 
1431   return (ret ? fold (ret) : expr);
1432 }
1433 
1434 /* Expand definitions of ssa names in EXPR as long as they are simple
1435    enough, and return the new expression.  */
1436 
1437 tree
expand_simple_operations(tree expr)1438 expand_simple_operations (tree expr)
1439 {
1440   unsigned i, n;
1441   tree ret = NULL_TREE, e, ee, e1;
1442   enum tree_code code;
1443   gimple stmt;
1444 
1445   if (expr == NULL_TREE)
1446     return expr;
1447 
1448   if (is_gimple_min_invariant (expr))
1449     return expr;
1450 
1451   code = TREE_CODE (expr);
1452   if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1453     {
1454       n = TREE_OPERAND_LENGTH (expr);
1455       for (i = 0; i < n; i++)
1456 	{
1457 	  e = TREE_OPERAND (expr, i);
1458 	  ee = expand_simple_operations (e);
1459 	  if (e == ee)
1460 	    continue;
1461 
1462 	  if (!ret)
1463 	    ret = copy_node (expr);
1464 
1465 	  TREE_OPERAND (ret, i) = ee;
1466 	}
1467 
1468       if (!ret)
1469 	return expr;
1470 
1471       fold_defer_overflow_warnings ();
1472       ret = fold (ret);
1473       fold_undefer_and_ignore_overflow_warnings ();
1474       return ret;
1475     }
1476 
1477   if (TREE_CODE (expr) != SSA_NAME)
1478     return expr;
1479 
1480   stmt = SSA_NAME_DEF_STMT (expr);
1481   if (gimple_code (stmt) == GIMPLE_PHI)
1482     {
1483       basic_block src, dest;
1484 
1485       if (gimple_phi_num_args (stmt) != 1)
1486 	return expr;
1487       e = PHI_ARG_DEF (stmt, 0);
1488 
1489       /* Avoid propagating through loop exit phi nodes, which
1490 	 could break loop-closed SSA form restrictions.  */
1491       dest = gimple_bb (stmt);
1492       src = single_pred (dest);
1493       if (TREE_CODE (e) == SSA_NAME
1494 	  && src->loop_father != dest->loop_father)
1495 	return expr;
1496 
1497       return expand_simple_operations (e);
1498     }
1499   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1500     return expr;
1501 
1502   e = gimple_assign_rhs1 (stmt);
1503   code = gimple_assign_rhs_code (stmt);
1504   if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1505     {
1506       if (is_gimple_min_invariant (e))
1507 	return e;
1508 
1509       if (code == SSA_NAME)
1510 	return expand_simple_operations (e);
1511 
1512       return expr;
1513     }
1514 
1515   switch (code)
1516     {
1517     CASE_CONVERT:
1518       /* Casts are simple.  */
1519       ee = expand_simple_operations (e);
1520       return fold_build1 (code, TREE_TYPE (expr), ee);
1521 
1522     case PLUS_EXPR:
1523     case MINUS_EXPR:
1524     case POINTER_PLUS_EXPR:
1525       /* And increments and decrements by a constant are simple.  */
1526       e1 = gimple_assign_rhs2 (stmt);
1527       if (!is_gimple_min_invariant (e1))
1528 	return expr;
1529 
1530       ee = expand_simple_operations (e);
1531       return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1532 
1533     default:
1534       return expr;
1535     }
1536 }
1537 
1538 /* Tries to simplify EXPR using the condition COND.  Returns the simplified
1539    expression (or EXPR unchanged, if no simplification was possible).  */
1540 
1541 static tree
tree_simplify_using_condition_1(tree cond,tree expr)1542 tree_simplify_using_condition_1 (tree cond, tree expr)
1543 {
1544   bool changed;
1545   tree e, te, e0, e1, e2, notcond;
1546   enum tree_code code = TREE_CODE (expr);
1547 
1548   if (code == INTEGER_CST)
1549     return expr;
1550 
1551   if (code == TRUTH_OR_EXPR
1552       || code == TRUTH_AND_EXPR
1553       || code == COND_EXPR)
1554     {
1555       changed = false;
1556 
1557       e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1558       if (TREE_OPERAND (expr, 0) != e0)
1559 	changed = true;
1560 
1561       e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1562       if (TREE_OPERAND (expr, 1) != e1)
1563 	changed = true;
1564 
1565       if (code == COND_EXPR)
1566 	{
1567 	  e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1568 	  if (TREE_OPERAND (expr, 2) != e2)
1569 	    changed = true;
1570 	}
1571       else
1572 	e2 = NULL_TREE;
1573 
1574       if (changed)
1575 	{
1576 	  if (code == COND_EXPR)
1577 	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1578 	  else
1579 	    expr = fold_build2 (code, boolean_type_node, e0, e1);
1580 	}
1581 
1582       return expr;
1583     }
1584 
1585   /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1586      propagation, and vice versa.  Fold does not handle this, since it is
1587      considered too expensive.  */
1588   if (TREE_CODE (cond) == EQ_EXPR)
1589     {
1590       e0 = TREE_OPERAND (cond, 0);
1591       e1 = TREE_OPERAND (cond, 1);
1592 
1593       /* We know that e0 == e1.  Check whether we cannot simplify expr
1594 	 using this fact.  */
1595       e = simplify_replace_tree (expr, e0, e1);
1596       if (integer_zerop (e) || integer_nonzerop (e))
1597 	return e;
1598 
1599       e = simplify_replace_tree (expr, e1, e0);
1600       if (integer_zerop (e) || integer_nonzerop (e))
1601 	return e;
1602     }
1603   if (TREE_CODE (expr) == EQ_EXPR)
1604     {
1605       e0 = TREE_OPERAND (expr, 0);
1606       e1 = TREE_OPERAND (expr, 1);
1607 
1608       /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true.  */
1609       e = simplify_replace_tree (cond, e0, e1);
1610       if (integer_zerop (e))
1611 	return e;
1612       e = simplify_replace_tree (cond, e1, e0);
1613       if (integer_zerop (e))
1614 	return e;
1615     }
1616   if (TREE_CODE (expr) == NE_EXPR)
1617     {
1618       e0 = TREE_OPERAND (expr, 0);
1619       e1 = TREE_OPERAND (expr, 1);
1620 
1621       /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true.  */
1622       e = simplify_replace_tree (cond, e0, e1);
1623       if (integer_zerop (e))
1624 	return boolean_true_node;
1625       e = simplify_replace_tree (cond, e1, e0);
1626       if (integer_zerop (e))
1627 	return boolean_true_node;
1628     }
1629 
1630   te = expand_simple_operations (expr);
1631 
1632   /* Check whether COND ==> EXPR.  */
1633   notcond = invert_truthvalue (cond);
1634   e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1635   if (e && integer_nonzerop (e))
1636     return e;
1637 
1638   /* Check whether COND ==> not EXPR.  */
1639   e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1640   if (e && integer_zerop (e))
1641     return e;
1642 
1643   return expr;
1644 }
1645 
1646 /* Tries to simplify EXPR using the condition COND.  Returns the simplified
1647    expression (or EXPR unchanged, if no simplification was possible).
1648    Wrapper around tree_simplify_using_condition_1 that ensures that chains
1649    of simple operations in definitions of ssa names in COND are expanded,
1650    so that things like casts or incrementing the value of the bound before
1651    the loop do not cause us to fail.  */
1652 
1653 static tree
tree_simplify_using_condition(tree cond,tree expr)1654 tree_simplify_using_condition (tree cond, tree expr)
1655 {
1656   cond = expand_simple_operations (cond);
1657 
1658   return tree_simplify_using_condition_1 (cond, expr);
1659 }
1660 
1661 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1662    Returns the simplified expression (or EXPR unchanged, if no
1663    simplification was possible).*/
1664 
1665 static tree
simplify_using_initial_conditions(struct loop * loop,tree expr)1666 simplify_using_initial_conditions (struct loop *loop, tree expr)
1667 {
1668   edge e;
1669   basic_block bb;
1670   gimple stmt;
1671   tree cond;
1672   int cnt = 0;
1673 
1674   if (TREE_CODE (expr) == INTEGER_CST)
1675     return expr;
1676 
1677   /* Limit walking the dominators to avoid quadraticness in
1678      the number of BBs times the number of loops in degenerate
1679      cases.  */
1680   for (bb = loop->header;
1681        bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1682        bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1683     {
1684       if (!single_pred_p (bb))
1685 	continue;
1686       e = single_pred_edge (bb);
1687 
1688       if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1689 	continue;
1690 
1691       stmt = last_stmt (e->src);
1692       cond = fold_build2 (gimple_cond_code (stmt),
1693 			  boolean_type_node,
1694 			  gimple_cond_lhs (stmt),
1695 			  gimple_cond_rhs (stmt));
1696       if (e->flags & EDGE_FALSE_VALUE)
1697 	cond = invert_truthvalue (cond);
1698       expr = tree_simplify_using_condition (cond, expr);
1699       ++cnt;
1700     }
1701 
1702   return expr;
1703 }
1704 
1705 /* Tries to simplify EXPR using the evolutions of the loop invariants
1706    in the superloops of LOOP.  Returns the simplified expression
1707    (or EXPR unchanged, if no simplification was possible).  */
1708 
1709 static tree
simplify_using_outer_evolutions(struct loop * loop,tree expr)1710 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1711 {
1712   enum tree_code code = TREE_CODE (expr);
1713   bool changed;
1714   tree e, e0, e1, e2;
1715 
1716   if (is_gimple_min_invariant (expr))
1717     return expr;
1718 
1719   if (code == TRUTH_OR_EXPR
1720       || code == TRUTH_AND_EXPR
1721       || code == COND_EXPR)
1722     {
1723       changed = false;
1724 
1725       e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1726       if (TREE_OPERAND (expr, 0) != e0)
1727 	changed = true;
1728 
1729       e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1730       if (TREE_OPERAND (expr, 1) != e1)
1731 	changed = true;
1732 
1733       if (code == COND_EXPR)
1734 	{
1735 	  e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1736 	  if (TREE_OPERAND (expr, 2) != e2)
1737 	    changed = true;
1738 	}
1739       else
1740 	e2 = NULL_TREE;
1741 
1742       if (changed)
1743 	{
1744 	  if (code == COND_EXPR)
1745 	    expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1746 	  else
1747 	    expr = fold_build2 (code, boolean_type_node, e0, e1);
1748 	}
1749 
1750       return expr;
1751     }
1752 
1753   e = instantiate_parameters (loop, expr);
1754   if (is_gimple_min_invariant (e))
1755     return e;
1756 
1757   return expr;
1758 }
1759 
1760 /* Returns true if EXIT is the only possible exit from LOOP.  */
1761 
1762 bool
loop_only_exit_p(const struct loop * loop,const_edge exit)1763 loop_only_exit_p (const struct loop *loop, const_edge exit)
1764 {
1765   basic_block *body;
1766   gimple_stmt_iterator bsi;
1767   unsigned i;
1768   gimple call;
1769 
1770   if (exit != single_exit (loop))
1771     return false;
1772 
1773   body = get_loop_body (loop);
1774   for (i = 0; i < loop->num_nodes; i++)
1775     {
1776       for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1777 	{
1778 	  call = gsi_stmt (bsi);
1779 	  if (gimple_code (call) != GIMPLE_CALL)
1780 	    continue;
1781 
1782 	  if (gimple_has_side_effects (call))
1783 	    {
1784 	      free (body);
1785 	      return false;
1786 	    }
1787 	}
1788     }
1789 
1790   free (body);
1791   return true;
1792 }
1793 
1794 /* Stores description of number of iterations of LOOP derived from
1795    EXIT (an exit edge of the LOOP) in NITER.  Returns true if some
1796    useful information could be derived (and fields of NITER has
1797    meaning described in comments at struct tree_niter_desc
1798    declaration), false otherwise.  If WARN is true and
1799    -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1800    potentially unsafe assumptions.  */
1801 
1802 bool
number_of_iterations_exit(struct loop * loop,edge exit,struct tree_niter_desc * niter,bool warn)1803 number_of_iterations_exit (struct loop *loop, edge exit,
1804 			   struct tree_niter_desc *niter,
1805 			   bool warn)
1806 {
1807   gimple stmt;
1808   tree type;
1809   tree op0, op1;
1810   enum tree_code code;
1811   affine_iv iv0, iv1;
1812 
1813   if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
1814     return false;
1815 
1816   niter->assumptions = boolean_false_node;
1817   stmt = last_stmt (exit->src);
1818   if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1819     return false;
1820 
1821   /* We want the condition for staying inside loop.  */
1822   code = gimple_cond_code (stmt);
1823   if (exit->flags & EDGE_TRUE_VALUE)
1824     code = invert_tree_comparison (code, false);
1825 
1826   switch (code)
1827     {
1828     case GT_EXPR:
1829     case GE_EXPR:
1830     case NE_EXPR:
1831     case LT_EXPR:
1832     case LE_EXPR:
1833       break;
1834 
1835     default:
1836       return false;
1837     }
1838 
1839   op0 = gimple_cond_lhs (stmt);
1840   op1 = gimple_cond_rhs (stmt);
1841   type = TREE_TYPE (op0);
1842 
1843   if (TREE_CODE (type) != INTEGER_TYPE
1844       && !POINTER_TYPE_P (type))
1845     return false;
1846 
1847   if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1848     return false;
1849   if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1850     return false;
1851 
1852   /* We don't want to see undefined signed overflow warnings while
1853      computing the number of iterations.  */
1854   fold_defer_overflow_warnings ();
1855 
1856   iv0.base = expand_simple_operations (iv0.base);
1857   iv1.base = expand_simple_operations (iv1.base);
1858   if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1859 				  loop_only_exit_p (loop, exit)))
1860     {
1861       fold_undefer_and_ignore_overflow_warnings ();
1862       return false;
1863     }
1864 
1865   if (optimize >= 3)
1866     {
1867       niter->assumptions = simplify_using_outer_evolutions (loop,
1868 							    niter->assumptions);
1869       niter->may_be_zero = simplify_using_outer_evolutions (loop,
1870 							    niter->may_be_zero);
1871       niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1872     }
1873 
1874   niter->assumptions
1875 	  = simplify_using_initial_conditions (loop,
1876 					       niter->assumptions);
1877   niter->may_be_zero
1878 	  = simplify_using_initial_conditions (loop,
1879 					       niter->may_be_zero);
1880 
1881   fold_undefer_and_ignore_overflow_warnings ();
1882 
1883   if (integer_onep (niter->assumptions))
1884     return true;
1885 
1886   /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1887      But if we can prove that there is overflow or some other source of weird
1888      behavior, ignore the loop even with -funsafe-loop-optimizations.  */
1889   if (integer_zerop (niter->assumptions) || !single_exit (loop))
1890     return false;
1891 
1892   if (flag_unsafe_loop_optimizations)
1893     niter->assumptions = boolean_true_node;
1894 
1895   if (warn)
1896     {
1897       const char *wording;
1898       location_t loc = gimple_location (stmt);
1899 
1900       /* We can provide a more specific warning if one of the operator is
1901 	 constant and the other advances by +1 or -1.  */
1902       if (!integer_zerop (iv1.step)
1903 	  ? (integer_zerop (iv0.step)
1904 	     && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1905 	  : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1906         wording =
1907           flag_unsafe_loop_optimizations
1908           ? N_("assuming that the loop is not infinite")
1909           : N_("cannot optimize possibly infinite loops");
1910       else
1911 	wording =
1912 	  flag_unsafe_loop_optimizations
1913 	  ? N_("assuming that the loop counter does not overflow")
1914 	  : N_("cannot optimize loop, the loop counter may overflow");
1915 
1916       warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1917 		  OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1918     }
1919 
1920   return flag_unsafe_loop_optimizations;
1921 }
1922 
1923 /* Try to determine the number of iterations of LOOP.  If we succeed,
1924    expression giving number of iterations is returned and *EXIT is
1925    set to the edge from that the information is obtained.  Otherwise
1926    chrec_dont_know is returned.  */
1927 
1928 tree
find_loop_niter(struct loop * loop,edge * exit)1929 find_loop_niter (struct loop *loop, edge *exit)
1930 {
1931   unsigned i;
1932   VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1933   edge ex;
1934   tree niter = NULL_TREE, aniter;
1935   struct tree_niter_desc desc;
1936 
1937   *exit = NULL;
1938   FOR_EACH_VEC_ELT (edge, exits, i, ex)
1939     {
1940       if (!just_once_each_iteration_p (loop, ex->src))
1941 	continue;
1942 
1943       if (!number_of_iterations_exit (loop, ex, &desc, false))
1944 	continue;
1945 
1946       if (integer_nonzerop (desc.may_be_zero))
1947 	{
1948 	  /* We exit in the first iteration through this exit.
1949 	     We won't find anything better.  */
1950 	  niter = build_int_cst (unsigned_type_node, 0);
1951 	  *exit = ex;
1952 	  break;
1953 	}
1954 
1955       if (!integer_zerop (desc.may_be_zero))
1956 	continue;
1957 
1958       aniter = desc.niter;
1959 
1960       if (!niter)
1961 	{
1962 	  /* Nothing recorded yet.  */
1963 	  niter = aniter;
1964 	  *exit = ex;
1965 	  continue;
1966 	}
1967 
1968       /* Prefer constants, the lower the better.  */
1969       if (TREE_CODE (aniter) != INTEGER_CST)
1970 	continue;
1971 
1972       if (TREE_CODE (niter) != INTEGER_CST)
1973 	{
1974 	  niter = aniter;
1975 	  *exit = ex;
1976 	  continue;
1977 	}
1978 
1979       if (tree_int_cst_lt (aniter, niter))
1980 	{
1981 	  niter = aniter;
1982 	  *exit = ex;
1983 	  continue;
1984 	}
1985     }
1986   VEC_free (edge, heap, exits);
1987 
1988   return niter ? niter : chrec_dont_know;
1989 }
1990 
1991 /* Return true if loop is known to have bounded number of iterations.  */
1992 
1993 bool
finite_loop_p(struct loop * loop)1994 finite_loop_p (struct loop *loop)
1995 {
1996   unsigned i;
1997   VEC (edge, heap) *exits;
1998   edge ex;
1999   struct tree_niter_desc desc;
2000   bool finite = false;
2001   int flags;
2002 
2003   if (flag_unsafe_loop_optimizations)
2004     return true;
2005   flags = flags_from_decl_or_type (current_function_decl);
2006   if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2007     {
2008       if (dump_file && (dump_flags & TDF_DETAILS))
2009 	fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2010 		 loop->num);
2011       return true;
2012     }
2013 
2014   exits = get_loop_exit_edges (loop);
2015   FOR_EACH_VEC_ELT (edge, exits, i, ex)
2016     {
2017       if (!just_once_each_iteration_p (loop, ex->src))
2018 	continue;
2019 
2020       if (number_of_iterations_exit (loop, ex, &desc, false))
2021         {
2022 	  if (dump_file && (dump_flags & TDF_DETAILS))
2023 	    {
2024 	      fprintf (dump_file, "Found loop %i to be finite: iterating ", loop->num);
2025 	      print_generic_expr (dump_file, desc.niter, TDF_SLIM);
2026 	      fprintf (dump_file, " times\n");
2027 	    }
2028 	  finite = true;
2029 	  break;
2030 	}
2031     }
2032   VEC_free (edge, heap, exits);
2033   return finite;
2034 }
2035 
2036 /*
2037 
2038    Analysis of a number of iterations of a loop by a brute-force evaluation.
2039 
2040 */
2041 
2042 /* Bound on the number of iterations we try to evaluate.  */
2043 
2044 #define MAX_ITERATIONS_TO_TRACK \
2045   ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2046 
2047 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2048    result by a chain of operations such that all but exactly one of their
2049    operands are constants.  */
2050 
2051 static gimple
chain_of_csts_start(struct loop * loop,tree x)2052 chain_of_csts_start (struct loop *loop, tree x)
2053 {
2054   gimple stmt = SSA_NAME_DEF_STMT (x);
2055   tree use;
2056   basic_block bb = gimple_bb (stmt);
2057   enum tree_code code;
2058 
2059   if (!bb
2060       || !flow_bb_inside_loop_p (loop, bb))
2061     return NULL;
2062 
2063   if (gimple_code (stmt) == GIMPLE_PHI)
2064     {
2065       if (bb == loop->header)
2066 	return stmt;
2067 
2068       return NULL;
2069     }
2070 
2071   if (gimple_code (stmt) != GIMPLE_ASSIGN
2072       || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2073     return NULL;
2074 
2075   code = gimple_assign_rhs_code (stmt);
2076   if (gimple_references_memory_p (stmt)
2077       || TREE_CODE_CLASS (code) == tcc_reference
2078       || (code == ADDR_EXPR
2079 	  && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2080     return NULL;
2081 
2082   use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2083   if (use == NULL_TREE)
2084     return NULL;
2085 
2086   return chain_of_csts_start (loop, use);
2087 }
2088 
2089 /* Determines whether the expression X is derived from a result of a phi node
2090    in header of LOOP such that
2091 
2092    * the derivation of X consists only from operations with constants
2093    * the initial value of the phi node is constant
2094    * the value of the phi node in the next iteration can be derived from the
2095      value in the current iteration by a chain of operations with constants.
2096 
2097    If such phi node exists, it is returned, otherwise NULL is returned.  */
2098 
2099 static gimple
get_base_for(struct loop * loop,tree x)2100 get_base_for (struct loop *loop, tree x)
2101 {
2102   gimple phi;
2103   tree init, next;
2104 
2105   if (is_gimple_min_invariant (x))
2106     return NULL;
2107 
2108   phi = chain_of_csts_start (loop, x);
2109   if (!phi)
2110     return NULL;
2111 
2112   init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2113   next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2114 
2115   if (TREE_CODE (next) != SSA_NAME)
2116     return NULL;
2117 
2118   if (!is_gimple_min_invariant (init))
2119     return NULL;
2120 
2121   if (chain_of_csts_start (loop, next) != phi)
2122     return NULL;
2123 
2124   return phi;
2125 }
2126 
2127 /* Given an expression X, then
2128 
2129    * if X is NULL_TREE, we return the constant BASE.
2130    * otherwise X is a SSA name, whose value in the considered loop is derived
2131      by a chain of operations with constant from a result of a phi node in
2132      the header of the loop.  Then we return value of X when the value of the
2133      result of this phi node is given by the constant BASE.  */
2134 
2135 static tree
get_val_for(tree x,tree base)2136 get_val_for (tree x, tree base)
2137 {
2138   gimple stmt;
2139 
2140   gcc_checking_assert (is_gimple_min_invariant (base));
2141 
2142   if (!x)
2143     return base;
2144 
2145   stmt = SSA_NAME_DEF_STMT (x);
2146   if (gimple_code (stmt) == GIMPLE_PHI)
2147     return base;
2148 
2149   gcc_checking_assert (is_gimple_assign (stmt));
2150 
2151   /* STMT must be either an assignment of a single SSA name or an
2152      expression involving an SSA name and a constant.  Try to fold that
2153      expression using the value for the SSA name.  */
2154   if (gimple_assign_ssa_name_copy_p (stmt))
2155     return get_val_for (gimple_assign_rhs1 (stmt), base);
2156   else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2157 	   && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2158     {
2159       return fold_build1 (gimple_assign_rhs_code (stmt),
2160 			  gimple_expr_type (stmt),
2161 			  get_val_for (gimple_assign_rhs1 (stmt), base));
2162     }
2163   else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2164     {
2165       tree rhs1 = gimple_assign_rhs1 (stmt);
2166       tree rhs2 = gimple_assign_rhs2 (stmt);
2167       if (TREE_CODE (rhs1) == SSA_NAME)
2168 	rhs1 = get_val_for (rhs1, base);
2169       else if (TREE_CODE (rhs2) == SSA_NAME)
2170 	rhs2 = get_val_for (rhs2, base);
2171       else
2172 	gcc_unreachable ();
2173       return fold_build2 (gimple_assign_rhs_code (stmt),
2174 			  gimple_expr_type (stmt), rhs1, rhs2);
2175     }
2176   else
2177     gcc_unreachable ();
2178 }
2179 
2180 
2181 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2182    by brute force -- i.e. by determining the value of the operands of the
2183    condition at EXIT in first few iterations of the loop (assuming that
2184    these values are constant) and determining the first one in that the
2185    condition is not satisfied.  Returns the constant giving the number
2186    of the iterations of LOOP if successful, chrec_dont_know otherwise.  */
2187 
2188 tree
loop_niter_by_eval(struct loop * loop,edge exit)2189 loop_niter_by_eval (struct loop *loop, edge exit)
2190 {
2191   tree acnd;
2192   tree op[2], val[2], next[2], aval[2];
2193   gimple phi, cond;
2194   unsigned i, j;
2195   enum tree_code cmp;
2196 
2197   cond = last_stmt (exit->src);
2198   if (!cond || gimple_code (cond) != GIMPLE_COND)
2199     return chrec_dont_know;
2200 
2201   cmp = gimple_cond_code (cond);
2202   if (exit->flags & EDGE_TRUE_VALUE)
2203     cmp = invert_tree_comparison (cmp, false);
2204 
2205   switch (cmp)
2206     {
2207     case EQ_EXPR:
2208     case NE_EXPR:
2209     case GT_EXPR:
2210     case GE_EXPR:
2211     case LT_EXPR:
2212     case LE_EXPR:
2213       op[0] = gimple_cond_lhs (cond);
2214       op[1] = gimple_cond_rhs (cond);
2215       break;
2216 
2217     default:
2218       return chrec_dont_know;
2219     }
2220 
2221   for (j = 0; j < 2; j++)
2222     {
2223       if (is_gimple_min_invariant (op[j]))
2224 	{
2225 	  val[j] = op[j];
2226 	  next[j] = NULL_TREE;
2227 	  op[j] = NULL_TREE;
2228 	}
2229       else
2230 	{
2231 	  phi = get_base_for (loop, op[j]);
2232 	  if (!phi)
2233 	    return chrec_dont_know;
2234 	  val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2235 	  next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2236 	}
2237     }
2238 
2239   /* Don't issue signed overflow warnings.  */
2240   fold_defer_overflow_warnings ();
2241 
2242   for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2243     {
2244       for (j = 0; j < 2; j++)
2245 	aval[j] = get_val_for (op[j], val[j]);
2246 
2247       acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2248       if (acnd && integer_zerop (acnd))
2249 	{
2250 	  fold_undefer_and_ignore_overflow_warnings ();
2251 	  if (dump_file && (dump_flags & TDF_DETAILS))
2252 	    fprintf (dump_file,
2253 		     "Proved that loop %d iterates %d times using brute force.\n",
2254 		     loop->num, i);
2255 	  return build_int_cst (unsigned_type_node, i);
2256 	}
2257 
2258       for (j = 0; j < 2; j++)
2259 	{
2260 	  val[j] = get_val_for (next[j], val[j]);
2261 	  if (!is_gimple_min_invariant (val[j]))
2262 	    {
2263 	      fold_undefer_and_ignore_overflow_warnings ();
2264 	      return chrec_dont_know;
2265 	    }
2266 	}
2267     }
2268 
2269   fold_undefer_and_ignore_overflow_warnings ();
2270 
2271   return chrec_dont_know;
2272 }
2273 
2274 /* Finds the exit of the LOOP by that the loop exits after a constant
2275    number of iterations and stores the exit edge to *EXIT.  The constant
2276    giving the number of iterations of LOOP is returned.  The number of
2277    iterations is determined using loop_niter_by_eval (i.e. by brute force
2278    evaluation).  If we are unable to find the exit for that loop_niter_by_eval
2279    determines the number of iterations, chrec_dont_know is returned.  */
2280 
2281 tree
find_loop_niter_by_eval(struct loop * loop,edge * exit)2282 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2283 {
2284   unsigned i;
2285   VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2286   edge ex;
2287   tree niter = NULL_TREE, aniter;
2288 
2289   *exit = NULL;
2290 
2291   /* Loops with multiple exits are expensive to handle and less important.  */
2292   if (!flag_expensive_optimizations
2293       && VEC_length (edge, exits) > 1)
2294     {
2295       VEC_free (edge, heap, exits);
2296       return chrec_dont_know;
2297     }
2298 
2299   FOR_EACH_VEC_ELT (edge, exits, i, ex)
2300     {
2301       if (!just_once_each_iteration_p (loop, ex->src))
2302 	continue;
2303 
2304       aniter = loop_niter_by_eval (loop, ex);
2305       if (chrec_contains_undetermined (aniter))
2306 	continue;
2307 
2308       if (niter
2309 	  && !tree_int_cst_lt (aniter, niter))
2310 	continue;
2311 
2312       niter = aniter;
2313       *exit = ex;
2314     }
2315   VEC_free (edge, heap, exits);
2316 
2317   return niter ? niter : chrec_dont_know;
2318 }
2319 
2320 /*
2321 
2322    Analysis of upper bounds on number of iterations of a loop.
2323 
2324 */
2325 
2326 static double_int derive_constant_upper_bound_ops (tree, tree,
2327 						   enum tree_code, tree);
2328 
2329 /* Returns a constant upper bound on the value of the right-hand side of
2330    an assignment statement STMT.  */
2331 
2332 static double_int
derive_constant_upper_bound_assign(gimple stmt)2333 derive_constant_upper_bound_assign (gimple stmt)
2334 {
2335   enum tree_code code = gimple_assign_rhs_code (stmt);
2336   tree op0 = gimple_assign_rhs1 (stmt);
2337   tree op1 = gimple_assign_rhs2 (stmt);
2338 
2339   return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2340 					  op0, code, op1);
2341 }
2342 
2343 /* Returns a constant upper bound on the value of expression VAL.  VAL
2344    is considered to be unsigned.  If its type is signed, its value must
2345    be nonnegative.  */
2346 
2347 static double_int
derive_constant_upper_bound(tree val)2348 derive_constant_upper_bound (tree val)
2349 {
2350   enum tree_code code;
2351   tree op0, op1;
2352 
2353   extract_ops_from_tree (val, &code, &op0, &op1);
2354   return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2355 }
2356 
2357 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2358    whose type is TYPE.  The expression is considered to be unsigned.  If
2359    its type is signed, its value must be nonnegative.  */
2360 
2361 static double_int
derive_constant_upper_bound_ops(tree type,tree op0,enum tree_code code,tree op1)2362 derive_constant_upper_bound_ops (tree type, tree op0,
2363 				 enum tree_code code, tree op1)
2364 {
2365   tree subtype, maxt;
2366   double_int bnd, max, mmax, cst;
2367   gimple stmt;
2368 
2369   if (INTEGRAL_TYPE_P (type))
2370     maxt = TYPE_MAX_VALUE (type);
2371   else
2372     maxt = upper_bound_in_type (type, type);
2373 
2374   max = tree_to_double_int (maxt);
2375 
2376   switch (code)
2377     {
2378     case INTEGER_CST:
2379       return tree_to_double_int (op0);
2380 
2381     CASE_CONVERT:
2382       subtype = TREE_TYPE (op0);
2383       if (!TYPE_UNSIGNED (subtype)
2384 	  /* If TYPE is also signed, the fact that VAL is nonnegative implies
2385 	     that OP0 is nonnegative.  */
2386 	  && TYPE_UNSIGNED (type)
2387 	  && !tree_expr_nonnegative_p (op0))
2388 	{
2389 	  /* If we cannot prove that the casted expression is nonnegative,
2390 	     we cannot establish more useful upper bound than the precision
2391 	     of the type gives us.  */
2392 	  return max;
2393 	}
2394 
2395       /* We now know that op0 is an nonnegative value.  Try deriving an upper
2396 	 bound for it.  */
2397       bnd = derive_constant_upper_bound (op0);
2398 
2399       /* If the bound does not fit in TYPE, max. value of TYPE could be
2400 	 attained.  */
2401       if (double_int_ucmp (max, bnd) < 0)
2402 	return max;
2403 
2404       return bnd;
2405 
2406     case PLUS_EXPR:
2407     case POINTER_PLUS_EXPR:
2408     case MINUS_EXPR:
2409       if (TREE_CODE (op1) != INTEGER_CST
2410 	  || !tree_expr_nonnegative_p (op0))
2411 	return max;
2412 
2413       /* Canonicalize to OP0 - CST.  Consider CST to be signed, in order to
2414 	 choose the most logical way how to treat this constant regardless
2415 	 of the signedness of the type.  */
2416       cst = tree_to_double_int (op1);
2417       cst = double_int_sext (cst, TYPE_PRECISION (type));
2418       if (code != MINUS_EXPR)
2419 	cst = double_int_neg (cst);
2420 
2421       bnd = derive_constant_upper_bound (op0);
2422 
2423       if (double_int_negative_p (cst))
2424 	{
2425 	  cst = double_int_neg (cst);
2426 	  /* Avoid CST == 0x80000...  */
2427 	  if (double_int_negative_p (cst))
2428 	    return max;;
2429 
2430 	  /* OP0 + CST.  We need to check that
2431 	     BND <= MAX (type) - CST.  */
2432 
2433 	  mmax = double_int_sub (max, cst);
2434 	  if (double_int_ucmp (bnd, mmax) > 0)
2435 	    return max;
2436 
2437 	  return double_int_add (bnd, cst);
2438 	}
2439       else
2440 	{
2441 	  /* OP0 - CST, where CST >= 0.
2442 
2443 	     If TYPE is signed, we have already verified that OP0 >= 0, and we
2444 	     know that the result is nonnegative.  This implies that
2445 	     VAL <= BND - CST.
2446 
2447 	     If TYPE is unsigned, we must additionally know that OP0 >= CST,
2448 	     otherwise the operation underflows.
2449 	   */
2450 
2451 	  /* This should only happen if the type is unsigned; however, for
2452 	     buggy programs that use overflowing signed arithmetics even with
2453 	     -fno-wrapv, this condition may also be true for signed values.  */
2454 	  if (double_int_ucmp (bnd, cst) < 0)
2455 	    return max;
2456 
2457 	  if (TYPE_UNSIGNED (type))
2458 	    {
2459 	      tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2460 				      double_int_to_tree (type, cst));
2461 	      if (!tem || integer_nonzerop (tem))
2462 		return max;
2463 	    }
2464 
2465 	  bnd = double_int_sub (bnd, cst);
2466 	}
2467 
2468       return bnd;
2469 
2470     case FLOOR_DIV_EXPR:
2471     case EXACT_DIV_EXPR:
2472       if (TREE_CODE (op1) != INTEGER_CST
2473 	  || tree_int_cst_sign_bit (op1))
2474 	return max;
2475 
2476       bnd = derive_constant_upper_bound (op0);
2477       return double_int_udiv (bnd, tree_to_double_int (op1), FLOOR_DIV_EXPR);
2478 
2479     case BIT_AND_EXPR:
2480       if (TREE_CODE (op1) != INTEGER_CST
2481 	  || tree_int_cst_sign_bit (op1))
2482 	return max;
2483       return tree_to_double_int (op1);
2484 
2485     case SSA_NAME:
2486       stmt = SSA_NAME_DEF_STMT (op0);
2487       if (gimple_code (stmt) != GIMPLE_ASSIGN
2488 	  || gimple_assign_lhs (stmt) != op0)
2489 	return max;
2490       return derive_constant_upper_bound_assign (stmt);
2491 
2492     default:
2493       return max;
2494     }
2495 }
2496 
2497 /* Records that every statement in LOOP is executed I_BOUND times.
2498    REALISTIC is true if I_BOUND is expected to be close to the real number
2499    of iterations.  UPPER is true if we are sure the loop iterates at most
2500    I_BOUND times.  */
2501 
2502 static void
record_niter_bound(struct loop * loop,double_int i_bound,bool realistic,bool upper)2503 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2504 		    bool upper)
2505 {
2506   /* Update the bounds only when there is no previous estimation, or when the current
2507      estimation is smaller.  */
2508   if (upper
2509       && (!loop->any_upper_bound
2510 	  || double_int_ucmp (i_bound, loop->nb_iterations_upper_bound) < 0))
2511     {
2512       loop->any_upper_bound = true;
2513       loop->nb_iterations_upper_bound = i_bound;
2514     }
2515   if (realistic
2516       && (!loop->any_estimate
2517 	  || double_int_ucmp (i_bound, loop->nb_iterations_estimate) < 0))
2518     {
2519       loop->any_estimate = true;
2520       loop->nb_iterations_estimate = i_bound;
2521     }
2522 }
2523 
2524 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP.  IS_EXIT
2525    is true if the loop is exited immediately after STMT, and this exit
2526    is taken at last when the STMT is executed BOUND + 1 times.
2527    REALISTIC is true if BOUND is expected to be close to the real number
2528    of iterations.  UPPER is true if we are sure the loop iterates at most
2529    BOUND times.  I_BOUND is an unsigned double_int upper estimate on BOUND.  */
2530 
2531 static void
record_estimate(struct loop * loop,tree bound,double_int i_bound,gimple at_stmt,bool is_exit,bool realistic,bool upper)2532 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2533 		 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2534 {
2535   double_int delta;
2536   edge exit;
2537 
2538   if (dump_file && (dump_flags & TDF_DETAILS))
2539     {
2540       fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2541       print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2542       fprintf (dump_file, " is %sexecuted at most ",
2543 	       upper ? "" : "probably ");
2544       print_generic_expr (dump_file, bound, TDF_SLIM);
2545       fprintf (dump_file, " (bounded by ");
2546       dump_double_int (dump_file, i_bound, true);
2547       fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2548     }
2549 
2550   /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2551      real number of iterations.  */
2552   if (TREE_CODE (bound) != INTEGER_CST)
2553     realistic = false;
2554   if (!upper && !realistic)
2555     return;
2556 
2557   /* If we have a guaranteed upper bound, record it in the appropriate
2558      list.  */
2559   if (upper)
2560     {
2561       struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2562 
2563       elt->bound = i_bound;
2564       elt->stmt = at_stmt;
2565       elt->is_exit = is_exit;
2566       elt->next = loop->bounds;
2567       loop->bounds = elt;
2568     }
2569 
2570   /* Update the number of iteration estimates according to the bound.
2571      If at_stmt is an exit or dominates the single exit from the loop,
2572      then the loop latch is executed at most BOUND times, otherwise
2573      it can be executed BOUND + 1 times.  */
2574   exit = single_exit (loop);
2575   if (is_exit
2576       || (exit != NULL
2577 	  && dominated_by_p (CDI_DOMINATORS,
2578 			     exit->src, gimple_bb (at_stmt))))
2579     delta = double_int_zero;
2580   else
2581     delta = double_int_one;
2582   i_bound = double_int_add (i_bound, delta);
2583 
2584   /* If an overflow occurred, ignore the result.  */
2585   if (double_int_ucmp (i_bound, delta) < 0)
2586     return;
2587 
2588   record_niter_bound (loop, i_bound, realistic, upper);
2589 }
2590 
2591 /* Record the estimate on number of iterations of LOOP based on the fact that
2592    the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2593    its values belong to the range <LOW, HIGH>.  REALISTIC is true if the
2594    estimated number of iterations is expected to be close to the real one.
2595    UPPER is true if we are sure the induction variable does not wrap.  */
2596 
2597 static void
record_nonwrapping_iv(struct loop * loop,tree base,tree step,gimple stmt,tree low,tree high,bool realistic,bool upper)2598 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2599 		       tree low, tree high, bool realistic, bool upper)
2600 {
2601   tree niter_bound, extreme, delta;
2602   tree type = TREE_TYPE (base), unsigned_type;
2603   double_int max;
2604 
2605   if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2606     return;
2607 
2608   if (dump_file && (dump_flags & TDF_DETAILS))
2609     {
2610       fprintf (dump_file, "Induction variable (");
2611       print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2612       fprintf (dump_file, ") ");
2613       print_generic_expr (dump_file, base, TDF_SLIM);
2614       fprintf (dump_file, " + ");
2615       print_generic_expr (dump_file, step, TDF_SLIM);
2616       fprintf (dump_file, " * iteration does not wrap in statement ");
2617       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2618       fprintf (dump_file, " in loop %d.\n", loop->num);
2619     }
2620 
2621   unsigned_type = unsigned_type_for (type);
2622   base = fold_convert (unsigned_type, base);
2623   step = fold_convert (unsigned_type, step);
2624 
2625   if (tree_int_cst_sign_bit (step))
2626     {
2627       extreme = fold_convert (unsigned_type, low);
2628       if (TREE_CODE (base) != INTEGER_CST)
2629 	base = fold_convert (unsigned_type, high);
2630       delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2631       step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2632     }
2633   else
2634     {
2635       extreme = fold_convert (unsigned_type, high);
2636       if (TREE_CODE (base) != INTEGER_CST)
2637 	base = fold_convert (unsigned_type, low);
2638       delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2639     }
2640 
2641   /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2642      would get out of the range.  */
2643   niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2644   max = derive_constant_upper_bound (niter_bound);
2645   record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2646 }
2647 
2648 /* Returns true if REF is a reference to an array at the end of a dynamically
2649    allocated structure.  If this is the case, the array may be allocated larger
2650    than its upper bound implies.  */
2651 
2652 bool
array_at_struct_end_p(tree ref)2653 array_at_struct_end_p (tree ref)
2654 {
2655   tree base = get_base_address (ref);
2656   tree parent, field;
2657 
2658   /* Unless the reference is through a pointer, the size of the array matches
2659      its declaration.  */
2660   if (!base || (!INDIRECT_REF_P (base) && TREE_CODE (base) != MEM_REF))
2661     return false;
2662 
2663   for (;handled_component_p (ref); ref = parent)
2664     {
2665       parent = TREE_OPERAND (ref, 0);
2666 
2667       if (TREE_CODE (ref) == COMPONENT_REF)
2668 	{
2669 	  /* All fields of a union are at its end.  */
2670 	  if (TREE_CODE (TREE_TYPE (parent)) == UNION_TYPE)
2671 	    continue;
2672 
2673 	  /* Unless the field is at the end of the struct, we are done.  */
2674 	  field = TREE_OPERAND (ref, 1);
2675 	  if (DECL_CHAIN (field))
2676 	    return false;
2677 	}
2678 
2679       /* The other options are ARRAY_REF, ARRAY_RANGE_REF, VIEW_CONVERT_EXPR.
2680 	 In all these cases, we might be accessing the last element, and
2681 	 although in practice this will probably never happen, it is legal for
2682 	 the indices of this last element to exceed the bounds of the array.
2683 	 Therefore, continue checking.  */
2684     }
2685 
2686   return true;
2687 }
2688 
2689 /* Determine information about number of iterations a LOOP from the index
2690    IDX of a data reference accessed in STMT.  RELIABLE is true if STMT is
2691    guaranteed to be executed in every iteration of LOOP.  Callback for
2692    for_each_index.  */
2693 
2694 struct ilb_data
2695 {
2696   struct loop *loop;
2697   gimple stmt;
2698   bool reliable;
2699 };
2700 
2701 static bool
idx_infer_loop_bounds(tree base,tree * idx,void * dta)2702 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2703 {
2704   struct ilb_data *data = (struct ilb_data *) dta;
2705   tree ev, init, step;
2706   tree low, high, type, next;
2707   bool sign, upper = data->reliable, at_end = false;
2708   struct loop *loop = data->loop;
2709 
2710   if (TREE_CODE (base) != ARRAY_REF)
2711     return true;
2712 
2713   /* For arrays at the end of the structure, we are not guaranteed that they
2714      do not really extend over their declared size.  However, for arrays of
2715      size greater than one, this is unlikely to be intended.  */
2716   if (array_at_struct_end_p (base))
2717     {
2718       at_end = true;
2719       upper = false;
2720     }
2721 
2722   ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, *idx));
2723   init = initial_condition (ev);
2724   step = evolution_part_in_loop_num (ev, loop->num);
2725 
2726   if (!init
2727       || !step
2728       || TREE_CODE (step) != INTEGER_CST
2729       || integer_zerop (step)
2730       || tree_contains_chrecs (init, NULL)
2731       || chrec_contains_symbols_defined_in_loop (init, loop->num))
2732     return true;
2733 
2734   low = array_ref_low_bound (base);
2735   high = array_ref_up_bound (base);
2736 
2737   /* The case of nonconstant bounds could be handled, but it would be
2738      complicated.  */
2739   if (TREE_CODE (low) != INTEGER_CST
2740       || !high
2741       || TREE_CODE (high) != INTEGER_CST)
2742     return true;
2743   sign = tree_int_cst_sign_bit (step);
2744   type = TREE_TYPE (step);
2745 
2746   /* The array of length 1 at the end of a structure most likely extends
2747      beyond its bounds.  */
2748   if (at_end
2749       && operand_equal_p (low, high, 0))
2750     return true;
2751 
2752   /* In case the relevant bound of the array does not fit in type, or
2753      it does, but bound + step (in type) still belongs into the range of the
2754      array, the index may wrap and still stay within the range of the array
2755      (consider e.g. if the array is indexed by the full range of
2756      unsigned char).
2757 
2758      To make things simpler, we require both bounds to fit into type, although
2759      there are cases where this would not be strictly necessary.  */
2760   if (!int_fits_type_p (high, type)
2761       || !int_fits_type_p (low, type))
2762     return true;
2763   low = fold_convert (type, low);
2764   high = fold_convert (type, high);
2765 
2766   if (sign)
2767     next = fold_binary (PLUS_EXPR, type, low, step);
2768   else
2769     next = fold_binary (PLUS_EXPR, type, high, step);
2770 
2771   if (tree_int_cst_compare (low, next) <= 0
2772       && tree_int_cst_compare (next, high) <= 0)
2773     return true;
2774 
2775   record_nonwrapping_iv (loop, init, step, data->stmt, low, high, true, upper);
2776   return true;
2777 }
2778 
2779 /* Determine information about number of iterations a LOOP from the bounds
2780    of arrays in the data reference REF accessed in STMT.  RELIABLE is true if
2781    STMT is guaranteed to be executed in every iteration of LOOP.*/
2782 
2783 static void
infer_loop_bounds_from_ref(struct loop * loop,gimple stmt,tree ref,bool reliable)2784 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref,
2785 			    bool reliable)
2786 {
2787   struct ilb_data data;
2788 
2789   data.loop = loop;
2790   data.stmt = stmt;
2791   data.reliable = reliable;
2792   for_each_index (&ref, idx_infer_loop_bounds, &data);
2793 }
2794 
2795 /* Determine information about number of iterations of a LOOP from the way
2796    arrays are used in STMT.  RELIABLE is true if STMT is guaranteed to be
2797    executed in every iteration of LOOP.  */
2798 
2799 static void
infer_loop_bounds_from_array(struct loop * loop,gimple stmt,bool reliable)2800 infer_loop_bounds_from_array (struct loop *loop, gimple stmt, bool reliable)
2801 {
2802   if (is_gimple_assign (stmt))
2803     {
2804       tree op0 = gimple_assign_lhs (stmt);
2805       tree op1 = gimple_assign_rhs1 (stmt);
2806 
2807       /* For each memory access, analyze its access function
2808 	 and record a bound on the loop iteration domain.  */
2809       if (REFERENCE_CLASS_P (op0))
2810 	infer_loop_bounds_from_ref (loop, stmt, op0, reliable);
2811 
2812       if (REFERENCE_CLASS_P (op1))
2813 	infer_loop_bounds_from_ref (loop, stmt, op1, reliable);
2814     }
2815   else if (is_gimple_call (stmt))
2816     {
2817       tree arg, lhs;
2818       unsigned i, n = gimple_call_num_args (stmt);
2819 
2820       lhs = gimple_call_lhs (stmt);
2821       if (lhs && REFERENCE_CLASS_P (lhs))
2822 	infer_loop_bounds_from_ref (loop, stmt, lhs, reliable);
2823 
2824       for (i = 0; i < n; i++)
2825 	{
2826 	  arg = gimple_call_arg (stmt, i);
2827 	  if (REFERENCE_CLASS_P (arg))
2828 	    infer_loop_bounds_from_ref (loop, stmt, arg, reliable);
2829 	}
2830     }
2831 }
2832 
2833 /* Determine information about number of iterations of a LOOP from the fact
2834    that pointer arithmetics in STMT does not overflow.  */
2835 
2836 static void
infer_loop_bounds_from_pointer_arith(struct loop * loop,gimple stmt)2837 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2838 {
2839   tree def, base, step, scev, type, low, high;
2840   tree var, ptr;
2841 
2842   if (!is_gimple_assign (stmt)
2843       || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2844     return;
2845 
2846   def = gimple_assign_lhs (stmt);
2847   if (TREE_CODE (def) != SSA_NAME)
2848     return;
2849 
2850   type = TREE_TYPE (def);
2851   if (!nowrap_type_p (type))
2852     return;
2853 
2854   ptr = gimple_assign_rhs1 (stmt);
2855   if (!expr_invariant_in_loop_p (loop, ptr))
2856     return;
2857 
2858   var = gimple_assign_rhs2 (stmt);
2859   if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2860     return;
2861 
2862   scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2863   if (chrec_contains_undetermined (scev))
2864     return;
2865 
2866   base = initial_condition_in_loop_num (scev, loop->num);
2867   step = evolution_part_in_loop_num (scev, loop->num);
2868 
2869   if (!base || !step
2870       || TREE_CODE (step) != INTEGER_CST
2871       || tree_contains_chrecs (base, NULL)
2872       || chrec_contains_symbols_defined_in_loop (base, loop->num))
2873     return;
2874 
2875   low = lower_bound_in_type (type, type);
2876   high = upper_bound_in_type (type, type);
2877 
2878   /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2879      produce a NULL pointer.  The contrary would mean NULL points to an object,
2880      while NULL is supposed to compare unequal with the address of all objects.
2881      Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2882      NULL pointer since that would mean wrapping, which we assume here not to
2883      happen.  So, we can exclude NULL from the valid range of pointer
2884      arithmetic.  */
2885   if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2886     low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2887 
2888   record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2889 }
2890 
2891 /* Determine information about number of iterations of a LOOP from the fact
2892    that signed arithmetics in STMT does not overflow.  */
2893 
2894 static void
infer_loop_bounds_from_signedness(struct loop * loop,gimple stmt)2895 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2896 {
2897   tree def, base, step, scev, type, low, high;
2898 
2899   if (gimple_code (stmt) != GIMPLE_ASSIGN)
2900     return;
2901 
2902   def = gimple_assign_lhs (stmt);
2903 
2904   if (TREE_CODE (def) != SSA_NAME)
2905     return;
2906 
2907   type = TREE_TYPE (def);
2908   if (!INTEGRAL_TYPE_P (type)
2909       || !TYPE_OVERFLOW_UNDEFINED (type))
2910     return;
2911 
2912   scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2913   if (chrec_contains_undetermined (scev))
2914     return;
2915 
2916   base = initial_condition_in_loop_num (scev, loop->num);
2917   step = evolution_part_in_loop_num (scev, loop->num);
2918 
2919   if (!base || !step
2920       || TREE_CODE (step) != INTEGER_CST
2921       || tree_contains_chrecs (base, NULL)
2922       || chrec_contains_symbols_defined_in_loop (base, loop->num))
2923     return;
2924 
2925   low = lower_bound_in_type (type, type);
2926   high = upper_bound_in_type (type, type);
2927 
2928   record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2929 }
2930 
2931 /* The following analyzers are extracting informations on the bounds
2932    of LOOP from the following undefined behaviors:
2933 
2934    - data references should not access elements over the statically
2935      allocated size,
2936 
2937    - signed variables should not overflow when flag_wrapv is not set.
2938 */
2939 
2940 static void
infer_loop_bounds_from_undefined(struct loop * loop)2941 infer_loop_bounds_from_undefined (struct loop *loop)
2942 {
2943   unsigned i;
2944   basic_block *bbs;
2945   gimple_stmt_iterator bsi;
2946   basic_block bb;
2947   bool reliable;
2948 
2949   bbs = get_loop_body (loop);
2950 
2951   for (i = 0; i < loop->num_nodes; i++)
2952     {
2953       bb = bbs[i];
2954 
2955       /* If BB is not executed in each iteration of the loop, we cannot
2956 	 use the operations in it to infer reliable upper bound on the
2957 	 # of iterations of the loop.  However, we can use it as a guess.  */
2958       reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2959 
2960       for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2961 	{
2962 	  gimple stmt = gsi_stmt (bsi);
2963 
2964 	  infer_loop_bounds_from_array (loop, stmt, reliable);
2965 
2966 	  if (reliable)
2967             {
2968               infer_loop_bounds_from_signedness (loop, stmt);
2969               infer_loop_bounds_from_pointer_arith (loop, stmt);
2970             }
2971   	}
2972 
2973     }
2974 
2975   free (bbs);
2976 }
2977 
2978 /* Converts VAL to double_int.  */
2979 
2980 static double_int
gcov_type_to_double_int(gcov_type val)2981 gcov_type_to_double_int (gcov_type val)
2982 {
2983   double_int ret;
2984 
2985   ret.low = (unsigned HOST_WIDE_INT) val;
2986   /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
2987      the size of type.  */
2988   val >>= HOST_BITS_PER_WIDE_INT - 1;
2989   val >>= 1;
2990   ret.high = (unsigned HOST_WIDE_INT) val;
2991 
2992   return ret;
2993 }
2994 
2995 /* Records estimates on numbers of iterations of LOOP.  If USE_UNDEFINED_P
2996    is true also use estimates derived from undefined behavior.  */
2997 
2998 void
estimate_numbers_of_iterations_loop(struct loop * loop,bool use_undefined_p)2999 estimate_numbers_of_iterations_loop (struct loop *loop, bool use_undefined_p)
3000 {
3001   VEC (edge, heap) *exits;
3002   tree niter, type;
3003   unsigned i;
3004   struct tree_niter_desc niter_desc;
3005   edge ex;
3006   double_int bound;
3007 
3008   /* Give up if we already have tried to compute an estimation.  */
3009   if (loop->estimate_state != EST_NOT_COMPUTED)
3010     return;
3011   loop->estimate_state = EST_AVAILABLE;
3012   loop->any_upper_bound = false;
3013   loop->any_estimate = false;
3014 
3015   exits = get_loop_exit_edges (loop);
3016   FOR_EACH_VEC_ELT (edge, exits, i, ex)
3017     {
3018       if (!number_of_iterations_exit (loop, ex, &niter_desc, false))
3019 	continue;
3020 
3021       niter = niter_desc.niter;
3022       type = TREE_TYPE (niter);
3023       if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3024 	niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3025 			build_int_cst (type, 0),
3026 			niter);
3027       record_estimate (loop, niter, niter_desc.max,
3028 		       last_stmt (ex->src),
3029 		       true, true, true);
3030     }
3031   VEC_free (edge, heap, exits);
3032 
3033   if (use_undefined_p)
3034     infer_loop_bounds_from_undefined (loop);
3035 
3036   /* If we have a measured profile, use it to estimate the number of
3037      iterations.  */
3038   if (loop->header->count != 0)
3039     {
3040       gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3041       bound = gcov_type_to_double_int (nit);
3042       record_niter_bound (loop, bound, true, false);
3043     }
3044 
3045   /* If an upper bound is smaller than the realistic estimate of the
3046      number of iterations, use the upper bound instead.  */
3047   if (loop->any_upper_bound
3048       && loop->any_estimate
3049       && double_int_ucmp (loop->nb_iterations_upper_bound,
3050 			  loop->nb_iterations_estimate) < 0)
3051     loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
3052 }
3053 
3054 /* Sets NIT to the estimated number of executions of the latch of the
3055    LOOP.  If CONSERVATIVE is true, we must be sure that NIT is at least as
3056    large as the number of iterations.  If we have no reliable estimate,
3057    the function returns false, otherwise returns true.  */
3058 
3059 bool
estimated_loop_iterations(struct loop * loop,bool conservative,double_int * nit)3060 estimated_loop_iterations (struct loop *loop, bool conservative,
3061 			   double_int *nit)
3062 {
3063   estimate_numbers_of_iterations_loop (loop, true);
3064   if (conservative)
3065     {
3066       if (!loop->any_upper_bound)
3067 	return false;
3068 
3069       *nit = loop->nb_iterations_upper_bound;
3070     }
3071   else
3072     {
3073       if (!loop->any_estimate)
3074 	return false;
3075 
3076       *nit = loop->nb_iterations_estimate;
3077     }
3078 
3079   return true;
3080 }
3081 
3082 /* Similar to estimated_loop_iterations, but returns the estimate only
3083    if it fits to HOST_WIDE_INT.  If this is not the case, or the estimate
3084    on the number of iterations of LOOP could not be derived, returns -1.  */
3085 
3086 HOST_WIDE_INT
estimated_loop_iterations_int(struct loop * loop,bool conservative)3087 estimated_loop_iterations_int (struct loop *loop, bool conservative)
3088 {
3089   double_int nit;
3090   HOST_WIDE_INT hwi_nit;
3091 
3092   if (!estimated_loop_iterations (loop, conservative, &nit))
3093     return -1;
3094 
3095   if (!double_int_fits_in_shwi_p (nit))
3096     return -1;
3097   hwi_nit = double_int_to_shwi (nit);
3098 
3099   return hwi_nit < 0 ? -1 : hwi_nit;
3100 }
3101 
3102 /* Returns an upper bound on the number of executions of statements
3103    in the LOOP.  For statements before the loop exit, this exceeds
3104    the number of execution of the latch by one.  */
3105 
3106 HOST_WIDE_INT
max_stmt_executions_int(struct loop * loop,bool conservative)3107 max_stmt_executions_int (struct loop *loop, bool conservative)
3108 {
3109   HOST_WIDE_INT nit = estimated_loop_iterations_int (loop, conservative);
3110   HOST_WIDE_INT snit;
3111 
3112   if (nit == -1)
3113     return -1;
3114 
3115   snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3116 
3117   /* If the computation overflows, return -1.  */
3118   return snit < 0 ? -1 : snit;
3119 }
3120 
3121 /* Sets NIT to the estimated number of executions of the latch of the
3122    LOOP, plus one.  If CONSERVATIVE is true, we must be sure that NIT is at
3123    least as large as the number of iterations.  If we have no reliable
3124    estimate, the function returns false, otherwise returns true.  */
3125 
3126 bool
max_stmt_executions(struct loop * loop,bool conservative,double_int * nit)3127 max_stmt_executions (struct loop *loop, bool conservative, double_int *nit)
3128 {
3129   double_int nit_minus_one;
3130 
3131   if (!estimated_loop_iterations (loop, conservative, nit))
3132     return false;
3133 
3134   nit_minus_one = *nit;
3135 
3136   *nit = double_int_add (*nit, double_int_one);
3137 
3138   return double_int_ucmp (*nit, nit_minus_one) > 0;
3139 }
3140 
3141 /* Records estimates on numbers of iterations of loops.  */
3142 
3143 void
estimate_numbers_of_iterations(bool use_undefined_p)3144 estimate_numbers_of_iterations (bool use_undefined_p)
3145 {
3146   loop_iterator li;
3147   struct loop *loop;
3148 
3149   /* We don't want to issue signed overflow warnings while getting
3150      loop iteration estimates.  */
3151   fold_defer_overflow_warnings ();
3152 
3153   FOR_EACH_LOOP (li, loop, 0)
3154     {
3155       estimate_numbers_of_iterations_loop (loop, use_undefined_p);
3156     }
3157 
3158   fold_undefer_and_ignore_overflow_warnings ();
3159 }
3160 
3161 /* Returns true if statement S1 dominates statement S2.  */
3162 
3163 bool
stmt_dominates_stmt_p(gimple s1,gimple s2)3164 stmt_dominates_stmt_p (gimple s1, gimple s2)
3165 {
3166   basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3167 
3168   if (!bb1
3169       || s1 == s2)
3170     return true;
3171 
3172   if (bb1 == bb2)
3173     {
3174       gimple_stmt_iterator bsi;
3175 
3176       if (gimple_code (s2) == GIMPLE_PHI)
3177 	return false;
3178 
3179       if (gimple_code (s1) == GIMPLE_PHI)
3180 	return true;
3181 
3182       for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3183 	if (gsi_stmt (bsi) == s1)
3184 	  return true;
3185 
3186       return false;
3187     }
3188 
3189   return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3190 }
3191 
3192 /* Returns true when we can prove that the number of executions of
3193    STMT in the loop is at most NITER, according to the bound on
3194    the number of executions of the statement NITER_BOUND->stmt recorded in
3195    NITER_BOUND.  If STMT is NULL, we must prove this bound for all
3196    statements in the loop.  */
3197 
3198 static bool
n_of_executions_at_most(gimple stmt,struct nb_iter_bound * niter_bound,tree niter)3199 n_of_executions_at_most (gimple stmt,
3200 			 struct nb_iter_bound *niter_bound,
3201 			 tree niter)
3202 {
3203   double_int bound = niter_bound->bound;
3204   tree nit_type = TREE_TYPE (niter), e;
3205   enum tree_code cmp;
3206 
3207   gcc_assert (TYPE_UNSIGNED (nit_type));
3208 
3209   /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3210      the number of iterations is small.  */
3211   if (!double_int_fits_to_tree_p (nit_type, bound))
3212     return false;
3213 
3214   /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3215      times.  This means that:
3216 
3217      -- if NITER_BOUND->is_exit is true, then everything before
3218         NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3219 	times, and everything after it at most NITER_BOUND->bound times.
3220 
3221      -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3222 	is executed, then NITER_BOUND->stmt is executed as well in the same
3223 	iteration (we conclude that if both statements belong to the same
3224 	basic block, or if STMT is after NITER_BOUND->stmt), then STMT
3225 	is executed at most NITER_BOUND->bound + 1 times.  Otherwise STMT is
3226 	executed at most NITER_BOUND->bound + 2 times.  */
3227 
3228   if (niter_bound->is_exit)
3229     {
3230       if (stmt
3231 	  && stmt != niter_bound->stmt
3232 	  && stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3233 	cmp = GE_EXPR;
3234       else
3235 	cmp = GT_EXPR;
3236     }
3237   else
3238     {
3239       if (!stmt
3240 	  || (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3241 	      && !stmt_dominates_stmt_p (niter_bound->stmt, stmt)))
3242 	{
3243 	  bound = double_int_add (bound, double_int_one);
3244 	  if (double_int_zero_p (bound)
3245 	      || !double_int_fits_to_tree_p (nit_type, bound))
3246 	    return false;
3247 	}
3248       cmp = GT_EXPR;
3249     }
3250 
3251   e = fold_binary (cmp, boolean_type_node,
3252 		   niter, double_int_to_tree (nit_type, bound));
3253   return e && integer_nonzerop (e);
3254 }
3255 
3256 /* Returns true if the arithmetics in TYPE can be assumed not to wrap.  */
3257 
3258 bool
nowrap_type_p(tree type)3259 nowrap_type_p (tree type)
3260 {
3261   if (INTEGRAL_TYPE_P (type)
3262       && TYPE_OVERFLOW_UNDEFINED (type))
3263     return true;
3264 
3265   if (POINTER_TYPE_P (type))
3266     return true;
3267 
3268   return false;
3269 }
3270 
3271 /* Return false only when the induction variable BASE + STEP * I is
3272    known to not overflow: i.e. when the number of iterations is small
3273    enough with respect to the step and initial condition in order to
3274    keep the evolution confined in TYPEs bounds.  Return true when the
3275    iv is known to overflow or when the property is not computable.
3276 
3277    USE_OVERFLOW_SEMANTICS is true if this function should assume that
3278    the rules for overflow of the given language apply (e.g., that signed
3279    arithmetics in C does not overflow).  */
3280 
3281 bool
scev_probably_wraps_p(tree base,tree step,gimple at_stmt,struct loop * loop,bool use_overflow_semantics)3282 scev_probably_wraps_p (tree base, tree step,
3283 		       gimple at_stmt, struct loop *loop,
3284 		       bool use_overflow_semantics)
3285 {
3286   struct nb_iter_bound *bound;
3287   tree delta, step_abs;
3288   tree unsigned_type, valid_niter;
3289   tree type = TREE_TYPE (step);
3290 
3291   /* FIXME: We really need something like
3292      http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3293 
3294      We used to test for the following situation that frequently appears
3295      during address arithmetics:
3296 
3297        D.1621_13 = (long unsigned intD.4) D.1620_12;
3298        D.1622_14 = D.1621_13 * 8;
3299        D.1623_15 = (doubleD.29 *) D.1622_14;
3300 
3301      And derived that the sequence corresponding to D_14
3302      can be proved to not wrap because it is used for computing a
3303      memory access; however, this is not really the case -- for example,
3304      if D_12 = (unsigned char) [254,+,1], then D_14 has values
3305      2032, 2040, 0, 8, ..., but the code is still legal.  */
3306 
3307   if (chrec_contains_undetermined (base)
3308       || chrec_contains_undetermined (step))
3309     return true;
3310 
3311   if (integer_zerop (step))
3312     return false;
3313 
3314   /* If we can use the fact that signed and pointer arithmetics does not
3315      wrap, we are done.  */
3316   if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3317     return false;
3318 
3319   /* To be able to use estimates on number of iterations of the loop,
3320      we must have an upper bound on the absolute value of the step.  */
3321   if (TREE_CODE (step) != INTEGER_CST)
3322     return true;
3323 
3324   /* Don't issue signed overflow warnings.  */
3325   fold_defer_overflow_warnings ();
3326 
3327   /* Otherwise, compute the number of iterations before we reach the
3328      bound of the type, and verify that the loop is exited before this
3329      occurs.  */
3330   unsigned_type = unsigned_type_for (type);
3331   base = fold_convert (unsigned_type, base);
3332 
3333   if (tree_int_cst_sign_bit (step))
3334     {
3335       tree extreme = fold_convert (unsigned_type,
3336 				   lower_bound_in_type (type, type));
3337       delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3338       step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3339 			      fold_convert (unsigned_type, step));
3340     }
3341   else
3342     {
3343       tree extreme = fold_convert (unsigned_type,
3344 				   upper_bound_in_type (type, type));
3345       delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3346       step_abs = fold_convert (unsigned_type, step);
3347     }
3348 
3349   valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3350 
3351   estimate_numbers_of_iterations_loop (loop, true);
3352   for (bound = loop->bounds; bound; bound = bound->next)
3353     {
3354       if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3355 	{
3356 	  fold_undefer_and_ignore_overflow_warnings ();
3357 	  return false;
3358 	}
3359     }
3360 
3361   fold_undefer_and_ignore_overflow_warnings ();
3362 
3363   /* At this point we still don't have a proof that the iv does not
3364      overflow: give up.  */
3365   return true;
3366 }
3367 
3368 /* Frees the information on upper bounds on numbers of iterations of LOOP.  */
3369 
3370 void
free_numbers_of_iterations_estimates_loop(struct loop * loop)3371 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3372 {
3373   struct nb_iter_bound *bound, *next;
3374 
3375   loop->nb_iterations = NULL;
3376   loop->estimate_state = EST_NOT_COMPUTED;
3377   for (bound = loop->bounds; bound; bound = next)
3378     {
3379       next = bound->next;
3380       ggc_free (bound);
3381     }
3382 
3383   loop->bounds = NULL;
3384 }
3385 
3386 /* Frees the information on upper bounds on numbers of iterations of loops.  */
3387 
3388 void
free_numbers_of_iterations_estimates(void)3389 free_numbers_of_iterations_estimates (void)
3390 {
3391   loop_iterator li;
3392   struct loop *loop;
3393 
3394   FOR_EACH_LOOP (li, loop, 0)
3395     {
3396       free_numbers_of_iterations_estimates_loop (loop);
3397     }
3398 }
3399 
3400 /* Substitute value VAL for ssa name NAME inside expressions held
3401    at LOOP.  */
3402 
3403 void
substitute_in_loop_info(struct loop * loop,tree name,tree val)3404 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3405 {
3406   loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);
3407 }
3408