xref: /dragonfly/contrib/gcc-8.0/gcc/cp/init.c (revision 58e805e6)
1 /* Handle initialization things in C++.
2    Copyright (C) 1987-2018 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com)
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* High-level class interface.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51 
52 static GTY(()) tree fn;
53 
54 /* We are about to generate some complex initialization code.
55    Conceptually, it is all a single expression.  However, we may want
56    to include conditionals, loops, and other such statement-level
57    constructs.  Therefore, we build the initialization code inside a
58    statement-expression.  This function starts such an expression.
59    STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
60    pass them back to finish_init_stmts when the expression is
61    complete.  */
62 
63 static bool
begin_init_stmts(tree * stmt_expr_p,tree * compound_stmt_p)64 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
65 {
66   bool is_global = !building_stmt_list_p ();
67 
68   *stmt_expr_p = begin_stmt_expr ();
69   *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
70 
71   return is_global;
72 }
73 
74 /* Finish out the statement-expression begun by the previous call to
75    begin_init_stmts.  Returns the statement-expression itself.  */
76 
77 static tree
finish_init_stmts(bool is_global,tree stmt_expr,tree compound_stmt)78 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
79 {
80   finish_compound_stmt (compound_stmt);
81 
82   stmt_expr = finish_stmt_expr (stmt_expr, true);
83 
84   gcc_assert (!building_stmt_list_p () == is_global);
85 
86   return stmt_expr;
87 }
88 
89 /* Constructors */
90 
91 /* Called from initialize_vtbl_ptrs via dfs_walk.  BINFO is the base
92    which we want to initialize the vtable pointer for, DATA is
93    TREE_LIST whose TREE_VALUE is the this ptr expression.  */
94 
95 static tree
dfs_initialize_vtbl_ptrs(tree binfo,void * data)96 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
97 {
98   if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
99     return dfs_skip_bases;
100 
101   if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
102     {
103       tree base_ptr = TREE_VALUE ((tree) data);
104 
105       base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
106 				  tf_warning_or_error);
107 
108       expand_virtual_init (binfo, base_ptr);
109     }
110 
111   return NULL_TREE;
112 }
113 
114 /* Initialize all the vtable pointers in the object pointed to by
115    ADDR.  */
116 
117 void
initialize_vtbl_ptrs(tree addr)118 initialize_vtbl_ptrs (tree addr)
119 {
120   tree list;
121   tree type;
122 
123   type = TREE_TYPE (TREE_TYPE (addr));
124   list = build_tree_list (type, addr);
125 
126   /* Walk through the hierarchy, initializing the vptr in each base
127      class.  We do these in pre-order because we can't find the virtual
128      bases for a class until we've initialized the vtbl for that
129      class.  */
130   dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
131 }
132 
133 /* Return an expression for the zero-initialization of an object with
134    type T.  This expression will either be a constant (in the case
135    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
136    aggregate), or NULL (in the case that T does not require
137    initialization).  In either case, the value can be used as
138    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
139    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
140    is the number of elements in the array.  If STATIC_STORAGE_P is
141    TRUE, initializers are only generated for entities for which
142    zero-initialization does not simply mean filling the storage with
143    zero bytes.  FIELD_SIZE, if non-NULL, is the bit size of the field,
144    subfields with bit positions at or above that bit size shouldn't
145    be added.  Note that this only works when the result is assigned
146    to a base COMPONENT_REF; if we only have a pointer to the base subobject,
147    expand_assignment will end up clearing the full size of TYPE.  */
148 
149 static tree
build_zero_init_1(tree type,tree nelts,bool static_storage_p,tree field_size)150 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
151 		   tree field_size)
152 {
153   tree init = NULL_TREE;
154 
155   /* [dcl.init]
156 
157      To zero-initialize an object of type T means:
158 
159      -- if T is a scalar type, the storage is set to the value of zero
160 	converted to T.
161 
162      -- if T is a non-union class type, the storage for each nonstatic
163 	data member and each base-class subobject is zero-initialized.
164 
165      -- if T is a union type, the storage for its first data member is
166 	zero-initialized.
167 
168      -- if T is an array type, the storage for each element is
169 	zero-initialized.
170 
171      -- if T is a reference type, no initialization is performed.  */
172 
173   gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174 
175   if (type == error_mark_node)
176     ;
177   else if (static_storage_p && zero_init_p (type))
178     /* In order to save space, we do not explicitly build initializers
179        for items that do not need them.  GCC's semantics are that
180        items with static storage duration that are not otherwise
181        initialized are initialized to zero.  */
182     ;
183   else if (TYPE_PTR_OR_PTRMEM_P (type))
184     init = fold (convert (type, nullptr_node));
185   else if (NULLPTR_TYPE_P (type))
186     init = build_int_cst (type, 0);
187   else if (SCALAR_TYPE_P (type))
188     init = fold (convert (type, integer_zero_node));
189   else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
190     {
191       tree field;
192       vec<constructor_elt, va_gc> *v = NULL;
193 
194       /* Iterate over the fields, building initializations.  */
195       for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
196 	{
197 	  if (TREE_CODE (field) != FIELD_DECL)
198 	    continue;
199 
200 	  if (TREE_TYPE (field) == error_mark_node)
201 	    continue;
202 
203 	  /* Don't add virtual bases for base classes if they are beyond
204 	     the size of the current field, that means it is present
205 	     somewhere else in the object.  */
206 	  if (field_size)
207 	    {
208 	      tree bitpos = bit_position (field);
209 	      if (TREE_CODE (bitpos) == INTEGER_CST
210 		  && !tree_int_cst_lt (bitpos, field_size))
211 		continue;
212 	    }
213 
214 	  /* Note that for class types there will be FIELD_DECLs
215 	     corresponding to base classes as well.  Thus, iterating
216 	     over TYPE_FIELDs will result in correct initialization of
217 	     all of the subobjects.  */
218 	  if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
219 	    {
220 	      tree new_field_size
221 		= (DECL_FIELD_IS_BASE (field)
222 		   && DECL_SIZE (field)
223 		   && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
224 		  ? DECL_SIZE (field) : NULL_TREE;
225 	      tree value = build_zero_init_1 (TREE_TYPE (field),
226 					      /*nelts=*/NULL_TREE,
227 					      static_storage_p,
228 					      new_field_size);
229 	      if (value)
230 		CONSTRUCTOR_APPEND_ELT(v, field, value);
231 	    }
232 
233 	  /* For unions, only the first field is initialized.  */
234 	  if (TREE_CODE (type) == UNION_TYPE)
235 	    break;
236 	}
237 
238       /* Build a constructor to contain the initializations.  */
239       init = build_constructor (type, v);
240     }
241   else if (TREE_CODE (type) == ARRAY_TYPE)
242     {
243       tree max_index;
244       vec<constructor_elt, va_gc> *v = NULL;
245 
246       /* Iterate over the array elements, building initializations.  */
247       if (nelts)
248 	max_index = fold_build2_loc (input_location,
249 				 MINUS_EXPR, TREE_TYPE (nelts),
250 				 nelts, integer_one_node);
251       else
252 	max_index = array_type_nelts (type);
253 
254       /* If we have an error_mark here, we should just return error mark
255 	 as we don't know the size of the array yet.  */
256       if (max_index == error_mark_node)
257 	return error_mark_node;
258       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
259 
260       /* A zero-sized array, which is accepted as an extension, will
261 	 have an upper bound of -1.  */
262       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
263 	{
264 	  constructor_elt ce;
265 
266 	  /* If this is a one element array, we just use a regular init.  */
267 	  if (tree_int_cst_equal (size_zero_node, max_index))
268 	    ce.index = size_zero_node;
269 	  else
270 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
271 				max_index);
272 
273 	  ce.value = build_zero_init_1 (TREE_TYPE (type),
274 					 /*nelts=*/NULL_TREE,
275 					 static_storage_p, NULL_TREE);
276 	  if (ce.value)
277 	    {
278 	      vec_alloc (v, 1);
279 	      v->quick_push (ce);
280 	    }
281 	}
282 
283       /* Build a constructor to contain the initializations.  */
284       init = build_constructor (type, v);
285     }
286   else if (VECTOR_TYPE_P (type))
287     init = build_zero_cst (type);
288   else
289     {
290       gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
291       init = build_zero_cst (type);
292     }
293 
294   /* In all cases, the initializer is a constant.  */
295   if (init)
296     TREE_CONSTANT (init) = 1;
297 
298   return init;
299 }
300 
301 /* Return an expression for the zero-initialization of an object with
302    type T.  This expression will either be a constant (in the case
303    that T is a scalar), or a CONSTRUCTOR (in the case that T is an
304    aggregate), or NULL (in the case that T does not require
305    initialization).  In either case, the value can be used as
306    DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
307    initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
308    is the number of elements in the array.  If STATIC_STORAGE_P is
309    TRUE, initializers are only generated for entities for which
310    zero-initialization does not simply mean filling the storage with
311    zero bytes.  */
312 
313 tree
build_zero_init(tree type,tree nelts,bool static_storage_p)314 build_zero_init (tree type, tree nelts, bool static_storage_p)
315 {
316   return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
317 }
318 
319 /* Return a suitable initializer for value-initializing an object of type
320    TYPE, as described in [dcl.init].  */
321 
322 tree
build_value_init(tree type,tsubst_flags_t complain)323 build_value_init (tree type, tsubst_flags_t complain)
324 {
325   /* [dcl.init]
326 
327      To value-initialize an object of type T means:
328 
329      - if T is a class type (clause 9) with either no default constructor
330        (12.1) or a default constructor that is user-provided or deleted,
331        then the object is default-initialized;
332 
333      - if T is a (possibly cv-qualified) class type without a user-provided
334        or deleted default constructor, then the object is zero-initialized
335        and the semantic constraints for default-initialization are checked,
336        and if T has a non-trivial default constructor, the object is
337        default-initialized;
338 
339      - if T is an array type, then each element is value-initialized;
340 
341      - otherwise, the object is zero-initialized.
342 
343      A program that calls for default-initialization or
344      value-initialization of an entity of reference type is ill-formed.  */
345 
346   /* The AGGR_INIT_EXPR tweaking below breaks in templates.  */
347   gcc_assert (!processing_template_decl
348 	      || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
349 
350   if (CLASS_TYPE_P (type)
351       && type_build_ctor_call (type))
352     {
353       tree ctor =
354 	 build_special_member_call (NULL_TREE, complete_ctor_identifier,
355 				    NULL, type, LOOKUP_NORMAL,
356 				    complain);
357       if (ctor == error_mark_node)
358 	return ctor;
359       tree fn = NULL_TREE;
360       if (TREE_CODE (ctor) == CALL_EXPR)
361 	fn = get_callee_fndecl (ctor);
362       ctor = build_aggr_init_expr (type, ctor);
363       if (fn && user_provided_p (fn))
364 	return ctor;
365       else if (TYPE_HAS_COMPLEX_DFLT (type))
366 	{
367 	  /* This is a class that needs constructing, but doesn't have
368 	     a user-provided constructor.  So we need to zero-initialize
369 	     the object and then call the implicitly defined ctor.
370 	     This will be handled in simplify_aggr_init_expr.  */
371 	  AGGR_INIT_ZERO_FIRST (ctor) = 1;
372 	  return ctor;
373 	}
374     }
375 
376   /* Discard any access checking during subobject initialization;
377      the checks are implied by the call to the ctor which we have
378      verified is OK (cpp0x/defaulted46.C).  */
379   push_deferring_access_checks (dk_deferred);
380   tree r = build_value_init_noctor (type, complain);
381   pop_deferring_access_checks ();
382   return r;
383 }
384 
385 /* Like build_value_init, but don't call the constructor for TYPE.  Used
386    for base initializers.  */
387 
388 tree
build_value_init_noctor(tree type,tsubst_flags_t complain)389 build_value_init_noctor (tree type, tsubst_flags_t complain)
390 {
391   if (!COMPLETE_TYPE_P (type))
392     {
393       if (complain & tf_error)
394 	error ("value-initialization of incomplete type %qT", type);
395       return error_mark_node;
396     }
397   /* FIXME the class and array cases should just use digest_init once it is
398      SFINAE-enabled.  */
399   if (CLASS_TYPE_P (type))
400     {
401       gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
402 		  || errorcount != 0);
403 
404       if (TREE_CODE (type) != UNION_TYPE)
405 	{
406 	  tree field;
407 	  vec<constructor_elt, va_gc> *v = NULL;
408 
409 	  /* Iterate over the fields, building initializations.  */
410 	  for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
411 	    {
412 	      tree ftype, value;
413 
414 	      if (TREE_CODE (field) != FIELD_DECL)
415 		continue;
416 
417 	      ftype = TREE_TYPE (field);
418 
419 	      if (ftype == error_mark_node)
420 		continue;
421 
422 	      /* We could skip vfields and fields of types with
423 		 user-defined constructors, but I think that won't improve
424 		 performance at all; it should be simpler in general just
425 		 to zero out the entire object than try to only zero the
426 		 bits that actually need it.  */
427 
428 	      /* Note that for class types there will be FIELD_DECLs
429 		 corresponding to base classes as well.  Thus, iterating
430 		 over TYPE_FIELDs will result in correct initialization of
431 		 all of the subobjects.  */
432 	      value = build_value_init (ftype, complain);
433 	      value = maybe_constant_init (value);
434 
435 	      if (value == error_mark_node)
436 		return error_mark_node;
437 
438 	      CONSTRUCTOR_APPEND_ELT(v, field, value);
439 
440 	      /* We shouldn't have gotten here for anything that would need
441 		 non-trivial initialization, and gimplify_init_ctor_preeval
442 		 would need to be fixed to allow it.  */
443 	      gcc_assert (TREE_CODE (value) != TARGET_EXPR
444 			  && TREE_CODE (value) != AGGR_INIT_EXPR);
445 	    }
446 
447 	  /* Build a constructor to contain the zero- initializations.  */
448 	  return build_constructor (type, v);
449 	}
450     }
451   else if (TREE_CODE (type) == ARRAY_TYPE)
452     {
453       vec<constructor_elt, va_gc> *v = NULL;
454 
455       /* Iterate over the array elements, building initializations.  */
456       tree max_index = array_type_nelts (type);
457 
458       /* If we have an error_mark here, we should just return error mark
459 	 as we don't know the size of the array yet.  */
460       if (max_index == error_mark_node)
461 	{
462 	  if (complain & tf_error)
463 	    error ("cannot value-initialize array of unknown bound %qT",
464 		   type);
465 	  return error_mark_node;
466 	}
467       gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
468 
469       /* A zero-sized array, which is accepted as an extension, will
470 	 have an upper bound of -1.  */
471       if (!tree_int_cst_equal (max_index, integer_minus_one_node))
472 	{
473 	  constructor_elt ce;
474 
475 	  /* If this is a one element array, we just use a regular init.  */
476 	  if (tree_int_cst_equal (size_zero_node, max_index))
477 	    ce.index = size_zero_node;
478 	  else
479 	    ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
480 
481 	  ce.value = build_value_init (TREE_TYPE (type), complain);
482 	  ce.value = maybe_constant_init (ce.value);
483 	  if (ce.value == error_mark_node)
484 	    return error_mark_node;
485 
486 	  vec_alloc (v, 1);
487 	  v->quick_push (ce);
488 
489 	  /* We shouldn't have gotten here for anything that would need
490 	     non-trivial initialization, and gimplify_init_ctor_preeval
491 	     would need to be fixed to allow it.  */
492 	  gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
493 		      && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
494 	}
495 
496       /* Build a constructor to contain the initializations.  */
497       return build_constructor (type, v);
498     }
499   else if (TREE_CODE (type) == FUNCTION_TYPE)
500     {
501       if (complain & tf_error)
502 	error ("value-initialization of function type %qT", type);
503       return error_mark_node;
504     }
505   else if (TREE_CODE (type) == REFERENCE_TYPE)
506     {
507       if (complain & tf_error)
508 	error ("value-initialization of reference type %qT", type);
509       return error_mark_node;
510     }
511 
512   return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
513 }
514 
515 /* Initialize current class with INIT, a TREE_LIST of
516    arguments for a target constructor. If TREE_LIST is void_type_node,
517    an empty initializer list was given.  */
518 
519 static void
perform_target_ctor(tree init)520 perform_target_ctor (tree init)
521 {
522   tree decl = current_class_ref;
523   tree type = current_class_type;
524 
525   finish_expr_stmt (build_aggr_init (decl, init,
526 				     LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
527 				     tf_warning_or_error));
528   if (type_build_dtor_call (type))
529     {
530       tree expr = build_delete (type, decl, sfk_complete_destructor,
531 				LOOKUP_NORMAL
532 				|LOOKUP_NONVIRTUAL
533 				|LOOKUP_DESTRUCTOR,
534 				0, tf_warning_or_error);
535       if (expr != error_mark_node
536 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
537 	finish_eh_cleanup (expr);
538     }
539 }
540 
541 /* Return the non-static data initializer for FIELD_DECL MEMBER.  */
542 
543 static GTY((cache)) tree_cache_map *nsdmi_inst;
544 
545 tree
get_nsdmi(tree member,bool in_ctor,tsubst_flags_t complain)546 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
547 {
548   tree init;
549   tree save_ccp = current_class_ptr;
550   tree save_ccr = current_class_ref;
551 
552   if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
553     {
554       init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
555       location_t expr_loc
556 	= EXPR_LOC_OR_LOC (init, DECL_SOURCE_LOCATION (member));
557       tree *slot;
558       if (TREE_CODE (init) == DEFAULT_ARG)
559 	/* Unparsed.  */;
560       else if (nsdmi_inst && (slot = nsdmi_inst->get (member)))
561 	init = *slot;
562       /* Check recursive instantiation.  */
563       else if (DECL_INSTANTIATING_NSDMI_P (member))
564 	{
565 	  if (complain & tf_error)
566 	    error_at (expr_loc, "recursive instantiation of default member "
567 		      "initializer for %qD", member);
568 	  init = error_mark_node;
569 	}
570       else
571 	{
572 	  int un = cp_unevaluated_operand;
573 	  cp_unevaluated_operand = 0;
574 
575 	  location_t sloc = input_location;
576 	  input_location = expr_loc;
577 
578 	  DECL_INSTANTIATING_NSDMI_P (member) = 1;
579 
580 	  bool pushed = false;
581 	  if (!currently_open_class (DECL_CONTEXT (member)))
582 	    {
583 	      push_to_top_level ();
584 	      push_nested_class (DECL_CONTEXT (member));
585 	      pushed = true;
586 	    }
587 
588 	  gcc_checking_assert (!processing_template_decl);
589 
590 	  inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
591 
592 	  start_lambda_scope (member);
593 
594 	  /* Do deferred instantiation of the NSDMI.  */
595 	  init = (tsubst_copy_and_build
596 		  (init, DECL_TI_ARGS (member),
597 		   complain, member, /*function_p=*/false,
598 		   /*integral_constant_expression_p=*/false));
599 	  init = digest_nsdmi_init (member, init, complain);
600 
601 	  finish_lambda_scope ();
602 
603 	  DECL_INSTANTIATING_NSDMI_P (member) = 0;
604 
605 	  if (init != error_mark_node)
606 	    {
607 	      if (!nsdmi_inst)
608 		nsdmi_inst = tree_cache_map::create_ggc (37);
609 	      nsdmi_inst->put (member, init);
610 	    }
611 
612 	  if (pushed)
613 	    {
614 	      pop_nested_class ();
615 	      pop_from_top_level ();
616 	    }
617 
618 	  input_location = sloc;
619 	  cp_unevaluated_operand = un;
620 	}
621     }
622   else
623     init = DECL_INITIAL (member);
624 
625   if (init && TREE_CODE (init) == DEFAULT_ARG)
626     {
627       if (complain & tf_error)
628 	{
629 	  error ("default member initializer for %qD required before the end "
630 		 "of its enclosing class", member);
631 	  inform (location_of (init), "defined here");
632 	  DECL_INITIAL (member) = error_mark_node;
633 	}
634       init = error_mark_node;
635     }
636 
637   if (in_ctor)
638     {
639       current_class_ptr = save_ccp;
640       current_class_ref = save_ccr;
641     }
642   else
643     {
644       /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
645 	 refer to; constexpr evaluation knows what to do with it.  */
646       current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
647       current_class_ptr = build_address (current_class_ref);
648     }
649 
650   /* Strip redundant TARGET_EXPR so we don't need to remap it, and
651      so the aggregate init code below will see a CONSTRUCTOR.  */
652   bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
653   if (simple_target)
654     init = TARGET_EXPR_INITIAL (init);
655   init = break_out_target_exprs (init, /*loc*/true);
656   if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
657     /* Now put it back so C++17 copy elision works.  */
658     init = get_target_expr (init);
659 
660   current_class_ptr = save_ccp;
661   current_class_ref = save_ccr;
662   return init;
663 }
664 
665 /* Diagnose the flexible array MEMBER if its INITializer is non-null
666    and return true if so.  Otherwise return false.  */
667 
668 bool
maybe_reject_flexarray_init(tree member,tree init)669 maybe_reject_flexarray_init (tree member, tree init)
670 {
671   tree type = TREE_TYPE (member);
672 
673   if (!init
674       || TREE_CODE (type) != ARRAY_TYPE
675       || TYPE_DOMAIN (type))
676     return false;
677 
678   /* Point at the flexible array member declaration if it's initialized
679      in-class, and at the ctor if it's initialized in a ctor member
680      initializer list.  */
681   location_t loc;
682   if (DECL_INITIAL (member) == init
683       || !current_function_decl
684       || DECL_DEFAULTED_FN (current_function_decl))
685     loc = DECL_SOURCE_LOCATION (member);
686   else
687     loc = DECL_SOURCE_LOCATION (current_function_decl);
688 
689   error_at (loc, "initializer for flexible array member %q#D", member);
690   return true;
691 }
692 
693 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
694    arguments.  If TREE_LIST is void_type_node, an empty initializer
695    list was given; if NULL_TREE no initializer was given.  */
696 
697 static void
perform_member_init(tree member,tree init)698 perform_member_init (tree member, tree init)
699 {
700   tree decl;
701   tree type = TREE_TYPE (member);
702 
703   /* Use the non-static data member initializer if there was no
704      mem-initializer for this field.  */
705   if (init == NULL_TREE)
706     init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
707 
708   if (init == error_mark_node)
709     return;
710 
711   /* Effective C++ rule 12 requires that all data members be
712      initialized.  */
713   if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
714     warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
715 		"%qD should be initialized in the member initialization list",
716 		member);
717 
718   /* Get an lvalue for the data member.  */
719   decl = build_class_member_access_expr (current_class_ref, member,
720 					 /*access_path=*/NULL_TREE,
721 					 /*preserve_reference=*/true,
722 					 tf_warning_or_error);
723   if (decl == error_mark_node)
724     return;
725 
726   if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
727       && TREE_CHAIN (init) == NULL_TREE)
728     {
729       tree val = TREE_VALUE (init);
730       /* Handle references.  */
731       if (REFERENCE_REF_P (val))
732 	val = TREE_OPERAND (val, 0);
733       if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
734 	  && TREE_OPERAND (val, 0) == current_class_ref)
735 	warning_at (DECL_SOURCE_LOCATION (current_function_decl),
736 		    OPT_Winit_self, "%qD is initialized with itself",
737 		    member);
738     }
739 
740   if (init == void_type_node)
741     {
742       /* mem() means value-initialization.  */
743       if (TREE_CODE (type) == ARRAY_TYPE)
744 	{
745 	  init = build_vec_init_expr (type, init, tf_warning_or_error);
746 	  init = build2 (INIT_EXPR, type, decl, init);
747 	  finish_expr_stmt (init);
748 	}
749       else
750 	{
751 	  tree value = build_value_init (type, tf_warning_or_error);
752 	  if (value == error_mark_node)
753 	    return;
754 	  init = build2 (INIT_EXPR, type, decl, value);
755 	  finish_expr_stmt (init);
756 	}
757     }
758   /* Deal with this here, as we will get confused if we try to call the
759      assignment op for an anonymous union.  This can happen in a
760      synthesized copy constructor.  */
761   else if (ANON_AGGR_TYPE_P (type))
762     {
763       if (init)
764 	{
765 	  init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
766 	  finish_expr_stmt (init);
767 	}
768     }
769   else if (init
770 	   && (TREE_CODE (type) == REFERENCE_TYPE
771 	       /* Pre-digested NSDMI.  */
772 	       || (((TREE_CODE (init) == CONSTRUCTOR
773 		     && TREE_TYPE (init) == type)
774 		    /* { } mem-initializer.  */
775 		    || (TREE_CODE (init) == TREE_LIST
776 			&& DIRECT_LIST_INIT_P (TREE_VALUE (init))))
777 		   && (CP_AGGREGATE_TYPE_P (type)
778 		       || is_std_init_list (type)))))
779     {
780       /* With references and list-initialization, we need to deal with
781 	 extending temporary lifetimes.  12.2p5: "A temporary bound to a
782 	 reference member in a constructor’s ctor-initializer (12.6.2)
783 	 persists until the constructor exits."  */
784       unsigned i; tree t;
785       vec<tree, va_gc> *cleanups = make_tree_vector ();
786       if (TREE_CODE (init) == TREE_LIST)
787 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
788 						tf_warning_or_error);
789       if (TREE_TYPE (init) != type)
790 	{
791 	  if (BRACE_ENCLOSED_INITIALIZER_P (init)
792 	      && CP_AGGREGATE_TYPE_P (type))
793 	    init = reshape_init (type, init, tf_warning_or_error);
794 	  init = digest_init (type, init, tf_warning_or_error);
795 	}
796       if (init == error_mark_node)
797 	return;
798       /* A FIELD_DECL doesn't really have a suitable lifetime, but
799 	 make_temporary_var_for_ref_to_temp will treat it as automatic and
800 	 set_up_extended_ref_temp wants to use the decl in a warning.  */
801       init = extend_ref_init_temps (member, init, &cleanups);
802       if (TREE_CODE (type) == ARRAY_TYPE
803 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
804 	init = build_vec_init_expr (type, init, tf_warning_or_error);
805       init = build2 (INIT_EXPR, type, decl, init);
806       finish_expr_stmt (init);
807       FOR_EACH_VEC_ELT (*cleanups, i, t)
808 	push_cleanup (decl, t, false);
809       release_tree_vector (cleanups);
810     }
811   else if (type_build_ctor_call (type)
812 	   || (init && CLASS_TYPE_P (strip_array_types (type))))
813     {
814       if (TREE_CODE (type) == ARRAY_TYPE)
815 	{
816 	  if (init)
817 	    {
818 	      /* Check to make sure the member initializer is valid and
819 		 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
820 		 if it isn't, return early to avoid triggering another
821 		 error below.  */
822 	      if (maybe_reject_flexarray_init (member, init))
823 		return;
824 
825 	      if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
826 		init = error_mark_node;
827 	      else
828 		init = TREE_VALUE (init);
829 
830 	      if (BRACE_ENCLOSED_INITIALIZER_P (init))
831 		init = digest_init (type, init, tf_warning_or_error);
832 	    }
833 	  if (init == NULL_TREE
834 	      || same_type_ignoring_top_level_qualifiers_p (type,
835 							    TREE_TYPE (init)))
836 	    {
837 	      if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
838 		{
839 		  /* Initialize the array only if it's not a flexible
840 		     array member (i.e., if it has an upper bound).  */
841 		  init = build_vec_init_expr (type, init, tf_warning_or_error);
842 		  init = build2 (INIT_EXPR, type, decl, init);
843 		  finish_expr_stmt (init);
844 		}
845 	    }
846 	  else
847 	    error ("invalid initializer for array member %q#D", member);
848 	}
849       else
850 	{
851 	  int flags = LOOKUP_NORMAL;
852 	  if (DECL_DEFAULTED_FN (current_function_decl))
853 	    flags |= LOOKUP_DEFAULTED;
854 	  if (CP_TYPE_CONST_P (type)
855 	      && init == NULL_TREE
856 	      && default_init_uninitialized_part (type))
857 	    {
858 	      /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
859 		 vtable; still give this diagnostic.  */
860 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
861 			     "uninitialized const member in %q#T", type))
862 		inform (DECL_SOURCE_LOCATION (member),
863 			"%q#D should be initialized", member );
864 	    }
865 	  finish_expr_stmt (build_aggr_init (decl, init, flags,
866 					     tf_warning_or_error));
867 	}
868     }
869   else
870     {
871       if (init == NULL_TREE)
872 	{
873 	  tree core_type;
874 	  /* member traversal: note it leaves init NULL */
875 	  if (TREE_CODE (type) == REFERENCE_TYPE)
876 	    {
877 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
878 			     "uninitialized reference member in %q#T", type))
879 		inform (DECL_SOURCE_LOCATION (member),
880 			"%q#D should be initialized", member);
881 	    }
882 	  else if (CP_TYPE_CONST_P (type))
883 	    {
884 	      if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
885 			     "uninitialized const member in %q#T", type))
886 		  inform (DECL_SOURCE_LOCATION (member),
887 			  "%q#D should be initialized", member );
888 	    }
889 
890 	  core_type = strip_array_types (type);
891 
892 	  if (CLASS_TYPE_P (core_type)
893 	      && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
894 		  || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
895 	    diagnose_uninitialized_cst_or_ref_member (core_type,
896 						      /*using_new=*/false,
897 						      /*complain=*/true);
898 	}
899       else if (TREE_CODE (init) == TREE_LIST)
900 	/* There was an explicit member initialization.  Do some work
901 	   in that case.  */
902 	init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
903 						tf_warning_or_error);
904 
905       /* Reject a member initializer for a flexible array member.  */
906       if (init && !maybe_reject_flexarray_init (member, init))
907 	finish_expr_stmt (cp_build_modify_expr (input_location, decl,
908 						INIT_EXPR, init,
909 						tf_warning_or_error));
910     }
911 
912   if (type_build_dtor_call (type))
913     {
914       tree expr;
915 
916       expr = build_class_member_access_expr (current_class_ref, member,
917 					     /*access_path=*/NULL_TREE,
918 					     /*preserve_reference=*/false,
919 					     tf_warning_or_error);
920       expr = build_delete (type, expr, sfk_complete_destructor,
921 			   LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
922 			   tf_warning_or_error);
923 
924       if (expr != error_mark_node
925 	  && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
926 	finish_eh_cleanup (expr);
927     }
928 }
929 
930 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
931    the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order.  */
932 
933 static tree
build_field_list(tree t,tree list,int * uses_unions_or_anon_p)934 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
935 {
936   tree fields;
937 
938   /* Note whether or not T is a union.  */
939   if (TREE_CODE (t) == UNION_TYPE)
940     *uses_unions_or_anon_p = 1;
941 
942   for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
943     {
944       tree fieldtype;
945 
946       /* Skip CONST_DECLs for enumeration constants and so forth.  */
947       if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
948 	continue;
949 
950       fieldtype = TREE_TYPE (fields);
951 
952       /* For an anonymous struct or union, we must recursively
953 	 consider the fields of the anonymous type.  They can be
954 	 directly initialized from the constructor.  */
955       if (ANON_AGGR_TYPE_P (fieldtype))
956 	{
957 	  /* Add this field itself.  Synthesized copy constructors
958 	     initialize the entire aggregate.  */
959 	  list = tree_cons (fields, NULL_TREE, list);
960 	  /* And now add the fields in the anonymous aggregate.  */
961 	  list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
962 	  *uses_unions_or_anon_p = 1;
963 	}
964       /* Add this field.  */
965       else if (DECL_NAME (fields))
966 	list = tree_cons (fields, NULL_TREE, list);
967     }
968 
969   return list;
970 }
971 
972 /* Return the innermost aggregate scope for FIELD, whether that is
973    the enclosing class or an anonymous aggregate within it.  */
974 
975 static tree
innermost_aggr_scope(tree field)976 innermost_aggr_scope (tree field)
977 {
978   if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
979     return TREE_TYPE (field);
980   else
981     return DECL_CONTEXT (field);
982 }
983 
984 /* The MEM_INITS are a TREE_LIST.  The TREE_PURPOSE of each list gives
985    a FIELD_DECL or BINFO in T that needs initialization.  The
986    TREE_VALUE gives the initializer, or list of initializer arguments.
987 
988    Return a TREE_LIST containing all of the initializations required
989    for T, in the order in which they should be performed.  The output
990    list has the same format as the input.  */
991 
992 static tree
sort_mem_initializers(tree t,tree mem_inits)993 sort_mem_initializers (tree t, tree mem_inits)
994 {
995   tree init;
996   tree base, binfo, base_binfo;
997   tree sorted_inits;
998   tree next_subobject;
999   vec<tree, va_gc> *vbases;
1000   int i;
1001   int uses_unions_or_anon_p = 0;
1002 
1003   /* Build up a list of initializations.  The TREE_PURPOSE of entry
1004      will be the subobject (a FIELD_DECL or BINFO) to initialize.  The
1005      TREE_VALUE will be the constructor arguments, or NULL if no
1006      explicit initialization was provided.  */
1007   sorted_inits = NULL_TREE;
1008 
1009   /* Process the virtual bases.  */
1010   for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1011        vec_safe_iterate (vbases, i, &base); i++)
1012     sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1013 
1014   /* Process the direct bases.  */
1015   for (binfo = TYPE_BINFO (t), i = 0;
1016        BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1017     if (!BINFO_VIRTUAL_P (base_binfo))
1018       sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1019 
1020   /* Process the non-static data members.  */
1021   sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1022   /* Reverse the entire list of initializations, so that they are in
1023      the order that they will actually be performed.  */
1024   sorted_inits = nreverse (sorted_inits);
1025 
1026   /* If the user presented the initializers in an order different from
1027      that in which they will actually occur, we issue a warning.  Keep
1028      track of the next subobject which can be explicitly initialized
1029      without issuing a warning.  */
1030   next_subobject = sorted_inits;
1031 
1032   /* Go through the explicit initializers, filling in TREE_PURPOSE in
1033      the SORTED_INITS.  */
1034   for (init = mem_inits; init; init = TREE_CHAIN (init))
1035     {
1036       tree subobject;
1037       tree subobject_init;
1038 
1039       subobject = TREE_PURPOSE (init);
1040 
1041       /* If the explicit initializers are in sorted order, then
1042 	 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1043 	 it.  */
1044       for (subobject_init = next_subobject;
1045 	   subobject_init;
1046 	   subobject_init = TREE_CHAIN (subobject_init))
1047 	if (TREE_PURPOSE (subobject_init) == subobject)
1048 	  break;
1049 
1050       /* Issue a warning if the explicit initializer order does not
1051 	 match that which will actually occur.
1052 	 ??? Are all these on the correct lines?  */
1053       if (warn_reorder && !subobject_init)
1054 	{
1055 	  if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1056 	    warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1057 			OPT_Wreorder, "%qD will be initialized after",
1058 			TREE_PURPOSE (next_subobject));
1059 	  else
1060 	    warning (OPT_Wreorder, "base %qT will be initialized after",
1061 		     TREE_PURPOSE (next_subobject));
1062 	  if (TREE_CODE (subobject) == FIELD_DECL)
1063 	    warning_at (DECL_SOURCE_LOCATION (subobject),
1064 			OPT_Wreorder, "  %q#D", subobject);
1065 	  else
1066 	    warning (OPT_Wreorder, "  base %qT", subobject);
1067 	  warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1068 		      OPT_Wreorder, "  when initialized here");
1069 	}
1070 
1071       /* Look again, from the beginning of the list.  */
1072       if (!subobject_init)
1073 	{
1074 	  subobject_init = sorted_inits;
1075 	  while (TREE_PURPOSE (subobject_init) != subobject)
1076 	    subobject_init = TREE_CHAIN (subobject_init);
1077 	}
1078 
1079       /* It is invalid to initialize the same subobject more than
1080 	 once.  */
1081       if (TREE_VALUE (subobject_init))
1082 	{
1083 	  if (TREE_CODE (subobject) == FIELD_DECL)
1084 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
1085 		      "multiple initializations given for %qD",
1086 		      subobject);
1087 	  else
1088 	    error_at (DECL_SOURCE_LOCATION (current_function_decl),
1089 		      "multiple initializations given for base %qT",
1090 		      subobject);
1091 	}
1092 
1093       /* Record the initialization.  */
1094       TREE_VALUE (subobject_init) = TREE_VALUE (init);
1095       next_subobject = subobject_init;
1096     }
1097 
1098   /* [class.base.init]
1099 
1100      If a ctor-initializer specifies more than one mem-initializer for
1101      multiple members of the same union (including members of
1102      anonymous unions), the ctor-initializer is ill-formed.
1103 
1104      Here we also splice out uninitialized union members.  */
1105   if (uses_unions_or_anon_p)
1106     {
1107       tree *last_p = NULL;
1108       tree *p;
1109       for (p = &sorted_inits; *p; )
1110 	{
1111 	  tree field;
1112 	  tree ctx;
1113 
1114 	  init = *p;
1115 
1116 	  field = TREE_PURPOSE (init);
1117 
1118 	  /* Skip base classes.  */
1119 	  if (TREE_CODE (field) != FIELD_DECL)
1120 	    goto next;
1121 
1122 	  /* If this is an anonymous aggregate with no explicit initializer,
1123 	     splice it out.  */
1124 	  if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1125 	    goto splice;
1126 
1127 	  /* See if this field is a member of a union, or a member of a
1128 	     structure contained in a union, etc.  */
1129 	  ctx = innermost_aggr_scope (field);
1130 
1131 	  /* If this field is not a member of a union, skip it.  */
1132 	  if (TREE_CODE (ctx) != UNION_TYPE
1133 	      && !ANON_AGGR_TYPE_P (ctx))
1134 	    goto next;
1135 
1136 	  /* If this union member has no explicit initializer and no NSDMI,
1137 	     splice it out.  */
1138 	  if (TREE_VALUE (init) || DECL_INITIAL (field))
1139 	    /* OK.  */;
1140 	  else
1141 	    goto splice;
1142 
1143 	  /* It's only an error if we have two initializers for the same
1144 	     union type.  */
1145 	  if (!last_p)
1146 	    {
1147 	      last_p = p;
1148 	      goto next;
1149 	    }
1150 
1151 	  /* See if LAST_FIELD and the field initialized by INIT are
1152 	     members of the same union (or the union itself). If so, there's
1153 	     a problem, unless they're actually members of the same structure
1154 	     which is itself a member of a union.  For example, given:
1155 
1156 	       union { struct { int i; int j; }; };
1157 
1158 	     initializing both `i' and `j' makes sense.  */
1159 	  ctx = common_enclosing_class
1160 	    (innermost_aggr_scope (field),
1161 	     innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1162 
1163 	  if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1164 		      || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1165 	    {
1166 	      /* A mem-initializer hides an NSDMI.  */
1167 	      if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1168 		*last_p = TREE_CHAIN (*last_p);
1169 	      else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1170 		goto splice;
1171 	      else
1172 		{
1173 		  error_at (DECL_SOURCE_LOCATION (current_function_decl),
1174 			    "initializations for multiple members of %qT",
1175 			    ctx);
1176 		  goto splice;
1177 		}
1178 	    }
1179 
1180 	  last_p = p;
1181 
1182 	next:
1183 	  p = &TREE_CHAIN (*p);
1184 	  continue;
1185 	splice:
1186 	  *p = TREE_CHAIN (*p);
1187 	  continue;
1188 	}
1189     }
1190 
1191   return sorted_inits;
1192 }
1193 
1194 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read.  */
1195 
1196 static tree
mark_exp_read_r(tree * tp,int *,void *)1197 mark_exp_read_r (tree *tp, int *, void *)
1198 {
1199   tree t = *tp;
1200   if (TREE_CODE (t) == PARM_DECL)
1201     mark_exp_read (t);
1202   return NULL_TREE;
1203 }
1204 
1205 /* Initialize all bases and members of CURRENT_CLASS_TYPE.  MEM_INITS
1206    is a TREE_LIST giving the explicit mem-initializer-list for the
1207    constructor.  The TREE_PURPOSE of each entry is a subobject (a
1208    FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE.  The TREE_VALUE
1209    is a TREE_LIST giving the arguments to the constructor or
1210    void_type_node for an empty list of arguments.  */
1211 
1212 void
emit_mem_initializers(tree mem_inits)1213 emit_mem_initializers (tree mem_inits)
1214 {
1215   int flags = LOOKUP_NORMAL;
1216 
1217   /* We will already have issued an error message about the fact that
1218      the type is incomplete.  */
1219   if (!COMPLETE_TYPE_P (current_class_type))
1220     return;
1221 
1222   if (mem_inits
1223       && TYPE_P (TREE_PURPOSE (mem_inits))
1224       && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1225     {
1226       /* Delegating constructor. */
1227       gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1228       perform_target_ctor (TREE_VALUE (mem_inits));
1229       return;
1230     }
1231 
1232   if (DECL_DEFAULTED_FN (current_function_decl)
1233       && ! DECL_INHERITED_CTOR (current_function_decl))
1234     flags |= LOOKUP_DEFAULTED;
1235 
1236   /* Sort the mem-initializers into the order in which the
1237      initializations should be performed.  */
1238   mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1239 
1240   in_base_initializer = 1;
1241 
1242   /* Initialize base classes.  */
1243   for (; (mem_inits
1244 	  && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1245        mem_inits = TREE_CHAIN (mem_inits))
1246     {
1247       tree subobject = TREE_PURPOSE (mem_inits);
1248       tree arguments = TREE_VALUE (mem_inits);
1249 
1250       /* We already have issued an error message.  */
1251       if (arguments == error_mark_node)
1252 	continue;
1253 
1254       /* Suppress access control when calling the inherited ctor.  */
1255       bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1256 			     && flag_new_inheriting_ctors
1257 			     && arguments);
1258       if (inherited_base)
1259 	push_deferring_access_checks (dk_deferred);
1260 
1261       if (arguments == NULL_TREE)
1262 	{
1263 	  /* If these initializations are taking place in a copy constructor,
1264 	     the base class should probably be explicitly initialized if there
1265 	     is a user-defined constructor in the base class (other than the
1266 	     default constructor, which will be called anyway).  */
1267 	  if (extra_warnings
1268 	      && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1269 	      && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1270 	    warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1271 			OPT_Wextra, "base class %q#T should be explicitly "
1272 			"initialized in the copy constructor",
1273 			BINFO_TYPE (subobject));
1274 	}
1275 
1276       /* Initialize the base.  */
1277       if (!BINFO_VIRTUAL_P (subobject))
1278 	{
1279 	  tree base_addr;
1280 
1281 	  base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1282 				       subobject, 1, tf_warning_or_error);
1283 	  expand_aggr_init_1 (subobject, NULL_TREE,
1284 			      cp_build_fold_indirect_ref (base_addr),
1285 			      arguments,
1286 			      flags,
1287                               tf_warning_or_error);
1288 	  expand_cleanup_for_base (subobject, NULL_TREE);
1289 	}
1290       else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1291 	/* C++14 DR1658 Means we do not have to construct vbases of
1292 	   abstract classes.  */
1293 	construct_virtual_base (subobject, arguments);
1294       else
1295 	/* When not constructing vbases of abstract classes, at least mark
1296 	   the arguments expressions as read to avoid
1297 	   -Wunused-but-set-parameter false positives.  */
1298 	cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1299 
1300       if (inherited_base)
1301 	pop_deferring_access_checks ();
1302     }
1303   in_base_initializer = 0;
1304 
1305   /* Initialize the vptrs.  */
1306   initialize_vtbl_ptrs (current_class_ptr);
1307 
1308   /* Initialize the data members.  */
1309   while (mem_inits)
1310     {
1311       perform_member_init (TREE_PURPOSE (mem_inits),
1312 			   TREE_VALUE (mem_inits));
1313       mem_inits = TREE_CHAIN (mem_inits);
1314     }
1315 }
1316 
1317 /* Returns the address of the vtable (i.e., the value that should be
1318    assigned to the vptr) for BINFO.  */
1319 
1320 tree
build_vtbl_address(tree binfo)1321 build_vtbl_address (tree binfo)
1322 {
1323   tree binfo_for = binfo;
1324   tree vtbl;
1325 
1326   if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1327     /* If this is a virtual primary base, then the vtable we want to store
1328        is that for the base this is being used as the primary base of.  We
1329        can't simply skip the initialization, because we may be expanding the
1330        inits of a subobject constructor where the virtual base layout
1331        can be different.  */
1332     while (BINFO_PRIMARY_P (binfo_for))
1333       binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1334 
1335   /* Figure out what vtable BINFO's vtable is based on, and mark it as
1336      used.  */
1337   vtbl = get_vtbl_decl_for_binfo (binfo_for);
1338   TREE_USED (vtbl) = true;
1339 
1340   /* Now compute the address to use when initializing the vptr.  */
1341   vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1342   if (VAR_P (vtbl))
1343     vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1344 
1345   return vtbl;
1346 }
1347 
1348 /* This code sets up the virtual function tables appropriate for
1349    the pointer DECL.  It is a one-ply initialization.
1350 
1351    BINFO is the exact type that DECL is supposed to be.  In
1352    multiple inheritance, this might mean "C's A" if C : A, B.  */
1353 
1354 static void
expand_virtual_init(tree binfo,tree decl)1355 expand_virtual_init (tree binfo, tree decl)
1356 {
1357   tree vtbl, vtbl_ptr;
1358   tree vtt_index;
1359 
1360   /* Compute the initializer for vptr.  */
1361   vtbl = build_vtbl_address (binfo);
1362 
1363   /* We may get this vptr from a VTT, if this is a subobject
1364      constructor or subobject destructor.  */
1365   vtt_index = BINFO_VPTR_INDEX (binfo);
1366   if (vtt_index)
1367     {
1368       tree vtbl2;
1369       tree vtt_parm;
1370 
1371       /* Compute the value to use, when there's a VTT.  */
1372       vtt_parm = current_vtt_parm;
1373       vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1374       vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1375       vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1376 
1377       /* The actual initializer is the VTT value only in the subobject
1378 	 constructor.  In maybe_clone_body we'll substitute NULL for
1379 	 the vtt_parm in the case of the non-subobject constructor.  */
1380       vtbl = build_if_in_charge (vtbl, vtbl2);
1381     }
1382 
1383   /* Compute the location of the vtpr.  */
1384   vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1385 			       TREE_TYPE (binfo));
1386   gcc_assert (vtbl_ptr != error_mark_node);
1387 
1388   /* Assign the vtable to the vptr.  */
1389   vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1390   finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1391 					  vtbl, tf_warning_or_error));
1392 }
1393 
1394 /* If an exception is thrown in a constructor, those base classes already
1395    constructed must be destroyed.  This function creates the cleanup
1396    for BINFO, which has just been constructed.  If FLAG is non-NULL,
1397    it is a DECL which is nonzero when this base needs to be
1398    destroyed.  */
1399 
1400 static void
expand_cleanup_for_base(tree binfo,tree flag)1401 expand_cleanup_for_base (tree binfo, tree flag)
1402 {
1403   tree expr;
1404 
1405   if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1406     return;
1407 
1408   /* Call the destructor.  */
1409   expr = build_special_member_call (current_class_ref,
1410 				    base_dtor_identifier,
1411 				    NULL,
1412 				    binfo,
1413 				    LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1414                                     tf_warning_or_error);
1415 
1416   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1417     return;
1418 
1419   if (flag)
1420     expr = fold_build3_loc (input_location,
1421 			COND_EXPR, void_type_node,
1422 			c_common_truthvalue_conversion (input_location, flag),
1423 			expr, integer_zero_node);
1424 
1425   finish_eh_cleanup (expr);
1426 }
1427 
1428 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1429    constructor.  */
1430 
1431 static void
construct_virtual_base(tree vbase,tree arguments)1432 construct_virtual_base (tree vbase, tree arguments)
1433 {
1434   tree inner_if_stmt;
1435   tree exp;
1436   tree flag;
1437 
1438   /* If there are virtual base classes with destructors, we need to
1439      emit cleanups to destroy them if an exception is thrown during
1440      the construction process.  These exception regions (i.e., the
1441      period during which the cleanups must occur) begin from the time
1442      the construction is complete to the end of the function.  If we
1443      create a conditional block in which to initialize the
1444      base-classes, then the cleanup region for the virtual base begins
1445      inside a block, and ends outside of that block.  This situation
1446      confuses the sjlj exception-handling code.  Therefore, we do not
1447      create a single conditional block, but one for each
1448      initialization.  (That way the cleanup regions always begin
1449      in the outer block.)  We trust the back end to figure out
1450      that the FLAG will not change across initializations, and
1451      avoid doing multiple tests.  */
1452   flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1453   inner_if_stmt = begin_if_stmt ();
1454   finish_if_stmt_cond (flag, inner_if_stmt);
1455 
1456   /* Compute the location of the virtual base.  If we're
1457      constructing virtual bases, then we must be the most derived
1458      class.  Therefore, we don't have to look up the virtual base;
1459      we already know where it is.  */
1460   exp = convert_to_base_statically (current_class_ref, vbase);
1461 
1462   expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1463 		      0, tf_warning_or_error);
1464   finish_then_clause (inner_if_stmt);
1465   finish_if_stmt (inner_if_stmt);
1466 
1467   expand_cleanup_for_base (vbase, flag);
1468 }
1469 
1470 /* Find the context in which this FIELD can be initialized.  */
1471 
1472 static tree
initializing_context(tree field)1473 initializing_context (tree field)
1474 {
1475   tree t = DECL_CONTEXT (field);
1476 
1477   /* Anonymous union members can be initialized in the first enclosing
1478      non-anonymous union context.  */
1479   while (t && ANON_AGGR_TYPE_P (t))
1480     t = TYPE_CONTEXT (t);
1481   return t;
1482 }
1483 
1484 /* Function to give error message if member initialization specification
1485    is erroneous.  FIELD is the member we decided to initialize.
1486    TYPE is the type for which the initialization is being performed.
1487    FIELD must be a member of TYPE.
1488 
1489    MEMBER_NAME is the name of the member.  */
1490 
1491 static int
member_init_ok_or_else(tree field,tree type,tree member_name)1492 member_init_ok_or_else (tree field, tree type, tree member_name)
1493 {
1494   if (field == error_mark_node)
1495     return 0;
1496   if (!field)
1497     {
1498       error ("class %qT does not have any field named %qD", type,
1499 	     member_name);
1500       return 0;
1501     }
1502   if (VAR_P (field))
1503     {
1504       error ("%q#D is a static data member; it can only be "
1505 	     "initialized at its definition",
1506 	     field);
1507       return 0;
1508     }
1509   if (TREE_CODE (field) != FIELD_DECL)
1510     {
1511       error ("%q#D is not a non-static data member of %qT",
1512 	     field, type);
1513       return 0;
1514     }
1515   if (initializing_context (field) != type)
1516     {
1517       error ("class %qT does not have any field named %qD", type,
1518 		member_name);
1519       return 0;
1520     }
1521 
1522   return 1;
1523 }
1524 
1525 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1526    is a _TYPE node or TYPE_DECL which names a base for that type.
1527    Check the validity of NAME, and return either the base _TYPE, base
1528    binfo, or the FIELD_DECL of the member.  If NAME is invalid, return
1529    NULL_TREE and issue a diagnostic.
1530 
1531    An old style unnamed direct single base construction is permitted,
1532    where NAME is NULL.  */
1533 
1534 tree
expand_member_init(tree name)1535 expand_member_init (tree name)
1536 {
1537   tree basetype;
1538   tree field;
1539 
1540   if (!current_class_ref)
1541     return NULL_TREE;
1542 
1543   if (!name)
1544     {
1545       /* This is an obsolete unnamed base class initializer.  The
1546 	 parser will already have warned about its use.  */
1547       switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1548 	{
1549 	case 0:
1550 	  error ("unnamed initializer for %qT, which has no base classes",
1551 		 current_class_type);
1552 	  return NULL_TREE;
1553 	case 1:
1554 	  basetype = BINFO_TYPE
1555 	    (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1556 	  break;
1557 	default:
1558 	  error ("unnamed initializer for %qT, which uses multiple inheritance",
1559 		 current_class_type);
1560 	  return NULL_TREE;
1561       }
1562     }
1563   else if (TYPE_P (name))
1564     {
1565       basetype = TYPE_MAIN_VARIANT (name);
1566       name = TYPE_NAME (name);
1567     }
1568   else if (TREE_CODE (name) == TYPE_DECL)
1569     basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1570   else
1571     basetype = NULL_TREE;
1572 
1573   if (basetype)
1574     {
1575       tree class_binfo;
1576       tree direct_binfo;
1577       tree virtual_binfo;
1578       int i;
1579 
1580       if (current_template_parms
1581 	  || same_type_p (basetype, current_class_type))
1582 	  return basetype;
1583 
1584       class_binfo = TYPE_BINFO (current_class_type);
1585       direct_binfo = NULL_TREE;
1586       virtual_binfo = NULL_TREE;
1587 
1588       /* Look for a direct base.  */
1589       for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1590 	if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1591 	  break;
1592 
1593       /* Look for a virtual base -- unless the direct base is itself
1594 	 virtual.  */
1595       if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1596 	virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1597 
1598       /* [class.base.init]
1599 
1600 	 If a mem-initializer-id is ambiguous because it designates
1601 	 both a direct non-virtual base class and an inherited virtual
1602 	 base class, the mem-initializer is ill-formed.  */
1603       if (direct_binfo && virtual_binfo)
1604 	{
1605 	  error ("%qD is both a direct base and an indirect virtual base",
1606 		 basetype);
1607 	  return NULL_TREE;
1608 	}
1609 
1610       if (!direct_binfo && !virtual_binfo)
1611 	{
1612 	  if (CLASSTYPE_VBASECLASSES (current_class_type))
1613 	    error ("type %qT is not a direct or virtual base of %qT",
1614 		   basetype, current_class_type);
1615 	  else
1616 	    error ("type %qT is not a direct base of %qT",
1617 		   basetype, current_class_type);
1618 	  return NULL_TREE;
1619 	}
1620 
1621       return direct_binfo ? direct_binfo : virtual_binfo;
1622     }
1623   else
1624     {
1625       if (identifier_p (name))
1626 	field = lookup_field (current_class_type, name, 1, false);
1627       else
1628 	field = name;
1629 
1630       if (member_init_ok_or_else (field, current_class_type, name))
1631 	return field;
1632     }
1633 
1634   return NULL_TREE;
1635 }
1636 
1637 /* This is like `expand_member_init', only it stores one aggregate
1638    value into another.
1639 
1640    INIT comes in two flavors: it is either a value which
1641    is to be stored in EXP, or it is a parameter list
1642    to go to a constructor, which will operate on EXP.
1643    If INIT is not a parameter list for a constructor, then set
1644    LOOKUP_ONLYCONVERTING.
1645    If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1646    the initializer, if FLAGS is 0, then it is the (init) form.
1647    If `init' is a CONSTRUCTOR, then we emit a warning message,
1648    explaining that such initializations are invalid.
1649 
1650    If INIT resolves to a CALL_EXPR which happens to return
1651    something of the type we are looking for, then we know
1652    that we can safely use that call to perform the
1653    initialization.
1654 
1655    The virtual function table pointer cannot be set up here, because
1656    we do not really know its type.
1657 
1658    This never calls operator=().
1659 
1660    When initializing, nothing is CONST.
1661 
1662    A default copy constructor may have to be used to perform the
1663    initialization.
1664 
1665    A constructor or a conversion operator may have to be used to
1666    perform the initialization, but not both, as it would be ambiguous.  */
1667 
1668 tree
build_aggr_init(tree exp,tree init,int flags,tsubst_flags_t complain)1669 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1670 {
1671   tree stmt_expr;
1672   tree compound_stmt;
1673   int destroy_temps;
1674   tree type = TREE_TYPE (exp);
1675   int was_const = TREE_READONLY (exp);
1676   int was_volatile = TREE_THIS_VOLATILE (exp);
1677   int is_global;
1678 
1679   if (init == error_mark_node)
1680     return error_mark_node;
1681 
1682   location_t init_loc = (init
1683 			 ? EXPR_LOC_OR_LOC (init, input_location)
1684 			 : location_of (exp));
1685 
1686   TREE_READONLY (exp) = 0;
1687   TREE_THIS_VOLATILE (exp) = 0;
1688 
1689   if (TREE_CODE (type) == ARRAY_TYPE)
1690     {
1691       tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1692       int from_array = 0;
1693 
1694       if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1695 	{
1696 	  from_array = 1;
1697 	  init = mark_rvalue_use (init);
1698 	  if (init && DECL_P (init)
1699 	      && !(flags & LOOKUP_ONLYCONVERTING))
1700 	    {
1701 	      /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1702 		 recognizes it as direct-initialization.  */
1703 	      init = build_constructor_single (init_list_type_node,
1704 					       NULL_TREE, init);
1705 	      CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1706 	    }
1707 	}
1708       else
1709 	{
1710 	  /* Must arrange to initialize each element of EXP
1711 	     from elements of INIT.  */
1712 	  if (cv_qualified_p (type))
1713 	    TREE_TYPE (exp) = cv_unqualified (type);
1714 	  if (itype && cv_qualified_p (itype))
1715 	    TREE_TYPE (init) = cv_unqualified (itype);
1716 	  from_array = (itype && same_type_p (TREE_TYPE (init),
1717 					      TREE_TYPE (exp)));
1718 
1719 	  if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
1720 	      && (!from_array
1721 		  || (TREE_CODE (init) != CONSTRUCTOR
1722 		      /* Can happen, eg, handling the compound-literals
1723 			 extension (ext/complit12.C).  */
1724 		      && TREE_CODE (init) != TARGET_EXPR)))
1725 	    {
1726 	      if (complain & tf_error)
1727 		error_at (init_loc, "array must be initialized "
1728 			  "with a brace-enclosed initializer");
1729 	      return error_mark_node;
1730 	    }
1731 	}
1732 
1733       stmt_expr = build_vec_init (exp, NULL_TREE, init,
1734 				  /*explicit_value_init_p=*/false,
1735 				  from_array,
1736                                   complain);
1737       TREE_READONLY (exp) = was_const;
1738       TREE_THIS_VOLATILE (exp) = was_volatile;
1739       TREE_TYPE (exp) = type;
1740       /* Restore the type of init unless it was used directly.  */
1741       if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1742 	TREE_TYPE (init) = itype;
1743       return stmt_expr;
1744     }
1745 
1746   if (init && init != void_type_node
1747       && TREE_CODE (init) != TREE_LIST
1748       && !(TREE_CODE (init) == TARGET_EXPR
1749 	   && TARGET_EXPR_DIRECT_INIT_P (init))
1750       && !DIRECT_LIST_INIT_P (init))
1751     flags |= LOOKUP_ONLYCONVERTING;
1752 
1753   if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1754       && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1755     /* Just know that we've seen something for this node.  */
1756     TREE_USED (exp) = 1;
1757 
1758   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1759   destroy_temps = stmts_are_full_exprs_p ();
1760   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1761   expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1762 		      init, LOOKUP_NORMAL|flags, complain);
1763   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1764   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1765   TREE_READONLY (exp) = was_const;
1766   TREE_THIS_VOLATILE (exp) = was_volatile;
1767 
1768   return stmt_expr;
1769 }
1770 
1771 static void
expand_default_init(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)1772 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1773                      tsubst_flags_t complain)
1774 {
1775   tree type = TREE_TYPE (exp);
1776 
1777   /* It fails because there may not be a constructor which takes
1778      its own type as the first (or only parameter), but which does
1779      take other types via a conversion.  So, if the thing initializing
1780      the expression is a unit element of type X, first try X(X&),
1781      followed by initialization by X.  If neither of these work
1782      out, then look hard.  */
1783   tree rval;
1784   vec<tree, va_gc> *parms;
1785 
1786   /* If we have direct-initialization from an initializer list, pull
1787      it out of the TREE_LIST so the code below can see it.  */
1788   if (init && TREE_CODE (init) == TREE_LIST
1789       && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1790     {
1791       gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1792 			   && TREE_CHAIN (init) == NULL_TREE);
1793       init = TREE_VALUE (init);
1794       /* Only call reshape_init if it has not been called earlier
1795 	 by the callers.  */
1796       if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1797 	init = reshape_init (type, init, complain);
1798     }
1799 
1800   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1801       && CP_AGGREGATE_TYPE_P (type))
1802     /* A brace-enclosed initializer for an aggregate.  In C++0x this can
1803        happen for direct-initialization, too.  */
1804     init = digest_init (type, init, complain);
1805 
1806   /* A CONSTRUCTOR of the target's type is a previously digested
1807      initializer, whether that happened just above or in
1808      cp_parser_late_parsing_nsdmi.
1809 
1810      A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1811      set represents the whole initialization, so we shouldn't build up
1812      another ctor call.  */
1813   if (init
1814       && (TREE_CODE (init) == CONSTRUCTOR
1815 	  || (TREE_CODE (init) == TARGET_EXPR
1816 	      && (TARGET_EXPR_DIRECT_INIT_P (init)
1817 		  || TARGET_EXPR_LIST_INIT_P (init))))
1818       && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1819     {
1820       /* Early initialization via a TARGET_EXPR only works for
1821 	 complete objects.  */
1822       gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1823 
1824       init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1825       TREE_SIDE_EFFECTS (init) = 1;
1826       finish_expr_stmt (init);
1827       return;
1828     }
1829 
1830   if (init && TREE_CODE (init) != TREE_LIST
1831       && (flags & LOOKUP_ONLYCONVERTING))
1832     {
1833       /* Base subobjects should only get direct-initialization.  */
1834       gcc_assert (true_exp == exp);
1835 
1836       if (flags & DIRECT_BIND)
1837 	/* Do nothing.  We hit this in two cases:  Reference initialization,
1838 	   where we aren't initializing a real variable, so we don't want
1839 	   to run a new constructor; and catching an exception, where we
1840 	   have already built up the constructor call so we could wrap it
1841 	   in an exception region.  */;
1842       else
1843 	init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1844 			    flags, complain);
1845 
1846       if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1847 	/* We need to protect the initialization of a catch parm with a
1848 	   call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1849 	   around the TARGET_EXPR for the copy constructor.  See
1850 	   initialize_handler_parm.  */
1851 	{
1852 	  TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1853 					   TREE_OPERAND (init, 0));
1854 	  TREE_TYPE (init) = void_type_node;
1855 	}
1856       else
1857 	init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1858       TREE_SIDE_EFFECTS (init) = 1;
1859       finish_expr_stmt (init);
1860       return;
1861     }
1862 
1863   if (init == NULL_TREE)
1864     parms = NULL;
1865   else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1866     {
1867       parms = make_tree_vector ();
1868       for (; init != NULL_TREE; init = TREE_CHAIN (init))
1869 	vec_safe_push (parms, TREE_VALUE (init));
1870     }
1871   else
1872     parms = make_tree_vector_single (init);
1873 
1874   if (exp == current_class_ref && current_function_decl
1875       && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1876     {
1877       /* Delegating constructor. */
1878       tree complete;
1879       tree base;
1880       tree elt; unsigned i;
1881 
1882       /* Unshare the arguments for the second call.  */
1883       vec<tree, va_gc> *parms2 = make_tree_vector ();
1884       FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1885 	{
1886 	  elt = break_out_target_exprs (elt);
1887 	  vec_safe_push (parms2, elt);
1888 	}
1889       complete = build_special_member_call (exp, complete_ctor_identifier,
1890 					    &parms2, binfo, flags,
1891 					    complain);
1892       complete = fold_build_cleanup_point_expr (void_type_node, complete);
1893       release_tree_vector (parms2);
1894 
1895       base = build_special_member_call (exp, base_ctor_identifier,
1896 					&parms, binfo, flags,
1897 					complain);
1898       base = fold_build_cleanup_point_expr (void_type_node, base);
1899       rval = build_if_in_charge (complete, base);
1900     }
1901    else
1902     {
1903       tree ctor_name = (true_exp == exp
1904 			? complete_ctor_identifier : base_ctor_identifier);
1905 
1906       rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1907 					complain);
1908     }
1909 
1910   if (parms != NULL)
1911     release_tree_vector (parms);
1912 
1913   if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1914     {
1915       tree fn = get_callee_fndecl (rval);
1916       if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1917 	{
1918 	  tree e = maybe_constant_init (rval, exp);
1919 	  if (TREE_CONSTANT (e))
1920 	    rval = build2 (INIT_EXPR, type, exp, e);
1921 	}
1922     }
1923 
1924   /* FIXME put back convert_to_void?  */
1925   if (TREE_SIDE_EFFECTS (rval))
1926     finish_expr_stmt (rval);
1927 }
1928 
1929 /* This function is responsible for initializing EXP with INIT
1930    (if any).
1931 
1932    BINFO is the binfo of the type for who we are performing the
1933    initialization.  For example, if W is a virtual base class of A and B,
1934    and C : A, B.
1935    If we are initializing B, then W must contain B's W vtable, whereas
1936    were we initializing C, W must contain C's W vtable.
1937 
1938    TRUE_EXP is nonzero if it is the true expression being initialized.
1939    In this case, it may be EXP, or may just contain EXP.  The reason we
1940    need this is because if EXP is a base element of TRUE_EXP, we
1941    don't necessarily know by looking at EXP where its virtual
1942    baseclass fields should really be pointing.  But we do know
1943    from TRUE_EXP.  In constructors, we don't know anything about
1944    the value being initialized.
1945 
1946    FLAGS is just passed to `build_new_method_call'.  See that function
1947    for its description.  */
1948 
1949 static void
expand_aggr_init_1(tree binfo,tree true_exp,tree exp,tree init,int flags,tsubst_flags_t complain)1950 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1951                     tsubst_flags_t complain)
1952 {
1953   tree type = TREE_TYPE (exp);
1954 
1955   gcc_assert (init != error_mark_node && type != error_mark_node);
1956   gcc_assert (building_stmt_list_p ());
1957 
1958   /* Use a function returning the desired type to initialize EXP for us.
1959      If the function is a constructor, and its first argument is
1960      NULL_TREE, know that it was meant for us--just slide exp on
1961      in and expand the constructor.  Constructors now come
1962      as TARGET_EXPRs.  */
1963 
1964   if (init && VAR_P (exp)
1965       && COMPOUND_LITERAL_P (init))
1966     {
1967       vec<tree, va_gc> *cleanups = NULL;
1968       /* If store_init_value returns NULL_TREE, the INIT has been
1969 	 recorded as the DECL_INITIAL for EXP.  That means there's
1970 	 nothing more we have to do.  */
1971       init = store_init_value (exp, init, &cleanups, flags);
1972       if (init)
1973 	finish_expr_stmt (init);
1974       gcc_assert (!cleanups);
1975       return;
1976     }
1977 
1978   /* List-initialization from {} becomes value-initialization for non-aggregate
1979      classes with default constructors.  Handle this here when we're
1980      initializing a base, so protected access works.  */
1981   if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1982     {
1983       tree elt = TREE_VALUE (init);
1984       if (DIRECT_LIST_INIT_P (elt)
1985 	  && CONSTRUCTOR_ELTS (elt) == 0
1986 	  && CLASSTYPE_NON_AGGREGATE (type)
1987 	  && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1988 	init = void_type_node;
1989     }
1990 
1991   /* If an explicit -- but empty -- initializer list was present,
1992      that's value-initialization.  */
1993   if (init == void_type_node)
1994     {
1995       /* If the type has data but no user-provided ctor, we need to zero
1996 	 out the object.  */
1997       if (!type_has_user_provided_constructor (type)
1998 	  && !is_really_empty_class (type))
1999 	{
2000 	  tree field_size = NULL_TREE;
2001 	  if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2002 	    /* Don't clobber already initialized virtual bases.  */
2003 	    field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2004 	  init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2005 				    field_size);
2006 	  init = build2 (INIT_EXPR, type, exp, init);
2007 	  finish_expr_stmt (init);
2008 	}
2009 
2010       /* If we don't need to mess with the constructor at all,
2011 	 then we're done.  */
2012       if (! type_build_ctor_call (type))
2013 	return;
2014 
2015       /* Otherwise fall through and call the constructor.  */
2016       init = NULL_TREE;
2017     }
2018 
2019   /* We know that expand_default_init can handle everything we want
2020      at this point.  */
2021   expand_default_init (binfo, true_exp, exp, init, flags, complain);
2022 }
2023 
2024 /* Report an error if TYPE is not a user-defined, class type.  If
2025    OR_ELSE is nonzero, give an error message.  */
2026 
2027 int
is_class_type(tree type,int or_else)2028 is_class_type (tree type, int or_else)
2029 {
2030   if (type == error_mark_node)
2031     return 0;
2032 
2033   if (! CLASS_TYPE_P (type))
2034     {
2035       if (or_else)
2036 	error ("%qT is not a class type", type);
2037       return 0;
2038     }
2039   return 1;
2040 }
2041 
2042 tree
get_type_value(tree name)2043 get_type_value (tree name)
2044 {
2045   if (name == error_mark_node)
2046     return NULL_TREE;
2047 
2048   if (IDENTIFIER_HAS_TYPE_VALUE (name))
2049     return IDENTIFIER_TYPE_VALUE (name);
2050   else
2051     return NULL_TREE;
2052 }
2053 
2054 /* Build a reference to a member of an aggregate.  This is not a C++
2055    `&', but really something which can have its address taken, and
2056    then act as a pointer to member, for example TYPE :: FIELD can have
2057    its address taken by saying & TYPE :: FIELD.  ADDRESS_P is true if
2058    this expression is the operand of "&".
2059 
2060    @@ Prints out lousy diagnostics for operator <typename>
2061    @@ fields.
2062 
2063    @@ This function should be rewritten and placed in search.c.  */
2064 
2065 tree
build_offset_ref(tree type,tree member,bool address_p,tsubst_flags_t complain)2066 build_offset_ref (tree type, tree member, bool address_p,
2067 		  tsubst_flags_t complain)
2068 {
2069   tree decl;
2070   tree basebinfo = NULL_TREE;
2071 
2072   /* class templates can come in as TEMPLATE_DECLs here.  */
2073   if (TREE_CODE (member) == TEMPLATE_DECL)
2074     return member;
2075 
2076   if (dependent_scope_p (type) || type_dependent_expression_p (member))
2077     return build_qualified_name (NULL_TREE, type, member,
2078 				  /*template_p=*/false);
2079 
2080   gcc_assert (TYPE_P (type));
2081   if (! is_class_type (type, 1))
2082     return error_mark_node;
2083 
2084   gcc_assert (DECL_P (member) || BASELINK_P (member));
2085   /* Callers should call mark_used before this point.  */
2086   gcc_assert (!DECL_P (member) || TREE_USED (member));
2087 
2088   type = TYPE_MAIN_VARIANT (type);
2089   if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2090     {
2091       if (complain & tf_error)
2092 	error ("incomplete type %qT does not have member %qD", type, member);
2093       return error_mark_node;
2094     }
2095 
2096   /* Entities other than non-static members need no further
2097      processing.  */
2098   if (TREE_CODE (member) == TYPE_DECL)
2099     return member;
2100   if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2101     return convert_from_reference (member);
2102 
2103   if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2104     {
2105       if (complain & tf_error)
2106 	error ("invalid pointer to bit-field %qD", member);
2107       return error_mark_node;
2108     }
2109 
2110   /* Set up BASEBINFO for member lookup.  */
2111   decl = maybe_dummy_object (type, &basebinfo);
2112 
2113   /* A lot of this logic is now handled in lookup_member.  */
2114   if (BASELINK_P (member))
2115     {
2116       /* Go from the TREE_BASELINK to the member function info.  */
2117       tree t = BASELINK_FUNCTIONS (member);
2118 
2119       if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2120 	{
2121 	  /* Get rid of a potential OVERLOAD around it.  */
2122 	  t = OVL_FIRST (t);
2123 
2124 	  /* Unique functions are handled easily.  */
2125 
2126 	  /* For non-static member of base class, we need a special rule
2127 	     for access checking [class.protected]:
2128 
2129 	       If the access is to form a pointer to member, the
2130 	       nested-name-specifier shall name the derived class
2131 	       (or any class derived from that class).  */
2132 	  bool ok;
2133 	  if (address_p && DECL_P (t)
2134 	      && DECL_NONSTATIC_MEMBER_P (t))
2135 	    ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2136 						complain);
2137 	  else
2138 	    ok = perform_or_defer_access_check (basebinfo, t, t,
2139 						complain);
2140 	  if (!ok)
2141 	    return error_mark_node;
2142 	  if (DECL_STATIC_FUNCTION_P (t))
2143 	    return t;
2144 	  member = t;
2145 	}
2146       else
2147 	TREE_TYPE (member) = unknown_type_node;
2148     }
2149   else if (address_p && TREE_CODE (member) == FIELD_DECL)
2150     {
2151       /* We need additional test besides the one in
2152 	 check_accessibility_of_qualified_id in case it is
2153 	 a pointer to non-static member.  */
2154       if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2155 					  complain))
2156 	return error_mark_node;
2157     }
2158 
2159   if (!address_p)
2160     {
2161       /* If MEMBER is non-static, then the program has fallen afoul of
2162 	 [expr.prim]:
2163 
2164 	   An id-expression that denotes a nonstatic data member or
2165 	   nonstatic member function of a class can only be used:
2166 
2167 	   -- as part of a class member access (_expr.ref_) in which the
2168 	   object-expression refers to the member's class or a class
2169 	   derived from that class, or
2170 
2171 	   -- to form a pointer to member (_expr.unary.op_), or
2172 
2173 	   -- in the body of a nonstatic member function of that class or
2174 	   of a class derived from that class (_class.mfct.nonstatic_), or
2175 
2176 	   -- in a mem-initializer for a constructor for that class or for
2177 	   a class derived from that class (_class.base.init_).  */
2178       if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2179 	{
2180 	  /* Build a representation of the qualified name suitable
2181 	     for use as the operand to "&" -- even though the "&" is
2182 	     not actually present.  */
2183 	  member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2184 	  /* In Microsoft mode, treat a non-static member function as if
2185 	     it were a pointer-to-member.  */
2186 	  if (flag_ms_extensions)
2187 	    {
2188 	      PTRMEM_OK_P (member) = 1;
2189 	      return cp_build_addr_expr (member, complain);
2190 	    }
2191 	  if (complain & tf_error)
2192 	    error ("invalid use of non-static member function %qD",
2193 		   TREE_OPERAND (member, 1));
2194 	  return error_mark_node;
2195 	}
2196       else if (TREE_CODE (member) == FIELD_DECL)
2197 	{
2198 	  if (complain & tf_error)
2199 	    error ("invalid use of non-static data member %qD", member);
2200 	  return error_mark_node;
2201 	}
2202       return member;
2203     }
2204 
2205   member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2206   PTRMEM_OK_P (member) = 1;
2207   return member;
2208 }
2209 
2210 /* If DECL is a scalar enumeration constant or variable with a
2211    constant initializer, return the initializer (or, its initializers,
2212    recursively); otherwise, return DECL.  If STRICT_P, the
2213    initializer is only returned if DECL is a
2214    constant-expression.  If RETURN_AGGREGATE_CST_OK_P, it is ok to
2215    return an aggregate constant.  */
2216 
2217 static tree
constant_value_1(tree decl,bool strict_p,bool return_aggregate_cst_ok_p)2218 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2219 {
2220   while (TREE_CODE (decl) == CONST_DECL
2221 	 || decl_constant_var_p (decl)
2222 	 || (!strict_p && VAR_P (decl)
2223 	     && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2224     {
2225       tree init;
2226       /* If DECL is a static data member in a template
2227 	 specialization, we must instantiate it here.  The
2228 	 initializer for the static data member is not processed
2229 	 until needed; we need it now.  */
2230       mark_used (decl, tf_none);
2231       init = DECL_INITIAL (decl);
2232       if (init == error_mark_node)
2233 	{
2234 	  if (TREE_CODE (decl) == CONST_DECL
2235 	      || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2236 	    /* Treat the error as a constant to avoid cascading errors on
2237 	       excessively recursive template instantiation (c++/9335).  */
2238 	    return init;
2239 	  else
2240 	    return decl;
2241 	}
2242       /* Initializers in templates are generally expanded during
2243 	 instantiation, so before that for const int i(2)
2244 	 INIT is a TREE_LIST with the actual initializer as
2245 	 TREE_VALUE.  */
2246       if (processing_template_decl
2247 	  && init
2248 	  && TREE_CODE (init) == TREE_LIST
2249 	  && TREE_CHAIN (init) == NULL_TREE)
2250 	init = TREE_VALUE (init);
2251       /* Instantiate a non-dependent initializer for user variables.  We
2252 	 mustn't do this for the temporary for an array compound literal;
2253 	 trying to instatiate the initializer will keep creating new
2254 	 temporaries until we crash.  Probably it's not useful to do it for
2255 	 other artificial variables, either.  */
2256       if (!DECL_ARTIFICIAL (decl))
2257 	init = instantiate_non_dependent_or_null (init);
2258       if (!init
2259 	  || !TREE_TYPE (init)
2260 	  || !TREE_CONSTANT (init)
2261 	  || (!return_aggregate_cst_ok_p
2262 	      /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2263 		 return an aggregate constant (of which string
2264 		 literals are a special case), as we do not want
2265 		 to make inadvertent copies of such entities, and
2266 		 we must be sure that their addresses are the
2267  		 same everywhere.  */
2268 	      && (TREE_CODE (init) == CONSTRUCTOR
2269 		  || TREE_CODE (init) == STRING_CST)))
2270 	break;
2271       /* Don't return a CONSTRUCTOR for a variable with partial run-time
2272 	 initialization, since it doesn't represent the entire value.  */
2273       if (TREE_CODE (init) == CONSTRUCTOR
2274 	  && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2275 	break;
2276       /* If the variable has a dynamic initializer, don't use its
2277 	 DECL_INITIAL which doesn't reflect the real value.  */
2278       if (VAR_P (decl)
2279 	  && TREE_STATIC (decl)
2280 	  && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2281 	  && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2282 	break;
2283       decl = unshare_expr (init);
2284     }
2285   return decl;
2286 }
2287 
2288 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2289    of integral or enumeration type, or a constexpr variable of scalar type,
2290    then return that value.  These are those variables permitted in constant
2291    expressions by [5.19/1].  */
2292 
2293 tree
scalar_constant_value(tree decl)2294 scalar_constant_value (tree decl)
2295 {
2296   return constant_value_1 (decl, /*strict_p=*/true,
2297 			   /*return_aggregate_cst_ok_p=*/false);
2298 }
2299 
2300 /* Like scalar_constant_value, but can also return aggregate initializers.  */
2301 
2302 tree
decl_really_constant_value(tree decl)2303 decl_really_constant_value (tree decl)
2304 {
2305   return constant_value_1 (decl, /*strict_p=*/true,
2306 			   /*return_aggregate_cst_ok_p=*/true);
2307 }
2308 
2309 /* A more relaxed version of scalar_constant_value, used by the
2310    common C/C++ code.  */
2311 
2312 tree
decl_constant_value(tree decl)2313 decl_constant_value (tree decl)
2314 {
2315   return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2316 			   /*return_aggregate_cst_ok_p=*/true);
2317 }
2318 
2319 /* Common subroutines of build_new and build_vec_delete.  */
2320 
2321 /* Build and return a NEW_EXPR.  If NELTS is non-NULL, TYPE[NELTS] is
2322    the type of the object being allocated; otherwise, it's just TYPE.
2323    INIT is the initializer, if any.  USE_GLOBAL_NEW is true if the
2324    user explicitly wrote "::operator new".  PLACEMENT, if non-NULL, is
2325    a vector of arguments to be provided as arguments to a placement
2326    new operator.  This routine performs no semantic checks; it just
2327    creates and returns a NEW_EXPR.  */
2328 
2329 static tree
build_raw_new_expr(vec<tree,va_gc> * placement,tree type,tree nelts,vec<tree,va_gc> * init,int use_global_new)2330 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2331 		    vec<tree, va_gc> *init, int use_global_new)
2332 {
2333   tree init_list;
2334   tree new_expr;
2335 
2336   /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2337      If INIT is not NULL, then we want to store VOID_ZERO_NODE.  This
2338      permits us to distinguish the case of a missing initializer "new
2339      int" from an empty initializer "new int()".  */
2340   if (init == NULL)
2341     init_list = NULL_TREE;
2342   else if (init->is_empty ())
2343     init_list = void_node;
2344   else
2345     {
2346       init_list = build_tree_list_vec (init);
2347       for (tree v = init_list; v; v = TREE_CHAIN (v))
2348 	if (TREE_CODE (TREE_VALUE (v)) == OVERLOAD)
2349 	  lookup_keep (TREE_VALUE (v), true);
2350     }
2351 
2352   new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2353 		     build_tree_list_vec (placement), type, nelts,
2354 		     init_list);
2355   NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2356   TREE_SIDE_EFFECTS (new_expr) = 1;
2357 
2358   return new_expr;
2359 }
2360 
2361 /* Diagnose uninitialized const members or reference members of type
2362    TYPE. USING_NEW is used to disambiguate the diagnostic between a
2363    new expression without a new-initializer and a declaration. Returns
2364    the error count. */
2365 
2366 static int
diagnose_uninitialized_cst_or_ref_member_1(tree type,tree origin,bool using_new,bool complain)2367 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2368 					    bool using_new, bool complain)
2369 {
2370   tree field;
2371   int error_count = 0;
2372 
2373   if (type_has_user_provided_constructor (type))
2374     return 0;
2375 
2376   for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2377     {
2378       tree field_type;
2379 
2380       if (TREE_CODE (field) != FIELD_DECL)
2381 	continue;
2382 
2383       field_type = strip_array_types (TREE_TYPE (field));
2384 
2385       if (type_has_user_provided_constructor (field_type))
2386 	continue;
2387 
2388       if (TREE_CODE (field_type) == REFERENCE_TYPE)
2389 	{
2390 	  ++ error_count;
2391 	  if (complain)
2392 	    {
2393 	      if (DECL_CONTEXT (field) == origin)
2394 		{
2395 		  if (using_new)
2396 		    error ("uninitialized reference member in %q#T "
2397 			   "using %<new%> without new-initializer", origin);
2398 		  else
2399 		    error ("uninitialized reference member in %q#T", origin);
2400 		}
2401 	      else
2402 		{
2403 		  if (using_new)
2404 		    error ("uninitialized reference member in base %q#T "
2405 			   "of %q#T using %<new%> without new-initializer",
2406 			   DECL_CONTEXT (field), origin);
2407 		  else
2408 		    error ("uninitialized reference member in base %q#T "
2409 			   "of %q#T", DECL_CONTEXT (field), origin);
2410 		}
2411 	      inform (DECL_SOURCE_LOCATION (field),
2412 		      "%q#D should be initialized", field);
2413 	    }
2414 	}
2415 
2416       if (CP_TYPE_CONST_P (field_type))
2417 	{
2418 	  ++ error_count;
2419 	  if (complain)
2420 	    {
2421 	      if (DECL_CONTEXT (field) == origin)
2422 		{
2423 		  if (using_new)
2424 		    error ("uninitialized const member in %q#T "
2425 			   "using %<new%> without new-initializer", origin);
2426 		  else
2427 		    error ("uninitialized const member in %q#T", origin);
2428 		}
2429 	      else
2430 		{
2431 		  if (using_new)
2432 		    error ("uninitialized const member in base %q#T "
2433 			   "of %q#T using %<new%> without new-initializer",
2434 			   DECL_CONTEXT (field), origin);
2435 		  else
2436 		    error ("uninitialized const member in base %q#T "
2437 			   "of %q#T", DECL_CONTEXT (field), origin);
2438 		}
2439 	      inform (DECL_SOURCE_LOCATION (field),
2440 		      "%q#D should be initialized", field);
2441 	    }
2442 	}
2443 
2444       if (CLASS_TYPE_P (field_type))
2445 	error_count
2446 	  += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2447 							 using_new, complain);
2448     }
2449   return error_count;
2450 }
2451 
2452 int
diagnose_uninitialized_cst_or_ref_member(tree type,bool using_new,bool complain)2453 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2454 {
2455   return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2456 }
2457 
2458 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2459    overflowed.  Pretend it returns sizetype so that it plays nicely in the
2460    COND_EXPR.  */
2461 
2462 tree
throw_bad_array_new_length(void)2463 throw_bad_array_new_length (void)
2464 {
2465   if (!fn)
2466     {
2467       tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2468 
2469       fn = get_global_binding (name);
2470       if (!fn)
2471 	fn = push_throw_library_fn
2472 	  (name, build_function_type_list (sizetype, NULL_TREE));
2473     }
2474 
2475   return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2476 }
2477 
2478 /* Attempt to find the initializer for flexible array field T in the
2479    initializer INIT, when non-null.  Returns the initializer when
2480    successful and NULL otherwise.  */
2481 static tree
find_flexarray_init(tree t,tree init)2482 find_flexarray_init (tree t, tree init)
2483 {
2484   if (!init || init == error_mark_node)
2485     return NULL_TREE;
2486 
2487   unsigned HOST_WIDE_INT idx;
2488   tree field, elt;
2489 
2490   /* Iterate over all top-level initializer elements.  */
2491   FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2492     /* If the member T is found, return it.  */
2493     if (field == t)
2494       return elt;
2495 
2496   return NULL_TREE;
2497 }
2498 
2499 /* Attempt to verify that the argument, OPER, of a placement new expression
2500    refers to an object sufficiently large for an object of TYPE or an array
2501    of NELTS of such objects when NELTS is non-null, and issue a warning when
2502    it does not.  SIZE specifies the size needed to construct the object or
2503    array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2504    greater when the array under construction requires a cookie to store
2505    NELTS.  GCC's placement new expression stores the cookie when invoking
2506    a user-defined placement new operator function but not the default one.
2507    Placement new expressions with user-defined placement new operator are
2508    not diagnosed since we don't know how they use the buffer (this could
2509    be a future extension).  */
2510 static void
warn_placement_new_too_small(tree type,tree nelts,tree size,tree oper)2511 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2512 {
2513   location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2514 
2515   /* The number of bytes to add to or subtract from the size of the provided
2516      buffer based on an offset into an array or an array element reference.
2517      Although intermediate results may be negative (as in a[3] - 2) a valid
2518      final result cannot be.  */
2519   offset_int adjust = 0;
2520   /* True when the size of the entire destination object should be used
2521      to compute the possibly optimistic estimate of the available space.  */
2522   bool use_obj_size = false;
2523   /* True when the reference to the destination buffer is an ADDR_EXPR.  */
2524   bool addr_expr = false;
2525 
2526   STRIP_NOPS (oper);
2527 
2528   /* Using a function argument or a (non-array) variable as an argument
2529      to placement new is not checked since it's unknown what it might
2530      point to.  */
2531   if (TREE_CODE (oper) == PARM_DECL
2532       || VAR_P (oper)
2533       || TREE_CODE (oper) == COMPONENT_REF)
2534     return;
2535 
2536   /* Evaluate any constant expressions.  */
2537   size = fold_non_dependent_expr (size);
2538 
2539   /* Handle the common case of array + offset expression when the offset
2540      is a constant.  */
2541   if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2542     {
2543       /* If the offset is compile-time constant, use it to compute a more
2544 	 accurate estimate of the size of the buffer.  Since the operand
2545 	 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2546 	 it to signed first.
2547 	 Otherwise, use the size of the entire array as an optimistic
2548 	 estimate (this may lead to false negatives).  */
2549       tree adj = TREE_OPERAND (oper, 1);
2550       if (CONSTANT_CLASS_P (adj))
2551 	adjust += wi::to_offset (convert (ssizetype, adj));
2552       else
2553 	use_obj_size = true;
2554 
2555       oper = TREE_OPERAND (oper, 0);
2556 
2557       STRIP_NOPS (oper);
2558     }
2559 
2560   if (TREE_CODE (oper) == TARGET_EXPR)
2561     oper = TREE_OPERAND (oper, 1);
2562   else if (TREE_CODE (oper) == ADDR_EXPR)
2563     {
2564       addr_expr = true;
2565       oper = TREE_OPERAND (oper, 0);
2566     }
2567 
2568   STRIP_NOPS (oper);
2569 
2570   if (TREE_CODE (oper) == ARRAY_REF
2571       && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2572     {
2573       /* Similar to the offset computed above, see if the array index
2574 	 is a compile-time constant.  If so, and unless the offset was
2575 	 not a compile-time constant, use the index to determine the
2576 	 size of the buffer.  Otherwise, use the entire array as
2577 	 an optimistic estimate of the size.  */
2578       const_tree adj = fold_non_dependent_expr (TREE_OPERAND (oper, 1));
2579       if (!use_obj_size && CONSTANT_CLASS_P (adj))
2580 	adjust += wi::to_offset (adj);
2581       else
2582 	{
2583 	  use_obj_size = true;
2584 	  adjust = 0;
2585 	}
2586 
2587       oper = TREE_OPERAND (oper, 0);
2588     }
2589 
2590   /* Refers to the declared object that constains the subobject referenced
2591      by OPER.  When the object is initialized, makes it possible to determine
2592      the actual size of a flexible array member used as the buffer passed
2593      as OPER to placement new.  */
2594   tree var_decl = NULL_TREE;
2595   /* True when operand is a COMPONENT_REF, to distinguish flexible array
2596      members from arrays of unspecified size.  */
2597   bool compref = TREE_CODE (oper) == COMPONENT_REF;
2598 
2599   /* For COMPONENT_REF (i.e., a struct member) the size of the entire
2600      enclosing struct.  Used to validate the adjustment (offset) into
2601      an array at the end of a struct.  */
2602   offset_int compsize = 0;
2603 
2604   /* Descend into a struct or union to find the member whose address
2605      is being used as the argument.  */
2606   if (TREE_CODE (oper) == COMPONENT_REF)
2607     {
2608       tree comptype = TREE_TYPE (TREE_OPERAND (oper, 0));
2609       compsize = wi::to_offset (TYPE_SIZE_UNIT (comptype));
2610 
2611       tree op0 = oper;
2612       while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2613       if (VAR_P (op0))
2614 	var_decl = op0;
2615       oper = TREE_OPERAND (oper, 1);
2616     }
2617 
2618   tree opertype = TREE_TYPE (oper);
2619   if ((addr_expr || !POINTER_TYPE_P (opertype))
2620       && (VAR_P (oper)
2621 	  || TREE_CODE (oper) == FIELD_DECL
2622 	  || TREE_CODE (oper) == PARM_DECL))
2623     {
2624       /* A possibly optimistic estimate of the number of bytes available
2625 	 in the destination buffer.  */
2626       offset_int bytes_avail = 0;
2627       /* True when the estimate above is in fact the exact size
2628 	 of the destination buffer rather than an estimate.  */
2629       bool exact_size = true;
2630 
2631       /* Treat members of unions and members of structs uniformly, even
2632 	 though the size of a member of a union may be viewed as extending
2633 	 to the end of the union itself (it is by __builtin_object_size).  */
2634       if ((VAR_P (oper) || use_obj_size)
2635 	  && DECL_SIZE_UNIT (oper)
2636 	  && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2637 	{
2638 	  /* Use the size of the entire array object when the expression
2639 	     refers to a variable or its size depends on an expression
2640 	     that's not a compile-time constant.  */
2641 	  bytes_avail = wi::to_offset (DECL_SIZE_UNIT (oper));
2642 	  exact_size = !use_obj_size;
2643 	}
2644       else if (tree opersize = TYPE_SIZE_UNIT (opertype))
2645 	{
2646 	  /* Use the size of the type of the destination buffer object
2647 	     as the optimistic estimate of the available space in it.
2648 	     Use the maximum possible size for zero-size arrays and
2649 	     flexible array members (except of initialized objects
2650 	     thereof).  */
2651 	  if (TREE_CODE (opersize) == INTEGER_CST)
2652 	    bytes_avail = wi::to_offset (opersize);
2653 	}
2654 
2655       if (bytes_avail == 0)
2656 	{
2657 	  if (var_decl)
2658 	    {
2659 	      /* Constructing into a buffer provided by the flexible array
2660 		 member of a declared object (which is permitted as a G++
2661 		 extension).  If the array member has been initialized,
2662 		 determine its size from the initializer.  Otherwise,
2663 		 the array size is zero.  */
2664 	      if (tree init = find_flexarray_init (oper,
2665 						   DECL_INITIAL (var_decl)))
2666 		bytes_avail = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2667 	    }
2668 	  else
2669 	    bytes_avail = (wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node))
2670 			   - compsize);
2671 	}
2672 
2673       tree_code oper_code = TREE_CODE (opertype);
2674 
2675       if (compref && oper_code == ARRAY_TYPE)
2676 	{
2677 	  tree nelts = array_type_nelts_top (opertype);
2678 	  tree nelts_cst = maybe_constant_value (nelts);
2679 	  if (TREE_CODE (nelts_cst) == INTEGER_CST
2680 	      && integer_onep (nelts_cst)
2681 	      && !var_decl
2682 	      && warn_placement_new < 2)
2683 	    return;
2684 	}
2685 
2686       /* Reduce the size of the buffer by the adjustment computed above
2687 	 from the offset and/or the index into the array.  */
2688       if (bytes_avail < adjust || adjust < 0)
2689 	bytes_avail = 0;
2690       else
2691 	{
2692 	  tree elttype = (TREE_CODE (opertype) == ARRAY_TYPE
2693 			  ? TREE_TYPE (opertype) : opertype);
2694 	  if (tree eltsize = TYPE_SIZE_UNIT (elttype))
2695 	    {
2696 	      bytes_avail -= adjust * wi::to_offset (eltsize);
2697 	      if (bytes_avail < 0)
2698 		bytes_avail = 0;
2699 	    }
2700 	}
2701 
2702       /* The minimum amount of space needed for the allocation.  This
2703 	 is an optimistic estimate that makes it possible to detect
2704 	 placement new invocation for some undersize buffers but not
2705 	 others.  */
2706       offset_int bytes_need;
2707 
2708       if (CONSTANT_CLASS_P (size))
2709 	bytes_need = wi::to_offset (size);
2710       else if (nelts && CONSTANT_CLASS_P (nelts))
2711 	bytes_need = (wi::to_offset (nelts)
2712 		      * wi::to_offset (TYPE_SIZE_UNIT (type)));
2713       else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2714 	bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2715       else
2716 	{
2717 	  /* The type is a VLA.  */
2718 	  return;
2719 	}
2720 
2721       if (bytes_avail < bytes_need)
2722 	{
2723 	  if (nelts)
2724 	    if (CONSTANT_CLASS_P (nelts))
2725 	      warning_at (loc, OPT_Wplacement_new_,
2726 			  exact_size ?
2727 			  "placement new constructing an object of type "
2728 			  "%<%T [%wu]%> and size %qwu in a region of type %qT "
2729 			  "and size %qwi"
2730 			  : "placement new constructing an object of type "
2731 			  "%<%T [%wu]%> and size %qwu in a region of type %qT "
2732 			  "and size at most %qwu",
2733 			  type, tree_to_uhwi (nelts), bytes_need.to_uhwi (),
2734 			  opertype, bytes_avail.to_uhwi ());
2735 	    else
2736 	      warning_at (loc, OPT_Wplacement_new_,
2737 			  exact_size ?
2738 			  "placement new constructing an array of objects "
2739 			  "of type %qT and size %qwu in a region of type %qT "
2740 			  "and size %qwi"
2741 			  : "placement new constructing an array of objects "
2742 			  "of type %qT and size %qwu in a region of type %qT "
2743 			  "and size at most %qwu",
2744 			  type, bytes_need.to_uhwi (), opertype,
2745 			  bytes_avail.to_uhwi ());
2746 	  else
2747 	    warning_at (loc, OPT_Wplacement_new_,
2748 			exact_size ?
2749 			"placement new constructing an object of type %qT "
2750 			"and size %qwu in a region of type %qT and size %qwi"
2751 			: "placement new constructing an object of type %qT "
2752 			"and size %qwu in a region of type %qT and size "
2753 			"at most %qwu",
2754 			type, bytes_need.to_uhwi (), opertype,
2755 			bytes_avail.to_uhwi ());
2756 	}
2757     }
2758 }
2759 
2760 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__.  */
2761 
2762 bool
type_has_new_extended_alignment(tree t)2763 type_has_new_extended_alignment (tree t)
2764 {
2765   return (aligned_new_threshold
2766 	  && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2767 }
2768 
2769 /* Return the alignment we expect malloc to guarantee.  This should just be
2770    MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2771    reason, so don't let the threshold be smaller than max_align_t_align.  */
2772 
2773 unsigned
malloc_alignment()2774 malloc_alignment ()
2775 {
2776   return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2777 }
2778 
2779 /* Determine whether an allocation function is a namespace-scope
2780    non-replaceable placement new function. See DR 1748.
2781    TODO: Enable in all standard modes.  */
2782 static bool
std_placement_new_fn_p(tree alloc_fn)2783 std_placement_new_fn_p (tree alloc_fn)
2784 {
2785   if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2786     {
2787       tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2788       if ((TREE_VALUE (first_arg) == ptr_type_node)
2789 	  && TREE_CHAIN (first_arg) == void_list_node)
2790 	return true;
2791     }
2792   return false;
2793 }
2794 
2795 /* Generate code for a new-expression, including calling the "operator
2796    new" function, initializing the object, and, if an exception occurs
2797    during construction, cleaning up.  The arguments are as for
2798    build_raw_new_expr.  This may change PLACEMENT and INIT.
2799    TYPE is the type of the object being constructed, possibly an array
2800    of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2801    be an array of the form U[inner], with the whole expression being
2802    "new U[NELTS][inner]").  */
2803 
2804 static tree
build_new_1(vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,bool globally_qualified_p,tsubst_flags_t complain)2805 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2806 	     vec<tree, va_gc> **init, bool globally_qualified_p,
2807 	     tsubst_flags_t complain)
2808 {
2809   tree size, rval;
2810   /* True iff this is a call to "operator new[]" instead of just
2811      "operator new".  */
2812   bool array_p = false;
2813   /* If ARRAY_P is true, the element type of the array.  This is never
2814      an ARRAY_TYPE; for something like "new int[3][4]", the
2815      ELT_TYPE is "int".  If ARRAY_P is false, this is the same type as
2816      TYPE.  */
2817   tree elt_type;
2818   /* The type of the new-expression.  (This type is always a pointer
2819      type.)  */
2820   tree pointer_type;
2821   tree non_const_pointer_type;
2822   /* The most significant array bound in int[OUTER_NELTS][inner].  */
2823   tree outer_nelts = NULL_TREE;
2824   /* For arrays with a non-constant number of elements, a bounds checks
2825      on the NELTS parameter to avoid integer overflow at runtime. */
2826   tree outer_nelts_check = NULL_TREE;
2827   bool outer_nelts_from_type = false;
2828   /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]".  */
2829   offset_int inner_nelts_count = 1;
2830   tree alloc_call, alloc_expr;
2831   /* Size of the inner array elements (those with constant dimensions). */
2832   offset_int inner_size;
2833   /* The address returned by the call to "operator new".  This node is
2834      a VAR_DECL and is therefore reusable.  */
2835   tree alloc_node;
2836   tree alloc_fn;
2837   tree cookie_expr, init_expr;
2838   int nothrow, check_new;
2839   /* If non-NULL, the number of extra bytes to allocate at the
2840      beginning of the storage allocated for an array-new expression in
2841      order to store the number of elements.  */
2842   tree cookie_size = NULL_TREE;
2843   tree placement_first;
2844   tree placement_expr = NULL_TREE;
2845   /* True if the function we are calling is a placement allocation
2846      function.  */
2847   bool placement_allocation_fn_p;
2848   /* True if the storage must be initialized, either by a constructor
2849      or due to an explicit new-initializer.  */
2850   bool is_initialized;
2851   /* The address of the thing allocated, not including any cookie.  In
2852      particular, if an array cookie is in use, DATA_ADDR is the
2853      address of the first array element.  This node is a VAR_DECL, and
2854      is therefore reusable.  */
2855   tree data_addr;
2856   tree init_preeval_expr = NULL_TREE;
2857   tree orig_type = type;
2858 
2859   if (nelts)
2860     {
2861       outer_nelts = nelts;
2862       array_p = true;
2863     }
2864   else if (TREE_CODE (type) == ARRAY_TYPE)
2865     {
2866       /* Transforms new (T[N]) to new T[N].  The former is a GNU
2867 	 extension for variable N.  (This also covers new T where T is
2868 	 a VLA typedef.)  */
2869       array_p = true;
2870       nelts = array_type_nelts_top (type);
2871       outer_nelts = nelts;
2872       type = TREE_TYPE (type);
2873       outer_nelts_from_type = true;
2874     }
2875 
2876   /* Lots of logic below depends on whether we have a constant number of
2877      elements, so go ahead and fold it now.  */
2878   const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts);
2879 
2880   /* If our base type is an array, then make sure we know how many elements
2881      it has.  */
2882   for (elt_type = type;
2883        TREE_CODE (elt_type) == ARRAY_TYPE;
2884        elt_type = TREE_TYPE (elt_type))
2885     {
2886       tree inner_nelts = array_type_nelts_top (elt_type);
2887       tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2888       if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2889 	{
2890 	  bool overflow;
2891 	  offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2892 				       inner_nelts_count, SIGNED, &overflow);
2893 	  if (overflow)
2894 	    {
2895 	      if (complain & tf_error)
2896 		error ("integer overflow in array size");
2897 	      nelts = error_mark_node;
2898 	    }
2899 	  inner_nelts_count = result;
2900 	}
2901       else
2902 	{
2903 	  if (complain & tf_error)
2904 	    {
2905 	      error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2906 			"array size in new-expression must be constant");
2907 	      cxx_constant_value(inner_nelts);
2908 	    }
2909 	  nelts = error_mark_node;
2910 	}
2911       if (nelts != error_mark_node)
2912 	nelts = cp_build_binary_op (input_location,
2913 				    MULT_EXPR, nelts,
2914 				    inner_nelts_cst,
2915 				    complain);
2916     }
2917 
2918   if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2919     {
2920       error ("variably modified type not allowed in new-expression");
2921       return error_mark_node;
2922     }
2923 
2924   if (nelts == error_mark_node)
2925     return error_mark_node;
2926 
2927   /* Warn if we performed the (T[N]) to T[N] transformation and N is
2928      variable.  */
2929   if (outer_nelts_from_type
2930       && !TREE_CONSTANT (cst_outer_nelts))
2931     {
2932       if (complain & tf_warning_or_error)
2933 	{
2934 	  pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2935 		   typedef_variant_p (orig_type)
2936 		   ? G_("non-constant array new length must be specified "
2937 			"directly, not by typedef")
2938 		   : G_("non-constant array new length must be specified "
2939 			"without parentheses around the type-id"));
2940 	}
2941       else
2942 	return error_mark_node;
2943     }
2944 
2945   if (VOID_TYPE_P (elt_type))
2946     {
2947       if (complain & tf_error)
2948         error ("invalid type %<void%> for new");
2949       return error_mark_node;
2950     }
2951 
2952   if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2953     return error_mark_node;
2954 
2955   is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2956 
2957   if (*init == NULL && cxx_dialect < cxx11)
2958     {
2959       bool maybe_uninitialized_error = false;
2960       /* A program that calls for default-initialization [...] of an
2961 	 entity of reference type is ill-formed. */
2962       if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2963 	maybe_uninitialized_error = true;
2964 
2965       /* A new-expression that creates an object of type T initializes
2966 	 that object as follows:
2967       - If the new-initializer is omitted:
2968         -- If T is a (possibly cv-qualified) non-POD class type
2969 	   (or array thereof), the object is default-initialized (8.5).
2970 	   [...]
2971         -- Otherwise, the object created has indeterminate
2972 	   value. If T is a const-qualified type, or a (possibly
2973 	   cv-qualified) POD class type (or array thereof)
2974 	   containing (directly or indirectly) a member of
2975 	   const-qualified type, the program is ill-formed; */
2976 
2977       if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2978 	maybe_uninitialized_error = true;
2979 
2980       if (maybe_uninitialized_error
2981 	  && diagnose_uninitialized_cst_or_ref_member (elt_type,
2982 						       /*using_new=*/true,
2983 						       complain & tf_error))
2984 	return error_mark_node;
2985     }
2986 
2987   if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2988       && default_init_uninitialized_part (elt_type))
2989     {
2990       if (complain & tf_error)
2991         error ("uninitialized const in %<new%> of %q#T", elt_type);
2992       return error_mark_node;
2993     }
2994 
2995   size = size_in_bytes (elt_type);
2996   if (array_p)
2997     {
2998       /* Maximum available size in bytes.  Half of the address space
2999 	 minus the cookie size.  */
3000       offset_int max_size
3001 	= wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3002       /* Maximum number of outer elements which can be allocated. */
3003       offset_int max_outer_nelts;
3004       tree max_outer_nelts_tree;
3005 
3006       gcc_assert (TREE_CODE (size) == INTEGER_CST);
3007       cookie_size = targetm.cxx.get_cookie_size (elt_type);
3008       gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3009       gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3010       /* Unconditionally subtract the cookie size.  This decreases the
3011 	 maximum object size and is safe even if we choose not to use
3012 	 a cookie after all.  */
3013       max_size -= wi::to_offset (cookie_size);
3014       bool overflow;
3015       inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3016 			    &overflow);
3017       if (overflow || wi::gtu_p (inner_size, max_size))
3018 	{
3019 	  if (complain & tf_error)
3020 	    error ("size of array is too large");
3021 	  return error_mark_node;
3022 	}
3023 
3024       max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3025       max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3026 
3027       size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3028 
3029       if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3030 	{
3031 	  if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3032 	    {
3033 	      /* When the array size is constant, check it at compile time
3034 		 to make sure it doesn't exceed the implementation-defined
3035 		 maximum, as required by C++ 14 (in C++ 11 this requirement
3036 		 isn't explicitly stated but it's enforced anyway -- see
3037 		 grokdeclarator in cp/decl.c).  */
3038 	      if (complain & tf_error)
3039 		error ("size of array is too large");
3040 	      return error_mark_node;
3041 	    }
3042 	}
3043       else
3044  	{
3045 	  /* When a runtime check is necessary because the array size
3046 	     isn't constant, keep only the top-most seven bits (starting
3047 	     with the most significant non-zero bit) of the maximum size
3048 	     to compare the array size against, to simplify encoding the
3049 	     constant maximum size in the instruction stream.  */
3050 
3051 	  unsigned shift = (max_outer_nelts.get_precision ()) - 7
3052 	    - wi::clz (max_outer_nelts);
3053 	  max_outer_nelts = (max_outer_nelts >> shift) << shift;
3054 
3055           outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3056 					   outer_nelts,
3057 					   max_outer_nelts_tree);
3058 	}
3059     }
3060 
3061   tree align_arg = NULL_TREE;
3062   if (type_has_new_extended_alignment (elt_type))
3063     align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3064 
3065   alloc_fn = NULL_TREE;
3066 
3067   /* If PLACEMENT is a single simple pointer type not passed by
3068      reference, prepare to capture it in a temporary variable.  Do
3069      this now, since PLACEMENT will change in the calls below.  */
3070   placement_first = NULL_TREE;
3071   if (vec_safe_length (*placement) == 1
3072       && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3073     placement_first = (**placement)[0];
3074 
3075   bool member_new_p = false;
3076 
3077   /* Allocate the object.  */
3078   tree fnname;
3079   tree fns;
3080 
3081   fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3082 
3083   member_new_p = !globally_qualified_p
3084 		 && CLASS_TYPE_P (elt_type)
3085 		 && (array_p
3086 		     ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3087 		     : TYPE_HAS_NEW_OPERATOR (elt_type));
3088 
3089   if (member_new_p)
3090     {
3091       /* Use a class-specific operator new.  */
3092       /* If a cookie is required, add some extra space.  */
3093       if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3094 	size = size_binop (PLUS_EXPR, size, cookie_size);
3095       else
3096 	{
3097 	  cookie_size = NULL_TREE;
3098 	  /* No size arithmetic necessary, so the size check is
3099 	     not needed. */
3100 	  if (outer_nelts_check != NULL && inner_size == 1)
3101 	    outer_nelts_check = NULL_TREE;
3102 	}
3103       /* Perform the overflow check.  */
3104       tree errval = TYPE_MAX_VALUE (sizetype);
3105       if (cxx_dialect >= cxx11 && flag_exceptions)
3106 	errval = throw_bad_array_new_length ();
3107       if (outer_nelts_check != NULL_TREE)
3108 	size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3109 			    size, errval);
3110       /* Create the argument list.  */
3111       vec_safe_insert (*placement, 0, size);
3112       /* Do name-lookup to find the appropriate operator.  */
3113       fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3114       if (fns == NULL_TREE)
3115 	{
3116 	  if (complain & tf_error)
3117 	    error ("no suitable %qD found in class %qT", fnname, elt_type);
3118 	  return error_mark_node;
3119 	}
3120       if (TREE_CODE (fns) == TREE_LIST)
3121 	{
3122 	  if (complain & tf_error)
3123 	    {
3124 	      error ("request for member %qD is ambiguous", fnname);
3125 	      print_candidates (fns);
3126 	    }
3127 	  return error_mark_node;
3128 	}
3129       tree dummy = build_dummy_object (elt_type);
3130       alloc_call = NULL_TREE;
3131       if (align_arg)
3132 	{
3133 	  vec<tree, va_gc> *align_args
3134 	    = vec_copy_and_insert (*placement, align_arg, 1);
3135 	  alloc_call
3136 	    = build_new_method_call (dummy, fns, &align_args,
3137 				     /*conversion_path=*/NULL_TREE,
3138 				     LOOKUP_NORMAL, &alloc_fn, tf_none);
3139 	  /* If no matching function is found and the allocated object type
3140 	     has new-extended alignment, the alignment argument is removed
3141 	     from the argument list, and overload resolution is performed
3142 	     again.  */
3143 	  if (alloc_call == error_mark_node)
3144 	    alloc_call = NULL_TREE;
3145 	}
3146       if (!alloc_call)
3147 	alloc_call = build_new_method_call (dummy, fns, placement,
3148 					    /*conversion_path=*/NULL_TREE,
3149 					    LOOKUP_NORMAL,
3150 					    &alloc_fn, complain);
3151     }
3152   else
3153     {
3154       /* Use a global operator new.  */
3155       /* See if a cookie might be required.  */
3156       if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3157 	{
3158 	  cookie_size = NULL_TREE;
3159 	  /* No size arithmetic necessary, so the size check is
3160 	     not needed. */
3161 	  if (outer_nelts_check != NULL && inner_size == 1)
3162 	    outer_nelts_check = NULL_TREE;
3163 	}
3164 
3165       alloc_call = build_operator_new_call (fnname, placement,
3166 					    &size, &cookie_size,
3167 					    align_arg, outer_nelts_check,
3168 					    &alloc_fn, complain);
3169     }
3170 
3171   if (alloc_call == error_mark_node)
3172     return error_mark_node;
3173 
3174   gcc_assert (alloc_fn != NULL_TREE);
3175 
3176   /* Now, check to see if this function is actually a placement
3177      allocation function.  This can happen even when PLACEMENT is NULL
3178      because we might have something like:
3179 
3180        struct S { void* operator new (size_t, int i = 0); };
3181 
3182      A call to `new S' will get this allocation function, even though
3183      there is no explicit placement argument.  If there is more than
3184      one argument, or there are variable arguments, then this is a
3185      placement allocation function.  */
3186   placement_allocation_fn_p
3187     = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3188        || varargs_function_p (alloc_fn));
3189 
3190   if (warn_aligned_new
3191       && !placement_allocation_fn_p
3192       && TYPE_ALIGN (elt_type) > malloc_alignment ()
3193       && (warn_aligned_new > 1
3194 	  || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3195       && !aligned_allocation_fn_p (alloc_fn))
3196     {
3197       if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3198 		   "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3199 	{
3200 	  inform (input_location, "uses %qD, which does not have an alignment "
3201 		  "parameter", alloc_fn);
3202 	  if (!aligned_new_threshold)
3203 	    inform (input_location, "use %<-faligned-new%> to enable C++17 "
3204 				    "over-aligned new support");
3205 	}
3206     }
3207 
3208   /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3209      into a temporary variable.  */
3210   if (!processing_template_decl
3211       && TREE_CODE (alloc_call) == CALL_EXPR
3212       && call_expr_nargs (alloc_call) == 2
3213       && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3214       && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3215     {
3216       tree placement = CALL_EXPR_ARG (alloc_call, 1);
3217 
3218       if (placement_first != NULL_TREE
3219 	  && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3220 	      || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3221 	{
3222 	  placement_expr = get_target_expr (placement_first);
3223 	  CALL_EXPR_ARG (alloc_call, 1)
3224 	    = fold_convert (TREE_TYPE (placement), placement_expr);
3225 	}
3226 
3227       if (!member_new_p
3228 	  && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3229 	{
3230 	  /* Attempt to make the warning point at the operator new argument.  */
3231 	  if (placement_first)
3232 	    placement = placement_first;
3233 
3234 	  warn_placement_new_too_small (orig_type, nelts, size, placement);
3235 	}
3236     }
3237 
3238   /* In the simple case, we can stop now.  */
3239   pointer_type = build_pointer_type (type);
3240   if (!cookie_size && !is_initialized)
3241     return build_nop (pointer_type, alloc_call);
3242 
3243   /* Store the result of the allocation call in a variable so that we can
3244      use it more than once.  */
3245   alloc_expr = get_target_expr (alloc_call);
3246   alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3247 
3248   /* Strip any COMPOUND_EXPRs from ALLOC_CALL.  */
3249   while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3250     alloc_call = TREE_OPERAND (alloc_call, 1);
3251 
3252   /* Preevaluate the placement args so that we don't reevaluate them for a
3253      placement delete.  */
3254   if (placement_allocation_fn_p)
3255     {
3256       tree inits;
3257       stabilize_call (alloc_call, &inits);
3258       if (inits)
3259 	alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3260 			     alloc_expr);
3261     }
3262 
3263   /*        unless an allocation function is declared with an empty  excep-
3264      tion-specification  (_except.spec_),  throw(), it indicates failure to
3265      allocate storage by throwing a bad_alloc exception  (clause  _except_,
3266      _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3267      cation function is declared  with  an  empty  exception-specification,
3268      throw(), it returns null to indicate failure to allocate storage and a
3269      non-null pointer otherwise.
3270 
3271      So check for a null exception spec on the op new we just called.  */
3272 
3273   nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3274   check_new
3275     = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3276 
3277   if (cookie_size)
3278     {
3279       tree cookie;
3280       tree cookie_ptr;
3281       tree size_ptr_type;
3282 
3283       /* Adjust so we're pointing to the start of the object.  */
3284       data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3285 
3286       /* Store the number of bytes allocated so that we can know how
3287 	 many elements to destroy later.  We use the last sizeof
3288 	 (size_t) bytes to store the number of elements.  */
3289       cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3290       cookie_ptr = fold_build_pointer_plus_loc (input_location,
3291 						alloc_node, cookie_ptr);
3292       size_ptr_type = build_pointer_type (sizetype);
3293       cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3294       cookie = cp_build_fold_indirect_ref (cookie_ptr);
3295 
3296       cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3297 
3298       if (targetm.cxx.cookie_has_size ())
3299 	{
3300 	  /* Also store the element size.  */
3301 	  cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3302 			       fold_build1_loc (input_location,
3303 						NEGATE_EXPR, sizetype,
3304 						size_in_bytes (sizetype)));
3305 
3306 	  cookie = cp_build_fold_indirect_ref (cookie_ptr);
3307 	  cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3308 			   size_in_bytes (elt_type));
3309 	  cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3310 				cookie, cookie_expr);
3311 	}
3312     }
3313   else
3314     {
3315       cookie_expr = NULL_TREE;
3316       data_addr = alloc_node;
3317     }
3318 
3319   /* Now use a pointer to the type we've actually allocated.  */
3320 
3321   /* But we want to operate on a non-const version to start with,
3322      since we'll be modifying the elements.  */
3323   non_const_pointer_type = build_pointer_type
3324     (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3325 
3326   data_addr = fold_convert (non_const_pointer_type, data_addr);
3327   /* Any further uses of alloc_node will want this type, too.  */
3328   alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3329 
3330   /* Now initialize the allocated object.  Note that we preevaluate the
3331      initialization expression, apart from the actual constructor call or
3332      assignment--we do this because we want to delay the allocation as long
3333      as possible in order to minimize the size of the exception region for
3334      placement delete.  */
3335   if (is_initialized)
3336     {
3337       bool stable;
3338       bool explicit_value_init_p = false;
3339 
3340       if (*init != NULL && (*init)->is_empty ())
3341 	{
3342 	  *init = NULL;
3343 	  explicit_value_init_p = true;
3344 	}
3345 
3346       if (processing_template_decl && explicit_value_init_p)
3347 	{
3348 	  /* build_value_init doesn't work in templates, and we don't need
3349 	     the initializer anyway since we're going to throw it away and
3350 	     rebuild it at instantiation time, so just build up a single
3351 	     constructor call to get any appropriate diagnostics.  */
3352 	  init_expr = cp_build_fold_indirect_ref (data_addr);
3353 	  if (type_build_ctor_call (elt_type))
3354 	    init_expr = build_special_member_call (init_expr,
3355 						   complete_ctor_identifier,
3356 						   init, elt_type,
3357 						   LOOKUP_NORMAL,
3358 						   complain);
3359 	  stable = stabilize_init (init_expr, &init_preeval_expr);
3360 	}
3361       else if (array_p)
3362 	{
3363 	  tree vecinit = NULL_TREE;
3364 	  if (vec_safe_length (*init) == 1
3365 	      && DIRECT_LIST_INIT_P ((**init)[0]))
3366 	    {
3367 	      vecinit = (**init)[0];
3368 	      if (CONSTRUCTOR_NELTS (vecinit) == 0)
3369 		/* List-value-initialization, leave it alone.  */;
3370 	      else
3371 		{
3372 		  tree arraytype, domain;
3373 		  if (TREE_CONSTANT (nelts))
3374 		    domain = compute_array_index_type (NULL_TREE, nelts,
3375 						       complain);
3376 		  else
3377 		    /* We'll check the length at runtime.  */
3378 		    domain = NULL_TREE;
3379 		  arraytype = build_cplus_array_type (type, domain);
3380 		  vecinit = digest_init (arraytype, vecinit, complain);
3381 		}
3382 	    }
3383 	  else if (*init)
3384             {
3385               if (complain & tf_error)
3386                 error ("parenthesized initializer in array new");
3387 	      return error_mark_node;
3388             }
3389 	  init_expr
3390 	    = build_vec_init (data_addr,
3391 			      cp_build_binary_op (input_location,
3392 						  MINUS_EXPR, outer_nelts,
3393 						  integer_one_node,
3394 						  complain),
3395 			      vecinit,
3396 			      explicit_value_init_p,
3397 			      /*from_array=*/0,
3398                               complain);
3399 
3400 	  /* An array initialization is stable because the initialization
3401 	     of each element is a full-expression, so the temporaries don't
3402 	     leak out.  */
3403 	  stable = true;
3404 	}
3405       else
3406 	{
3407 	  init_expr = cp_build_fold_indirect_ref (data_addr);
3408 
3409 	  if (type_build_ctor_call (type) && !explicit_value_init_p)
3410 	    {
3411 	      init_expr = build_special_member_call (init_expr,
3412 						     complete_ctor_identifier,
3413 						     init, elt_type,
3414 						     LOOKUP_NORMAL,
3415                                                      complain);
3416 	    }
3417 	  else if (explicit_value_init_p)
3418 	    {
3419 	      /* Something like `new int()'.  NO_CLEANUP is needed so
3420 		 we don't try and build a (possibly ill-formed)
3421 		 destructor.  */
3422 	      tree val = build_value_init (type, complain | tf_no_cleanup);
3423 	      if (val == error_mark_node)
3424 		return error_mark_node;
3425 	      init_expr = build2 (INIT_EXPR, type, init_expr, val);
3426 	    }
3427 	  else
3428 	    {
3429 	      tree ie;
3430 
3431 	      /* We are processing something like `new int (10)', which
3432 		 means allocate an int, and initialize it with 10.  */
3433 
3434 	      ie = build_x_compound_expr_from_vec (*init, "new initializer",
3435 						   complain);
3436 	      init_expr = cp_build_modify_expr (input_location, init_expr,
3437 						INIT_EXPR, ie, complain);
3438 	    }
3439 	  /* If the initializer uses C++14 aggregate NSDMI that refer to the
3440 	     object being initialized, replace them now and don't try to
3441 	     preevaluate.  */
3442 	  bool had_placeholder = false;
3443 	  if (!processing_template_decl
3444 	      && TREE_CODE (init_expr) == INIT_EXPR)
3445 	    TREE_OPERAND (init_expr, 1)
3446 	      = replace_placeholders (TREE_OPERAND (init_expr, 1),
3447 				      TREE_OPERAND (init_expr, 0),
3448 				      &had_placeholder);
3449 	  stable = (!had_placeholder
3450 		    && stabilize_init (init_expr, &init_preeval_expr));
3451 	}
3452 
3453       if (init_expr == error_mark_node)
3454 	return error_mark_node;
3455 
3456       /* If any part of the object initialization terminates by throwing an
3457 	 exception and a suitable deallocation function can be found, the
3458 	 deallocation function is called to free the memory in which the
3459 	 object was being constructed, after which the exception continues
3460 	 to propagate in the context of the new-expression. If no
3461 	 unambiguous matching deallocation function can be found,
3462 	 propagating the exception does not cause the object's memory to be
3463 	 freed.  */
3464       if (flag_exceptions)
3465 	{
3466 	  enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3467 	  tree cleanup;
3468 
3469 	  /* The Standard is unclear here, but the right thing to do
3470 	     is to use the same method for finding deallocation
3471 	     functions that we use for finding allocation functions.  */
3472 	  cleanup = (build_op_delete_call
3473 		     (dcode,
3474 		      alloc_node,
3475 		      size,
3476 		      globally_qualified_p,
3477 		      placement_allocation_fn_p ? alloc_call : NULL_TREE,
3478 		      alloc_fn,
3479 		      complain));
3480 
3481 	  if (!cleanup)
3482 	    /* We're done.  */;
3483 	  else if (stable)
3484 	    /* This is much simpler if we were able to preevaluate all of
3485 	       the arguments to the constructor call.  */
3486 	    {
3487 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
3488 	      TREE_NO_WARNING (cleanup) = true;
3489 	      init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3490 				  init_expr, cleanup);
3491 	      /* Likewise, this try-catch is compiler-generated.  */
3492 	      TREE_NO_WARNING (init_expr) = true;
3493 	    }
3494 	  else
3495 	    /* Ack!  First we allocate the memory.  Then we set our sentry
3496 	       variable to true, and expand a cleanup that deletes the
3497 	       memory if sentry is true.  Then we run the constructor, and
3498 	       finally clear the sentry.
3499 
3500 	       We need to do this because we allocate the space first, so
3501 	       if there are any temporaries with cleanups in the
3502 	       constructor args and we weren't able to preevaluate them, we
3503 	       need this EH region to extend until end of full-expression
3504 	       to preserve nesting.  */
3505 	    {
3506 	      tree end, sentry, begin;
3507 
3508 	      begin = get_target_expr (boolean_true_node);
3509 	      CLEANUP_EH_ONLY (begin) = 1;
3510 
3511 	      sentry = TARGET_EXPR_SLOT (begin);
3512 
3513 	      /* CLEANUP is compiler-generated, so no diagnostics.  */
3514 	      TREE_NO_WARNING (cleanup) = true;
3515 
3516 	      TARGET_EXPR_CLEANUP (begin)
3517 		= build3 (COND_EXPR, void_type_node, sentry,
3518 			  cleanup, void_node);
3519 
3520 	      end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3521 			    sentry, boolean_false_node);
3522 
3523 	      init_expr
3524 		= build2 (COMPOUND_EXPR, void_type_node, begin,
3525 			  build2 (COMPOUND_EXPR, void_type_node, init_expr,
3526 				  end));
3527 	      /* Likewise, this is compiler-generated.  */
3528 	      TREE_NO_WARNING (init_expr) = true;
3529 	    }
3530 	}
3531     }
3532   else
3533     init_expr = NULL_TREE;
3534 
3535   /* Now build up the return value in reverse order.  */
3536 
3537   rval = data_addr;
3538 
3539   if (init_expr)
3540     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3541   if (cookie_expr)
3542     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3543 
3544   if (rval == data_addr)
3545     /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3546        and return the call (which doesn't need to be adjusted).  */
3547     rval = TARGET_EXPR_INITIAL (alloc_expr);
3548   else
3549     {
3550       if (check_new)
3551 	{
3552 	  tree ifexp = cp_build_binary_op (input_location,
3553 					   NE_EXPR, alloc_node,
3554 					   nullptr_node,
3555 					   complain);
3556 	  rval = build_conditional_expr (input_location, ifexp, rval,
3557 					 alloc_node, complain);
3558 	}
3559 
3560       /* Perform the allocation before anything else, so that ALLOC_NODE
3561 	 has been initialized before we start using it.  */
3562       rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3563     }
3564 
3565   if (init_preeval_expr)
3566     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3567 
3568   /* A new-expression is never an lvalue.  */
3569   gcc_assert (!obvalue_p (rval));
3570 
3571   return convert (pointer_type, rval);
3572 }
3573 
3574 /* Generate a representation for a C++ "new" expression.  *PLACEMENT
3575    is a vector of placement-new arguments (or NULL if none).  If NELTS
3576    is NULL, TYPE is the type of the storage to be allocated.  If NELTS
3577    is not NULL, then this is an array-new allocation; TYPE is the type
3578    of the elements in the array and NELTS is the number of elements in
3579    the array.  *INIT, if non-NULL, is the initializer for the new
3580    object, or an empty vector to indicate an initializer of "()".  If
3581    USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3582    rather than just "new".  This may change PLACEMENT and INIT.  */
3583 
3584 tree
build_new(vec<tree,va_gc> ** placement,tree type,tree nelts,vec<tree,va_gc> ** init,int use_global_new,tsubst_flags_t complain)3585 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3586 	   vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3587 {
3588   tree rval;
3589   vec<tree, va_gc> *orig_placement = NULL;
3590   tree orig_nelts = NULL_TREE;
3591   vec<tree, va_gc> *orig_init = NULL;
3592 
3593   if (type == error_mark_node)
3594     return error_mark_node;
3595 
3596   if (nelts == NULL_TREE
3597       /* Don't do auto deduction where it might affect mangling.  */
3598       && (!processing_template_decl || at_function_scope_p ()))
3599     {
3600       tree auto_node = type_uses_auto (type);
3601       if (auto_node)
3602 	{
3603 	  tree d_init = NULL_TREE;
3604 	  if (vec_safe_length (*init) == 1)
3605 	    {
3606 	      d_init = (**init)[0];
3607 	      d_init = resolve_nondeduced_context (d_init, complain);
3608 	    }
3609 	  type = do_auto_deduction (type, d_init, auto_node, complain);
3610 	}
3611     }
3612 
3613   if (processing_template_decl)
3614     {
3615       if (dependent_type_p (type)
3616 	  || any_type_dependent_arguments_p (*placement)
3617 	  || (nelts && type_dependent_expression_p (nelts))
3618 	  || (nelts && *init)
3619 	  || any_type_dependent_arguments_p (*init))
3620 	return build_raw_new_expr (*placement, type, nelts, *init,
3621 				   use_global_new);
3622 
3623       orig_placement = make_tree_vector_copy (*placement);
3624       orig_nelts = nelts;
3625       if (*init)
3626 	{
3627 	  orig_init = make_tree_vector_copy (*init);
3628 	  /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3629 	     digest_init clobber them in place.  */
3630 	  for (unsigned i = 0; i < orig_init->length(); ++i)
3631 	    {
3632 	      tree e = (**init)[i];
3633 	      if (TREE_CODE (e) == CONSTRUCTOR)
3634 		(**init)[i] = copy_node (e);
3635 	    }
3636 	}
3637 
3638       make_args_non_dependent (*placement);
3639       if (nelts)
3640 	nelts = build_non_dependent_expr (nelts);
3641       make_args_non_dependent (*init);
3642     }
3643 
3644   if (nelts)
3645     {
3646       if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3647         {
3648           if (complain & tf_error)
3649             permerror (input_location, "size in array new must have integral type");
3650           else
3651             return error_mark_node;
3652         }
3653 
3654       /* Try to determine the constant value only for the purposes
3655 	 of the diagnostic below but continue to use the original
3656 	 value and handle const folding later.  */
3657       const_tree cst_nelts = fold_non_dependent_expr (nelts);
3658 
3659       /* The expression in a noptr-new-declarator is erroneous if it's of
3660 	 non-class type and its value before converting to std::size_t is
3661 	 less than zero. ... If the expression is a constant expression,
3662 	 the program is ill-fomed.  */
3663       if (TREE_CODE (cst_nelts) == INTEGER_CST
3664 	  && tree_int_cst_sgn (cst_nelts) == -1)
3665 	{
3666 	  if (complain & tf_error)
3667 	    error ("size of array is negative");
3668 	  return error_mark_node;
3669 	}
3670 
3671       nelts = mark_rvalue_use (nelts);
3672       nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3673     }
3674 
3675   /* ``A reference cannot be created by the new operator.  A reference
3676      is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3677      returned by new.'' ARM 5.3.3 */
3678   if (TREE_CODE (type) == REFERENCE_TYPE)
3679     {
3680       if (complain & tf_error)
3681         error ("new cannot be applied to a reference type");
3682       else
3683         return error_mark_node;
3684       type = TREE_TYPE (type);
3685     }
3686 
3687   if (TREE_CODE (type) == FUNCTION_TYPE)
3688     {
3689       if (complain & tf_error)
3690         error ("new cannot be applied to a function type");
3691       return error_mark_node;
3692     }
3693 
3694   /* The type allocated must be complete.  If the new-type-id was
3695      "T[N]" then we are just checking that "T" is complete here, but
3696      that is equivalent, since the value of "N" doesn't matter.  */
3697   if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3698     return error_mark_node;
3699 
3700   rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3701   if (rval == error_mark_node)
3702     return error_mark_node;
3703 
3704   if (processing_template_decl)
3705     {
3706       tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3707 				     orig_init, use_global_new);
3708       release_tree_vector (orig_placement);
3709       release_tree_vector (orig_init);
3710       return ret;
3711     }
3712 
3713   /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain.  */
3714   rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3715   TREE_NO_WARNING (rval) = 1;
3716 
3717   return rval;
3718 }
3719 
3720 static tree
build_vec_delete_1(tree base,tree maxindex,tree type,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain)3721 build_vec_delete_1 (tree base, tree maxindex, tree type,
3722 		    special_function_kind auto_delete_vec,
3723 		    int use_global_delete, tsubst_flags_t complain)
3724 {
3725   tree virtual_size;
3726   tree ptype = build_pointer_type (type = complete_type (type));
3727   tree size_exp;
3728 
3729   /* Temporary variables used by the loop.  */
3730   tree tbase, tbase_init;
3731 
3732   /* This is the body of the loop that implements the deletion of a
3733      single element, and moves temp variables to next elements.  */
3734   tree body;
3735 
3736   /* This is the LOOP_EXPR that governs the deletion of the elements.  */
3737   tree loop = 0;
3738 
3739   /* This is the thing that governs what to do after the loop has run.  */
3740   tree deallocate_expr = 0;
3741 
3742   /* This is the BIND_EXPR which holds the outermost iterator of the
3743      loop.  It is convenient to set this variable up and test it before
3744      executing any other code in the loop.
3745      This is also the containing expression returned by this function.  */
3746   tree controller = NULL_TREE;
3747   tree tmp;
3748 
3749   /* We should only have 1-D arrays here.  */
3750   gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3751 
3752   if (base == error_mark_node || maxindex == error_mark_node)
3753     return error_mark_node;
3754 
3755   if (!COMPLETE_TYPE_P (type))
3756     {
3757       if ((complain & tf_warning)
3758 	  && warning (OPT_Wdelete_incomplete,
3759 		      "possible problem detected in invocation of "
3760 		      "delete [] operator:"))
3761        {
3762          cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3763          inform (input_location, "neither the destructor nor the "
3764                  "class-specific operator delete [] will be called, "
3765                  "even if they are declared when the class is defined");
3766        }
3767       /* This size won't actually be used.  */
3768       size_exp = size_one_node;
3769       goto no_destructor;
3770     }
3771 
3772   size_exp = size_in_bytes (type);
3773 
3774   if (! MAYBE_CLASS_TYPE_P (type))
3775     goto no_destructor;
3776   else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3777     {
3778       /* Make sure the destructor is callable.  */
3779       if (type_build_dtor_call (type))
3780 	{
3781 	  tmp = build_delete (ptype, base, sfk_complete_destructor,
3782 			      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3783 			      complain);
3784 	  if (tmp == error_mark_node)
3785 	    return error_mark_node;
3786 	}
3787       goto no_destructor;
3788     }
3789 
3790   /* The below is short by the cookie size.  */
3791   virtual_size = size_binop (MULT_EXPR, size_exp,
3792 			     fold_convert (sizetype, maxindex));
3793 
3794   tbase = create_temporary_var (ptype);
3795   tbase_init
3796     = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3797 			    fold_build_pointer_plus_loc (input_location,
3798 							 fold_convert (ptype,
3799 								       base),
3800 							 virtual_size),
3801 			    complain);
3802   if (tbase_init == error_mark_node)
3803     return error_mark_node;
3804   controller = build3 (BIND_EXPR, void_type_node, tbase,
3805 		       NULL_TREE, NULL_TREE);
3806   TREE_SIDE_EFFECTS (controller) = 1;
3807 
3808   body = build1 (EXIT_EXPR, void_type_node,
3809 		 build2 (EQ_EXPR, boolean_type_node, tbase,
3810 			 fold_convert (ptype, base)));
3811   tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3812   tmp = fold_build_pointer_plus (tbase, tmp);
3813   tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3814   if (tmp == error_mark_node)
3815     return error_mark_node;
3816   body = build_compound_expr (input_location, body, tmp);
3817   tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3818 		      LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3819 		      complain);
3820   if (tmp == error_mark_node)
3821     return error_mark_node;
3822   body = build_compound_expr (input_location, body, tmp);
3823 
3824   loop = build1 (LOOP_EXPR, void_type_node, body);
3825   loop = build_compound_expr (input_location, tbase_init, loop);
3826 
3827  no_destructor:
3828   /* Delete the storage if appropriate.  */
3829   if (auto_delete_vec == sfk_deleting_destructor)
3830     {
3831       tree base_tbd;
3832 
3833       /* The below is short by the cookie size.  */
3834       virtual_size = size_binop (MULT_EXPR, size_exp,
3835 				 fold_convert (sizetype, maxindex));
3836 
3837       if (! TYPE_VEC_NEW_USES_COOKIE (type))
3838 	/* no header */
3839 	base_tbd = base;
3840       else
3841 	{
3842 	  tree cookie_size;
3843 
3844 	  cookie_size = targetm.cxx.get_cookie_size (type);
3845 	  base_tbd = cp_build_binary_op (input_location,
3846 					 MINUS_EXPR,
3847 					 cp_convert (string_type_node,
3848 						     base, complain),
3849 					 cookie_size,
3850 					 complain);
3851 	  if (base_tbd == error_mark_node)
3852 	    return error_mark_node;
3853 	  base_tbd = cp_convert (ptype, base_tbd, complain);
3854 	  /* True size with header.  */
3855 	  virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3856 	}
3857 
3858       deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3859 					      base_tbd, virtual_size,
3860 					      use_global_delete & 1,
3861 					      /*placement=*/NULL_TREE,
3862 					      /*alloc_fn=*/NULL_TREE,
3863 					      complain);
3864     }
3865 
3866   body = loop;
3867   if (!deallocate_expr)
3868     ;
3869   else if (!body)
3870     body = deallocate_expr;
3871   else
3872     /* The delete operator mist be called, even if a destructor
3873        throws.  */
3874     body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3875 
3876   if (!body)
3877     body = integer_zero_node;
3878 
3879   /* Outermost wrapper: If pointer is null, punt.  */
3880   tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3881 			  fold_convert (TREE_TYPE (base), nullptr_node));
3882   /* This is a compiler generated comparison, don't emit
3883      e.g. -Wnonnull-compare warning for it.  */
3884   TREE_NO_WARNING (cond) = 1;
3885   body = build3_loc (input_location, COND_EXPR, void_type_node,
3886 		     cond, body, integer_zero_node);
3887   COND_EXPR_IS_VEC_DELETE (body) = true;
3888   body = build1 (NOP_EXPR, void_type_node, body);
3889 
3890   if (controller)
3891     {
3892       TREE_OPERAND (controller, 1) = body;
3893       body = controller;
3894     }
3895 
3896   if (TREE_CODE (base) == SAVE_EXPR)
3897     /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR.  */
3898     body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3899 
3900   return convert_to_void (body, ICV_CAST, complain);
3901 }
3902 
3903 /* Create an unnamed variable of the indicated TYPE.  */
3904 
3905 tree
create_temporary_var(tree type)3906 create_temporary_var (tree type)
3907 {
3908   tree decl;
3909 
3910   decl = build_decl (input_location,
3911 		     VAR_DECL, NULL_TREE, type);
3912   TREE_USED (decl) = 1;
3913   DECL_ARTIFICIAL (decl) = 1;
3914   DECL_IGNORED_P (decl) = 1;
3915   DECL_CONTEXT (decl) = current_function_decl;
3916 
3917   return decl;
3918 }
3919 
3920 /* Create a new temporary variable of the indicated TYPE, initialized
3921    to INIT.
3922 
3923    It is not entered into current_binding_level, because that breaks
3924    things when it comes time to do final cleanups (which take place
3925    "outside" the binding contour of the function).  */
3926 
3927 tree
get_temp_regvar(tree type,tree init)3928 get_temp_regvar (tree type, tree init)
3929 {
3930   tree decl;
3931 
3932   decl = create_temporary_var (type);
3933   add_decl_expr (decl);
3934 
3935   finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3936 					  init, tf_warning_or_error));
3937 
3938   return decl;
3939 }
3940 
3941 /* Subroutine of build_vec_init.  Returns true if assigning to an array of
3942    INNER_ELT_TYPE from INIT is trivial.  */
3943 
3944 static bool
vec_copy_assign_is_trivial(tree inner_elt_type,tree init)3945 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3946 {
3947   tree fromtype = inner_elt_type;
3948   if (lvalue_p (init))
3949     fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3950   return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3951 }
3952 
3953 /* Subroutine of build_vec_init: Check that the array has at least N
3954    elements.  Other parameters are local variables in build_vec_init.  */
3955 
3956 void
finish_length_check(tree atype,tree iterator,tree obase,unsigned n)3957 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
3958 {
3959   tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
3960   if (TREE_CODE (atype) != ARRAY_TYPE)
3961     {
3962       if (flag_exceptions)
3963 	{
3964 	  tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3965 				nelts);
3966 	  c = build3 (COND_EXPR, void_type_node, c,
3967 		      throw_bad_array_new_length (), void_node);
3968 	  finish_expr_stmt (c);
3969 	}
3970       /* Don't check an array new when -fno-exceptions.  */
3971     }
3972   else if (sanitize_flags_p (SANITIZE_BOUNDS)
3973 	   && current_function_decl != NULL_TREE)
3974     {
3975       /* Make sure the last element of the initializer is in bounds. */
3976       finish_expr_stmt
3977 	(ubsan_instrument_bounds
3978 	 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3979     }
3980 }
3981 
3982 /* `build_vec_init' returns tree structure that performs
3983    initialization of a vector of aggregate types.
3984 
3985    BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3986      to the first element, of POINTER_TYPE.
3987    MAXINDEX is the maximum index of the array (one less than the
3988      number of elements).  It is only used if BASE is a pointer or
3989      TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3990 
3991    INIT is the (possibly NULL) initializer.
3992 
3993    If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL.  All
3994    elements in the array are value-initialized.
3995 
3996    FROM_ARRAY is 0 if we should init everything with INIT
3997    (i.e., every element initialized from INIT).
3998    FROM_ARRAY is 1 if we should index into INIT in parallel
3999    with initialization of DECL.
4000    FROM_ARRAY is 2 if we should index into INIT in parallel,
4001    but use assignment instead of initialization.  */
4002 
4003 tree
build_vec_init(tree base,tree maxindex,tree init,bool explicit_value_init_p,int from_array,tsubst_flags_t complain)4004 build_vec_init (tree base, tree maxindex, tree init,
4005 		bool explicit_value_init_p,
4006 		int from_array, tsubst_flags_t complain)
4007 {
4008   tree rval;
4009   tree base2 = NULL_TREE;
4010   tree itype = NULL_TREE;
4011   tree iterator;
4012   /* The type of BASE.  */
4013   tree atype = TREE_TYPE (base);
4014   /* The type of an element in the array.  */
4015   tree type = TREE_TYPE (atype);
4016   /* The element type reached after removing all outer array
4017      types.  */
4018   tree inner_elt_type;
4019   /* The type of a pointer to an element in the array.  */
4020   tree ptype;
4021   tree stmt_expr;
4022   tree compound_stmt;
4023   int destroy_temps;
4024   tree try_block = NULL_TREE;
4025   HOST_WIDE_INT num_initialized_elts = 0;
4026   bool is_global;
4027   tree obase = base;
4028   bool xvalue = false;
4029   bool errors = false;
4030   location_t loc = (init ? EXPR_LOC_OR_LOC (init, input_location)
4031 		    : location_of (base));
4032 
4033   if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4034     maxindex = array_type_nelts (atype);
4035 
4036   if (maxindex == NULL_TREE || maxindex == error_mark_node)
4037     return error_mark_node;
4038 
4039   maxindex = maybe_constant_value (maxindex);
4040   if (explicit_value_init_p)
4041     gcc_assert (!init);
4042 
4043   inner_elt_type = strip_array_types (type);
4044 
4045   /* Look through the TARGET_EXPR around a compound literal.  */
4046   if (init && TREE_CODE (init) == TARGET_EXPR
4047       && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4048       && from_array != 2)
4049     init = TARGET_EXPR_INITIAL (init);
4050 
4051   bool direct_init = false;
4052   if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4053       && CONSTRUCTOR_NELTS (init) == 1)
4054     {
4055       tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4056       if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4057 	{
4058 	  direct_init = DIRECT_LIST_INIT_P (init);
4059 	  init = elt;
4060 	}
4061     }
4062 
4063   /* If we have a braced-init-list or string constant, make sure that the array
4064      is big enough for all the initializers.  */
4065   bool length_check = (init
4066 		       && (TREE_CODE (init) == STRING_CST
4067 			   || (TREE_CODE (init) == CONSTRUCTOR
4068 			       && CONSTRUCTOR_NELTS (init) > 0))
4069 		       && !TREE_CONSTANT (maxindex));
4070 
4071   if (init
4072       && TREE_CODE (atype) == ARRAY_TYPE
4073       && TREE_CONSTANT (maxindex)
4074       && (from_array == 2
4075 	  ? vec_copy_assign_is_trivial (inner_elt_type, init)
4076 	  : !TYPE_NEEDS_CONSTRUCTING (type))
4077       && ((TREE_CODE (init) == CONSTRUCTOR
4078 	   && (BRACE_ENCLOSED_INITIALIZER_P (init)
4079 	       || (same_type_ignoring_top_level_qualifiers_p
4080 		   (atype, TREE_TYPE (init))))
4081 	   /* Don't do this if the CONSTRUCTOR might contain something
4082 	      that might throw and require us to clean up.  */
4083 	   && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4084 	       || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4085 	  || from_array))
4086     {
4087       /* Do non-default initialization of trivial arrays resulting from
4088 	 brace-enclosed initializers.  In this case, digest_init and
4089 	 store_constructor will handle the semantics for us.  */
4090 
4091       if (BRACE_ENCLOSED_INITIALIZER_P (init))
4092 	init = digest_init (atype, init, complain);
4093       stmt_expr = build2 (INIT_EXPR, atype, base, init);
4094       return stmt_expr;
4095     }
4096 
4097   maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4098   maxindex = fold_simple (maxindex);
4099 
4100   if (TREE_CODE (atype) == ARRAY_TYPE)
4101     {
4102       ptype = build_pointer_type (type);
4103       base = decay_conversion (base, complain);
4104       if (base == error_mark_node)
4105 	return error_mark_node;
4106       base = cp_convert (ptype, base, complain);
4107     }
4108   else
4109     ptype = atype;
4110 
4111   /* The code we are generating looks like:
4112      ({
4113        T* t1 = (T*) base;
4114        T* rval = t1;
4115        ptrdiff_t iterator = maxindex;
4116        try {
4117 	 for (; iterator != -1; --iterator) {
4118 	   ... initialize *t1 ...
4119 	   ++t1;
4120 	 }
4121        } catch (...) {
4122 	 ... destroy elements that were constructed ...
4123        }
4124        rval;
4125      })
4126 
4127      We can omit the try and catch blocks if we know that the
4128      initialization will never throw an exception, or if the array
4129      elements do not have destructors.  We can omit the loop completely if
4130      the elements of the array do not have constructors.
4131 
4132      We actually wrap the entire body of the above in a STMT_EXPR, for
4133      tidiness.
4134 
4135      When copying from array to another, when the array elements have
4136      only trivial copy constructors, we should use __builtin_memcpy
4137      rather than generating a loop.  That way, we could take advantage
4138      of whatever cleverness the back end has for dealing with copies
4139      of blocks of memory.  */
4140 
4141   is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4142   destroy_temps = stmts_are_full_exprs_p ();
4143   current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4144   rval = get_temp_regvar (ptype, base);
4145   base = get_temp_regvar (ptype, rval);
4146   iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4147 
4148   /* If initializing one array from another, initialize element by
4149      element.  We rely upon the below calls to do the argument
4150      checking.  Evaluate the initializer before entering the try block.  */
4151   if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4152     {
4153       if (lvalue_kind (init) & clk_rvalueref)
4154 	xvalue = true;
4155       base2 = decay_conversion (init, complain);
4156       if (base2 == error_mark_node)
4157 	return error_mark_node;
4158       itype = TREE_TYPE (base2);
4159       base2 = get_temp_regvar (itype, base2);
4160       itype = TREE_TYPE (itype);
4161     }
4162 
4163   /* Protect the entire array initialization so that we can destroy
4164      the partially constructed array if an exception is thrown.
4165      But don't do this if we're assigning.  */
4166   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4167       && from_array != 2)
4168     {
4169       try_block = begin_try_block ();
4170     }
4171 
4172   /* Should we try to create a constant initializer?  */
4173   bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4174 		    && TREE_CONSTANT (maxindex)
4175 		    && (init ? TREE_CODE (init) == CONSTRUCTOR
4176 			: (type_has_constexpr_default_constructor
4177 			   (inner_elt_type)))
4178 		    && (literal_type_p (inner_elt_type)
4179 			|| TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4180   vec<constructor_elt, va_gc> *const_vec = NULL;
4181   bool saw_non_const = false;
4182   /* If we're initializing a static array, we want to do static
4183      initialization of any elements with constant initializers even if
4184      some are non-constant.  */
4185   bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4186 
4187   bool empty_list = false;
4188   if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4189       && CONSTRUCTOR_NELTS (init) == 0)
4190     /* Skip over the handling of non-empty init lists.  */
4191     empty_list = true;
4192 
4193   /* Maybe pull out constant value when from_array? */
4194 
4195   else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4196     {
4197       /* Do non-default initialization of non-trivial arrays resulting from
4198 	 brace-enclosed initializers.  */
4199       unsigned HOST_WIDE_INT idx;
4200       tree field, elt;
4201       /* If the constructor already has the array type, it's been through
4202 	 digest_init, so we shouldn't try to do anything more.  */
4203       bool digested = same_type_p (atype, TREE_TYPE (init));
4204       from_array = 0;
4205 
4206       if (length_check)
4207 	finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4208 
4209       if (try_const)
4210 	vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4211 
4212       FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4213 	{
4214 	  tree baseref = build1 (INDIRECT_REF, type, base);
4215 	  tree one_init;
4216 
4217 	  num_initialized_elts++;
4218 
4219 	  current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4220 	  if (digested)
4221 	    one_init = build2 (INIT_EXPR, type, baseref, elt);
4222 	  else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4223 	    one_init = build_aggr_init (baseref, elt, 0, complain);
4224 	  else
4225 	    one_init = cp_build_modify_expr (input_location, baseref,
4226 					     NOP_EXPR, elt, complain);
4227 	  if (one_init == error_mark_node)
4228 	    errors = true;
4229 	  if (try_const)
4230 	    {
4231 	      tree e = maybe_constant_init (one_init);
4232 	      if (reduced_constant_expression_p (e))
4233 		{
4234 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4235 		  if (do_static_init)
4236 		    one_init = NULL_TREE;
4237 		  else
4238 		    one_init = build2 (INIT_EXPR, type, baseref, e);
4239 		}
4240 	      else
4241 		{
4242 		  if (do_static_init)
4243 		    {
4244 		      tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4245 						    true);
4246 		      if (value)
4247 			CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4248 		    }
4249 		  saw_non_const = true;
4250 		}
4251 	    }
4252 
4253 	  if (one_init)
4254 	    finish_expr_stmt (one_init);
4255 	  current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4256 
4257 	  one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4258 					complain);
4259 	  if (one_init == error_mark_node)
4260 	    errors = true;
4261 	  else
4262 	    finish_expr_stmt (one_init);
4263 
4264 	  one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4265 					complain);
4266 	  if (one_init == error_mark_node)
4267 	    errors = true;
4268 	  else
4269 	    finish_expr_stmt (one_init);
4270 	}
4271 
4272       /* Any elements without explicit initializers get T{}.  */
4273       empty_list = true;
4274     }
4275   else if (init && TREE_CODE (init) == STRING_CST)
4276     {
4277       /* Check that the array is at least as long as the string.  */
4278       if (length_check)
4279 	finish_length_check (atype, iterator, obase,
4280 			     TREE_STRING_LENGTH (init));
4281       tree length = build_int_cst (ptrdiff_type_node,
4282 				   TREE_STRING_LENGTH (init));
4283 
4284       /* Copy the string to the first part of the array.  */
4285       tree alias_set = build_int_cst (build_pointer_type (type), 0);
4286       tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4287       tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4288       finish_expr_stmt (stmt);
4289 
4290       /* Adjust the counter and pointer.  */
4291       stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4292       stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4293       finish_expr_stmt (stmt);
4294 
4295       stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4296       stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4297       finish_expr_stmt (stmt);
4298 
4299       /* And set the rest of the array to NUL.  */
4300       from_array = 0;
4301       explicit_value_init_p = true;
4302     }
4303   else if (from_array)
4304     {
4305       if (init)
4306 	/* OK, we set base2 above.  */;
4307       else if (CLASS_TYPE_P (type)
4308 	       && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4309 	{
4310           if (complain & tf_error)
4311             error ("initializer ends prematurely");
4312 	  errors = true;
4313 	}
4314     }
4315 
4316   /* Now, default-initialize any remaining elements.  We don't need to
4317      do that if a) the type does not need constructing, or b) we've
4318      already initialized all the elements.
4319 
4320      We do need to keep going if we're copying an array.  */
4321 
4322   if (try_const && !init)
4323     /* With a constexpr default constructor, which we checked for when
4324        setting try_const above, default-initialization is equivalent to
4325        value-initialization, and build_value_init gives us something more
4326        friendly to maybe_constant_init.  */
4327     explicit_value_init_p = true;
4328   if (from_array
4329       || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4330 	  && ! (tree_fits_shwi_p (maxindex)
4331 		&& (num_initialized_elts
4332 		    == tree_to_shwi (maxindex) + 1))))
4333     {
4334       /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4335 	 we've already initialized all the elements.  */
4336       tree for_stmt;
4337       tree elt_init;
4338       tree to;
4339 
4340       for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4341       finish_init_stmt (for_stmt);
4342       finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4343 			       build_int_cst (TREE_TYPE (iterator), -1)),
4344 		       for_stmt, false, 0);
4345       elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4346 				    complain);
4347       if (elt_init == error_mark_node)
4348 	errors = true;
4349       finish_for_expr (elt_init, for_stmt);
4350 
4351       to = build1 (INDIRECT_REF, type, base);
4352 
4353       /* If the initializer is {}, then all elements are initialized from T{}.
4354 	 But for non-classes, that's the same as value-initialization.  */
4355       if (empty_list)
4356 	{
4357 	  if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4358 	    {
4359 	      init = build_constructor (init_list_type_node, NULL);
4360 	    }
4361 	  else
4362 	    {
4363 	      init = NULL_TREE;
4364 	      explicit_value_init_p = true;
4365 	    }
4366 	}
4367 
4368       if (from_array)
4369 	{
4370 	  tree from;
4371 
4372 	  if (base2)
4373 	    {
4374 	      from = build1 (INDIRECT_REF, itype, base2);
4375 	      if (xvalue)
4376 		from = move (from);
4377 	      if (direct_init)
4378 		from = build_tree_list (NULL_TREE, from);
4379 	    }
4380 	  else
4381 	    from = NULL_TREE;
4382 
4383 	  if (TREE_CODE (type) == ARRAY_TYPE)
4384 	    elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4385 				       from_array, complain);
4386 	  else if (from_array == 2)
4387 	    elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4388 					     from, complain);
4389 	  else if (type_build_ctor_call (type))
4390 	    elt_init = build_aggr_init (to, from, 0, complain);
4391 	  else if (from)
4392 	    elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4393 					     complain);
4394 	  else
4395 	    gcc_unreachable ();
4396 	}
4397       else if (TREE_CODE (type) == ARRAY_TYPE)
4398 	{
4399 	  if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4400 	    {
4401 	      if ((complain & tf_error))
4402 		error_at (loc, "array must be initialized "
4403 			  "with a brace-enclosed initializer");
4404 	      elt_init = error_mark_node;
4405 	    }
4406 	  else
4407 	    elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4408 				       0, init,
4409 				       explicit_value_init_p,
4410 				       0, complain);
4411 	}
4412       else if (explicit_value_init_p)
4413 	{
4414 	  elt_init = build_value_init (type, complain);
4415 	  if (elt_init != error_mark_node)
4416 	    elt_init = build2 (INIT_EXPR, type, to, elt_init);
4417 	}
4418       else
4419 	{
4420 	  gcc_assert (type_build_ctor_call (type) || init);
4421 	  if (CLASS_TYPE_P (type))
4422 	    elt_init = build_aggr_init (to, init, 0, complain);
4423 	  else
4424 	    {
4425 	      if (TREE_CODE (init) == TREE_LIST)
4426 		init = build_x_compound_expr_from_list (init, ELK_INIT,
4427 							complain);
4428 	      elt_init = (init == error_mark_node
4429 			  ? error_mark_node
4430 			  : build2 (INIT_EXPR, type, to, init));
4431 	    }
4432 	}
4433 
4434       if (elt_init == error_mark_node)
4435 	errors = true;
4436 
4437       if (try_const)
4438 	{
4439 	  /* FIXME refs to earlier elts */
4440 	  tree e = maybe_constant_init (elt_init);
4441 	  if (reduced_constant_expression_p (e))
4442 	    {
4443 	      if (initializer_zerop (e))
4444 		/* Don't fill the CONSTRUCTOR with zeros.  */
4445 		e = NULL_TREE;
4446 	      if (do_static_init)
4447 		elt_init = NULL_TREE;
4448 	    }
4449 	  else
4450 	    {
4451 	      saw_non_const = true;
4452 	      if (do_static_init)
4453 		e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4454 	      else
4455 		e = NULL_TREE;
4456 	    }
4457 
4458 	  if (e)
4459 	    {
4460 	      HOST_WIDE_INT last = tree_to_shwi (maxindex);
4461 	      if (num_initialized_elts <= last)
4462 		{
4463 		  tree field = size_int (num_initialized_elts);
4464 		  if (num_initialized_elts != last)
4465 		    field = build2 (RANGE_EXPR, sizetype, field,
4466 				    size_int (last));
4467 		  CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4468 		}
4469 	    }
4470 	}
4471 
4472       current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4473       if (elt_init && !errors)
4474 	finish_expr_stmt (elt_init);
4475       current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4476 
4477       finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4478                                            complain));
4479       if (base2)
4480 	finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4481                                              complain));
4482 
4483       finish_for_stmt (for_stmt);
4484     }
4485 
4486   /* Make sure to cleanup any partially constructed elements.  */
4487   if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4488       && from_array != 2)
4489     {
4490       tree e;
4491       tree m = cp_build_binary_op (input_location,
4492 				   MINUS_EXPR, maxindex, iterator,
4493 				   complain);
4494 
4495       /* Flatten multi-dimensional array since build_vec_delete only
4496 	 expects one-dimensional array.  */
4497       if (TREE_CODE (type) == ARRAY_TYPE)
4498 	m = cp_build_binary_op (input_location,
4499 				MULT_EXPR, m,
4500 				/* Avoid mixing signed and unsigned.  */
4501 				convert (TREE_TYPE (m),
4502 					 array_type_nelts_total (type)),
4503 				complain);
4504 
4505       finish_cleanup_try_block (try_block);
4506       e = build_vec_delete_1 (rval, m,
4507 			      inner_elt_type, sfk_complete_destructor,
4508 			      /*use_global_delete=*/0, complain);
4509       if (e == error_mark_node)
4510 	errors = true;
4511       finish_cleanup (e, try_block);
4512     }
4513 
4514   /* The value of the array initialization is the array itself, RVAL
4515      is a pointer to the first element.  */
4516   finish_stmt_expr_expr (rval, stmt_expr);
4517 
4518   stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4519 
4520   current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4521 
4522   if (errors)
4523     return error_mark_node;
4524 
4525   if (try_const)
4526     {
4527       if (!saw_non_const)
4528 	{
4529 	  tree const_init = build_constructor (atype, const_vec);
4530 	  return build2 (INIT_EXPR, atype, obase, const_init);
4531 	}
4532       else if (do_static_init && !vec_safe_is_empty (const_vec))
4533 	DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4534       else
4535 	vec_free (const_vec);
4536     }
4537 
4538   /* Now make the result have the correct type.  */
4539   if (TREE_CODE (atype) == ARRAY_TYPE)
4540     {
4541       atype = build_pointer_type (atype);
4542       stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4543       stmt_expr = cp_build_fold_indirect_ref (stmt_expr);
4544       TREE_NO_WARNING (stmt_expr) = 1;
4545     }
4546 
4547   return stmt_expr;
4548 }
4549 
4550 /* Call the DTOR_KIND destructor for EXP.  FLAGS are as for
4551    build_delete.  */
4552 
4553 static tree
build_dtor_call(tree exp,special_function_kind dtor_kind,int flags,tsubst_flags_t complain)4554 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4555 		 tsubst_flags_t complain)
4556 {
4557   tree name;
4558   tree fn;
4559   switch (dtor_kind)
4560     {
4561     case sfk_complete_destructor:
4562       name = complete_dtor_identifier;
4563       break;
4564 
4565     case sfk_base_destructor:
4566       name = base_dtor_identifier;
4567       break;
4568 
4569     case sfk_deleting_destructor:
4570       name = deleting_dtor_identifier;
4571       break;
4572 
4573     default:
4574       gcc_unreachable ();
4575     }
4576   fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4577   return build_new_method_call (exp, fn,
4578 				/*args=*/NULL,
4579 				/*conversion_path=*/NULL_TREE,
4580 				flags,
4581 				/*fn_p=*/NULL,
4582 				complain);
4583 }
4584 
4585 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4586    ADDR is an expression which yields the store to be destroyed.
4587    AUTO_DELETE is the name of the destructor to call, i.e., either
4588    sfk_complete_destructor, sfk_base_destructor, or
4589    sfk_deleting_destructor.
4590 
4591    FLAGS is the logical disjunction of zero or more LOOKUP_
4592    flags.  See cp-tree.h for more info.  */
4593 
4594 tree
build_delete(tree otype,tree addr,special_function_kind auto_delete,int flags,int use_global_delete,tsubst_flags_t complain)4595 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4596 	      int flags, int use_global_delete, tsubst_flags_t complain)
4597 {
4598   tree expr;
4599 
4600   if (addr == error_mark_node)
4601     return error_mark_node;
4602 
4603   tree type = TYPE_MAIN_VARIANT (otype);
4604 
4605   /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4606      set to `error_mark_node' before it gets properly cleaned up.  */
4607   if (type == error_mark_node)
4608     return error_mark_node;
4609 
4610   if (TREE_CODE (type) == POINTER_TYPE)
4611     type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4612 
4613   if (TREE_CODE (type) == ARRAY_TYPE)
4614     {
4615       if (TYPE_DOMAIN (type) == NULL_TREE)
4616 	{
4617 	  if (complain & tf_error)
4618 	    error ("unknown array size in delete");
4619 	  return error_mark_node;
4620 	}
4621       return build_vec_delete (addr, array_type_nelts (type),
4622 			       auto_delete, use_global_delete, complain);
4623     }
4624 
4625   if (TYPE_PTR_P (otype))
4626     {
4627       addr = mark_rvalue_use (addr);
4628 
4629       /* We don't want to warn about delete of void*, only other
4630 	  incomplete types.  Deleting other incomplete types
4631 	  invokes undefined behavior, but it is not ill-formed, so
4632 	  compile to something that would even do The Right Thing
4633 	  (TM) should the type have a trivial dtor and no delete
4634 	  operator.  */
4635       if (!VOID_TYPE_P (type))
4636 	{
4637 	  complete_type (type);
4638 	  if (!COMPLETE_TYPE_P (type))
4639 	    {
4640 	      if ((complain & tf_warning)
4641 		  && warning (OPT_Wdelete_incomplete,
4642 			      "possible problem detected in invocation of "
4643 			      "delete operator:"))
4644 		{
4645 		  cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4646 		  inform (input_location,
4647 			  "neither the destructor nor the class-specific "
4648 			  "operator delete will be called, even if they are "
4649 			  "declared when the class is defined");
4650 		}
4651 	    }
4652 	  else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4653 	           && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4654 		   && TYPE_POLYMORPHIC_P (type))
4655 	    {
4656 	      tree dtor = CLASSTYPE_DESTRUCTOR (type);
4657 	      if (!dtor || !DECL_VINDEX (dtor))
4658 		{
4659 		  if (CLASSTYPE_PURE_VIRTUALS (type))
4660 		    warning (OPT_Wdelete_non_virtual_dtor,
4661 			     "deleting object of abstract class type %qT"
4662 			     " which has non-virtual destructor"
4663 			     " will cause undefined behavior", type);
4664 		  else
4665 		    warning (OPT_Wdelete_non_virtual_dtor,
4666 			     "deleting object of polymorphic class type %qT"
4667 			     " which has non-virtual destructor"
4668 			     " might cause undefined behavior", type);
4669 		}
4670 	    }
4671 	}
4672       if (TREE_SIDE_EFFECTS (addr))
4673 	addr = save_expr (addr);
4674 
4675       /* Throw away const and volatile on target type of addr.  */
4676       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4677     }
4678   else
4679     {
4680       /* Don't check PROTECT here; leave that decision to the
4681 	 destructor.  If the destructor is accessible, call it,
4682 	 else report error.  */
4683       addr = cp_build_addr_expr (addr, complain);
4684       if (addr == error_mark_node)
4685 	return error_mark_node;
4686       if (TREE_SIDE_EFFECTS (addr))
4687 	addr = save_expr (addr);
4688 
4689       addr = convert_force (build_pointer_type (type), addr, 0, complain);
4690     }
4691 
4692   if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4693     {
4694       /* Make sure the destructor is callable.  */
4695       if (type_build_dtor_call (type))
4696 	{
4697 	  expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4698 				  sfk_complete_destructor, flags, complain);
4699 	  if (expr == error_mark_node)
4700 	    return error_mark_node;
4701 	}
4702 
4703       if (auto_delete != sfk_deleting_destructor)
4704 	return void_node;
4705 
4706       return build_op_delete_call (DELETE_EXPR, addr,
4707 				   cxx_sizeof_nowarn (type),
4708 				   use_global_delete,
4709 				   /*placement=*/NULL_TREE,
4710 				   /*alloc_fn=*/NULL_TREE,
4711 				   complain);
4712     }
4713   else
4714     {
4715       tree head = NULL_TREE;
4716       tree do_delete = NULL_TREE;
4717       tree ifexp;
4718 
4719       if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4720 	lazily_declare_fn (sfk_destructor, type);
4721 
4722       /* For `::delete x', we must not use the deleting destructor
4723 	 since then we would not be sure to get the global `operator
4724 	 delete'.  */
4725       if (use_global_delete && auto_delete == sfk_deleting_destructor)
4726 	{
4727 	  /* We will use ADDR multiple times so we must save it.  */
4728 	  addr = save_expr (addr);
4729 	  head = get_target_expr (build_headof (addr));
4730 	  /* Delete the object.  */
4731 	  do_delete = build_op_delete_call (DELETE_EXPR,
4732 					    head,
4733 					    cxx_sizeof_nowarn (type),
4734 					    /*global_p=*/true,
4735 					    /*placement=*/NULL_TREE,
4736 					    /*alloc_fn=*/NULL_TREE,
4737 					    complain);
4738 	  /* Otherwise, treat this like a complete object destructor
4739 	     call.  */
4740 	  auto_delete = sfk_complete_destructor;
4741 	}
4742       /* If the destructor is non-virtual, there is no deleting
4743 	 variant.  Instead, we must explicitly call the appropriate
4744 	 `operator delete' here.  */
4745       else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type))
4746 	       && auto_delete == sfk_deleting_destructor)
4747 	{
4748 	  /* We will use ADDR multiple times so we must save it.  */
4749 	  addr = save_expr (addr);
4750 	  /* Build the call.  */
4751 	  do_delete = build_op_delete_call (DELETE_EXPR,
4752 					    addr,
4753 					    cxx_sizeof_nowarn (type),
4754 					    /*global_p=*/false,
4755 					    /*placement=*/NULL_TREE,
4756 					    /*alloc_fn=*/NULL_TREE,
4757 					    complain);
4758 	  /* Call the complete object destructor.  */
4759 	  auto_delete = sfk_complete_destructor;
4760 	}
4761       else if (auto_delete == sfk_deleting_destructor
4762 	       && TYPE_GETS_REG_DELETE (type))
4763 	{
4764 	  /* Make sure we have access to the member op delete, even though
4765 	     we'll actually be calling it from the destructor.  */
4766 	  build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4767 				/*global_p=*/false,
4768 				/*placement=*/NULL_TREE,
4769 				/*alloc_fn=*/NULL_TREE,
4770 				complain);
4771 	}
4772 
4773       expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4774 			      auto_delete, flags, complain);
4775       if (expr == error_mark_node)
4776 	return error_mark_node;
4777       if (do_delete)
4778 	/* The delete operator must be called, regardless of whether
4779 	   the destructor throws.
4780 
4781 	   [expr.delete]/7 The deallocation function is called
4782 	   regardless of whether the destructor for the object or some
4783 	   element of the array throws an exception.  */
4784 	expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4785 
4786       /* We need to calculate this before the dtor changes the vptr.  */
4787       if (head)
4788 	expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4789 
4790       if (flags & LOOKUP_DESTRUCTOR)
4791 	/* Explicit destructor call; don't check for null pointer.  */
4792 	ifexp = integer_one_node;
4793       else
4794 	{
4795 	  /* Handle deleting a null pointer.  */
4796 	  warning_sentinel s (warn_address);
4797 	  ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4798 				      nullptr_node, complain);
4799 	  if (ifexp == error_mark_node)
4800 	    return error_mark_node;
4801 	  /* This is a compiler generated comparison, don't emit
4802 	     e.g. -Wnonnull-compare warning for it.  */
4803 	  else if (TREE_CODE (ifexp) == NE_EXPR)
4804 	    TREE_NO_WARNING (ifexp) = 1;
4805 	}
4806 
4807       if (ifexp != integer_one_node)
4808 	expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4809 
4810       return expr;
4811     }
4812 }
4813 
4814 /* At the beginning of a destructor, push cleanups that will call the
4815    destructors for our base classes and members.
4816 
4817    Called from begin_destructor_body.  */
4818 
4819 void
push_base_cleanups(void)4820 push_base_cleanups (void)
4821 {
4822   tree binfo, base_binfo;
4823   int i;
4824   tree member;
4825   tree expr;
4826   vec<tree, va_gc> *vbases;
4827 
4828   /* Run destructors for all virtual baseclasses.  */
4829   if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4830       && CLASSTYPE_VBASECLASSES (current_class_type))
4831     {
4832       tree cond = (condition_conversion
4833 		   (build2 (BIT_AND_EXPR, integer_type_node,
4834 			    current_in_charge_parm,
4835 			    integer_two_node)));
4836 
4837       /* The CLASSTYPE_VBASECLASSES vector is in initialization
4838 	 order, which is also the right order for pushing cleanups.  */
4839       for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4840 	   vec_safe_iterate (vbases, i, &base_binfo); i++)
4841 	{
4842 	  if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4843 	    {
4844 	      expr = build_special_member_call (current_class_ref,
4845 						base_dtor_identifier,
4846 						NULL,
4847 						base_binfo,
4848 						(LOOKUP_NORMAL
4849 						 | LOOKUP_NONVIRTUAL),
4850 						tf_warning_or_error);
4851 	      if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4852 		{
4853 		  expr = build3 (COND_EXPR, void_type_node, cond,
4854 				 expr, void_node);
4855 		  finish_decl_cleanup (NULL_TREE, expr);
4856 		}
4857 	    }
4858 	}
4859     }
4860 
4861   /* Take care of the remaining baseclasses.  */
4862   for (binfo = TYPE_BINFO (current_class_type), i = 0;
4863        BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4864     {
4865       if (BINFO_VIRTUAL_P (base_binfo)
4866 	  || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4867 	continue;
4868 
4869       expr = build_special_member_call (current_class_ref,
4870 					base_dtor_identifier,
4871 					NULL, base_binfo,
4872 					LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4873                                         tf_warning_or_error);
4874       if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4875 	finish_decl_cleanup (NULL_TREE, expr);
4876     }
4877 
4878   /* Don't automatically destroy union members.  */
4879   if (TREE_CODE (current_class_type) == UNION_TYPE)
4880     return;
4881 
4882   for (member = TYPE_FIELDS (current_class_type); member;
4883        member = DECL_CHAIN (member))
4884     {
4885       tree this_type = TREE_TYPE (member);
4886       if (this_type == error_mark_node
4887 	  || TREE_CODE (member) != FIELD_DECL
4888 	  || DECL_ARTIFICIAL (member))
4889 	continue;
4890       if (ANON_AGGR_TYPE_P (this_type))
4891 	continue;
4892       if (type_build_dtor_call (this_type))
4893 	{
4894 	  tree this_member = (build_class_member_access_expr
4895 			      (current_class_ref, member,
4896 			       /*access_path=*/NULL_TREE,
4897 			       /*preserve_reference=*/false,
4898 			       tf_warning_or_error));
4899 	  expr = build_delete (this_type, this_member,
4900 			       sfk_complete_destructor,
4901 			       LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4902 			       0, tf_warning_or_error);
4903 	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4904 	    finish_decl_cleanup (NULL_TREE, expr);
4905 	}
4906     }
4907 }
4908 
4909 /* Build a C++ vector delete expression.
4910    MAXINDEX is the number of elements to be deleted.
4911    ELT_SIZE is the nominal size of each element in the vector.
4912    BASE is the expression that should yield the store to be deleted.
4913    This function expands (or synthesizes) these calls itself.
4914    AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4915 
4916    This also calls delete for virtual baseclasses of elements of the vector.
4917 
4918    Update: MAXINDEX is no longer needed.  The size can be extracted from the
4919    start of the vector for pointers, and from the type for arrays.  We still
4920    use MAXINDEX for arrays because it happens to already have one of the
4921    values we'd have to extract.  (We could use MAXINDEX with pointers to
4922    confirm the size, and trap if the numbers differ; not clear that it'd
4923    be worth bothering.)  */
4924 
4925 tree
build_vec_delete(tree base,tree maxindex,special_function_kind auto_delete_vec,int use_global_delete,tsubst_flags_t complain)4926 build_vec_delete (tree base, tree maxindex,
4927 		  special_function_kind auto_delete_vec,
4928 		  int use_global_delete, tsubst_flags_t complain)
4929 {
4930   tree type;
4931   tree rval;
4932   tree base_init = NULL_TREE;
4933 
4934   type = TREE_TYPE (base);
4935 
4936   if (TYPE_PTR_P (type))
4937     {
4938       /* Step back one from start of vector, and read dimension.  */
4939       tree cookie_addr;
4940       tree size_ptr_type = build_pointer_type (sizetype);
4941 
4942       base = mark_rvalue_use (base);
4943       if (TREE_SIDE_EFFECTS (base))
4944 	{
4945 	  base_init = get_target_expr (base);
4946 	  base = TARGET_EXPR_SLOT (base_init);
4947 	}
4948       type = strip_array_types (TREE_TYPE (type));
4949       cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4950 				 sizetype, TYPE_SIZE_UNIT (sizetype));
4951       cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4952 					     cookie_addr);
4953       maxindex = cp_build_fold_indirect_ref (cookie_addr);
4954     }
4955   else if (TREE_CODE (type) == ARRAY_TYPE)
4956     {
4957       /* Get the total number of things in the array, maxindex is a
4958 	 bad name.  */
4959       maxindex = array_type_nelts_total (type);
4960       type = strip_array_types (type);
4961       base = decay_conversion (base, complain);
4962       if (base == error_mark_node)
4963 	return error_mark_node;
4964       if (TREE_SIDE_EFFECTS (base))
4965 	{
4966 	  base_init = get_target_expr (base);
4967 	  base = TARGET_EXPR_SLOT (base_init);
4968 	}
4969     }
4970   else
4971     {
4972       if (base != error_mark_node && !(complain & tf_error))
4973 	error ("type to vector delete is neither pointer or array type");
4974       return error_mark_node;
4975     }
4976 
4977   rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4978 			     use_global_delete, complain);
4979   if (base_init && rval != error_mark_node)
4980     rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4981 
4982   return rval;
4983 }
4984 
4985 #include "gt-cp-init.h"
4986