xref: /dragonfly/contrib/gdb-7/gdb/solib-svr4.c (revision ef5ccd6c)
1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2 
3    Copyright (C) 1990-2013 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 
22 #include "elf/external.h"
23 #include "elf/common.h"
24 #include "elf/mips.h"
25 
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "gdbthread.h"
35 #include "observer.h"
36 
37 #include "gdb_assert.h"
38 
39 #include "solist.h"
40 #include "solib.h"
41 #include "solib-svr4.h"
42 
43 #include "bfd-target.h"
44 #include "elf-bfd.h"
45 #include "exec.h"
46 #include "auxv.h"
47 #include "exceptions.h"
48 #include "gdb_bfd.h"
49 
50 static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
51 static int svr4_have_link_map_offsets (void);
52 static void svr4_relocate_main_executable (void);
53 
54 /* Link map info to include in an allocated so_list entry.  */
55 
56 struct lm_info
57   {
58     /* Amount by which addresses in the binary should be relocated to
59        match the inferior.  The direct inferior value is L_ADDR_INFERIOR.
60        When prelinking is involved and the prelink base address changes,
61        we may need a different offset - the recomputed offset is in L_ADDR.
62        It is commonly the same value.  It is cached as we want to warn about
63        the difference and compute it only once.  L_ADDR is valid
64        iff L_ADDR_P.  */
65     CORE_ADDR l_addr, l_addr_inferior;
66     unsigned int l_addr_p : 1;
67 
68     /* The target location of lm.  */
69     CORE_ADDR lm_addr;
70 
71     /* Values read in from inferior's fields of the same name.  */
72     CORE_ADDR l_ld, l_next, l_prev, l_name;
73   };
74 
75 /* On SVR4 systems, a list of symbols in the dynamic linker where
76    GDB can try to place a breakpoint to monitor shared library
77    events.
78 
79    If none of these symbols are found, or other errors occur, then
80    SVR4 systems will fall back to using a symbol as the "startup
81    mapping complete" breakpoint address.  */
82 
83 static const char * const solib_break_names[] =
84 {
85   "r_debug_state",
86   "_r_debug_state",
87   "_dl_debug_state",
88   "rtld_db_dlactivity",
89   "__dl_rtld_db_dlactivity",
90   "_rtld_debug_state",
91 
92   NULL
93 };
94 
95 static const char * const bkpt_names[] =
96 {
97   "_start",
98   "__start",
99   "main",
100   NULL
101 };
102 
103 static const  char * const main_name_list[] =
104 {
105   "main_$main",
106   NULL
107 };
108 
109 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
110    the same shared library.  */
111 
112 static int
svr4_same_1(const char * gdb_so_name,const char * inferior_so_name)113 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
114 {
115   if (strcmp (gdb_so_name, inferior_so_name) == 0)
116     return 1;
117 
118   /* On Solaris, when starting inferior we think that dynamic linker is
119      /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
120      contains /lib/ld.so.1.  Sometimes one file is a link to another, but
121      sometimes they have identical content, but are not linked to each
122      other.  We don't restrict this check for Solaris, but the chances
123      of running into this situation elsewhere are very low.  */
124   if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
125       && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
126     return 1;
127 
128   /* Similarly, we observed the same issue with sparc64, but with
129      different locations.  */
130   if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
131       && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
132     return 1;
133 
134   return 0;
135 }
136 
137 static int
svr4_same(struct so_list * gdb,struct so_list * inferior)138 svr4_same (struct so_list *gdb, struct so_list *inferior)
139 {
140   return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
141 }
142 
143 static struct lm_info *
lm_info_read(CORE_ADDR lm_addr)144 lm_info_read (CORE_ADDR lm_addr)
145 {
146   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
147   gdb_byte *lm;
148   struct lm_info *lm_info;
149   struct cleanup *back_to;
150 
151   lm = xmalloc (lmo->link_map_size);
152   back_to = make_cleanup (xfree, lm);
153 
154   if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
155     {
156       warning (_("Error reading shared library list entry at %s"),
157 	       paddress (target_gdbarch (), lm_addr)),
158       lm_info = NULL;
159     }
160   else
161     {
162       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
163 
164       lm_info = xzalloc (sizeof (*lm_info));
165       lm_info->lm_addr = lm_addr;
166 
167       lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
168 							ptr_type);
169       lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
170       lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
171 					       ptr_type);
172       lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
173 					       ptr_type);
174       lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
175 					       ptr_type);
176     }
177 
178   do_cleanups (back_to);
179 
180   return lm_info;
181 }
182 
183 static int
has_lm_dynamic_from_link_map(void)184 has_lm_dynamic_from_link_map (void)
185 {
186   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
187 
188   return lmo->l_ld_offset >= 0;
189 }
190 
191 static CORE_ADDR
lm_addr_check(struct so_list * so,bfd * abfd)192 lm_addr_check (struct so_list *so, bfd *abfd)
193 {
194   if (!so->lm_info->l_addr_p)
195     {
196       struct bfd_section *dyninfo_sect;
197       CORE_ADDR l_addr, l_dynaddr, dynaddr;
198 
199       l_addr = so->lm_info->l_addr_inferior;
200 
201       if (! abfd || ! has_lm_dynamic_from_link_map ())
202 	goto set_addr;
203 
204       l_dynaddr = so->lm_info->l_ld;
205 
206       dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
207       if (dyninfo_sect == NULL)
208 	goto set_addr;
209 
210       dynaddr = bfd_section_vma (abfd, dyninfo_sect);
211 
212       if (dynaddr + l_addr != l_dynaddr)
213 	{
214 	  CORE_ADDR align = 0x1000;
215 	  CORE_ADDR minpagesize = align;
216 
217 	  if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
218 	    {
219 	      Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
220 	      Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
221 	      int i;
222 
223 	      align = 1;
224 
225 	      for (i = 0; i < ehdr->e_phnum; i++)
226 		if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
227 		  align = phdr[i].p_align;
228 
229 	      minpagesize = get_elf_backend_data (abfd)->minpagesize;
230 	    }
231 
232 	  /* Turn it into a mask.  */
233 	  align--;
234 
235 	  /* If the changes match the alignment requirements, we
236 	     assume we're using a core file that was generated by the
237 	     same binary, just prelinked with a different base offset.
238 	     If it doesn't match, we may have a different binary, the
239 	     same binary with the dynamic table loaded at an unrelated
240 	     location, or anything, really.  To avoid regressions,
241 	     don't adjust the base offset in the latter case, although
242 	     odds are that, if things really changed, debugging won't
243 	     quite work.
244 
245 	     One could expect more the condition
246 	       ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
247 	     but the one below is relaxed for PPC.  The PPC kernel supports
248 	     either 4k or 64k page sizes.  To be prepared for 64k pages,
249 	     PPC ELF files are built using an alignment requirement of 64k.
250 	     However, when running on a kernel supporting 4k pages, the memory
251 	     mapping of the library may not actually happen on a 64k boundary!
252 
253 	     (In the usual case where (l_addr & align) == 0, this check is
254 	     equivalent to the possibly expected check above.)
255 
256 	     Even on PPC it must be zero-aligned at least for MINPAGESIZE.  */
257 
258 	  l_addr = l_dynaddr - dynaddr;
259 
260 	  if ((l_addr & (minpagesize - 1)) == 0
261 	      && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
262 	    {
263 	      if (info_verbose)
264 		printf_unfiltered (_("Using PIC (Position Independent Code) "
265 				     "prelink displacement %s for \"%s\".\n"),
266 				   paddress (target_gdbarch (), l_addr),
267 				   so->so_name);
268 	    }
269 	  else
270 	    {
271 	      /* There is no way to verify the library file matches.  prelink
272 		 can during prelinking of an unprelinked file (or unprelinking
273 		 of a prelinked file) shift the DYNAMIC segment by arbitrary
274 		 offset without any page size alignment.  There is no way to
275 		 find out the ELF header and/or Program Headers for a limited
276 		 verification if it they match.  One could do a verification
277 		 of the DYNAMIC segment.  Still the found address is the best
278 		 one GDB could find.  */
279 
280 	      warning (_(".dynamic section for \"%s\" "
281 			 "is not at the expected address "
282 			 "(wrong library or version mismatch?)"), so->so_name);
283 	    }
284 	}
285 
286     set_addr:
287       so->lm_info->l_addr = l_addr;
288       so->lm_info->l_addr_p = 1;
289     }
290 
291   return so->lm_info->l_addr;
292 }
293 
294 /* Per pspace SVR4 specific data.  */
295 
296 struct svr4_info
297 {
298   CORE_ADDR debug_base;	/* Base of dynamic linker structures.  */
299 
300   /* Validity flag for debug_loader_offset.  */
301   int debug_loader_offset_p;
302 
303   /* Load address for the dynamic linker, inferred.  */
304   CORE_ADDR debug_loader_offset;
305 
306   /* Name of the dynamic linker, valid if debug_loader_offset_p.  */
307   char *debug_loader_name;
308 
309   /* Load map address for the main executable.  */
310   CORE_ADDR main_lm_addr;
311 
312   CORE_ADDR interp_text_sect_low;
313   CORE_ADDR interp_text_sect_high;
314   CORE_ADDR interp_plt_sect_low;
315   CORE_ADDR interp_plt_sect_high;
316 };
317 
318 /* Per-program-space data key.  */
319 static const struct program_space_data *solib_svr4_pspace_data;
320 
321 static void
svr4_pspace_data_cleanup(struct program_space * pspace,void * arg)322 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
323 {
324   struct svr4_info *info;
325 
326   info = program_space_data (pspace, solib_svr4_pspace_data);
327   xfree (info);
328 }
329 
330 /* Get the current svr4 data.  If none is found yet, add it now.  This
331    function always returns a valid object.  */
332 
333 static struct svr4_info *
get_svr4_info(void)334 get_svr4_info (void)
335 {
336   struct svr4_info *info;
337 
338   info = program_space_data (current_program_space, solib_svr4_pspace_data);
339   if (info != NULL)
340     return info;
341 
342   info = XZALLOC (struct svr4_info);
343   set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
344   return info;
345 }
346 
347 /* Local function prototypes */
348 
349 static int match_main (const char *);
350 
351 /* Read program header TYPE from inferior memory.  The header is found
352    by scanning the OS auxillary vector.
353 
354    If TYPE == -1, return the program headers instead of the contents of
355    one program header.
356 
357    Return a pointer to allocated memory holding the program header contents,
358    or NULL on failure.  If sucessful, and unless P_SECT_SIZE is NULL, the
359    size of those contents is returned to P_SECT_SIZE.  Likewise, the target
360    architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE.  */
361 
362 static gdb_byte *
read_program_header(int type,int * p_sect_size,int * p_arch_size)363 read_program_header (int type, int *p_sect_size, int *p_arch_size)
364 {
365   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
366   CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
367   int arch_size, sect_size;
368   CORE_ADDR sect_addr;
369   gdb_byte *buf;
370   int pt_phdr_p = 0;
371 
372   /* Get required auxv elements from target.  */
373   if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
374     return 0;
375   if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
376     return 0;
377   if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
378     return 0;
379   if (!at_phdr || !at_phnum)
380     return 0;
381 
382   /* Determine ELF architecture type.  */
383   if (at_phent == sizeof (Elf32_External_Phdr))
384     arch_size = 32;
385   else if (at_phent == sizeof (Elf64_External_Phdr))
386     arch_size = 64;
387   else
388     return 0;
389 
390   /* Find the requested segment.  */
391   if (type == -1)
392     {
393       sect_addr = at_phdr;
394       sect_size = at_phent * at_phnum;
395     }
396   else if (arch_size == 32)
397     {
398       Elf32_External_Phdr phdr;
399       int i;
400 
401       /* Search for requested PHDR.  */
402       for (i = 0; i < at_phnum; i++)
403 	{
404 	  int p_type;
405 
406 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
407 				  (gdb_byte *)&phdr, sizeof (phdr)))
408 	    return 0;
409 
410 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
411 					     4, byte_order);
412 
413 	  if (p_type == PT_PHDR)
414 	    {
415 	      pt_phdr_p = 1;
416 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
417 						  4, byte_order);
418 	    }
419 
420 	  if (p_type == type)
421 	    break;
422 	}
423 
424       if (i == at_phnum)
425 	return 0;
426 
427       /* Retrieve address and size.  */
428       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
429 					    4, byte_order);
430       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
431 					    4, byte_order);
432     }
433   else
434     {
435       Elf64_External_Phdr phdr;
436       int i;
437 
438       /* Search for requested PHDR.  */
439       for (i = 0; i < at_phnum; i++)
440 	{
441 	  int p_type;
442 
443 	  if (target_read_memory (at_phdr + i * sizeof (phdr),
444 				  (gdb_byte *)&phdr, sizeof (phdr)))
445 	    return 0;
446 
447 	  p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
448 					     4, byte_order);
449 
450 	  if (p_type == PT_PHDR)
451 	    {
452 	      pt_phdr_p = 1;
453 	      pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
454 						  8, byte_order);
455 	    }
456 
457 	  if (p_type == type)
458 	    break;
459 	}
460 
461       if (i == at_phnum)
462 	return 0;
463 
464       /* Retrieve address and size.  */
465       sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
466 					    8, byte_order);
467       sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
468 					    8, byte_order);
469     }
470 
471   /* PT_PHDR is optional, but we really need it
472      for PIE to make this work in general.  */
473 
474   if (pt_phdr_p)
475     {
476       /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
477 	 Relocation offset is the difference between the two. */
478       sect_addr = sect_addr + (at_phdr - pt_phdr);
479     }
480 
481   /* Read in requested program header.  */
482   buf = xmalloc (sect_size);
483   if (target_read_memory (sect_addr, buf, sect_size))
484     {
485       xfree (buf);
486       return NULL;
487     }
488 
489   if (p_arch_size)
490     *p_arch_size = arch_size;
491   if (p_sect_size)
492     *p_sect_size = sect_size;
493 
494   return buf;
495 }
496 
497 
498 /* Return program interpreter string.  */
499 static gdb_byte *
find_program_interpreter(void)500 find_program_interpreter (void)
501 {
502   gdb_byte *buf = NULL;
503 
504   /* If we have an exec_bfd, use its section table.  */
505   if (exec_bfd
506       && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
507    {
508      struct bfd_section *interp_sect;
509 
510      interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
511      if (interp_sect != NULL)
512       {
513 	int sect_size = bfd_section_size (exec_bfd, interp_sect);
514 
515 	buf = xmalloc (sect_size);
516 	bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
517       }
518    }
519 
520   /* If we didn't find it, use the target auxillary vector.  */
521   if (!buf)
522     buf = read_program_header (PT_INTERP, NULL, NULL);
523 
524   return buf;
525 }
526 
527 
528 /* Scan for DYNTAG in .dynamic section of ABFD.  If DYNTAG is found 1 is
529    returned and the corresponding PTR is set.  */
530 
531 static int
scan_dyntag(int dyntag,bfd * abfd,CORE_ADDR * ptr)532 scan_dyntag (int dyntag, bfd *abfd, CORE_ADDR *ptr)
533 {
534   int arch_size, step, sect_size;
535   long dyn_tag;
536   CORE_ADDR dyn_ptr, dyn_addr;
537   gdb_byte *bufend, *bufstart, *buf;
538   Elf32_External_Dyn *x_dynp_32;
539   Elf64_External_Dyn *x_dynp_64;
540   struct bfd_section *sect;
541   struct target_section *target_section;
542 
543   if (abfd == NULL)
544     return 0;
545 
546   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
547     return 0;
548 
549   arch_size = bfd_get_arch_size (abfd);
550   if (arch_size == -1)
551     return 0;
552 
553   /* Find the start address of the .dynamic section.  */
554   sect = bfd_get_section_by_name (abfd, ".dynamic");
555   if (sect == NULL)
556     return 0;
557 
558   for (target_section = current_target_sections->sections;
559        target_section < current_target_sections->sections_end;
560        target_section++)
561     if (sect == target_section->the_bfd_section)
562       break;
563   if (target_section < current_target_sections->sections_end)
564     dyn_addr = target_section->addr;
565   else
566     {
567       /* ABFD may come from OBJFILE acting only as a symbol file without being
568 	 loaded into the target (see add_symbol_file_command).  This case is
569 	 such fallback to the file VMA address without the possibility of
570 	 having the section relocated to its actual in-memory address.  */
571 
572       dyn_addr = bfd_section_vma (abfd, sect);
573     }
574 
575   /* Read in .dynamic from the BFD.  We will get the actual value
576      from memory later.  */
577   sect_size = bfd_section_size (abfd, sect);
578   buf = bufstart = alloca (sect_size);
579   if (!bfd_get_section_contents (abfd, sect,
580 				 buf, 0, sect_size))
581     return 0;
582 
583   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
584   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
585 			   : sizeof (Elf64_External_Dyn);
586   for (bufend = buf + sect_size;
587        buf < bufend;
588        buf += step)
589   {
590     if (arch_size == 32)
591       {
592 	x_dynp_32 = (Elf32_External_Dyn *) buf;
593 	dyn_tag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
594 	dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
595       }
596     else
597       {
598 	x_dynp_64 = (Elf64_External_Dyn *) buf;
599 	dyn_tag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
600 	dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
601       }
602      if (dyn_tag == DT_NULL)
603        return 0;
604      if (dyn_tag == dyntag)
605        {
606 	 /* If requested, try to read the runtime value of this .dynamic
607 	    entry.  */
608 	 if (ptr)
609 	   {
610 	     struct type *ptr_type;
611 	     gdb_byte ptr_buf[8];
612 	     CORE_ADDR ptr_addr;
613 
614 	     ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
615 	     ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
616 	     if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
617 	       dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
618 	     *ptr = dyn_ptr;
619 	   }
620 	 return 1;
621        }
622   }
623 
624   return 0;
625 }
626 
627 /* Scan for DYNTAG in .dynamic section of the target's main executable,
628    found by consulting the OS auxillary vector.  If DYNTAG is found 1 is
629    returned and the corresponding PTR is set.  */
630 
631 static int
scan_dyntag_auxv(int dyntag,CORE_ADDR * ptr)632 scan_dyntag_auxv (int dyntag, CORE_ADDR *ptr)
633 {
634   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
635   int sect_size, arch_size, step;
636   long dyn_tag;
637   CORE_ADDR dyn_ptr;
638   gdb_byte *bufend, *bufstart, *buf;
639 
640   /* Read in .dynamic section.  */
641   buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
642   if (!buf)
643     return 0;
644 
645   /* Iterate over BUF and scan for DYNTAG.  If found, set PTR and return.  */
646   step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
647 			   : sizeof (Elf64_External_Dyn);
648   for (bufend = buf + sect_size;
649        buf < bufend;
650        buf += step)
651   {
652     if (arch_size == 32)
653       {
654 	Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
655 
656 	dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
657 					    4, byte_order);
658 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
659 					    4, byte_order);
660       }
661     else
662       {
663 	Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
664 
665 	dyn_tag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
666 					    8, byte_order);
667 	dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
668 					    8, byte_order);
669       }
670     if (dyn_tag == DT_NULL)
671       break;
672 
673     if (dyn_tag == dyntag)
674       {
675 	if (ptr)
676 	  *ptr = dyn_ptr;
677 
678 	xfree (bufstart);
679 	return 1;
680       }
681   }
682 
683   xfree (bufstart);
684   return 0;
685 }
686 
687 /* Locate the base address of dynamic linker structs for SVR4 elf
688    targets.
689 
690    For SVR4 elf targets the address of the dynamic linker's runtime
691    structure is contained within the dynamic info section in the
692    executable file.  The dynamic section is also mapped into the
693    inferior address space.  Because the runtime loader fills in the
694    real address before starting the inferior, we have to read in the
695    dynamic info section from the inferior address space.
696    If there are any errors while trying to find the address, we
697    silently return 0, otherwise the found address is returned.  */
698 
699 static CORE_ADDR
elf_locate_base(void)700 elf_locate_base (void)
701 {
702   struct minimal_symbol *msymbol;
703   CORE_ADDR dyn_ptr;
704 
705   /* Look for DT_MIPS_RLD_MAP first.  MIPS executables use this
706      instead of DT_DEBUG, although they sometimes contain an unused
707      DT_DEBUG.  */
708   if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
709       || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
710     {
711       struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
712       gdb_byte *pbuf;
713       int pbuf_size = TYPE_LENGTH (ptr_type);
714 
715       pbuf = alloca (pbuf_size);
716       /* DT_MIPS_RLD_MAP contains a pointer to the address
717 	 of the dynamic link structure.  */
718       if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
719 	return 0;
720       return extract_typed_address (pbuf, ptr_type);
721     }
722 
723   /* Find DT_DEBUG.  */
724   if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
725       || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
726     return dyn_ptr;
727 
728   /* This may be a static executable.  Look for the symbol
729      conventionally named _r_debug, as a last resort.  */
730   msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
731   if (msymbol != NULL)
732     return SYMBOL_VALUE_ADDRESS (msymbol);
733 
734   /* DT_DEBUG entry not found.  */
735   return 0;
736 }
737 
738 /* Locate the base address of dynamic linker structs.
739 
740    For both the SunOS and SVR4 shared library implementations, if the
741    inferior executable has been linked dynamically, there is a single
742    address somewhere in the inferior's data space which is the key to
743    locating all of the dynamic linker's runtime structures.  This
744    address is the value of the debug base symbol.  The job of this
745    function is to find and return that address, or to return 0 if there
746    is no such address (the executable is statically linked for example).
747 
748    For SunOS, the job is almost trivial, since the dynamic linker and
749    all of it's structures are statically linked to the executable at
750    link time.  Thus the symbol for the address we are looking for has
751    already been added to the minimal symbol table for the executable's
752    objfile at the time the symbol file's symbols were read, and all we
753    have to do is look it up there.  Note that we explicitly do NOT want
754    to find the copies in the shared library.
755 
756    The SVR4 version is a bit more complicated because the address
757    is contained somewhere in the dynamic info section.  We have to go
758    to a lot more work to discover the address of the debug base symbol.
759    Because of this complexity, we cache the value we find and return that
760    value on subsequent invocations.  Note there is no copy in the
761    executable symbol tables.  */
762 
763 static CORE_ADDR
locate_base(struct svr4_info * info)764 locate_base (struct svr4_info *info)
765 {
766   /* Check to see if we have a currently valid address, and if so, avoid
767      doing all this work again and just return the cached address.  If
768      we have no cached address, try to locate it in the dynamic info
769      section for ELF executables.  There's no point in doing any of this
770      though if we don't have some link map offsets to work with.  */
771 
772   if (info->debug_base == 0 && svr4_have_link_map_offsets ())
773     info->debug_base = elf_locate_base ();
774   return info->debug_base;
775 }
776 
777 /* Find the first element in the inferior's dynamic link map, and
778    return its address in the inferior.  Return zero if the address
779    could not be determined.
780 
781    FIXME: Perhaps we should validate the info somehow, perhaps by
782    checking r_version for a known version number, or r_state for
783    RT_CONSISTENT.  */
784 
785 static CORE_ADDR
solib_svr4_r_map(struct svr4_info * info)786 solib_svr4_r_map (struct svr4_info *info)
787 {
788   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
789   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
790   CORE_ADDR addr = 0;
791   volatile struct gdb_exception ex;
792 
793   TRY_CATCH (ex, RETURN_MASK_ERROR)
794     {
795       addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
796                                         ptr_type);
797     }
798   exception_print (gdb_stderr, ex);
799   return addr;
800 }
801 
802 /* Find r_brk from the inferior's debug base.  */
803 
804 static CORE_ADDR
solib_svr4_r_brk(struct svr4_info * info)805 solib_svr4_r_brk (struct svr4_info *info)
806 {
807   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
808   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
809 
810   return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
811 				    ptr_type);
812 }
813 
814 /* Find the link map for the dynamic linker (if it is not in the
815    normal list of loaded shared objects).  */
816 
817 static CORE_ADDR
solib_svr4_r_ldsomap(struct svr4_info * info)818 solib_svr4_r_ldsomap (struct svr4_info *info)
819 {
820   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
821   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
822   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
823   ULONGEST version;
824 
825   /* Check version, and return zero if `struct r_debug' doesn't have
826      the r_ldsomap member.  */
827   version
828     = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
829 				    lmo->r_version_size, byte_order);
830   if (version < 2 || lmo->r_ldsomap_offset == -1)
831     return 0;
832 
833   return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
834 				    ptr_type);
835 }
836 
837 /* On Solaris systems with some versions of the dynamic linker,
838    ld.so's l_name pointer points to the SONAME in the string table
839    rather than into writable memory.  So that GDB can find shared
840    libraries when loading a core file generated by gcore, ensure that
841    memory areas containing the l_name string are saved in the core
842    file.  */
843 
844 static int
svr4_keep_data_in_core(CORE_ADDR vaddr,unsigned long size)845 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
846 {
847   struct svr4_info *info;
848   CORE_ADDR ldsomap;
849   struct so_list *new;
850   struct cleanup *old_chain;
851   CORE_ADDR name_lm;
852 
853   info = get_svr4_info ();
854 
855   info->debug_base = 0;
856   locate_base (info);
857   if (!info->debug_base)
858     return 0;
859 
860   ldsomap = solib_svr4_r_ldsomap (info);
861   if (!ldsomap)
862     return 0;
863 
864   new = XZALLOC (struct so_list);
865   old_chain = make_cleanup (xfree, new);
866   new->lm_info = lm_info_read (ldsomap);
867   make_cleanup (xfree, new->lm_info);
868   name_lm = new->lm_info ? new->lm_info->l_name : 0;
869   do_cleanups (old_chain);
870 
871   return (name_lm >= vaddr && name_lm < vaddr + size);
872 }
873 
874 /* Implement the "open_symbol_file_object" target_so_ops method.
875 
876    If no open symbol file, attempt to locate and open the main symbol
877    file.  On SVR4 systems, this is the first link map entry.  If its
878    name is here, we can open it.  Useful when attaching to a process
879    without first loading its symbol file.  */
880 
881 static int
open_symbol_file_object(void * from_ttyp)882 open_symbol_file_object (void *from_ttyp)
883 {
884   CORE_ADDR lm, l_name;
885   char *filename;
886   int errcode;
887   int from_tty = *(int *)from_ttyp;
888   struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
889   struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
890   int l_name_size = TYPE_LENGTH (ptr_type);
891   gdb_byte *l_name_buf = xmalloc (l_name_size);
892   struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
893   struct svr4_info *info = get_svr4_info ();
894 
895   if (symfile_objfile)
896     if (!query (_("Attempt to reload symbols from process? ")))
897       {
898 	do_cleanups (cleanups);
899 	return 0;
900       }
901 
902   /* Always locate the debug struct, in case it has moved.  */
903   info->debug_base = 0;
904   if (locate_base (info) == 0)
905     {
906       do_cleanups (cleanups);
907       return 0;	/* failed somehow...  */
908     }
909 
910   /* First link map member should be the executable.  */
911   lm = solib_svr4_r_map (info);
912   if (lm == 0)
913     {
914       do_cleanups (cleanups);
915       return 0;	/* failed somehow...  */
916     }
917 
918   /* Read address of name from target memory to GDB.  */
919   read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
920 
921   /* Convert the address to host format.  */
922   l_name = extract_typed_address (l_name_buf, ptr_type);
923 
924   if (l_name == 0)
925     {
926       do_cleanups (cleanups);
927       return 0;		/* No filename.  */
928     }
929 
930   /* Now fetch the filename from target memory.  */
931   target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
932   make_cleanup (xfree, filename);
933 
934   if (errcode)
935     {
936       warning (_("failed to read exec filename from attached file: %s"),
937 	       safe_strerror (errcode));
938       do_cleanups (cleanups);
939       return 0;
940     }
941 
942   /* Have a pathname: read the symbol file.  */
943   symbol_file_add_main (filename, from_tty);
944 
945   do_cleanups (cleanups);
946   return 1;
947 }
948 
949 /* Data exchange structure for the XML parser as returned by
950    svr4_current_sos_via_xfer_libraries.  */
951 
952 struct svr4_library_list
953 {
954   struct so_list *head, **tailp;
955 
956   /* Inferior address of struct link_map used for the main executable.  It is
957      NULL if not known.  */
958   CORE_ADDR main_lm;
959 };
960 
961 /* Implementation for target_so_ops.free_so.  */
962 
963 static void
svr4_free_so(struct so_list * so)964 svr4_free_so (struct so_list *so)
965 {
966   xfree (so->lm_info);
967 }
968 
969 /* Free so_list built so far (called via cleanup).  */
970 
971 static void
svr4_free_library_list(void * p_list)972 svr4_free_library_list (void *p_list)
973 {
974   struct so_list *list = *(struct so_list **) p_list;
975 
976   while (list != NULL)
977     {
978       struct so_list *next = list->next;
979 
980       free_so (list);
981       list = next;
982     }
983 }
984 
985 #ifdef HAVE_LIBEXPAT
986 
987 #include "xml-support.h"
988 
989 /* Handle the start of a <library> element.  Note: new elements are added
990    at the tail of the list, keeping the list in order.  */
991 
992 static void
library_list_start_library(struct gdb_xml_parser * parser,const struct gdb_xml_element * element,void * user_data,VEC (gdb_xml_value_s)* attributes)993 library_list_start_library (struct gdb_xml_parser *parser,
994 			    const struct gdb_xml_element *element,
995 			    void *user_data, VEC(gdb_xml_value_s) *attributes)
996 {
997   struct svr4_library_list *list = user_data;
998   const char *name = xml_find_attribute (attributes, "name")->value;
999   ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1000   ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1001   ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1002   struct so_list *new_elem;
1003 
1004   new_elem = XZALLOC (struct so_list);
1005   new_elem->lm_info = XZALLOC (struct lm_info);
1006   new_elem->lm_info->lm_addr = *lmp;
1007   new_elem->lm_info->l_addr_inferior = *l_addrp;
1008   new_elem->lm_info->l_ld = *l_ldp;
1009 
1010   strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1011   new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1012   strcpy (new_elem->so_original_name, new_elem->so_name);
1013 
1014   *list->tailp = new_elem;
1015   list->tailp = &new_elem->next;
1016 }
1017 
1018 /* Handle the start of a <library-list-svr4> element.  */
1019 
1020 static void
svr4_library_list_start_list(struct gdb_xml_parser * parser,const struct gdb_xml_element * element,void * user_data,VEC (gdb_xml_value_s)* attributes)1021 svr4_library_list_start_list (struct gdb_xml_parser *parser,
1022 			      const struct gdb_xml_element *element,
1023 			      void *user_data, VEC(gdb_xml_value_s) *attributes)
1024 {
1025   struct svr4_library_list *list = user_data;
1026   const char *version = xml_find_attribute (attributes, "version")->value;
1027   struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1028 
1029   if (strcmp (version, "1.0") != 0)
1030     gdb_xml_error (parser,
1031 		   _("SVR4 Library list has unsupported version \"%s\""),
1032 		   version);
1033 
1034   if (main_lm)
1035     list->main_lm = *(ULONGEST *) main_lm->value;
1036 }
1037 
1038 /* The allowed elements and attributes for an XML library list.
1039    The root element is a <library-list>.  */
1040 
1041 static const struct gdb_xml_attribute svr4_library_attributes[] =
1042 {
1043   { "name", GDB_XML_AF_NONE, NULL, NULL },
1044   { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1045   { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1046   { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1047   { NULL, GDB_XML_AF_NONE, NULL, NULL }
1048 };
1049 
1050 static const struct gdb_xml_element svr4_library_list_children[] =
1051 {
1052   {
1053     "library", svr4_library_attributes, NULL,
1054     GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1055     library_list_start_library, NULL
1056   },
1057   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1058 };
1059 
1060 static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1061 {
1062   { "version", GDB_XML_AF_NONE, NULL, NULL },
1063   { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1064   { NULL, GDB_XML_AF_NONE, NULL, NULL }
1065 };
1066 
1067 static const struct gdb_xml_element svr4_library_list_elements[] =
1068 {
1069   { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1070     GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1071   { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1072 };
1073 
1074 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN.  Return 1 if
1075 
1076    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1077    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
1078    empty, caller is responsible for freeing all its entries.  */
1079 
1080 static int
svr4_parse_libraries(const char * document,struct svr4_library_list * list)1081 svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1082 {
1083   struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1084 					  &list->head);
1085 
1086   memset (list, 0, sizeof (*list));
1087   list->tailp = &list->head;
1088   if (gdb_xml_parse_quick (_("target library list"), "library-list.dtd",
1089 			   svr4_library_list_elements, document, list) == 0)
1090     {
1091       /* Parsed successfully, keep the result.  */
1092       discard_cleanups (back_to);
1093       return 1;
1094     }
1095 
1096   do_cleanups (back_to);
1097   return 0;
1098 }
1099 
1100 /* Attempt to get so_list from target via qXfer:libraries:read packet.
1101 
1102    Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1103    case.  Return 1 if *SO_LIST_RETURN contains the library list, it may be
1104    empty, caller is responsible for freeing all its entries.  */
1105 
1106 static int
svr4_current_sos_via_xfer_libraries(struct svr4_library_list * list)1107 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1108 {
1109   char *svr4_library_document;
1110   int result;
1111   struct cleanup *back_to;
1112 
1113   /* Fetch the list of shared libraries.  */
1114   svr4_library_document = target_read_stralloc (&current_target,
1115 						TARGET_OBJECT_LIBRARIES_SVR4,
1116 						NULL);
1117   if (svr4_library_document == NULL)
1118     return 0;
1119 
1120   back_to = make_cleanup (xfree, svr4_library_document);
1121   result = svr4_parse_libraries (svr4_library_document, list);
1122   do_cleanups (back_to);
1123 
1124   return result;
1125 }
1126 
1127 #else
1128 
1129 static int
svr4_current_sos_via_xfer_libraries(struct svr4_library_list * list)1130 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list)
1131 {
1132   return 0;
1133 }
1134 
1135 #endif
1136 
1137 /* If no shared library information is available from the dynamic
1138    linker, build a fallback list from other sources.  */
1139 
1140 static struct so_list *
svr4_default_sos(void)1141 svr4_default_sos (void)
1142 {
1143   struct svr4_info *info = get_svr4_info ();
1144   struct so_list *new;
1145 
1146   if (!info->debug_loader_offset_p)
1147     return NULL;
1148 
1149   new = XZALLOC (struct so_list);
1150 
1151   new->lm_info = xzalloc (sizeof (struct lm_info));
1152 
1153   /* Nothing will ever check the other fields if we set l_addr_p.  */
1154   new->lm_info->l_addr = info->debug_loader_offset;
1155   new->lm_info->l_addr_p = 1;
1156 
1157   strncpy (new->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1158   new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1159   strcpy (new->so_original_name, new->so_name);
1160 
1161   return new;
1162 }
1163 
1164 /* Read the whole inferior libraries chain starting at address LM.  Add the
1165    entries to the tail referenced by LINK_PTR_PTR.  Ignore the first entry if
1166    IGNORE_FIRST and set global MAIN_LM_ADDR according to it.  */
1167 
1168 static void
svr4_read_so_list(CORE_ADDR lm,struct so_list *** link_ptr_ptr,int ignore_first)1169 svr4_read_so_list (CORE_ADDR lm, struct so_list ***link_ptr_ptr,
1170 		   int ignore_first)
1171 {
1172   CORE_ADDR prev_lm = 0, next_lm;
1173 
1174   for (; lm != 0; prev_lm = lm, lm = next_lm)
1175     {
1176       struct so_list *new;
1177       struct cleanup *old_chain;
1178       int errcode;
1179       char *buffer;
1180 
1181       new = XZALLOC (struct so_list);
1182       old_chain = make_cleanup_free_so (new);
1183 
1184       new->lm_info = lm_info_read (lm);
1185       if (new->lm_info == NULL)
1186 	{
1187 	  do_cleanups (old_chain);
1188 	  break;
1189 	}
1190 
1191       next_lm = new->lm_info->l_next;
1192 
1193       if (new->lm_info->l_prev != prev_lm)
1194 	{
1195 	  warning (_("Corrupted shared library list: %s != %s"),
1196 		   paddress (target_gdbarch (), prev_lm),
1197 		   paddress (target_gdbarch (), new->lm_info->l_prev));
1198 	  do_cleanups (old_chain);
1199 	  break;
1200 	}
1201 
1202       /* For SVR4 versions, the first entry in the link map is for the
1203          inferior executable, so we must ignore it.  For some versions of
1204          SVR4, it has no name.  For others (Solaris 2.3 for example), it
1205          does have a name, so we can no longer use a missing name to
1206          decide when to ignore it.  */
1207       if (ignore_first && new->lm_info->l_prev == 0)
1208 	{
1209 	  struct svr4_info *info = get_svr4_info ();
1210 
1211 	  info->main_lm_addr = new->lm_info->lm_addr;
1212 	  do_cleanups (old_chain);
1213 	  continue;
1214 	}
1215 
1216       /* Extract this shared object's name.  */
1217       target_read_string (new->lm_info->l_name, &buffer,
1218 			  SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1219       if (errcode != 0)
1220 	{
1221 	  warning (_("Can't read pathname for load map: %s."),
1222 		   safe_strerror (errcode));
1223 	  do_cleanups (old_chain);
1224 	  continue;
1225 	}
1226 
1227       strncpy (new->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1228       new->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1229       strcpy (new->so_original_name, new->so_name);
1230       xfree (buffer);
1231 
1232       /* If this entry has no name, or its name matches the name
1233 	 for the main executable, don't include it in the list.  */
1234       if (! new->so_name[0] || match_main (new->so_name))
1235 	{
1236 	  do_cleanups (old_chain);
1237 	  continue;
1238 	}
1239 
1240       discard_cleanups (old_chain);
1241       new->next = 0;
1242       **link_ptr_ptr = new;
1243       *link_ptr_ptr = &new->next;
1244     }
1245 }
1246 
1247 /* Implement the "current_sos" target_so_ops method.  */
1248 
1249 static struct so_list *
svr4_current_sos(void)1250 svr4_current_sos (void)
1251 {
1252   CORE_ADDR lm;
1253   struct so_list *head = NULL;
1254   struct so_list **link_ptr = &head;
1255   struct svr4_info *info;
1256   struct cleanup *back_to;
1257   int ignore_first;
1258   struct svr4_library_list library_list;
1259 
1260   /* Fall back to manual examination of the target if the packet is not
1261      supported or gdbserver failed to find DT_DEBUG.  gdb.server/solib-list.exp
1262      tests a case where gdbserver cannot find the shared libraries list while
1263      GDB itself is able to find it via SYMFILE_OBJFILE.
1264 
1265      Unfortunately statically linked inferiors will also fall back through this
1266      suboptimal code path.  */
1267 
1268   if (svr4_current_sos_via_xfer_libraries (&library_list))
1269     {
1270       if (library_list.main_lm)
1271 	{
1272 	  info = get_svr4_info ();
1273 	  info->main_lm_addr = library_list.main_lm;
1274 	}
1275 
1276       return library_list.head ? library_list.head : svr4_default_sos ();
1277     }
1278 
1279   info = get_svr4_info ();
1280 
1281   /* Always locate the debug struct, in case it has moved.  */
1282   info->debug_base = 0;
1283   locate_base (info);
1284 
1285   /* If we can't find the dynamic linker's base structure, this
1286      must not be a dynamically linked executable.  Hmm.  */
1287   if (! info->debug_base)
1288     return svr4_default_sos ();
1289 
1290   /* Assume that everything is a library if the dynamic loader was loaded
1291      late by a static executable.  */
1292   if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1293     ignore_first = 0;
1294   else
1295     ignore_first = 1;
1296 
1297   back_to = make_cleanup (svr4_free_library_list, &head);
1298 
1299   /* Walk the inferior's link map list, and build our list of
1300      `struct so_list' nodes.  */
1301   lm = solib_svr4_r_map (info);
1302   if (lm)
1303     svr4_read_so_list (lm, &link_ptr, ignore_first);
1304 
1305   /* On Solaris, the dynamic linker is not in the normal list of
1306      shared objects, so make sure we pick it up too.  Having
1307      symbol information for the dynamic linker is quite crucial
1308      for skipping dynamic linker resolver code.  */
1309   lm = solib_svr4_r_ldsomap (info);
1310   if (lm)
1311     svr4_read_so_list (lm, &link_ptr, 0);
1312 
1313   discard_cleanups (back_to);
1314 
1315   if (head == NULL)
1316     return svr4_default_sos ();
1317 
1318   return head;
1319 }
1320 
1321 /* Get the address of the link_map for a given OBJFILE.  */
1322 
1323 CORE_ADDR
svr4_fetch_objfile_link_map(struct objfile * objfile)1324 svr4_fetch_objfile_link_map (struct objfile *objfile)
1325 {
1326   struct so_list *so;
1327   struct svr4_info *info = get_svr4_info ();
1328 
1329   /* Cause svr4_current_sos() to be run if it hasn't been already.  */
1330   if (info->main_lm_addr == 0)
1331     solib_add (NULL, 0, &current_target, auto_solib_add);
1332 
1333   /* svr4_current_sos() will set main_lm_addr for the main executable.  */
1334   if (objfile == symfile_objfile)
1335     return info->main_lm_addr;
1336 
1337   /* The other link map addresses may be found by examining the list
1338      of shared libraries.  */
1339   for (so = master_so_list (); so; so = so->next)
1340     if (so->objfile == objfile)
1341       return so->lm_info->lm_addr;
1342 
1343   /* Not found!  */
1344   return 0;
1345 }
1346 
1347 /* On some systems, the only way to recognize the link map entry for
1348    the main executable file is by looking at its name.  Return
1349    non-zero iff SONAME matches one of the known main executable names.  */
1350 
1351 static int
match_main(const char * soname)1352 match_main (const char *soname)
1353 {
1354   const char * const *mainp;
1355 
1356   for (mainp = main_name_list; *mainp != NULL; mainp++)
1357     {
1358       if (strcmp (soname, *mainp) == 0)
1359 	return (1);
1360     }
1361 
1362   return (0);
1363 }
1364 
1365 /* Return 1 if PC lies in the dynamic symbol resolution code of the
1366    SVR4 run time loader.  */
1367 
1368 int
svr4_in_dynsym_resolve_code(CORE_ADDR pc)1369 svr4_in_dynsym_resolve_code (CORE_ADDR pc)
1370 {
1371   struct svr4_info *info = get_svr4_info ();
1372 
1373   return ((pc >= info->interp_text_sect_low
1374 	   && pc < info->interp_text_sect_high)
1375 	  || (pc >= info->interp_plt_sect_low
1376 	      && pc < info->interp_plt_sect_high)
1377 	  || in_plt_section (pc, NULL)
1378 	  || in_gnu_ifunc_stub (pc));
1379 }
1380 
1381 /* Given an executable's ABFD and target, compute the entry-point
1382    address.  */
1383 
1384 static CORE_ADDR
exec_entry_point(struct bfd * abfd,struct target_ops * targ)1385 exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1386 {
1387   CORE_ADDR addr;
1388 
1389   /* KevinB wrote ... for most targets, the address returned by
1390      bfd_get_start_address() is the entry point for the start
1391      function.  But, for some targets, bfd_get_start_address() returns
1392      the address of a function descriptor from which the entry point
1393      address may be extracted.  This address is extracted by
1394      gdbarch_convert_from_func_ptr_addr().  The method
1395      gdbarch_convert_from_func_ptr_addr() is the merely the identify
1396      function for targets which don't use function descriptors.  */
1397   addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1398 					     bfd_get_start_address (abfd),
1399 					     targ);
1400   return gdbarch_addr_bits_remove (target_gdbarch (), addr);
1401 }
1402 
1403 /* Helper function for gdb_bfd_lookup_symbol.  */
1404 
1405 static int
cmp_name_and_sec_flags(asymbol * sym,void * data)1406 cmp_name_and_sec_flags (asymbol *sym, void *data)
1407 {
1408   return (strcmp (sym->name, (const char *) data) == 0
1409 	  && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
1410 }
1411 /* Arrange for dynamic linker to hit breakpoint.
1412 
1413    Both the SunOS and the SVR4 dynamic linkers have, as part of their
1414    debugger interface, support for arranging for the inferior to hit
1415    a breakpoint after mapping in the shared libraries.  This function
1416    enables that breakpoint.
1417 
1418    For SunOS, there is a special flag location (in_debugger) which we
1419    set to 1.  When the dynamic linker sees this flag set, it will set
1420    a breakpoint at a location known only to itself, after saving the
1421    original contents of that place and the breakpoint address itself,
1422    in it's own internal structures.  When we resume the inferior, it
1423    will eventually take a SIGTRAP when it runs into the breakpoint.
1424    We handle this (in a different place) by restoring the contents of
1425    the breakpointed location (which is only known after it stops),
1426    chasing around to locate the shared libraries that have been
1427    loaded, then resuming.
1428 
1429    For SVR4, the debugger interface structure contains a member (r_brk)
1430    which is statically initialized at the time the shared library is
1431    built, to the offset of a function (_r_debug_state) which is guaran-
1432    teed to be called once before mapping in a library, and again when
1433    the mapping is complete.  At the time we are examining this member,
1434    it contains only the unrelocated offset of the function, so we have
1435    to do our own relocation.  Later, when the dynamic linker actually
1436    runs, it relocates r_brk to be the actual address of _r_debug_state().
1437 
1438    The debugger interface structure also contains an enumeration which
1439    is set to either RT_ADD or RT_DELETE prior to changing the mapping,
1440    depending upon whether or not the library is being mapped or unmapped,
1441    and then set to RT_CONSISTENT after the library is mapped/unmapped.  */
1442 
1443 static int
enable_break(struct svr4_info * info,int from_tty)1444 enable_break (struct svr4_info *info, int from_tty)
1445 {
1446   struct minimal_symbol *msymbol;
1447   const char * const *bkpt_namep;
1448   asection *interp_sect;
1449   gdb_byte *interp_name;
1450   CORE_ADDR sym_addr;
1451 
1452   info->interp_text_sect_low = info->interp_text_sect_high = 0;
1453   info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
1454 
1455   /* If we already have a shared library list in the target, and
1456      r_debug contains r_brk, set the breakpoint there - this should
1457      mean r_brk has already been relocated.  Assume the dynamic linker
1458      is the object containing r_brk.  */
1459 
1460   solib_add (NULL, from_tty, &current_target, auto_solib_add);
1461   sym_addr = 0;
1462   if (info->debug_base && solib_svr4_r_map (info) != 0)
1463     sym_addr = solib_svr4_r_brk (info);
1464 
1465   if (sym_addr != 0)
1466     {
1467       struct obj_section *os;
1468 
1469       sym_addr = gdbarch_addr_bits_remove
1470 	(target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1471 							     sym_addr,
1472 							     &current_target));
1473 
1474       /* On at least some versions of Solaris there's a dynamic relocation
1475 	 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
1476 	 we get control before the dynamic linker has self-relocated.
1477 	 Check if SYM_ADDR is in a known section, if it is assume we can
1478 	 trust its value.  This is just a heuristic though, it could go away
1479 	 or be replaced if it's getting in the way.
1480 
1481 	 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
1482 	 however it's spelled in your particular system) is ARM or Thumb.
1483 	 That knowledge is encoded in the address, if it's Thumb the low bit
1484 	 is 1.  However, we've stripped that info above and it's not clear
1485 	 what all the consequences are of passing a non-addr_bits_remove'd
1486 	 address to create_solib_event_breakpoint.  The call to
1487 	 find_pc_section verifies we know about the address and have some
1488 	 hope of computing the right kind of breakpoint to use (via
1489 	 symbol info).  It does mean that GDB needs to be pointed at a
1490 	 non-stripped version of the dynamic linker in order to obtain
1491 	 information it already knows about.  Sigh.  */
1492 
1493       os = find_pc_section (sym_addr);
1494       if (os != NULL)
1495 	{
1496 	  /* Record the relocated start and end address of the dynamic linker
1497 	     text and plt section for svr4_in_dynsym_resolve_code.  */
1498 	  bfd *tmp_bfd;
1499 	  CORE_ADDR load_addr;
1500 
1501 	  tmp_bfd = os->objfile->obfd;
1502 	  load_addr = ANOFFSET (os->objfile->section_offsets,
1503 				SECT_OFF_TEXT (os->objfile));
1504 
1505 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1506 	  if (interp_sect)
1507 	    {
1508 	      info->interp_text_sect_low =
1509 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1510 	      info->interp_text_sect_high =
1511 		info->interp_text_sect_low
1512 		+ bfd_section_size (tmp_bfd, interp_sect);
1513 	    }
1514 	  interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1515 	  if (interp_sect)
1516 	    {
1517 	      info->interp_plt_sect_low =
1518 		bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1519 	      info->interp_plt_sect_high =
1520 		info->interp_plt_sect_low
1521 		+ bfd_section_size (tmp_bfd, interp_sect);
1522 	    }
1523 
1524 	  create_solib_event_breakpoint (target_gdbarch (), sym_addr);
1525 	  return 1;
1526 	}
1527     }
1528 
1529   /* Find the program interpreter; if not found, warn the user and drop
1530      into the old breakpoint at symbol code.  */
1531   interp_name = find_program_interpreter ();
1532   if (interp_name)
1533     {
1534       CORE_ADDR load_addr = 0;
1535       int load_addr_found = 0;
1536       int loader_found_in_list = 0;
1537       struct so_list *so;
1538       bfd *tmp_bfd = NULL;
1539       struct target_ops *tmp_bfd_target;
1540       volatile struct gdb_exception ex;
1541 
1542       sym_addr = 0;
1543 
1544       /* Now we need to figure out where the dynamic linker was
1545          loaded so that we can load its symbols and place a breakpoint
1546          in the dynamic linker itself.
1547 
1548          This address is stored on the stack.  However, I've been unable
1549          to find any magic formula to find it for Solaris (appears to
1550          be trivial on GNU/Linux).  Therefore, we have to try an alternate
1551          mechanism to find the dynamic linker's base address.  */
1552 
1553       TRY_CATCH (ex, RETURN_MASK_ALL)
1554         {
1555 	  tmp_bfd = solib_bfd_open (interp_name);
1556 	}
1557       if (tmp_bfd == NULL)
1558 	goto bkpt_at_symbol;
1559 
1560       /* Now convert the TMP_BFD into a target.  That way target, as
1561          well as BFD operations can be used.  */
1562       tmp_bfd_target = target_bfd_reopen (tmp_bfd);
1563       /* target_bfd_reopen acquired its own reference, so we can
1564          release ours now.  */
1565       gdb_bfd_unref (tmp_bfd);
1566 
1567       /* On a running target, we can get the dynamic linker's base
1568          address from the shared library table.  */
1569       so = master_so_list ();
1570       while (so)
1571 	{
1572 	  if (svr4_same_1 (interp_name, so->so_original_name))
1573 	    {
1574 	      load_addr_found = 1;
1575 	      loader_found_in_list = 1;
1576 	      load_addr = lm_addr_check (so, tmp_bfd);
1577 	      break;
1578 	    }
1579 	  so = so->next;
1580 	}
1581 
1582       /* If we were not able to find the base address of the loader
1583          from our so_list, then try using the AT_BASE auxilliary entry.  */
1584       if (!load_addr_found)
1585         if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
1586 	  {
1587 	    int addr_bit = gdbarch_addr_bit (target_gdbarch ());
1588 
1589 	    /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
1590 	       that `+ load_addr' will overflow CORE_ADDR width not creating
1591 	       invalid addresses like 0x101234567 for 32bit inferiors on 64bit
1592 	       GDB.  */
1593 
1594 	    if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
1595 	      {
1596 		CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
1597 		CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
1598 							      tmp_bfd_target);
1599 
1600 		gdb_assert (load_addr < space_size);
1601 
1602 		/* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
1603 		   64bit ld.so with 32bit executable, it should not happen.  */
1604 
1605 		if (tmp_entry_point < space_size
1606 		    && tmp_entry_point + load_addr >= space_size)
1607 		  load_addr -= space_size;
1608 	      }
1609 
1610 	    load_addr_found = 1;
1611 	  }
1612 
1613       /* Otherwise we find the dynamic linker's base address by examining
1614 	 the current pc (which should point at the entry point for the
1615 	 dynamic linker) and subtracting the offset of the entry point.
1616 
1617          This is more fragile than the previous approaches, but is a good
1618          fallback method because it has actually been working well in
1619          most cases.  */
1620       if (!load_addr_found)
1621 	{
1622 	  struct regcache *regcache
1623 	    = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
1624 
1625 	  load_addr = (regcache_read_pc (regcache)
1626 		       - exec_entry_point (tmp_bfd, tmp_bfd_target));
1627 	}
1628 
1629       if (!loader_found_in_list)
1630 	{
1631 	  info->debug_loader_name = xstrdup (interp_name);
1632 	  info->debug_loader_offset_p = 1;
1633 	  info->debug_loader_offset = load_addr;
1634 	  solib_add (NULL, from_tty, &current_target, auto_solib_add);
1635 	}
1636 
1637       /* Record the relocated start and end address of the dynamic linker
1638          text and plt section for svr4_in_dynsym_resolve_code.  */
1639       interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
1640       if (interp_sect)
1641 	{
1642 	  info->interp_text_sect_low =
1643 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1644 	  info->interp_text_sect_high =
1645 	    info->interp_text_sect_low
1646 	    + bfd_section_size (tmp_bfd, interp_sect);
1647 	}
1648       interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
1649       if (interp_sect)
1650 	{
1651 	  info->interp_plt_sect_low =
1652 	    bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
1653 	  info->interp_plt_sect_high =
1654 	    info->interp_plt_sect_low
1655 	    + bfd_section_size (tmp_bfd, interp_sect);
1656 	}
1657 
1658       /* Now try to set a breakpoint in the dynamic linker.  */
1659       for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1660 	{
1661 	  sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
1662 					    (void *) *bkpt_namep);
1663 	  if (sym_addr != 0)
1664 	    break;
1665 	}
1666 
1667       if (sym_addr != 0)
1668 	/* Convert 'sym_addr' from a function pointer to an address.
1669 	   Because we pass tmp_bfd_target instead of the current
1670 	   target, this will always produce an unrelocated value.  */
1671 	sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1672 						       sym_addr,
1673 						       tmp_bfd_target);
1674 
1675       /* We're done with both the temporary bfd and target.  Closing
1676          the target closes the underlying bfd, because it holds the
1677          only remaining reference.  */
1678       target_close (tmp_bfd_target, 0);
1679 
1680       if (sym_addr != 0)
1681 	{
1682 	  create_solib_event_breakpoint (target_gdbarch (), load_addr + sym_addr);
1683 	  xfree (interp_name);
1684 	  return 1;
1685 	}
1686 
1687       /* For whatever reason we couldn't set a breakpoint in the dynamic
1688          linker.  Warn and drop into the old code.  */
1689     bkpt_at_symbol:
1690       xfree (interp_name);
1691       warning (_("Unable to find dynamic linker breakpoint function.\n"
1692                "GDB will be unable to debug shared library initializers\n"
1693                "and track explicitly loaded dynamic code."));
1694     }
1695 
1696   /* Scan through the lists of symbols, trying to look up the symbol and
1697      set a breakpoint there.  Terminate loop when we/if we succeed.  */
1698 
1699   for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
1700     {
1701       msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1702       if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1703 	{
1704 	  sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1705 	  sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1706 							 sym_addr,
1707 							 &current_target);
1708 	  create_solib_event_breakpoint (target_gdbarch (), sym_addr);
1709 	  return 1;
1710 	}
1711     }
1712 
1713   if (interp_name != NULL && !current_inferior ()->attach_flag)
1714     {
1715       for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
1716 	{
1717 	  msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
1718 	  if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
1719 	    {
1720 	      sym_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1721 	      sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
1722 							     sym_addr,
1723 							     &current_target);
1724 	      create_solib_event_breakpoint (target_gdbarch (), sym_addr);
1725 	      return 1;
1726 	    }
1727 	}
1728     }
1729   return 0;
1730 }
1731 
1732 /* Implement the "special_symbol_handling" target_so_ops method.  */
1733 
1734 static void
svr4_special_symbol_handling(void)1735 svr4_special_symbol_handling (void)
1736 {
1737   /* Nothing to do.  */
1738 }
1739 
1740 /* Read the ELF program headers from ABFD.  Return the contents and
1741    set *PHDRS_SIZE to the size of the program headers.  */
1742 
1743 static gdb_byte *
read_program_headers_from_bfd(bfd * abfd,int * phdrs_size)1744 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
1745 {
1746   Elf_Internal_Ehdr *ehdr;
1747   gdb_byte *buf;
1748 
1749   ehdr = elf_elfheader (abfd);
1750 
1751   *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
1752   if (*phdrs_size == 0)
1753     return NULL;
1754 
1755   buf = xmalloc (*phdrs_size);
1756   if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
1757       || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
1758     {
1759       xfree (buf);
1760       return NULL;
1761     }
1762 
1763   return buf;
1764 }
1765 
1766 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
1767    exec_bfd.  Otherwise return 0.
1768 
1769    We relocate all of the sections by the same amount.  This
1770    behavior is mandated by recent editions of the System V ABI.
1771    According to the System V Application Binary Interface,
1772    Edition 4.1, page 5-5:
1773 
1774      ...  Though the system chooses virtual addresses for
1775      individual processes, it maintains the segments' relative
1776      positions.  Because position-independent code uses relative
1777      addressesing between segments, the difference between
1778      virtual addresses in memory must match the difference
1779      between virtual addresses in the file.  The difference
1780      between the virtual address of any segment in memory and
1781      the corresponding virtual address in the file is thus a
1782      single constant value for any one executable or shared
1783      object in a given process.  This difference is the base
1784      address.  One use of the base address is to relocate the
1785      memory image of the program during dynamic linking.
1786 
1787    The same language also appears in Edition 4.0 of the System V
1788    ABI and is left unspecified in some of the earlier editions.
1789 
1790    Decide if the objfile needs to be relocated.  As indicated above, we will
1791    only be here when execution is stopped.  But during attachment PC can be at
1792    arbitrary address therefore regcache_read_pc can be misleading (contrary to
1793    the auxv AT_ENTRY value).  Moreover for executable with interpreter section
1794    regcache_read_pc would point to the interpreter and not the main executable.
1795 
1796    So, to summarize, relocations are necessary when the start address obtained
1797    from the executable is different from the address in auxv AT_ENTRY entry.
1798 
1799    [ The astute reader will note that we also test to make sure that
1800      the executable in question has the DYNAMIC flag set.  It is my
1801      opinion that this test is unnecessary (undesirable even).  It
1802      was added to avoid inadvertent relocation of an executable
1803      whose e_type member in the ELF header is not ET_DYN.  There may
1804      be a time in the future when it is desirable to do relocations
1805      on other types of files as well in which case this condition
1806      should either be removed or modified to accomodate the new file
1807      type.  - Kevin, Nov 2000. ]  */
1808 
1809 static int
svr4_exec_displacement(CORE_ADDR * displacementp)1810 svr4_exec_displacement (CORE_ADDR *displacementp)
1811 {
1812   /* ENTRY_POINT is a possible function descriptor - before
1813      a call to gdbarch_convert_from_func_ptr_addr.  */
1814   CORE_ADDR entry_point, displacement;
1815 
1816   if (exec_bfd == NULL)
1817     return 0;
1818 
1819   /* Therefore for ELF it is ET_EXEC and not ET_DYN.  Both shared libraries
1820      being executed themselves and PIE (Position Independent Executable)
1821      executables are ET_DYN.  */
1822 
1823   if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
1824     return 0;
1825 
1826   if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
1827     return 0;
1828 
1829   displacement = entry_point - bfd_get_start_address (exec_bfd);
1830 
1831   /* Verify the DISPLACEMENT candidate complies with the required page
1832      alignment.  It is cheaper than the program headers comparison below.  */
1833 
1834   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1835     {
1836       const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
1837 
1838       /* p_align of PT_LOAD segments does not specify any alignment but
1839 	 only congruency of addresses:
1840 	   p_offset % p_align == p_vaddr % p_align
1841 	 Kernel is free to load the executable with lower alignment.  */
1842 
1843       if ((displacement & (elf->minpagesize - 1)) != 0)
1844 	return 0;
1845     }
1846 
1847   /* Verify that the auxilliary vector describes the same file as exec_bfd, by
1848      comparing their program headers.  If the program headers in the auxilliary
1849      vector do not match the program headers in the executable, then we are
1850      looking at a different file than the one used by the kernel - for
1851      instance, "gdb program" connected to "gdbserver :PORT ld.so program".  */
1852 
1853   if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
1854     {
1855       /* Be optimistic and clear OK only if GDB was able to verify the headers
1856 	 really do not match.  */
1857       int phdrs_size, phdrs2_size, ok = 1;
1858       gdb_byte *buf, *buf2;
1859       int arch_size;
1860 
1861       buf = read_program_header (-1, &phdrs_size, &arch_size);
1862       buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
1863       if (buf != NULL && buf2 != NULL)
1864 	{
1865 	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1866 
1867 	  /* We are dealing with three different addresses.  EXEC_BFD
1868 	     represents current address in on-disk file.  target memory content
1869 	     may be different from EXEC_BFD as the file may have been prelinked
1870 	     to a different address after the executable has been loaded.
1871 	     Moreover the address of placement in target memory can be
1872 	     different from what the program headers in target memory say -
1873 	     this is the goal of PIE.
1874 
1875 	     Detected DISPLACEMENT covers both the offsets of PIE placement and
1876 	     possible new prelink performed after start of the program.  Here
1877 	     relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
1878 	     content offset for the verification purpose.  */
1879 
1880 	  if (phdrs_size != phdrs2_size
1881 	      || bfd_get_arch_size (exec_bfd) != arch_size)
1882 	    ok = 0;
1883 	  else if (arch_size == 32
1884 		   && phdrs_size >= sizeof (Elf32_External_Phdr)
1885 	           && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
1886 	    {
1887 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1888 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1889 	      CORE_ADDR displacement = 0;
1890 	      int i;
1891 
1892 	      /* DISPLACEMENT could be found more easily by the difference of
1893 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
1894 		 already have enough information to compute that displacement
1895 		 with what we've read.  */
1896 
1897 	      for (i = 0; i < ehdr2->e_phnum; i++)
1898 		if (phdr2[i].p_type == PT_LOAD)
1899 		  {
1900 		    Elf32_External_Phdr *phdrp;
1901 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
1902 		    CORE_ADDR vaddr, paddr;
1903 		    CORE_ADDR displacement_vaddr = 0;
1904 		    CORE_ADDR displacement_paddr = 0;
1905 
1906 		    phdrp = &((Elf32_External_Phdr *) buf)[i];
1907 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1908 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1909 
1910 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1911 						      byte_order);
1912 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
1913 
1914 		    paddr = extract_unsigned_integer (buf_paddr_p, 4,
1915 						      byte_order);
1916 		    displacement_paddr = paddr - phdr2[i].p_paddr;
1917 
1918 		    if (displacement_vaddr == displacement_paddr)
1919 		      displacement = displacement_vaddr;
1920 
1921 		    break;
1922 		  }
1923 
1924 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */
1925 
1926 	      for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
1927 		{
1928 		  Elf32_External_Phdr *phdrp;
1929 		  Elf32_External_Phdr *phdr2p;
1930 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
1931 		  CORE_ADDR vaddr, paddr;
1932 		  asection *plt2_asect;
1933 
1934 		  phdrp = &((Elf32_External_Phdr *) buf)[i];
1935 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
1936 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
1937 		  phdr2p = &((Elf32_External_Phdr *) buf2)[i];
1938 
1939 		  /* PT_GNU_STACK is an exception by being never relocated by
1940 		     prelink as its addresses are always zero.  */
1941 
1942 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1943 		    continue;
1944 
1945 		  /* Check also other adjustment combinations - PR 11786.  */
1946 
1947 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
1948 						    byte_order);
1949 		  vaddr -= displacement;
1950 		  store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
1951 
1952 		  paddr = extract_unsigned_integer (buf_paddr_p, 4,
1953 						    byte_order);
1954 		  paddr -= displacement;
1955 		  store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
1956 
1957 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1958 		    continue;
1959 
1960 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
1961 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
1962 		  if (plt2_asect)
1963 		    {
1964 		      int content2;
1965 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
1966 		      CORE_ADDR filesz;
1967 
1968 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
1969 				  & SEC_HAS_CONTENTS) != 0;
1970 
1971 		      filesz = extract_unsigned_integer (buf_filesz_p, 4,
1972 							 byte_order);
1973 
1974 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
1975 			 FILESZ is from the in-memory image.  */
1976 		      if (content2)
1977 			filesz += bfd_get_section_size (plt2_asect);
1978 		      else
1979 			filesz -= bfd_get_section_size (plt2_asect);
1980 
1981 		      store_unsigned_integer (buf_filesz_p, 4, byte_order,
1982 					      filesz);
1983 
1984 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
1985 			continue;
1986 		    }
1987 
1988 		  ok = 0;
1989 		  break;
1990 		}
1991 	    }
1992 	  else if (arch_size == 64
1993 		   && phdrs_size >= sizeof (Elf64_External_Phdr)
1994 	           && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
1995 	    {
1996 	      Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
1997 	      Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
1998 	      CORE_ADDR displacement = 0;
1999 	      int i;
2000 
2001 	      /* DISPLACEMENT could be found more easily by the difference of
2002 		 ehdr2->e_entry.  But we haven't read the ehdr yet, and we
2003 		 already have enough information to compute that displacement
2004 		 with what we've read.  */
2005 
2006 	      for (i = 0; i < ehdr2->e_phnum; i++)
2007 		if (phdr2[i].p_type == PT_LOAD)
2008 		  {
2009 		    Elf64_External_Phdr *phdrp;
2010 		    gdb_byte *buf_vaddr_p, *buf_paddr_p;
2011 		    CORE_ADDR vaddr, paddr;
2012 		    CORE_ADDR displacement_vaddr = 0;
2013 		    CORE_ADDR displacement_paddr = 0;
2014 
2015 		    phdrp = &((Elf64_External_Phdr *) buf)[i];
2016 		    buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2017 		    buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2018 
2019 		    vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2020 						      byte_order);
2021 		    displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2022 
2023 		    paddr = extract_unsigned_integer (buf_paddr_p, 8,
2024 						      byte_order);
2025 		    displacement_paddr = paddr - phdr2[i].p_paddr;
2026 
2027 		    if (displacement_vaddr == displacement_paddr)
2028 		      displacement = displacement_vaddr;
2029 
2030 		    break;
2031 		  }
2032 
2033 	      /* Now compare BUF and BUF2 with optional DISPLACEMENT.  */
2034 
2035 	      for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2036 		{
2037 		  Elf64_External_Phdr *phdrp;
2038 		  Elf64_External_Phdr *phdr2p;
2039 		  gdb_byte *buf_vaddr_p, *buf_paddr_p;
2040 		  CORE_ADDR vaddr, paddr;
2041 		  asection *plt2_asect;
2042 
2043 		  phdrp = &((Elf64_External_Phdr *) buf)[i];
2044 		  buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2045 		  buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2046 		  phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2047 
2048 		  /* PT_GNU_STACK is an exception by being never relocated by
2049 		     prelink as its addresses are always zero.  */
2050 
2051 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2052 		    continue;
2053 
2054 		  /* Check also other adjustment combinations - PR 11786.  */
2055 
2056 		  vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2057 						    byte_order);
2058 		  vaddr -= displacement;
2059 		  store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2060 
2061 		  paddr = extract_unsigned_integer (buf_paddr_p, 8,
2062 						    byte_order);
2063 		  paddr -= displacement;
2064 		  store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2065 
2066 		  if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2067 		    continue;
2068 
2069 		  /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS.  */
2070 		  plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2071 		  if (plt2_asect)
2072 		    {
2073 		      int content2;
2074 		      gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2075 		      CORE_ADDR filesz;
2076 
2077 		      content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2078 				  & SEC_HAS_CONTENTS) != 0;
2079 
2080 		      filesz = extract_unsigned_integer (buf_filesz_p, 8,
2081 							 byte_order);
2082 
2083 		      /* PLT2_ASECT is from on-disk file (exec_bfd) while
2084 			 FILESZ is from the in-memory image.  */
2085 		      if (content2)
2086 			filesz += bfd_get_section_size (plt2_asect);
2087 		      else
2088 			filesz -= bfd_get_section_size (plt2_asect);
2089 
2090 		      store_unsigned_integer (buf_filesz_p, 8, byte_order,
2091 					      filesz);
2092 
2093 		      if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2094 			continue;
2095 		    }
2096 
2097 		  ok = 0;
2098 		  break;
2099 		}
2100 	    }
2101 	  else
2102 	    ok = 0;
2103 	}
2104 
2105       xfree (buf);
2106       xfree (buf2);
2107 
2108       if (!ok)
2109 	return 0;
2110     }
2111 
2112   if (info_verbose)
2113     {
2114       /* It can be printed repeatedly as there is no easy way to check
2115 	 the executable symbols/file has been already relocated to
2116 	 displacement.  */
2117 
2118       printf_unfiltered (_("Using PIE (Position Independent Executable) "
2119 			   "displacement %s for \"%s\".\n"),
2120 			 paddress (target_gdbarch (), displacement),
2121 			 bfd_get_filename (exec_bfd));
2122     }
2123 
2124   *displacementp = displacement;
2125   return 1;
2126 }
2127 
2128 /* Relocate the main executable.  This function should be called upon
2129    stopping the inferior process at the entry point to the program.
2130    The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2131    different, the main executable is relocated by the proper amount.  */
2132 
2133 static void
svr4_relocate_main_executable(void)2134 svr4_relocate_main_executable (void)
2135 {
2136   CORE_ADDR displacement;
2137 
2138   /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2139      probably contains the offsets computed using the PIE displacement
2140      from the previous run, which of course are irrelevant for this run.
2141      So we need to determine the new PIE displacement and recompute the
2142      section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2143      already contains pre-computed offsets.
2144 
2145      If we cannot compute the PIE displacement, either:
2146 
2147        - The executable is not PIE.
2148 
2149        - SYMFILE_OBJFILE does not match the executable started in the target.
2150 	 This can happen for main executable symbols loaded at the host while
2151 	 `ld.so --ld-args main-executable' is loaded in the target.
2152 
2153      Then we leave the section offsets untouched and use them as is for
2154      this run.  Either:
2155 
2156        - These section offsets were properly reset earlier, and thus
2157 	 already contain the correct values.  This can happen for instance
2158 	 when reconnecting via the remote protocol to a target that supports
2159 	 the `qOffsets' packet.
2160 
2161        - The section offsets were not reset earlier, and the best we can
2162 	 hope is that the old offsets are still applicable to the new run.  */
2163 
2164   if (! svr4_exec_displacement (&displacement))
2165     return;
2166 
2167   /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2168      addresses.  */
2169 
2170   if (symfile_objfile)
2171     {
2172       struct section_offsets *new_offsets;
2173       int i;
2174 
2175       new_offsets = alloca (symfile_objfile->num_sections
2176 			    * sizeof (*new_offsets));
2177 
2178       for (i = 0; i < symfile_objfile->num_sections; i++)
2179 	new_offsets->offsets[i] = displacement;
2180 
2181       objfile_relocate (symfile_objfile, new_offsets);
2182     }
2183   else if (exec_bfd)
2184     {
2185       asection *asect;
2186 
2187       for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2188 	exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2189 				  (bfd_section_vma (exec_bfd, asect)
2190 				   + displacement));
2191     }
2192 }
2193 
2194 /* Implement the "create_inferior_hook" target_solib_ops method.
2195 
2196    For SVR4 executables, this first instruction is either the first
2197    instruction in the dynamic linker (for dynamically linked
2198    executables) or the instruction at "start" for statically linked
2199    executables.  For dynamically linked executables, the system
2200    first exec's /lib/libc.so.N, which contains the dynamic linker,
2201    and starts it running.  The dynamic linker maps in any needed
2202    shared libraries, maps in the actual user executable, and then
2203    jumps to "start" in the user executable.
2204 
2205    We can arrange to cooperate with the dynamic linker to discover the
2206    names of shared libraries that are dynamically linked, and the base
2207    addresses to which they are linked.
2208 
2209    This function is responsible for discovering those names and
2210    addresses, and saving sufficient information about them to allow
2211    their symbols to be read at a later time.  */
2212 
2213 static void
svr4_solib_create_inferior_hook(int from_tty)2214 svr4_solib_create_inferior_hook (int from_tty)
2215 {
2216   struct svr4_info *info;
2217 
2218   info = get_svr4_info ();
2219 
2220   /* Relocate the main executable if necessary.  */
2221   svr4_relocate_main_executable ();
2222 
2223   /* No point setting a breakpoint in the dynamic linker if we can't
2224      hit it (e.g., a core file, or a trace file).  */
2225   if (!target_has_execution)
2226     return;
2227 
2228   if (!svr4_have_link_map_offsets ())
2229     return;
2230 
2231   if (!enable_break (info, from_tty))
2232     return;
2233 }
2234 
2235 static void
svr4_clear_solib(void)2236 svr4_clear_solib (void)
2237 {
2238   struct svr4_info *info;
2239 
2240   info = get_svr4_info ();
2241   info->debug_base = 0;
2242   info->debug_loader_offset_p = 0;
2243   info->debug_loader_offset = 0;
2244   xfree (info->debug_loader_name);
2245   info->debug_loader_name = NULL;
2246 }
2247 
2248 /* Clear any bits of ADDR that wouldn't fit in a target-format
2249    data pointer.  "Data pointer" here refers to whatever sort of
2250    address the dynamic linker uses to manage its sections.  At the
2251    moment, we don't support shared libraries on any processors where
2252    code and data pointers are different sizes.
2253 
2254    This isn't really the right solution.  What we really need here is
2255    a way to do arithmetic on CORE_ADDR values that respects the
2256    natural pointer/address correspondence.  (For example, on the MIPS,
2257    converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
2258    sign-extend the value.  There, simply truncating the bits above
2259    gdbarch_ptr_bit, as we do below, is no good.)  This should probably
2260    be a new gdbarch method or something.  */
2261 static CORE_ADDR
svr4_truncate_ptr(CORE_ADDR addr)2262 svr4_truncate_ptr (CORE_ADDR addr)
2263 {
2264   if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
2265     /* We don't need to truncate anything, and the bit twiddling below
2266        will fail due to overflow problems.  */
2267     return addr;
2268   else
2269     return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
2270 }
2271 
2272 
2273 static void
svr4_relocate_section_addresses(struct so_list * so,struct target_section * sec)2274 svr4_relocate_section_addresses (struct so_list *so,
2275                                  struct target_section *sec)
2276 {
2277   sec->addr    = svr4_truncate_ptr (sec->addr    + lm_addr_check (so,
2278 								  sec->bfd));
2279   sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so,
2280 								  sec->bfd));
2281 }
2282 
2283 
2284 /* Architecture-specific operations.  */
2285 
2286 /* Per-architecture data key.  */
2287 static struct gdbarch_data *solib_svr4_data;
2288 
2289 struct solib_svr4_ops
2290 {
2291   /* Return a description of the layout of `struct link_map'.  */
2292   struct link_map_offsets *(*fetch_link_map_offsets)(void);
2293 };
2294 
2295 /* Return a default for the architecture-specific operations.  */
2296 
2297 static void *
solib_svr4_init(struct obstack * obstack)2298 solib_svr4_init (struct obstack *obstack)
2299 {
2300   struct solib_svr4_ops *ops;
2301 
2302   ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
2303   ops->fetch_link_map_offsets = NULL;
2304   return ops;
2305 }
2306 
2307 /* Set the architecture-specific `struct link_map_offsets' fetcher for
2308    GDBARCH to FLMO.  Also, install SVR4 solib_ops into GDBARCH.  */
2309 
2310 void
set_solib_svr4_fetch_link_map_offsets(struct gdbarch * gdbarch,struct link_map_offsets * (* flmo)(void))2311 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
2312                                        struct link_map_offsets *(*flmo) (void))
2313 {
2314   struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
2315 
2316   ops->fetch_link_map_offsets = flmo;
2317 
2318   set_solib_ops (gdbarch, &svr4_so_ops);
2319 }
2320 
2321 /* Fetch a link_map_offsets structure using the architecture-specific
2322    `struct link_map_offsets' fetcher.  */
2323 
2324 static struct link_map_offsets *
svr4_fetch_link_map_offsets(void)2325 svr4_fetch_link_map_offsets (void)
2326 {
2327   struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
2328 
2329   gdb_assert (ops->fetch_link_map_offsets);
2330   return ops->fetch_link_map_offsets ();
2331 }
2332 
2333 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise.  */
2334 
2335 static int
svr4_have_link_map_offsets(void)2336 svr4_have_link_map_offsets (void)
2337 {
2338   struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
2339 
2340   return (ops->fetch_link_map_offsets != NULL);
2341 }
2342 
2343 
2344 /* Most OS'es that have SVR4-style ELF dynamic libraries define a
2345    `struct r_debug' and a `struct link_map' that are binary compatible
2346    with the origional SVR4 implementation.  */
2347 
2348 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2349    for an ILP32 SVR4 system.  */
2350 
2351 struct link_map_offsets *
svr4_ilp32_fetch_link_map_offsets(void)2352 svr4_ilp32_fetch_link_map_offsets (void)
2353 {
2354   static struct link_map_offsets lmo;
2355   static struct link_map_offsets *lmp = NULL;
2356 
2357   if (lmp == NULL)
2358     {
2359       lmp = &lmo;
2360 
2361       lmo.r_version_offset = 0;
2362       lmo.r_version_size = 4;
2363       lmo.r_map_offset = 4;
2364       lmo.r_brk_offset = 8;
2365       lmo.r_ldsomap_offset = 20;
2366 
2367       /* Everything we need is in the first 20 bytes.  */
2368       lmo.link_map_size = 20;
2369       lmo.l_addr_offset = 0;
2370       lmo.l_name_offset = 4;
2371       lmo.l_ld_offset = 8;
2372       lmo.l_next_offset = 12;
2373       lmo.l_prev_offset = 16;
2374     }
2375 
2376   return lmp;
2377 }
2378 
2379 /* Fetch (and possibly build) an appropriate `struct link_map_offsets'
2380    for an LP64 SVR4 system.  */
2381 
2382 struct link_map_offsets *
svr4_lp64_fetch_link_map_offsets(void)2383 svr4_lp64_fetch_link_map_offsets (void)
2384 {
2385   static struct link_map_offsets lmo;
2386   static struct link_map_offsets *lmp = NULL;
2387 
2388   if (lmp == NULL)
2389     {
2390       lmp = &lmo;
2391 
2392       lmo.r_version_offset = 0;
2393       lmo.r_version_size = 4;
2394       lmo.r_map_offset = 8;
2395       lmo.r_brk_offset = 16;
2396       lmo.r_ldsomap_offset = 40;
2397 
2398       /* Everything we need is in the first 40 bytes.  */
2399       lmo.link_map_size = 40;
2400       lmo.l_addr_offset = 0;
2401       lmo.l_name_offset = 8;
2402       lmo.l_ld_offset = 16;
2403       lmo.l_next_offset = 24;
2404       lmo.l_prev_offset = 32;
2405     }
2406 
2407   return lmp;
2408 }
2409 
2410 
2411 struct target_so_ops svr4_so_ops;
2412 
2413 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic.  Those DSOs have a
2414    different rule for symbol lookup.  The lookup begins here in the DSO, not in
2415    the main executable.  */
2416 
2417 static struct symbol *
elf_lookup_lib_symbol(const struct objfile * objfile,const char * name,const domain_enum domain)2418 elf_lookup_lib_symbol (const struct objfile *objfile,
2419 		       const char *name,
2420 		       const domain_enum domain)
2421 {
2422   bfd *abfd;
2423 
2424   if (objfile == symfile_objfile)
2425     abfd = exec_bfd;
2426   else
2427     {
2428       /* OBJFILE should have been passed as the non-debug one.  */
2429       gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
2430 
2431       abfd = objfile->obfd;
2432     }
2433 
2434   if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
2435     return NULL;
2436 
2437   return lookup_global_symbol_from_objfile (objfile, name, domain);
2438 }
2439 
2440 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
2441 
2442 void
_initialize_svr4_solib(void)2443 _initialize_svr4_solib (void)
2444 {
2445   solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
2446   solib_svr4_pspace_data
2447     = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
2448 
2449   svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
2450   svr4_so_ops.free_so = svr4_free_so;
2451   svr4_so_ops.clear_solib = svr4_clear_solib;
2452   svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
2453   svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
2454   svr4_so_ops.current_sos = svr4_current_sos;
2455   svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
2456   svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
2457   svr4_so_ops.bfd_open = solib_bfd_open;
2458   svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
2459   svr4_so_ops.same = svr4_same;
2460   svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
2461 }
2462