xref: /dragonfly/sys/bus/cam/cam_periph.c (revision 62dc643e)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.70 2008/02/12 11:07:33 raj Exp $
30  */
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/devicestat.h>
41 #include <sys/bus.h>
42 #include <vm/vm.h>
43 #include <vm/vm_extern.h>
44 
45 #include <sys/thread2.h>
46 
47 #include "cam.h"
48 #include "cam_ccb.h"
49 #include "cam_xpt_periph.h"
50 #include "cam_periph.h"
51 #include "cam_debug.h"
52 #include "cam_sim.h"
53 
54 #include <bus/cam/scsi/scsi_all.h>
55 #include <bus/cam/scsi/scsi_message.h>
56 #include <bus/cam/scsi/scsi_pass.h>
57 
58 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
59 					  u_int newunit, int wired,
60 					  path_id_t pathid, target_id_t target,
61 					  lun_id_t lun);
62 static	u_int		camperiphunit(struct periph_driver *p_drv,
63 				      struct cam_sim *sim, path_id_t pathid,
64 				      target_id_t target, lun_id_t lun);
65 static	void		camperiphdone(struct cam_periph *periph,
66 					union ccb *done_ccb);
67 static  void		camperiphfree(struct cam_periph *periph);
68 static int		camperiphscsistatuserror(union ccb *ccb,
69 						 cam_flags camflags,
70 						 u_int32_t sense_flags,
71 						 union ccb *save_ccb,
72 						 int *openings,
73 						 u_int32_t *relsim_flags,
74 						 u_int32_t *timeout);
75 static	int		camperiphscsisenseerror(union ccb *ccb,
76 					        cam_flags camflags,
77 					        u_int32_t sense_flags,
78 					        union ccb *save_ccb,
79 					        int *openings,
80 					        u_int32_t *relsim_flags,
81 					        u_int32_t *timeout);
82 static void cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
83 				 u_int8_t ***data_ptrs, int numbufs);
84 
85 static int nperiph_drivers;
86 struct periph_driver **periph_drivers;
87 
88 MALLOC_DEFINE(M_CAMPERIPH, "CAM periph", "CAM peripheral buffers");
89 
90 static int periph_selto_delay = 1000;
91 TUNABLE_INT("kern.cam.periph_selto_delay", &periph_selto_delay);
92 static int periph_noresrc_delay = 500;
93 TUNABLE_INT("kern.cam.periph_noresrc_delay", &periph_noresrc_delay);
94 static int periph_busy_delay = 500;
95 TUNABLE_INT("kern.cam.periph_busy_delay", &periph_busy_delay);
96 
97 
98 void
99 periphdriver_register(void *data)
100 {
101 	struct periph_driver **newdrivers, **old;
102 	int ndrivers;
103 
104 	ndrivers = nperiph_drivers + 2;
105 	newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_CAMPERIPH,
106 			     M_WAITOK);
107 	if (periph_drivers)
108 		bcopy(periph_drivers, newdrivers,
109 		      sizeof(*newdrivers) * nperiph_drivers);
110 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
111 	newdrivers[nperiph_drivers + 1] = NULL;
112 	old = periph_drivers;
113 	periph_drivers = newdrivers;
114 	if (old)
115 		kfree(old, M_CAMPERIPH);
116 	nperiph_drivers++;
117 }
118 
119 cam_status
120 cam_periph_alloc(periph_ctor_t *periph_ctor,
121 		 periph_oninv_t *periph_oninvalidate,
122 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
123 		 char *name, cam_periph_type type, struct cam_path *path,
124 		 ac_callback_t *ac_callback, ac_code code, void *arg)
125 {
126 	struct		periph_driver **p_drv;
127 	struct		cam_sim *sim;
128 	struct		cam_periph *periph;
129 	struct		cam_periph *cur_periph;
130 	path_id_t	path_id;
131 	target_id_t	target_id;
132 	lun_id_t	lun_id;
133 	cam_status	status;
134 	u_int		init_level;
135 
136 	init_level = 0;
137 	/*
138 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
139 	 * of our type assigned to this path, we are likely waiting for
140 	 * final close on an old, invalidated, peripheral.  If this is
141 	 * the case, queue up a deferred call to the peripheral's async
142 	 * handler.  If it looks like a mistaken re-allocation, complain.
143 	 */
144 	if ((periph = cam_periph_find(path, name)) != NULL) {
145 
146 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
147 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
148 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
149 			periph->deferred_callback = ac_callback;
150 			periph->deferred_ac = code;
151 			return (CAM_REQ_INPROG);
152 		} else {
153 			kprintf("cam_periph_alloc: attempt to re-allocate "
154 			       "valid device %s%d rejected\n",
155 			       periph->periph_name, periph->unit_number);
156 		}
157 		return (CAM_REQ_INVALID);
158 	}
159 
160 	periph = kmalloc(sizeof(*periph), M_CAMPERIPH, M_INTWAIT | M_ZERO);
161 
162 	init_level++;	/* 1 */
163 
164 	xpt_lock_buses();
165 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
166 		if (strcmp((*p_drv)->driver_name, name) == 0)
167 			break;
168 	}
169 	xpt_unlock_buses();
170 
171 	sim = xpt_path_sim(path);
172 	CAM_SIM_LOCK(sim);
173 	path_id = xpt_path_path_id(path);
174 	target_id = xpt_path_target_id(path);
175 	lun_id = xpt_path_lun_id(path);
176 	cam_init_pinfo(&periph->pinfo);
177 	periph->periph_start = periph_start;
178 	periph->periph_dtor = periph_dtor;
179 	periph->periph_oninval = periph_oninvalidate;
180 	periph->type = type;
181 	periph->periph_name = name;
182 	periph->unit_number = camperiphunit(*p_drv, sim, path_id,
183 					    target_id, lun_id);
184 	periph->immediate_priority = CAM_PRIORITY_NONE;
185 	periph->refcount = 0;
186 	periph->sim = sim;
187 	SLIST_INIT(&periph->ccb_list);
188 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
189 	if (status != CAM_REQ_CMP)
190 		goto failure;
191 
192 	init_level++;	/* 2 */
193 
194 	periph->path = path;
195 	status = xpt_add_periph(periph);
196 
197 	if (status != CAM_REQ_CMP)
198 		goto failure;
199 
200 	xpt_lock_buses();
201 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
202 	while (cur_periph != NULL
203 	    && cur_periph->unit_number < periph->unit_number)
204 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
205 
206 	if (cur_periph != NULL)
207 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
208 	else {
209 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
210 		(*p_drv)->generation++;
211 	}
212 	xpt_unlock_buses();
213 
214 	init_level++;
215 
216 	status = periph_ctor(periph, arg);
217 
218 	if (status == CAM_REQ_CMP)
219 		init_level++;
220 
221 failure:
222 	switch (init_level) {
223 	case 4:
224 		/* Initialized successfully */
225 		CAM_SIM_UNLOCK(sim);
226 		break;
227 	case 3:
228 		xpt_lock_buses();
229 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
230 		xpt_unlock_buses();
231 		xpt_remove_periph(periph);
232 		/* FALLTHROUGH */
233 	case 2:
234 		periph->path = NULL;
235 		/* FALLTHROUGH */
236 	case 1:
237 		CAM_SIM_UNLOCK(sim);	/* sim was retrieved from path */
238 		xpt_free_path(path);
239 		kfree(periph, M_CAMPERIPH);
240 		/* FALLTHROUGH */
241 	case 0:
242 		/* No cleanup to perform. */
243 		break;
244 	default:
245 		panic("cam_periph_alloc: Unknown init level");
246 	}
247 	return(status);
248 }
249 
250 /*
251  * Find a peripheral structure with the specified path, target, lun,
252  * and (optionally) type.  If the name is NULL, this function will return
253  * the first peripheral driver that matches the specified path.
254  */
255 struct cam_periph *
256 cam_periph_find(struct cam_path *path, char *name)
257 {
258 	struct periph_driver **p_drv;
259 	struct cam_periph *periph;
260 
261 	xpt_lock_buses();
262 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
263 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
264 			continue;
265 
266 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
267 			if (xpt_path_comp(periph->path, path) == 0) {
268 				xpt_unlock_buses();
269 				return(periph);
270 			}
271 		}
272 		if (name != NULL) {
273 			xpt_unlock_buses();
274 			return(NULL);
275 		}
276 	}
277 	xpt_unlock_buses();
278 	return(NULL);
279 }
280 
281 cam_status
282 cam_periph_acquire(struct cam_periph *periph)
283 {
284 	if (periph == NULL)
285 		return(CAM_REQ_CMP_ERR);
286 
287 	xpt_lock_buses();
288 	periph->refcount++;
289 	xpt_unlock_buses();
290 
291 	return(CAM_REQ_CMP);
292 }
293 
294 /*
295  * Release the peripheral.  The XPT is not locked and the SIM may or may
296  * not be locked on entry.
297  *
298  * The last release on a peripheral marked invalid frees it.  In this
299  * case we must be sure to hold both the XPT lock and the SIM lock,
300  * requiring a bit of fancy footwork if the SIM lock already happens
301  * to be held.
302  */
303 void
304 cam_periph_release(struct cam_periph *periph)
305 {
306 	struct cam_sim *sim;
307 	int doun;
308 
309 	while (periph) {
310 		/*
311 		 * First try the critical path case
312 		 */
313 		sim = periph->sim;
314 		xpt_lock_buses();
315 		if ((periph->flags & CAM_PERIPH_INVALID) == 0 ||
316 		    periph->refcount != 1) {
317 			--periph->refcount;
318 			xpt_unlock_buses();
319 			break;
320 		}
321 
322 		/*
323 		 * Otherwise we also need to free the peripheral and must
324 		 * acquire the sim lock and xpt lock in the correct order
325 		 * to do so.
326 		 *
327 		 * The condition must be re-checked after the locks have
328 		 * been reacquired.
329 		 */
330 		xpt_unlock_buses();
331 		doun = CAM_SIM_COND_LOCK(sim);
332 		xpt_lock_buses();
333 		--periph->refcount;
334 		if ((periph->flags & CAM_PERIPH_INVALID) &&
335 		    periph->refcount == 0) {
336 			camperiphfree(periph);
337 		}
338 		xpt_unlock_buses();
339 		CAM_SIM_COND_UNLOCK(sim, doun);
340 		break;
341 	}
342 }
343 
344 int
345 cam_periph_hold(struct cam_periph *periph, int flags)
346 {
347 	int error;
348 
349 	sim_lock_assert_owned(periph->sim->lock);
350 
351 	/*
352 	 * Increment the reference count on the peripheral
353 	 * while we wait for our lock attempt to succeed
354 	 * to ensure the peripheral doesn't disappear out
355 	 * from user us while we sleep.
356 	 */
357 
358 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
359 		return (ENXIO);
360 
361 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
362 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
363 		if ((error = sim_lock_sleep(periph, flags, "caplck", 0,
364 					    periph->sim->lock)) != 0) {
365 			cam_periph_release(periph);
366 			return (error);
367 		}
368 	}
369 
370 	periph->flags |= CAM_PERIPH_LOCKED;
371 	return (0);
372 }
373 
374 void
375 cam_periph_unhold(struct cam_periph *periph, int unlock)
376 {
377 	struct cam_sim *sim;
378 
379 	sim_lock_assert_owned(periph->sim->lock);
380 	periph->flags &= ~CAM_PERIPH_LOCKED;
381 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
382 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
383 		wakeup(periph);
384 	}
385 	if (unlock) {
386 		sim = periph->sim;
387 		cam_periph_release(periph);
388 		/* periph may be garbage now */
389 		CAM_SIM_UNLOCK(sim);
390 	} else {
391 		cam_periph_release(periph);
392 	}
393 }
394 
395 /*
396  * Look for the next unit number that is not currently in use for this
397  * peripheral type starting at "newunit".  Also exclude unit numbers that
398  * are reserved by for future "hardwiring" unless we already know that this
399  * is a potential wired device.  Only assume that the device is "wired" the
400  * first time through the loop since after that we'll be looking at unit
401  * numbers that did not match a wiring entry.
402  */
403 static u_int
404 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
405 		  path_id_t pathid, target_id_t target, lun_id_t lun)
406 {
407 	struct	cam_periph *periph;
408 	char	*periph_name;
409 	int	i, val, dunit;
410 	const char *dname, *strval;
411 
412 	periph_name = p_drv->driver_name;
413 	for (;;newunit++) {
414 
415 		for (periph = TAILQ_FIRST(&p_drv->units);
416 		     periph != NULL && periph->unit_number != newunit;
417 		     periph = TAILQ_NEXT(periph, unit_links))
418 			;
419 
420 		if (periph != NULL && periph->unit_number == newunit) {
421 			if (wired != 0) {
422 				xpt_print(periph->path, "Duplicate Wired "
423 				    "Device entry!\n");
424 				xpt_print(periph->path, "Second device (%s "
425 				    "device at scbus%d target %d lun %d) will "
426 				    "not be wired\n", periph_name, pathid,
427 				    target, lun);
428 				wired = 0;
429 			}
430 			continue;
431 		}
432 		if (wired)
433 			break;
434 
435 		/*
436 		 * Don't match entries like "da 4" as a wired down
437 		 * device, but do match entries like "da 4 target 5"
438 		 * or even "da 4 scbus 1".
439 		 */
440 		i = -1;
441 		while ((i = resource_locate(i, periph_name)) != -1) {
442 			dname = resource_query_name(i);
443 			dunit = resource_query_unit(i);
444 			/* if no "target" and no specific scbus, skip */
445 			if (resource_int_value(dname, dunit, "target", &val) &&
446 			    (resource_string_value(dname, dunit, "at",&strval)||
447 			     strcmp(strval, "scbus") == 0))
448 				continue;
449 			if (newunit == dunit)
450 				break;
451 		}
452 		if (i == -1)
453 			break;
454 	}
455 	return (newunit);
456 }
457 
458 static u_int
459 camperiphunit(struct periph_driver *p_drv,
460 	      struct cam_sim *sim, path_id_t pathid,
461 	      target_id_t target, lun_id_t lun)
462 {
463 	u_int	unit;
464 	int	hit, i, val, dunit;
465 	const char *dname, *strval;
466 	char	pathbuf[32], *periph_name;
467 
468 	unit = 0;
469 
470 	periph_name = p_drv->driver_name;
471 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
472 	i = -1;
473 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
474 		dname = resource_query_name(i);
475 		dunit = resource_query_unit(i);
476 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
477 			if (strcmp(strval, pathbuf) != 0)
478 				continue;
479 			hit++;
480 		}
481 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
482 			if (val != target)
483 				continue;
484 			hit++;
485 		}
486 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
487 			if (val != lun)
488 				continue;
489 			hit++;
490 		}
491 		if (hit != 0) {
492 			unit = dunit;
493 			break;
494 		}
495 	}
496 
497 	/*
498 	 * If no wired units are in the kernel config do an auto unit
499 	 * start selection.  We want usb mass storage out of the way
500 	 * so it doesn't steal low numbered da%d slots from ahci, sili,
501 	 * or other scsi attachments.
502 	 */
503 	if (hit == 0 && sim) {
504 		if (strncmp(sim->sim_name, "umass", 4) == 0 && unit < 8)
505 			unit = 8;
506 	}
507 
508 	/*
509 	 * Either start from 0 looking for the next unit or from
510 	 * the unit number given in the resource config.  This way,
511 	 * if we have wildcard matches, we don't return the same
512 	 * unit number twice.
513 	 */
514 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
515 				 target, lun);
516 
517 	return (unit);
518 }
519 
520 void
521 cam_periph_invalidate(struct cam_periph *periph)
522 {
523 	/*
524 	 * We only call this routine the first time a peripheral is
525 	 * invalidated.
526 	 */
527 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
528 	 && (periph->periph_oninval != NULL))
529 		periph->periph_oninval(periph);
530 
531 	periph->flags |= CAM_PERIPH_INVALID;
532 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
533 
534 	xpt_lock_buses();
535 	if (periph->refcount == 0)
536 		camperiphfree(periph);
537 	else if (periph->refcount < 0)
538 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
539 	xpt_unlock_buses();
540 }
541 
542 static void
543 camperiphfree(struct cam_periph *periph)
544 {
545 	struct periph_driver **p_drv;
546 
547 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
548 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
549 			break;
550 	}
551 
552 	if (*p_drv == NULL) {
553 		kprintf("camperiphfree: attempt to free non-existent periph\n");
554 		return;
555 	}
556 
557 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
558 	(*p_drv)->generation++;
559 	xpt_unlock_buses();
560 
561 	if (periph->periph_dtor != NULL)
562 		periph->periph_dtor(periph);
563 	xpt_remove_periph(periph);
564 
565 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
566 		union ccb ccb;
567 		void *arg;
568 
569 		switch (periph->deferred_ac) {
570 		case AC_FOUND_DEVICE:
571 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
572 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
573 			xpt_action(&ccb);
574 			arg = &ccb;
575 			break;
576 		case AC_PATH_REGISTERED:
577 			ccb.ccb_h.func_code = XPT_PATH_INQ;
578 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
579 			xpt_action(&ccb);
580 			arg = &ccb;
581 			break;
582 		default:
583 			arg = NULL;
584 			break;
585 		}
586 		periph->deferred_callback(NULL, periph->deferred_ac,
587 					  periph->path, arg);
588 	}
589 	xpt_free_path(periph->path);
590 	kfree(periph, M_CAMPERIPH);
591 	xpt_lock_buses();
592 }
593 
594 /*
595  * We don't map user pointers into KVM, instead we use pbufs.
596  *
597  * This won't work on physical pointers(?OLD), for now it's
598  * up to the caller to check for that.  (XXX KDM -- should we do that here
599  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
600  * buffers to map stuff in and out, we're limited to the buffer size.
601  */
602 int
603 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
604 {
605 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
606 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
607 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
608 	int numbufs;
609 	int error;
610 	int i;
611 	struct buf *bp;
612 
613 	switch(ccb->ccb_h.func_code) {
614 	case XPT_DEV_MATCH:
615 		if (ccb->cdm.match_buf_len == 0) {
616 			kprintf("cam_periph_mapmem: invalid match buffer "
617 			       "length 0\n");
618 			return(EINVAL);
619 		}
620 		if (ccb->cdm.pattern_buf_len > 0) {
621 			data_ptrs[0] = (void *)&ccb->cdm.patterns;
622 			lengths[0] = ccb->cdm.pattern_buf_len;
623 			mapinfo->dirs[0] = CAM_DIR_OUT;
624 			data_ptrs[1] = (void *)&ccb->cdm.matches;
625 			lengths[1] = ccb->cdm.match_buf_len;
626 			mapinfo->dirs[1] = CAM_DIR_IN;
627 			numbufs = 2;
628 		} else {
629 			data_ptrs[0] = (void *)&ccb->cdm.matches;
630 			lengths[0] = ccb->cdm.match_buf_len;
631 			mapinfo->dirs[0] = CAM_DIR_IN;
632 			numbufs = 1;
633 		}
634 		break;
635 	case XPT_SCSI_IO:
636 	case XPT_CONT_TARGET_IO:
637 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
638 			return(0);
639 
640 		data_ptrs[0] = &ccb->csio.data_ptr;
641 		lengths[0] = ccb->csio.dxfer_len;
642 		mapinfo->dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
643 		numbufs = 1;
644 		break;
645 	default:
646 		return(EINVAL);
647 		break; /* NOTREACHED */
648 	}
649 
650 	/*
651 	 * Check the transfer length and permissions first, so we don't
652 	 * have to unmap any previously mapped buffers.
653 	 */
654 	for (i = 0; i < numbufs; i++) {
655 		/*
656 		 * Its kinda bogus, we need a R+W command.  For now the
657 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
658 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
659 		 */
660 		cmd[i] = BUF_CMD_WRITE;
661 
662 		if (lengths[i] > MAXPHYS) {
663 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
664 			       "which is greater than MAXPHYS(%d)\n",
665 			       (long)(lengths[i] +
666 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
667 			       MAXPHYS);
668 			return(E2BIG);
669 		}
670 
671 		if (mapinfo->dirs[i] & CAM_DIR_OUT) {
672 			if (!useracc(*data_ptrs[i], lengths[i],
673 				     VM_PROT_READ)) {
674 				kprintf("cam_periph_mapmem: error, "
675 					"address %p, length %lu isn't "
676 					"user accessible for READ\n",
677 					(void *)*data_ptrs[i],
678 					(u_long)lengths[i]);
679 				return(EACCES);
680 			}
681 		}
682 
683 		if (mapinfo->dirs[i] & CAM_DIR_IN) {
684 			cmd[i] = BUF_CMD_READ;
685 			if (!useracc(*data_ptrs[i], lengths[i],
686 				     VM_PROT_WRITE)) {
687 				kprintf("cam_periph_mapmem: error, "
688 					"address %p, length %lu isn't "
689 					"user accessible for WRITE\n",
690 					(void *)*data_ptrs[i],
691 					(u_long)lengths[i]);
692 
693 				return(EACCES);
694 			}
695 		}
696 
697 	}
698 
699 	for (i = 0; i < numbufs; i++) {
700 		/*
701 		 * Get the buffer.
702 		 */
703 		bp = getpbuf_kva(NULL);
704 
705 		/* save the original user pointer */
706 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
707 
708 		/* set the flags */
709 		bp->b_cmd = cmd[i];
710 
711 		/*
712 		 * Always bounce the I/O through kernel memory.
713 		 */
714 		bp->b_data = bp->b_kvabase;
715 		bp->b_bcount = lengths[i];
716 		vm_hold_load_pages(bp, (vm_offset_t)bp->b_data,
717 				   (vm_offset_t)bp->b_data + bp->b_bcount);
718 		if (mapinfo->dirs[i] & CAM_DIR_OUT) {
719 			error = copyin(*data_ptrs[i], bp->b_data, bp->b_bcount);
720 			if (error) {
721 				vm_hold_free_pages(bp,
722 						   (vm_offset_t)bp->b_data,
723 						   (vm_offset_t)bp->b_data +
724 						    bp->b_bcount);
725 			}
726 		} else {
727 			error = 0;
728 		}
729 		if (error) {
730 			relpbuf(bp, NULL);
731 			cam_periph_unmapbufs(mapinfo, data_ptrs, i);
732 			mapinfo->num_bufs_used -= i;
733 			return(error);
734 		}
735 
736 		/* set our pointer to the new mapped area */
737 		*data_ptrs[i] = bp->b_data;
738 
739 		mapinfo->bp[i] = bp;
740 		mapinfo->num_bufs_used++;
741 	}
742 
743 	return(0);
744 }
745 
746 /*
747  * Unmap memory segments mapped into kernel virtual address space by
748  * cam_periph_mapmem().
749  */
750 void
751 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
752 {
753 	int numbufs;
754 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
755 
756 	if (mapinfo->num_bufs_used <= 0) {
757 		/* allow ourselves to be swapped once again */
758 		return;
759 	}
760 
761 	switch (ccb->ccb_h.func_code) {
762 	case XPT_DEV_MATCH:
763 		numbufs = min(mapinfo->num_bufs_used, 2);
764 
765 		if (numbufs == 1) {
766 			data_ptrs[0] = (void *)&ccb->cdm.matches;
767 		} else {
768 			data_ptrs[0] = (void *)&ccb->cdm.patterns;
769 			data_ptrs[1] = (void *)&ccb->cdm.matches;
770 		}
771 		break;
772 	case XPT_SCSI_IO:
773 	case XPT_CONT_TARGET_IO:
774 		data_ptrs[0] = &ccb->csio.data_ptr;
775 		numbufs = min(mapinfo->num_bufs_used, 1);
776 		break;
777 	default:
778 		/* allow ourselves to be swapped once again */
779 		return;
780 		break; /* NOTREACHED */
781 	}
782 	cam_periph_unmapbufs(mapinfo, data_ptrs, numbufs);
783 }
784 
785 static void
786 cam_periph_unmapbufs(struct cam_periph_map_info *mapinfo,
787 		     u_int8_t ***data_ptrs, int numbufs)
788 {
789 	struct buf *bp;
790 	int i;
791 
792 	for (i = 0; i < numbufs; i++) {
793 		bp = mapinfo->bp[i];
794 
795 		/* Set the user's pointer back to the original value */
796 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
797 
798 		if (mapinfo->dirs[i] & CAM_DIR_IN) {
799 			/* XXX return error */
800 			copyout(bp->b_data, *data_ptrs[i], bp->b_bcount);
801 		}
802 		vm_hold_free_pages(bp, (vm_offset_t)bp->b_data,
803 				   (vm_offset_t)bp->b_data + bp->b_bcount);
804 		relpbuf(bp, NULL);
805 		mapinfo->bp[i] = NULL;
806 	}
807 }
808 
809 union ccb *
810 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
811 {
812 	struct ccb_hdr *ccb_h;
813 
814 	sim_lock_assert_owned(periph->sim->lock);
815 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
816 
817 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
818 		if (periph->immediate_priority > priority)
819 			periph->immediate_priority = priority;
820 		xpt_schedule(periph, priority);
821 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
822 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
823 			break;
824 		sim_lock_sleep(&periph->ccb_list, 0, "cgticb", 0,
825 			       periph->sim->lock);
826 	}
827 
828 	ccb_h = SLIST_FIRST(&periph->ccb_list);
829 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
830 	return ((union ccb *)ccb_h);
831 }
832 
833 void
834 cam_periph_ccbwait(union ccb *ccb)
835 {
836 	struct cam_sim *sim;
837 
838 	sim = xpt_path_sim(ccb->ccb_h.path);
839 	while ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
840 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)) {
841 		sim_lock_sleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0, sim->lock);
842 	}
843 }
844 
845 int
846 cam_periph_ioctl(struct cam_periph *periph, u_long cmd, caddr_t addr,
847 		 int (*error_routine)(union ccb *ccb,
848 				      cam_flags camflags,
849 				      u_int32_t sense_flags))
850 {
851 	union ccb 	     *ccb;
852 	int 		     error;
853 	int		     found;
854 
855 	error = found = 0;
856 
857 	switch(cmd){
858 	case CAMGETPASSTHRU:
859 		ccb = cam_periph_getccb(periph, /* priority */ 1);
860 		xpt_setup_ccb(&ccb->ccb_h,
861 			      ccb->ccb_h.path,
862 			      /*priority*/1);
863 		ccb->ccb_h.func_code = XPT_GDEVLIST;
864 
865 		/*
866 		 * Basically, the point of this is that we go through
867 		 * getting the list of devices, until we find a passthrough
868 		 * device.  In the current version of the CAM code, the
869 		 * only way to determine what type of device we're dealing
870 		 * with is by its name.
871 		 */
872 		while (found == 0) {
873 			ccb->cgdl.index = 0;
874 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
875 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
876 
877 				/* we want the next device in the list */
878 				xpt_action(ccb);
879 				if (strncmp(ccb->cgdl.periph_name,
880 				    "pass", 4) == 0){
881 					found = 1;
882 					break;
883 				}
884 			}
885 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
886 			    (found == 0)) {
887 				ccb->cgdl.periph_name[0] = '\0';
888 				ccb->cgdl.unit_number = 0;
889 				break;
890 			}
891 		}
892 
893 		/* copy the result back out */
894 		bcopy(ccb, addr, sizeof(union ccb));
895 
896 		/* and release the ccb */
897 		xpt_release_ccb(ccb);
898 
899 		break;
900 	default:
901 		error = ENOTTY;
902 		break;
903 	}
904 	return(error);
905 }
906 
907 int
908 cam_periph_runccb(union ccb *ccb,
909 		  int (*error_routine)(union ccb *ccb,
910 				       cam_flags camflags,
911 				       u_int32_t sense_flags),
912 		  cam_flags camflags, u_int32_t sense_flags,
913 		  struct devstat *ds)
914 {
915 	struct cam_sim *sim;
916 	int error;
917 
918 	error = 0;
919 	sim = xpt_path_sim(ccb->ccb_h.path);
920 	sim_lock_assert_owned(sim->lock);
921 
922 	/*
923 	 * If the user has supplied a stats structure, and if we understand
924 	 * this particular type of ccb, record the transaction start.
925 	 */
926 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
927 		devstat_start_transaction(ds);
928 
929 	xpt_action(ccb);
930 
931 	do {
932 		cam_periph_ccbwait(ccb);
933 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
934 			error = 0;
935 		else if (error_routine != NULL)
936 			error = (*error_routine)(ccb, camflags, sense_flags);
937 		else
938 			error = 0;
939 
940 	} while (error == ERESTART);
941 
942 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
943 		cam_release_devq(ccb->ccb_h.path,
944 				 /* relsim_flags */0,
945 				 /* openings */0,
946 				 /* timeout */0,
947 				 /* getcount_only */ FALSE);
948 
949 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
950 		devstat_end_transaction(ds,
951 					ccb->csio.dxfer_len,
952 					ccb->csio.tag_action & 0xf,
953 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
954 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
955 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
956 					DEVSTAT_WRITE :
957 					DEVSTAT_READ);
958 
959 	return(error);
960 }
961 
962 void
963 cam_freeze_devq(struct cam_path *path)
964 {
965 	struct ccb_hdr ccb_h;
966 
967 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
968 	ccb_h.func_code = XPT_NOOP;
969 	ccb_h.flags = CAM_DEV_QFREEZE;
970 	xpt_action((union ccb *)&ccb_h);
971 }
972 
973 u_int32_t
974 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
975 		 u_int32_t openings, u_int32_t timeout,
976 		 int getcount_only)
977 {
978 	struct ccb_relsim crs;
979 
980 	xpt_setup_ccb(&crs.ccb_h, path,
981 		      /*priority*/1);
982 	crs.ccb_h.func_code = XPT_REL_SIMQ;
983 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
984 	crs.release_flags = relsim_flags;
985 	crs.openings = openings;
986 	crs.release_timeout = timeout;
987 	xpt_action((union ccb *)&crs);
988 	return (crs.qfrozen_cnt);
989 }
990 
991 #define saved_ccb_ptr ppriv_ptr0
992 static void
993 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
994 {
995 	union ccb      *saved_ccb;
996 	cam_status	status;
997 	int		frozen;
998 	int		sense;
999 	struct scsi_start_stop_unit *scsi_cmd;
1000 	u_int32_t	relsim_flags, timeout;
1001 	u_int32_t	qfrozen_cnt;
1002 	int		xpt_done_ccb;
1003 
1004 	xpt_done_ccb = FALSE;
1005 	status = done_ccb->ccb_h.status;
1006 	frozen = (status & CAM_DEV_QFRZN) != 0;
1007 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
1008 	status &= CAM_STATUS_MASK;
1009 
1010 	timeout = 0;
1011 	relsim_flags = 0;
1012 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
1013 
1014 	/*
1015 	 * Unfreeze the queue once if it is already frozen..
1016 	 */
1017 	if (frozen != 0) {
1018 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1019 					      /*relsim_flags*/0,
1020 					      /*openings*/0,
1021 					      /*timeout*/0,
1022 					      /*getcount_only*/0);
1023 	}
1024 
1025 	switch (status) {
1026 	case CAM_REQ_CMP:
1027 	{
1028 		/*
1029 		 * If we have successfully taken a device from the not
1030 		 * ready to ready state, re-scan the device and re-get
1031 		 * the inquiry information.  Many devices (mostly disks)
1032 		 * don't properly report their inquiry information unless
1033 		 * they are spun up.
1034 		 *
1035 		 * If we manually retrieved sense into a CCB and got
1036 		 * something other than "NO SENSE" send the updated CCB
1037 		 * back to the client via xpt_done() to be processed via
1038 		 * the error recovery code again.
1039 		 */
1040 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
1041 			scsi_cmd = (struct scsi_start_stop_unit *)
1042 					&done_ccb->csio.cdb_io.cdb_bytes;
1043 
1044 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
1045 				xpt_async(AC_INQ_CHANGED,
1046 					  done_ccb->ccb_h.path, NULL);
1047 			if (scsi_cmd->opcode == REQUEST_SENSE) {
1048 				u_int sense_key;
1049 
1050 				sense_key = saved_ccb->csio.sense_data.flags;
1051 				sense_key &= SSD_KEY;
1052 				if (sense_key != SSD_KEY_NO_SENSE) {
1053 					saved_ccb->ccb_h.status |=
1054 					    CAM_AUTOSNS_VALID;
1055 #if 0
1056 					xpt_print(saved_ccb->ccb_h.path,
1057 					    "Recovered Sense\n");
1058 					scsi_sense_print(&saved_ccb->csio);
1059 					cam_error_print(saved_ccb, CAM_ESF_ALL,
1060 							CAM_EPF_ALL);
1061 #endif
1062 					xpt_done_ccb = TRUE;
1063 				}
1064 			}
1065 		}
1066 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1067 		      sizeof(union ccb));
1068 
1069 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1070 
1071 		if (xpt_done_ccb == FALSE)
1072 			xpt_action(done_ccb);
1073 
1074 		break;
1075 	}
1076 	case CAM_SCSI_STATUS_ERROR:
1077 		scsi_cmd = (struct scsi_start_stop_unit *)
1078 				&done_ccb->csio.cdb_io.cdb_bytes;
1079 		if (sense != 0) {
1080 			struct ccb_getdev cgd;
1081 			struct scsi_sense_data *sense;
1082 			int    error_code, sense_key, asc, ascq;
1083 			scsi_sense_action err_action;
1084 
1085 			sense = &done_ccb->csio.sense_data;
1086 			scsi_extract_sense(sense, &error_code,
1087 					   &sense_key, &asc, &ascq);
1088 
1089 			/*
1090 			 * Grab the inquiry data for this device.
1091 			 */
1092 			xpt_setup_ccb(&cgd.ccb_h, done_ccb->ccb_h.path,
1093 				      /*priority*/ 1);
1094 			cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1095 			xpt_action((union ccb *)&cgd);
1096 			err_action = scsi_error_action(&done_ccb->csio,
1097 						       &cgd.inq_data, 0);
1098 
1099 			/*
1100 	 		 * If the error is "invalid field in CDB",
1101 			 * and the load/eject flag is set, turn the
1102 			 * flag off and try again.  This is just in
1103 			 * case the drive in question barfs on the
1104 			 * load eject flag.  The CAM code should set
1105 			 * the load/eject flag by default for
1106 			 * removable media.
1107 			 */
1108 
1109 			/* XXX KDM
1110 			 * Should we check to see what the specific
1111 			 * scsi status is??  Or does it not matter
1112 			 * since we already know that there was an
1113 			 * error, and we know what the specific
1114 			 * error code was, and we know what the
1115 			 * opcode is..
1116 			 */
1117 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1118 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1119 			     (asc == 0x24) && (ascq == 0x00) &&
1120 			     (done_ccb->ccb_h.retry_count > 0)) {
1121 
1122 				scsi_cmd->how &= ~SSS_LOEJ;
1123 
1124 				xpt_action(done_ccb);
1125 
1126 			} else if ((done_ccb->ccb_h.retry_count > 1)
1127 				&& ((err_action & SS_MASK) != SS_FAIL)) {
1128 
1129 				/*
1130 				 * In this case, the error recovery
1131 				 * command failed, but we've got
1132 				 * some retries left on it.  Give
1133 				 * it another try unless this is an
1134 				 * unretryable error.
1135 				 */
1136 
1137 				/* set the timeout to .5 sec */
1138 				relsim_flags =
1139 					RELSIM_RELEASE_AFTER_TIMEOUT;
1140 				timeout = 500;
1141 
1142 				xpt_action(done_ccb);
1143 
1144 				break;
1145 
1146 			} else {
1147 				/*
1148 				 * Perform the final retry with the original
1149 				 * CCB so that final error processing is
1150 				 * performed by the owner of the CCB.
1151 				 */
1152 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1153 				      done_ccb, sizeof(union ccb));
1154 
1155 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1156 
1157 				xpt_action(done_ccb);
1158 			}
1159 		} else {
1160 			/*
1161 			 * Eh??  The command failed, but we don't
1162 			 * have any sense.  What's up with that?
1163 			 * Fire the CCB again to return it to the
1164 			 * caller.
1165 			 */
1166 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1167 			      done_ccb, sizeof(union ccb));
1168 
1169 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1170 
1171 			xpt_action(done_ccb);
1172 
1173 		}
1174 		break;
1175 	default:
1176 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1177 		      sizeof(union ccb));
1178 
1179 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1180 
1181 		xpt_action(done_ccb);
1182 
1183 		break;
1184 	}
1185 
1186 	/* decrement the retry count */
1187 	/*
1188 	 * XXX This isn't appropriate in all cases.  Restructure,
1189 	 *     so that the retry count is only decremented on an
1190 	 *     actual retry.  Remeber that the orignal ccb had its
1191 	 *     retry count dropped before entering recovery, so
1192 	 *     doing it again is a bug.
1193 	 */
1194 	if (done_ccb->ccb_h.retry_count > 0)
1195 		done_ccb->ccb_h.retry_count--;
1196 
1197 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1198 				      /*relsim_flags*/relsim_flags,
1199 				      /*openings*/0,
1200 				      /*timeout*/timeout,
1201 				      /*getcount_only*/0);
1202 	if (xpt_done_ccb == TRUE)
1203 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1204 }
1205 
1206 /*
1207  * Generic Async Event handler.  Peripheral drivers usually
1208  * filter out the events that require personal attention,
1209  * and leave the rest to this function.
1210  */
1211 void
1212 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1213 		 struct cam_path *path, void *arg)
1214 {
1215 	switch (code) {
1216 	case AC_LOST_DEVICE:
1217 		cam_periph_invalidate(periph);
1218 		break;
1219 	case AC_SENT_BDR:
1220 	case AC_BUS_RESET:
1221 	{
1222 		cam_periph_bus_settle(periph, scsi_delay);
1223 		break;
1224 	}
1225 	default:
1226 		break;
1227 	}
1228 }
1229 
1230 void
1231 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1232 {
1233 	struct ccb_getdevstats cgds;
1234 
1235 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1236 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1237 	xpt_action((union ccb *)&cgds);
1238 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1239 }
1240 
1241 void
1242 cam_periph_freeze_after_event(struct cam_periph *periph,
1243 			      struct timeval* event_time, u_int duration_ms)
1244 {
1245 	struct timeval delta;
1246 	struct timeval duration_tv;
1247 
1248 	microuptime(&delta);
1249 	timevalsub(&delta, event_time);
1250 	duration_tv.tv_sec = duration_ms / 1000;
1251 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1252 	if (timevalcmp(&delta, &duration_tv, <)) {
1253 		timevalsub(&duration_tv, &delta);
1254 
1255 		duration_ms = duration_tv.tv_sec * 1000;
1256 		duration_ms += duration_tv.tv_usec / 1000;
1257 		cam_freeze_devq(periph->path);
1258 		cam_release_devq(periph->path,
1259 				RELSIM_RELEASE_AFTER_TIMEOUT,
1260 				/*reduction*/0,
1261 				/*timeout*/duration_ms,
1262 				/*getcount_only*/0);
1263 	}
1264 
1265 }
1266 
1267 static int
1268 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1269 			 u_int32_t sense_flags, union ccb *save_ccb,
1270 			 int *openings, u_int32_t *relsim_flags,
1271 			 u_int32_t *timeout)
1272 {
1273 	int error;
1274 
1275 	switch (ccb->csio.scsi_status) {
1276 	case SCSI_STATUS_OK:
1277 	case SCSI_STATUS_COND_MET:
1278 	case SCSI_STATUS_INTERMED:
1279 	case SCSI_STATUS_INTERMED_COND_MET:
1280 		error = 0;
1281 		break;
1282 	case SCSI_STATUS_CMD_TERMINATED:
1283 	case SCSI_STATUS_CHECK_COND:
1284 		error = camperiphscsisenseerror(ccb,
1285 					        camflags,
1286 					        sense_flags,
1287 					        save_ccb,
1288 					        openings,
1289 					        relsim_flags,
1290 					        timeout);
1291 		break;
1292 	case SCSI_STATUS_QUEUE_FULL:
1293 	{
1294 		/* no decrement */
1295 		struct ccb_getdevstats cgds;
1296 
1297 		/*
1298 		 * First off, find out what the current
1299 		 * transaction counts are.
1300 		 */
1301 		xpt_setup_ccb(&cgds.ccb_h,
1302 			      ccb->ccb_h.path,
1303 			      /*priority*/1);
1304 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1305 		xpt_action((union ccb *)&cgds);
1306 
1307 		/*
1308 		 * If we were the only transaction active, treat
1309 		 * the QUEUE FULL as if it were a BUSY condition.
1310 		 */
1311 		if (cgds.dev_active != 0) {
1312 			int total_openings;
1313 
1314 			/*
1315 			 * Reduce the number of openings to
1316 			 * be 1 less than the amount it took
1317 			 * to get a queue full bounded by the
1318 			 * minimum allowed tag count for this
1319 			 * device.
1320 			 */
1321 			total_openings = cgds.dev_active + cgds.dev_openings;
1322 			*openings = cgds.dev_active;
1323 			if (*openings < cgds.mintags)
1324 				*openings = cgds.mintags;
1325 			if (*openings < total_openings)
1326 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1327 			else {
1328 				/*
1329 				 * Some devices report queue full for
1330 				 * temporary resource shortages.  For
1331 				 * this reason, we allow a minimum
1332 				 * tag count to be entered via a
1333 				 * quirk entry to prevent the queue
1334 				 * count on these devices from falling
1335 				 * to a pessimisticly low value.  We
1336 				 * still wait for the next successful
1337 				 * completion, however, before queueing
1338 				 * more transactions to the device.
1339 				 */
1340 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1341 			}
1342 			*timeout = 0;
1343 			error = ERESTART;
1344 			if (bootverbose) {
1345 				xpt_print(ccb->ccb_h.path, "Queue Full\n");
1346 			}
1347 			break;
1348 		}
1349 		/* FALLTHROUGH */
1350 	}
1351 	case SCSI_STATUS_BUSY:
1352 		/*
1353 		 * Restart the queue after either another
1354 		 * command completes or a 1 second timeout.
1355 		 */
1356 		if (bootverbose) {
1357 			xpt_print(ccb->ccb_h.path, "Device Busy\n");
1358 		}
1359 		if (ccb->ccb_h.retry_count > 0) {
1360 			ccb->ccb_h.retry_count--;
1361 			error = ERESTART;
1362 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1363 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1364 			*timeout = 1000;
1365 		} else {
1366 			error = EIO;
1367 		}
1368 		break;
1369 	case SCSI_STATUS_RESERV_CONFLICT:
1370 		xpt_print(ccb->ccb_h.path, "Reservation Conflict\n");
1371 		error = EIO;
1372 		break;
1373 	default:
1374 		xpt_print(ccb->ccb_h.path, "SCSI Status 0x%x\n",
1375 		    ccb->csio.scsi_status);
1376 		error = EIO;
1377 		break;
1378 	}
1379 	return (error);
1380 }
1381 
1382 static int
1383 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1384 			u_int32_t sense_flags, union ccb *save_ccb,
1385 		       int *openings, u_int32_t *relsim_flags,
1386 		       u_int32_t *timeout)
1387 {
1388 	struct cam_periph *periph;
1389 	int error;
1390 
1391 	periph = xpt_path_periph(ccb->ccb_h.path);
1392 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1393 
1394 		/*
1395 		 * If error recovery is already in progress, don't attempt
1396 		 * to process this error, but requeue it unconditionally
1397 		 * and attempt to process it once error recovery has
1398 		 * completed.  This failed command is probably related to
1399 		 * the error that caused the currently active error recovery
1400 		 * action so our  current recovery efforts should also
1401 		 * address this command.  Be aware that the error recovery
1402 		 * code assumes that only one recovery action is in progress
1403 		 * on a particular peripheral instance at any given time
1404 		 * (e.g. only one saved CCB for error recovery) so it is
1405 		 * imperitive that we don't violate this assumption.
1406 		 */
1407 		error = ERESTART;
1408 	} else {
1409 		scsi_sense_action err_action;
1410 		struct ccb_getdev cgd;
1411 		const char *action_string;
1412 		union ccb* print_ccb;
1413 
1414 		/* A description of the error recovery action performed */
1415 		action_string = NULL;
1416 
1417 		/*
1418 		 * The location of the orignal ccb
1419 		 * for sense printing purposes.
1420 		 */
1421 		print_ccb = ccb;
1422 
1423 		/*
1424 		 * Grab the inquiry data for this device.
1425 		 */
1426 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1427 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1428 		xpt_action((union ccb *)&cgd);
1429 
1430 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1431 			err_action = scsi_error_action(&ccb->csio,
1432 						       &cgd.inq_data,
1433 						       sense_flags);
1434 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1435 			err_action = SS_REQSENSE;
1436 		else
1437 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1438 
1439 		error = err_action & SS_ERRMASK;
1440 
1441 		/*
1442 		 * If the recovery action will consume a retry,
1443 		 * make sure we actually have retries available.
1444 		 */
1445 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1446 			if (ccb->ccb_h.retry_count > 0)
1447 				ccb->ccb_h.retry_count--;
1448 			else {
1449 				action_string = "Retries Exhausted";
1450 				goto sense_error_done;
1451 			}
1452 		}
1453 
1454 		if ((err_action & SS_MASK) >= SS_START) {
1455 			/*
1456 			 * Do common portions of commands that
1457 			 * use recovery CCBs.
1458 			 */
1459 			if (save_ccb == NULL) {
1460 				action_string = "No recovery CCB supplied";
1461 				goto sense_error_done;
1462 			}
1463 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1464 			print_ccb = save_ccb;
1465 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1466 		}
1467 
1468 		switch (err_action & SS_MASK) {
1469 		case SS_NOP:
1470 			action_string = "No Recovery Action Needed";
1471 			error = 0;
1472 			break;
1473 		case SS_RETRY:
1474 			action_string = "Retrying Command (per Sense Data)";
1475 			error = ERESTART;
1476 			break;
1477 		case SS_FAIL:
1478 			action_string = "Unretryable error";
1479 			break;
1480 		case SS_START:
1481 		{
1482 			int le;
1483 
1484 			/*
1485 			 * Send a start unit command to the device, and
1486 			 * then retry the command.
1487 			 */
1488 			action_string = "Attempting to Start Unit";
1489 
1490 			/*
1491 			 * Check for removable media and set
1492 			 * load/eject flag appropriately.
1493 			 */
1494 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1495 				le = TRUE;
1496 			else
1497 				le = FALSE;
1498 
1499 			scsi_start_stop(&ccb->csio,
1500 					/*retries*/1,
1501 					camperiphdone,
1502 					MSG_SIMPLE_Q_TAG,
1503 					/*start*/TRUE,
1504 					/*load/eject*/le,
1505 					/*immediate*/FALSE,
1506 					SSD_FULL_SIZE,
1507 					/*timeout*/50000);
1508 			break;
1509 		}
1510 		case SS_TUR:
1511 		{
1512 			/*
1513 			 * Send a Test Unit Ready to the device.
1514 			 * If the 'many' flag is set, we send 120
1515 			 * test unit ready commands, one every half
1516 			 * second.  Otherwise, we just send one TUR.
1517 			 * We only want to do this if the retry
1518 			 * count has not been exhausted.
1519 			 */
1520 			int retries;
1521 
1522 			if ((err_action & SSQ_MANY) != 0) {
1523 				action_string = "Polling device for readiness";
1524 				retries = 120;
1525 			} else {
1526 				action_string = "Testing device for readiness";
1527 				retries = 1;
1528 			}
1529 			scsi_test_unit_ready(&ccb->csio,
1530 					     retries,
1531 					     camperiphdone,
1532 					     MSG_SIMPLE_Q_TAG,
1533 					     SSD_FULL_SIZE,
1534 					     /*timeout*/5000);
1535 
1536 			/*
1537 			 * Accomplish our 500ms delay by deferring
1538 			 * the release of our device queue appropriately.
1539 			 */
1540 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1541 			*timeout = 500;
1542 			break;
1543 		}
1544 		case SS_REQSENSE:
1545 		{
1546 			/*
1547 			 * Send a Request Sense to the device.  We
1548 			 * assume that we are in a contingent allegiance
1549 			 * condition so we do not tag this request.
1550 			 */
1551 			scsi_request_sense(&ccb->csio, /*retries*/1,
1552 					   camperiphdone,
1553 					   &save_ccb->csio.sense_data,
1554 					   sizeof(save_ccb->csio.sense_data),
1555 					   CAM_TAG_ACTION_NONE,
1556 					   /*sense_len*/SSD_FULL_SIZE,
1557 					   /*timeout*/5000);
1558 			break;
1559 		}
1560 		default:
1561 			panic("Unhandled error action %x", err_action);
1562 		}
1563 
1564 		if ((err_action & SS_MASK) >= SS_START) {
1565 			/*
1566 			 * Drop the priority to 0 so that the recovery
1567 			 * CCB is the first to execute.  Freeze the queue
1568 			 * after this command is sent so that we can
1569 			 * restore the old csio and have it queued in
1570 			 * the proper order before we release normal
1571 			 * transactions to the device.
1572 			 */
1573 			ccb->ccb_h.pinfo.priority = 0;
1574 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1575 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1576 			error = ERESTART;
1577 		}
1578 
1579 sense_error_done:
1580 		if ((err_action & SSQ_PRINT_SENSE) != 0
1581 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1582 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1583 			xpt_print_path(ccb->ccb_h.path);
1584 			if (bootverbose)
1585 				scsi_sense_print(&print_ccb->csio);
1586 			kprintf("%s\n", action_string);
1587 		}
1588 	}
1589 	return (error);
1590 }
1591 
1592 /*
1593  * Generic error handler.  Peripheral drivers usually filter
1594  * out the errors that they handle in a unique mannor, then
1595  * call this function.
1596  */
1597 int
1598 cam_periph_error(union ccb *ccb, cam_flags camflags,
1599 		 u_int32_t sense_flags, union ccb *save_ccb)
1600 {
1601 	const char *action_string;
1602 	cam_status  status;
1603 	int	    frozen;
1604 	int	    error, printed = 0;
1605 	int         openings;
1606 	u_int32_t   relsim_flags;
1607 	u_int32_t   timeout = 0;
1608 
1609 	action_string = NULL;
1610 	status = ccb->ccb_h.status;
1611 	frozen = (status & CAM_DEV_QFRZN) != 0;
1612 	status &= CAM_STATUS_MASK;
1613 	openings = relsim_flags = 0;
1614 
1615 	switch (status) {
1616 	case CAM_REQ_CMP:
1617 		error = 0;
1618 		break;
1619 	case CAM_SCSI_STATUS_ERROR:
1620 		error = camperiphscsistatuserror(ccb,
1621 						 camflags,
1622 						 sense_flags,
1623 						 save_ccb,
1624 						 &openings,
1625 						 &relsim_flags,
1626 						 &timeout);
1627 		break;
1628 	case CAM_AUTOSENSE_FAIL:
1629 		xpt_print(ccb->ccb_h.path, "AutoSense Failed\n");
1630 		error = EIO;	/* we have to kill the command */
1631 		break;
1632 	case CAM_REQ_CMP_ERR:
1633 		if (bootverbose && printed == 0) {
1634 			xpt_print(ccb->ccb_h.path,
1635 			    "Request completed with CAM_REQ_CMP_ERR\n");
1636 			printed++;
1637 		}
1638 		/* FALLTHROUGH */
1639 	case CAM_CMD_TIMEOUT:
1640 		if (bootverbose && printed == 0) {
1641 			xpt_print(ccb->ccb_h.path, "Command timed out\n");
1642 			printed++;
1643 		}
1644 		/* FALLTHROUGH */
1645 	case CAM_UNEXP_BUSFREE:
1646 		if (bootverbose && printed == 0) {
1647 			xpt_print(ccb->ccb_h.path, "Unexpected Bus Free\n");
1648 			printed++;
1649 		}
1650 		/* FALLTHROUGH */
1651 	case CAM_UNCOR_PARITY:
1652 		if (bootverbose && printed == 0) {
1653 			xpt_print(ccb->ccb_h.path,
1654 			    "Uncorrected Parity Error\n");
1655 			printed++;
1656 		}
1657 		/* FALLTHROUGH */
1658 	case CAM_DATA_RUN_ERR:
1659 		if (bootverbose && printed == 0) {
1660 			xpt_print(ccb->ccb_h.path, "Data Overrun\n");
1661 			printed++;
1662 		}
1663 		error = EIO;	/* we have to kill the command */
1664 		/* decrement the number of retries */
1665 		if (ccb->ccb_h.retry_count > 0) {
1666 			ccb->ccb_h.retry_count--;
1667 			error = ERESTART;
1668 		} else {
1669 			action_string = "Retries Exhausted";
1670 			error = EIO;
1671 		}
1672 		break;
1673 	case CAM_UA_ABORT:
1674 	case CAM_UA_TERMIO:
1675 	case CAM_MSG_REJECT_REC:
1676 		/* XXX Don't know that these are correct */
1677 		error = EIO;
1678 		break;
1679 	case CAM_SEL_TIMEOUT:
1680 	{
1681 		struct cam_path *newpath;
1682 
1683 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1684 			if (ccb->ccb_h.retry_count > 0) {
1685 
1686 				ccb->ccb_h.retry_count--;
1687 				error = ERESTART;
1688 				if (bootverbose && printed == 0) {
1689 					xpt_print(ccb->ccb_h.path,
1690 					    "Selection Timeout\n");
1691 					printed++;
1692 				}
1693 
1694 				/*
1695 				 * Wait a bit to give the device
1696 				 * time to recover before we try again.
1697 				 */
1698 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1699 				timeout = periph_selto_delay;
1700 				break;
1701 			}
1702 		}
1703 		error = ENXIO;
1704 		/* Should we do more if we can't create the path?? */
1705 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1706 				    xpt_path_path_id(ccb->ccb_h.path),
1707 				    xpt_path_target_id(ccb->ccb_h.path),
1708 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1709 			break;
1710 
1711 		/*
1712 		 * Let peripheral drivers know that this device has gone
1713 		 * away.
1714 		 */
1715 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1716 		xpt_free_path(newpath);
1717 		break;
1718 	}
1719 	case CAM_REQ_INVALID:
1720 	case CAM_PATH_INVALID:
1721 	case CAM_DEV_NOT_THERE:
1722 	case CAM_NO_HBA:
1723 	case CAM_PROVIDE_FAIL:
1724 	case CAM_REQ_TOO_BIG:
1725 	case CAM_LUN_INVALID:
1726 	case CAM_TID_INVALID:
1727 		error = EINVAL;
1728 		break;
1729 	case CAM_SCSI_BUS_RESET:
1730 	case CAM_BDR_SENT:
1731 		/*
1732 		 * Commands that repeatedly timeout and cause these
1733 		 * kinds of error recovery actions, should return
1734 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1735 		 * that this command was an innocent bystander to
1736 		 * these events and should be unconditionally
1737 		 * retried.
1738 		 */
1739 		if (bootverbose && printed == 0) {
1740 			xpt_print_path(ccb->ccb_h.path);
1741 			if (status == CAM_BDR_SENT)
1742 				kprintf("Bus Device Reset sent\n");
1743 			else
1744 				kprintf("Bus Reset issued\n");
1745 			printed++;
1746 		}
1747 		/* FALLTHROUGH */
1748 	case CAM_REQUEUE_REQ:
1749 		/* Unconditional requeue */
1750 		error = ERESTART;
1751 		if (bootverbose && printed == 0) {
1752 			xpt_print(ccb->ccb_h.path, "Request Requeued\n");
1753 			printed++;
1754 		}
1755 		break;
1756 	case CAM_RESRC_UNAVAIL:
1757 		/* Wait a bit for the resource shortage to abate. */
1758 		timeout = periph_noresrc_delay;
1759 		/* FALLTHROUGH */
1760 	case CAM_BUSY:
1761 		if (timeout == 0) {
1762 			/* Wait a bit for the busy condition to abate. */
1763 			timeout = periph_busy_delay;
1764 		}
1765 		relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1766 		/* FALLTHROUGH */
1767 	default:
1768 		/* decrement the number of retries */
1769 		if (ccb->ccb_h.retry_count > 0) {
1770 			ccb->ccb_h.retry_count--;
1771 			error = ERESTART;
1772 			if (bootverbose && printed == 0) {
1773 				xpt_print(ccb->ccb_h.path, "CAM Status 0x%x\n",
1774 				    status);
1775 				printed++;
1776 			}
1777 		} else {
1778 			error = EIO;
1779 			action_string = "Retries Exhausted";
1780 		}
1781 		break;
1782 	}
1783 
1784 	/* Attempt a retry */
1785 	if (error == ERESTART || error == 0) {
1786 		if (frozen != 0)
1787 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1788 
1789 		if (error == ERESTART) {
1790 			action_string = "Retrying Command";
1791 			xpt_action(ccb);
1792 		}
1793 
1794 		if (frozen != 0)
1795 			cam_release_devq(ccb->ccb_h.path,
1796 					 relsim_flags,
1797 					 openings,
1798 					 timeout,
1799 					 /*getcount_only*/0);
1800 	}
1801 
1802 	/*
1803 	 * If we have an error and are booting verbosely, whine
1804 	 * *unless* this was a non-retryable selection timeout.
1805 	 */
1806 	if (error != 0 && bootverbose && (sense_flags & SF_NO_PRINT) == 0 &&
1807 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1808 
1809 
1810 		if (action_string == NULL)
1811 			action_string = "Unretryable Error";
1812 		if (error != ERESTART) {
1813 			xpt_print(ccb->ccb_h.path, "error %d\n", error);
1814 		}
1815 		xpt_print(ccb->ccb_h.path, "%s\n", action_string);
1816 	}
1817 
1818 	return (error);
1819 }
1820