xref: /dragonfly/sys/bus/cam/cam_periph.c (revision 7bc7e232)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.24.2.3 2003/01/25 19:04:40 dillon Exp $
30  * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.31 2007/11/24 19:19:43 pavalos Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/buf.h>
38 #include <sys/proc.h>
39 #include <sys/devicestat.h>
40 #include <sys/bus.h>
41 #include <vm/vm.h>
42 #include <vm/vm_extern.h>
43 
44 #include <sys/thread2.h>
45 
46 #include "cam.h"
47 #include "cam_ccb.h"
48 #include "cam_xpt_periph.h"
49 #include "cam_periph.h"
50 #include "cam_debug.h"
51 
52 #include <bus/cam/scsi/scsi_all.h>
53 #include <bus/cam/scsi/scsi_message.h>
54 #include <bus/cam/scsi/scsi_pass.h>
55 
56 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
57 					  u_int newunit, int wired,
58 					  path_id_t pathid, target_id_t target,
59 					  lun_id_t lun);
60 static	u_int		camperiphunit(struct periph_driver *p_drv,
61 				      path_id_t pathid, target_id_t target,
62 				      lun_id_t lun);
63 static	void		camperiphdone(struct cam_periph *periph,
64 					union ccb *done_ccb);
65 static  void		camperiphfree(struct cam_periph *periph);
66 static int		camperiphscsistatuserror(union ccb *ccb,
67 						 cam_flags camflags,
68 						 u_int32_t sense_flags,
69 						 union ccb *save_ccb,
70 						 int *openings,
71 						 u_int32_t *relsim_flags,
72 						 u_int32_t *timeout);
73 static	int		camperiphscsisenseerror(union ccb *ccb,
74 					        cam_flags camflags,
75 					        u_int32_t sense_flags,
76 					        union ccb *save_ccb,
77 					        int *openings,
78 					        u_int32_t *relsim_flags,
79 					        u_int32_t *timeout);
80 
81 static int nperiph_drivers;
82 struct periph_driver **periph_drivers;
83 
84 void
85 periphdriver_register(void *data)
86 {
87 	struct periph_driver **newdrivers, **old;
88 	int ndrivers;
89 
90 	ndrivers = nperiph_drivers + 2;
91 	newdrivers = kmalloc(sizeof(*newdrivers) * ndrivers, M_TEMP, M_WAITOK);
92 	if (periph_drivers)
93 		bcopy(periph_drivers, newdrivers,
94 		      sizeof(*newdrivers) * nperiph_drivers);
95 	newdrivers[nperiph_drivers] = (struct periph_driver *)data;
96 	newdrivers[nperiph_drivers + 1] = NULL;
97 	old = periph_drivers;
98 	periph_drivers = newdrivers;
99 	if (old)
100 		kfree(old, M_TEMP);
101 	nperiph_drivers++;
102 }
103 
104 cam_status
105 cam_periph_alloc(periph_ctor_t *periph_ctor,
106 		 periph_oninv_t *periph_oninvalidate,
107 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
108 		 char *name, cam_periph_type type, struct cam_path *path,
109 		 ac_callback_t *ac_callback, ac_code code, void *arg)
110 {
111 	struct		periph_driver **p_drv;
112 	struct		cam_periph *periph;
113 	struct		cam_periph *cur_periph;
114 	path_id_t	path_id;
115 	target_id_t	target_id;
116 	lun_id_t	lun_id;
117 	cam_status	status;
118 	u_int		init_level;
119 
120 	init_level = 0;
121 	/*
122 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
123 	 * of our type assigned to this path, we are likely waiting for
124 	 * final close on an old, invalidated, peripheral.  If this is
125 	 * the case, queue up a deferred call to the peripheral's async
126 	 * handler.  If it looks like a mistaken re-alloation, complain.
127 	 */
128 	if ((periph = cam_periph_find(path, name)) != NULL) {
129 
130 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
131 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
132 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
133 			periph->deferred_callback = ac_callback;
134 			periph->deferred_ac = code;
135 			return (CAM_REQ_INPROG);
136 		} else {
137 			kprintf("cam_periph_alloc: attempt to re-allocate "
138 			       "valid device %s%d rejected\n",
139 			       periph->periph_name, periph->unit_number);
140 		}
141 		return (CAM_REQ_INVALID);
142 	}
143 
144 	periph = kmalloc(sizeof(*periph), M_DEVBUF, M_INTWAIT | M_ZERO);
145 
146 	init_level++;
147 
148 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
149 		if (strcmp((*p_drv)->driver_name, name) == 0)
150 			break;
151 	}
152 
153 	path_id = xpt_path_path_id(path);
154 	target_id = xpt_path_target_id(path);
155 	lun_id = xpt_path_lun_id(path);
156 	cam_init_pinfo(&periph->pinfo);
157 	periph->periph_start = periph_start;
158 	periph->periph_dtor = periph_dtor;
159 	periph->periph_oninval = periph_oninvalidate;
160 	periph->type = type;
161 	periph->periph_name = name;
162 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
163 	periph->immediate_priority = CAM_PRIORITY_NONE;
164 	periph->refcount = 0;
165 	SLIST_INIT(&periph->ccb_list);
166 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
167 	if (status != CAM_REQ_CMP)
168 		goto failure;
169 
170 	periph->path = path;
171 	init_level++;
172 
173 	status = xpt_add_periph(periph);
174 
175 	if (status != CAM_REQ_CMP)
176 		goto failure;
177 
178 	crit_enter();
179 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
180 	while (cur_periph != NULL
181 	    && cur_periph->unit_number < periph->unit_number)
182 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
183 
184 	if (cur_periph != NULL)
185 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
186 	else {
187 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
188 		(*p_drv)->generation++;
189 	}
190 
191 	crit_exit();
192 
193 	init_level++;
194 
195 	status = periph_ctor(periph, arg);
196 
197 	if (status == CAM_REQ_CMP)
198 		init_level++;
199 
200 failure:
201 	switch (init_level) {
202 	case 4:
203 		/* Initialized successfully */
204 		break;
205 	case 3:
206 		crit_enter();
207 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
208 		crit_exit();
209 		xpt_remove_periph(periph);
210 	case 2:
211 		xpt_free_path(periph->path);
212 	case 1:
213 		kfree(periph, M_DEVBUF);
214 	case 0:
215 		/* No cleanup to perform. */
216 		break;
217 	default:
218 		panic("cam_periph_alloc: Unknown init level");
219 	}
220 	return(status);
221 }
222 
223 /*
224  * Find a peripheral structure with the specified path, target, lun,
225  * and (optionally) type.  If the name is NULL, this function will return
226  * the first peripheral driver that matches the specified path.
227  */
228 struct cam_periph *
229 cam_periph_find(struct cam_path *path, char *name)
230 {
231 	struct periph_driver **p_drv;
232 	struct cam_periph *periph;
233 
234 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
235 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
236 			continue;
237 
238 		crit_enter();
239 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
240 			if (xpt_path_comp(periph->path, path) == 0) {
241 				crit_exit();
242 				return(periph);
243 			}
244 		}
245 		crit_exit();
246 		if (name != NULL)
247 			return(NULL);
248 	}
249 	return(NULL);
250 }
251 
252 cam_status
253 cam_periph_acquire(struct cam_periph *periph)
254 {
255 	if (periph == NULL)
256 		return(CAM_REQ_CMP_ERR);
257 
258 	crit_enter();
259 	periph->refcount++;
260 	crit_exit();
261 
262 	return(CAM_REQ_CMP);
263 }
264 
265 void
266 cam_periph_release(struct cam_periph *periph)
267 {
268 	if (periph == NULL)
269 		return;
270 
271 	crit_enter();
272 	if ((--periph->refcount == 0)
273 	 && (periph->flags & CAM_PERIPH_INVALID)) {
274 		camperiphfree(periph);
275 	}
276 	crit_exit();
277 }
278 
279 /*
280  * Look for the next unit number that is not currently in use for this
281  * peripheral type starting at "newunit".  Also exclude unit numbers that
282  * are reserved by for future "hardwiring" unless we already know that this
283  * is a potential wired device.  Only assume that the device is "wired" the
284  * first time through the loop since after that we'll be looking at unit
285  * numbers that did not match a wiring entry.
286  */
287 static u_int
288 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
289 		  path_id_t pathid, target_id_t target, lun_id_t lun)
290 {
291 	struct	cam_periph *periph;
292 	char	*periph_name, *strval;
293 	int	i, val, dunit;
294 	const char *dname;
295 
296 	crit_enter();
297 	periph_name = p_drv->driver_name;
298 	for (;;newunit++) {
299 
300 		for (periph = TAILQ_FIRST(&p_drv->units);
301 		     periph != NULL && periph->unit_number != newunit;
302 		     periph = TAILQ_NEXT(periph, unit_links))
303 			;
304 
305 		if (periph != NULL && periph->unit_number == newunit) {
306 			if (wired != 0) {
307 				xpt_print_path(periph->path);
308 				kprintf("Duplicate Wired Device entry!\n");
309 				xpt_print_path(periph->path);
310 				kprintf("Second device (%s device at scbus%d "
311 				       "target %d lun %d) will not be wired\n",
312 				       periph_name, pathid, target, lun);
313 				wired = 0;
314 			}
315 			continue;
316 		}
317 		if (wired)
318 			break;
319 
320 		/*
321 		 * Don't match entries like "da 4" as a wired down
322 		 * device, but do match entries like "da 4 target 5"
323 		 * or even "da 4 scbus 1".
324 		 */
325 		i = -1;
326 		while ((i = resource_locate(i, periph_name)) != -1) {
327 			dname = resource_query_name(i);
328 			dunit = resource_query_unit(i);
329 			/* if no "target" and no specific scbus, skip */
330 			if (resource_int_value(dname, dunit, "target", &val) &&
331 			    (resource_string_value(dname, dunit, "at",&strval)||
332 			     strcmp(strval, "scbus") == 0))
333 				continue;
334 			if (newunit == dunit)
335 				break;
336 		}
337 		if (i == -1)
338 			break;
339 	}
340 	crit_exit();
341 	return (newunit);
342 }
343 
344 static u_int
345 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
346 	      target_id_t target, lun_id_t lun)
347 {
348 	u_int	unit;
349 	int	hit, i, val, dunit;
350 	const char *dname;
351 	char	pathbuf[32], *strval, *periph_name;
352 
353 	unit = 0;
354 
355 	periph_name = p_drv->driver_name;
356 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
357 	i = -1;
358 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
359 		dname = resource_query_name(i);
360 		dunit = resource_query_unit(i);
361 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
362 			if (strcmp(strval, pathbuf) != 0)
363 				continue;
364 			hit++;
365 		}
366 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
367 			if (val != target)
368 				continue;
369 			hit++;
370 		}
371 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
372 			if (val != lun)
373 				continue;
374 			hit++;
375 		}
376 		if (hit != 0) {
377 			unit = dunit;
378 			break;
379 		}
380 	}
381 
382 	/*
383 	 * Either start from 0 looking for the next unit or from
384 	 * the unit number given in the resource config.  This way,
385 	 * if we have wildcard matches, we don't return the same
386 	 * unit number twice.
387 	 */
388 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
389 				 target, lun);
390 
391 	return (unit);
392 }
393 
394 void
395 cam_periph_invalidate(struct cam_periph *periph)
396 {
397 	/*
398 	 * We only call this routine the first time a peripheral is
399 	 * invalidated.  The oninvalidate() routine is always called in
400 	 * a critical section.
401 	 */
402 	crit_enter();
403 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
404 	 && (periph->periph_oninval != NULL))
405 		periph->periph_oninval(periph);
406 
407 	periph->flags |= CAM_PERIPH_INVALID;
408 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
409 
410 	if (periph->refcount == 0)
411 		camperiphfree(periph);
412 	else if (periph->refcount < 0)
413 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
414 	crit_exit();
415 }
416 
417 static void
418 camperiphfree(struct cam_periph *periph)
419 {
420 	struct periph_driver **p_drv;
421 
422 	for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
423 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
424 			break;
425 	}
426 
427 	if (*p_drv == NULL) {
428 		kprintf("camperiphfree: attempt to free "
429 			"non-existent periph: %s\n", periph->periph_name);
430 		return;
431 	}
432 
433 	if (periph->periph_dtor != NULL)
434 		periph->periph_dtor(periph);
435 
436 	crit_enter();
437 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
438 	(*p_drv)->generation++;
439 	crit_exit();
440 
441 	xpt_remove_periph(periph);
442 
443 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
444 		union ccb ccb;
445 		void *arg;
446 
447 		switch (periph->deferred_ac) {
448 		case AC_FOUND_DEVICE:
449 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
450 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
451 			xpt_action(&ccb);
452 			arg = &ccb;
453 			break;
454 		case AC_PATH_REGISTERED:
455 			ccb.ccb_h.func_code = XPT_PATH_INQ;
456 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
457 			xpt_action(&ccb);
458 			arg = &ccb;
459 			break;
460 		default:
461 			arg = NULL;
462 			break;
463 		}
464 		periph->deferred_callback(NULL, periph->deferred_ac,
465 					  periph->path, arg);
466 	}
467 	xpt_free_path(periph->path);
468 	kfree(periph, M_DEVBUF);
469 }
470 
471 /*
472  * Wait interruptibly for an exclusive lock.
473  */
474 int
475 cam_periph_lock(struct cam_periph *periph, int flags)
476 {
477 	int error;
478 
479 	/*
480 	 * Increment the reference count on the peripheral
481 	 * while we wait for our lock attempt to succeed
482 	 * to ensure the peripheral doesn't disappear out
483 	 * from under us while we sleep.
484 	 */
485 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
486 		return(ENXIO);
487 
488 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
489 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
490 		if ((error = tsleep(periph, flags, "caplck", 0)) != 0) {
491 			cam_periph_release(periph);
492 			return error;
493 		}
494 	}
495 
496 	periph->flags |= CAM_PERIPH_LOCKED;
497 	return 0;
498 }
499 
500 /*
501  * Unlock and wake up any waiters.
502  */
503 void
504 cam_periph_unlock(struct cam_periph *periph)
505 {
506 	periph->flags &= ~CAM_PERIPH_LOCKED;
507 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
508 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
509 		wakeup(periph);
510 	}
511 
512 	cam_periph_release(periph);
513 }
514 
515 /*
516  * Map user virtual pointers into kernel virtual address space, so we can
517  * access the memory.  This won't work on physical pointers, for now it's
518  * up to the caller to check for that.  (XXX KDM -- should we do that here
519  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
520  * buffers to map stuff in and out, we're limited to the buffer size.
521  */
522 int
523 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
524 {
525 	int numbufs, i, j;
526 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
527 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
528 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
529 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
530 
531 	switch(ccb->ccb_h.func_code) {
532 	case XPT_DEV_MATCH:
533 		if (ccb->cdm.match_buf_len == 0) {
534 			kprintf("cam_periph_mapmem: invalid match buffer "
535 			       "length 0\n");
536 			return(EINVAL);
537 		}
538 		if (ccb->cdm.pattern_buf_len > 0) {
539 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
540 			lengths[0] = ccb->cdm.pattern_buf_len;
541 			dirs[0] = CAM_DIR_OUT;
542 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
543 			lengths[1] = ccb->cdm.match_buf_len;
544 			dirs[1] = CAM_DIR_IN;
545 			numbufs = 2;
546 		} else {
547 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
548 			lengths[0] = ccb->cdm.match_buf_len;
549 			dirs[0] = CAM_DIR_IN;
550 			numbufs = 1;
551 		}
552 		break;
553 	case XPT_SCSI_IO:
554 	case XPT_CONT_TARGET_IO:
555 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
556 			return(0);
557 
558 		data_ptrs[0] = &ccb->csio.data_ptr;
559 		lengths[0] = ccb->csio.dxfer_len;
560 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
561 		numbufs = 1;
562 		break;
563 	default:
564 		return(EINVAL);
565 		break; /* NOTREACHED */
566 	}
567 
568 	/*
569 	 * Check the transfer length and permissions first, so we don't
570 	 * have to unmap any previously mapped buffers.
571 	 */
572 	for (i = 0; i < numbufs; i++) {
573 		/*
574 		 * Its kinda bogus, we need a R+W command.  For now the
575 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
576 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
577 		 */
578 		cmd[i] = BUF_CMD_WRITE;
579 
580 		/*
581 		 * The userland data pointer passed in may not be page
582 		 * aligned.  vmapbuf() truncates the address to a page
583 		 * boundary, so if the address isn't page aligned, we'll
584 		 * need enough space for the given transfer length, plus
585 		 * whatever extra space is necessary to make it to the page
586 		 * boundary.
587 		 */
588 		if ((lengths[i] +
589 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
590 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
591 			       "which is greater than DFLTPHYS(%d)\n",
592 			       (long)(lengths[i] +
593 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
594 			       DFLTPHYS);
595 			return(E2BIG);
596 		}
597 
598 		if (dirs[i] & CAM_DIR_OUT) {
599 			if (!useracc(*data_ptrs[i], lengths[i],
600 				     VM_PROT_READ)) {
601 				kprintf("cam_periph_mapmem: error, "
602 					"address %p, length %lu isn't "
603 					"user accessible for READ\n",
604 					(void *)*data_ptrs[i],
605 					(u_long)lengths[i]);
606 				return(EACCES);
607 			}
608 		}
609 
610 		if (dirs[i] & CAM_DIR_IN) {
611 			cmd[i] = BUF_CMD_READ;
612 			if (!useracc(*data_ptrs[i], lengths[i],
613 				     VM_PROT_WRITE)) {
614 				kprintf("cam_periph_mapmem: error, "
615 					"address %p, length %lu isn't "
616 					"user accessible for WRITE\n",
617 					(void *)*data_ptrs[i],
618 					(u_long)lengths[i]);
619 
620 				return(EACCES);
621 			}
622 		}
623 
624 	}
625 
626 	for (i = 0; i < numbufs; i++) {
627 		/*
628 		 * Get the buffer.
629 		 */
630 		mapinfo->bp[i] = getpbuf(NULL);
631 
632 		/* save the original user pointer */
633 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
634 
635 		/* set the flags */
636 		mapinfo->bp[i]->b_cmd = cmd[i];
637 
638 		/* map the user buffer into kernel memory */
639 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i]) < 0) {
640 			kprintf("cam_periph_mapmem: error, "
641 				"address %p, length %lu isn't "
642 				"user accessible any more\n",
643 				(void *)*data_ptrs[i],
644 				(u_long)lengths[i]);
645 			for (j = 0; j < i; ++j) {
646 				*data_ptrs[j] = mapinfo->saved_ptrs[j];
647 				vunmapbuf(mapinfo->bp[j]);
648 				relpbuf(mapinfo->bp[j], NULL);
649 			}
650 			mapinfo->num_bufs_used -= i;
651 			return(EACCES);
652 		}
653 
654 		/* set our pointer to the new mapped area */
655 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
656 
657 		mapinfo->num_bufs_used++;
658 	}
659 
660 	return(0);
661 }
662 
663 /*
664  * Unmap memory segments mapped into kernel virtual address space by
665  * cam_periph_mapmem().
666  */
667 void
668 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
669 {
670 	int numbufs, i;
671 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
672 
673 	if (mapinfo->num_bufs_used <= 0) {
674 		/* allow ourselves to be swapped once again */
675 		return;
676 	}
677 
678 	switch (ccb->ccb_h.func_code) {
679 	case XPT_DEV_MATCH:
680 		numbufs = min(mapinfo->num_bufs_used, 2);
681 
682 		if (numbufs == 1) {
683 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
684 		} else {
685 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
686 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
687 		}
688 		break;
689 	case XPT_SCSI_IO:
690 	case XPT_CONT_TARGET_IO:
691 		data_ptrs[0] = &ccb->csio.data_ptr;
692 		numbufs = min(mapinfo->num_bufs_used, 1);
693 		break;
694 	default:
695 		/* allow ourselves to be swapped once again */
696 		return;
697 		break; /* NOTREACHED */
698 	}
699 
700 	for (i = 0; i < numbufs; i++) {
701 		/* Set the user's pointer back to the original value */
702 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
703 
704 		/* unmap the buffer */
705 		vunmapbuf(mapinfo->bp[i]);
706 
707 		/* release the buffer */
708 		relpbuf(mapinfo->bp[i], NULL);
709 	}
710 
711 	/* allow ourselves to be swapped once again */
712 }
713 
714 union ccb *
715 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
716 {
717 	struct ccb_hdr *ccb_h;
718 
719 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
720 
721 	crit_enter();
722 
723 	while (SLIST_FIRST(&periph->ccb_list) == NULL) {
724 		if (periph->immediate_priority > priority)
725 			periph->immediate_priority = priority;
726 		xpt_schedule(periph, priority);
727 		if ((SLIST_FIRST(&periph->ccb_list) != NULL)
728 		 && (SLIST_FIRST(&periph->ccb_list)->pinfo.priority == priority))
729 			break;
730 		tsleep(&periph->ccb_list, 0, "cgticb", 0);
731 	}
732 
733 	ccb_h = SLIST_FIRST(&periph->ccb_list);
734 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
735 	crit_exit();
736 	return ((union ccb *)ccb_h);
737 }
738 
739 void
740 cam_periph_ccbwait(union ccb *ccb)
741 {
742 	crit_enter();
743 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
744 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
745 		tsleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0);
746 	crit_exit();
747 }
748 
749 int
750 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
751 		 int (*error_routine)(union ccb *ccb,
752 				      cam_flags camflags,
753 				      u_int32_t sense_flags))
754 {
755 	union ccb 	     *ccb;
756 	int 		     error;
757 	int		     found;
758 
759 	error = found = 0;
760 
761 	switch(cmd){
762 	case CAMGETPASSTHRU:
763 		ccb = cam_periph_getccb(periph, /* priority */ 1);
764 		xpt_setup_ccb(&ccb->ccb_h,
765 			      ccb->ccb_h.path,
766 			      /*priority*/1);
767 		ccb->ccb_h.func_code = XPT_GDEVLIST;
768 
769 		/*
770 		 * Basically, the point of this is that we go through
771 		 * getting the list of devices, until we find a passthrough
772 		 * device.  In the current version of the CAM code, the
773 		 * only way to determine what type of device we're dealing
774 		 * with is by its name.
775 		 */
776 		while (found == 0) {
777 			ccb->cgdl.index = 0;
778 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
779 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
780 
781 				/* we want the next device in the list */
782 				xpt_action(ccb);
783 				if (strncmp(ccb->cgdl.periph_name,
784 				    "pass", 4) == 0){
785 					found = 1;
786 					break;
787 				}
788 			}
789 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
790 			    (found == 0)) {
791 				ccb->cgdl.periph_name[0] = '\0';
792 				ccb->cgdl.unit_number = 0;
793 				break;
794 			}
795 		}
796 
797 		/* copy the result back out */
798 		bcopy(ccb, addr, sizeof(union ccb));
799 
800 		/* and release the ccb */
801 		xpt_release_ccb(ccb);
802 
803 		break;
804 	default:
805 		error = ENOTTY;
806 		break;
807 	}
808 	return(error);
809 }
810 
811 int
812 cam_periph_runccb(union ccb *ccb,
813 		  int (*error_routine)(union ccb *ccb,
814 				       cam_flags camflags,
815 				       u_int32_t sense_flags),
816 		  cam_flags camflags, u_int32_t sense_flags,
817 		  struct devstat *ds)
818 {
819 	int error;
820 
821 	error = 0;
822 
823 	/*
824 	 * If the user has supplied a stats structure, and if we understand
825 	 * this particular type of ccb, record the transaction start.
826 	 */
827 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
828 		devstat_start_transaction(ds);
829 
830 	xpt_action(ccb);
831 
832 	do {
833 		cam_periph_ccbwait(ccb);
834 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
835 			error = 0;
836 		else if (error_routine != NULL)
837 			error = (*error_routine)(ccb, camflags, sense_flags);
838 		else
839 			error = 0;
840 
841 	} while (error == ERESTART);
842 
843 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
844 		cam_release_devq(ccb->ccb_h.path,
845 				 /* relsim_flags */0,
846 				 /* openings */0,
847 				 /* timeout */0,
848 				 /* getcount_only */ FALSE);
849 
850 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
851 		devstat_end_transaction(ds,
852 					ccb->csio.dxfer_len,
853 					ccb->csio.tag_action & 0xf,
854 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
855 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
856 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
857 					DEVSTAT_WRITE :
858 					DEVSTAT_READ);
859 
860 	return(error);
861 }
862 
863 void
864 cam_freeze_devq(struct cam_path *path)
865 {
866 	struct ccb_hdr ccb_h;
867 
868 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
869 	ccb_h.func_code = XPT_NOOP;
870 	ccb_h.flags = CAM_DEV_QFREEZE;
871 	xpt_action((union ccb *)&ccb_h);
872 }
873 
874 u_int32_t
875 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
876 		 u_int32_t openings, u_int32_t timeout,
877 		 int getcount_only)
878 {
879 	struct ccb_relsim crs;
880 
881 	xpt_setup_ccb(&crs.ccb_h, path,
882 		      /*priority*/1);
883 	crs.ccb_h.func_code = XPT_REL_SIMQ;
884 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
885 	crs.release_flags = relsim_flags;
886 	crs.openings = openings;
887 	crs.release_timeout = timeout;
888 	xpt_action((union ccb *)&crs);
889 	return (crs.qfrozen_cnt);
890 }
891 
892 #define saved_ccb_ptr ppriv_ptr0
893 static void
894 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
895 {
896 	union ccb      *saved_ccb;
897 	cam_status	status;
898 	int		frozen;
899 	int		sense;
900 	struct scsi_start_stop_unit *scsi_cmd;
901 	u_int32_t	relsim_flags, timeout;
902 	u_int32_t	qfrozen_cnt;
903 	int		xpt_done_ccb;
904 
905 	xpt_done_ccb = FALSE;
906 	status = done_ccb->ccb_h.status;
907 	frozen = (status & CAM_DEV_QFRZN) != 0;
908 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
909 	status &= CAM_STATUS_MASK;
910 
911 	timeout = 0;
912 	relsim_flags = 0;
913 	saved_ccb = (union ccb *)done_ccb->ccb_h.saved_ccb_ptr;
914 
915 	/*
916 	 * Unfreeze the queue once if it is already frozen..
917 	 */
918 	if (frozen != 0) {
919 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
920 					      /*relsim_flags*/0,
921 					      /*openings*/0,
922 					      /*timeout*/0,
923 					      /*getcount_only*/0);
924 	}
925 
926 	switch (status) {
927 	case CAM_REQ_CMP:
928 	{
929 		/*
930 		 * If we have successfully taken a device from the not
931 		 * ready to ready state, re-scan the device and re-get
932 		 * the inquiry information.  Many devices (mostly disks)
933 		 * don't properly report their inquiry information unless
934 		 * they are spun up.
935 		 *
936 		 * If we manually retrieved sense into a CCB and got
937 		 * something other than "NO SENSE" send the updated CCB
938 		 * back to the client via xpt_done() to be processed via
939 		 * the error recovery code again.
940 		 */
941 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
942 			scsi_cmd = (struct scsi_start_stop_unit *)
943 					&done_ccb->csio.cdb_io.cdb_bytes;
944 
945 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
946 				xpt_async(AC_INQ_CHANGED,
947 					  done_ccb->ccb_h.path, NULL);
948 			if (scsi_cmd->opcode == REQUEST_SENSE) {
949 				u_int sense_key;
950 
951 				sense_key = saved_ccb->csio.sense_data.flags;
952 				sense_key &= SSD_KEY;
953 				if (sense_key != SSD_KEY_NO_SENSE) {
954 					saved_ccb->ccb_h.flags |=
955 					    CAM_AUTOSNS_VALID;
956 					xpt_print_path(saved_ccb->ccb_h.path);
957 					kprintf("Recovered Sense\n");
958 #if 0
959 					scsi_sense_print(&saved_ccb->csio);
960 #endif
961 					cam_error_print(saved_ccb, CAM_ESF_ALL,
962 							CAM_EPF_ALL);
963 					xpt_done_ccb = TRUE;
964 				}
965 			}
966 		}
967 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
968 		      sizeof(union ccb));
969 
970 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
971 
972 		if (xpt_done_ccb == FALSE)
973 			xpt_action(done_ccb);
974 
975 		break;
976 	}
977 	case CAM_SCSI_STATUS_ERROR:
978 		scsi_cmd = (struct scsi_start_stop_unit *)
979 				&done_ccb->csio.cdb_io.cdb_bytes;
980 		if (sense != 0) {
981 			struct scsi_sense_data *sense;
982 			int    error_code, sense_key, asc, ascq;
983 
984 			sense = &done_ccb->csio.sense_data;
985 			scsi_extract_sense(sense, &error_code,
986 					   &sense_key, &asc, &ascq);
987 
988 			/*
989 	 		 * If the error is "invalid field in CDB",
990 			 * and the load/eject flag is set, turn the
991 			 * flag off and try again.  This is just in
992 			 * case the drive in question barfs on the
993 			 * load eject flag.  The CAM code should set
994 			 * the load/eject flag by default for
995 			 * removable media.
996 			 */
997 
998 			/* XXX KDM
999 			 * Should we check to see what the specific
1000 			 * scsi status is??  Or does it not matter
1001 			 * since we already know that there was an
1002 			 * error, and we know what the specific
1003 			 * error code was, and we know what the
1004 			 * opcode is..
1005 			 */
1006 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
1007 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
1008 			     (asc == 0x24) && (ascq == 0x00) &&
1009 			     (done_ccb->ccb_h.retry_count > 0)) {
1010 
1011 				scsi_cmd->how &= ~SSS_LOEJ;
1012 
1013 				xpt_action(done_ccb);
1014 
1015 			} else if (done_ccb->ccb_h.retry_count > 1) {
1016 				/*
1017 				 * In this case, the error recovery
1018 				 * command failed, but we've got
1019 				 * some retries left on it.  Give
1020 				 * it another try.
1021 				 */
1022 
1023 				/* set the timeout to .5 sec */
1024 				relsim_flags =
1025 					RELSIM_RELEASE_AFTER_TIMEOUT;
1026 				timeout = 500;
1027 
1028 				xpt_action(done_ccb);
1029 
1030 				break;
1031 
1032 			} else {
1033 				/*
1034 				 * Perform the final retry with the original
1035 				 * CCB so that final error processing is
1036 				 * performed by the owner of the CCB.
1037 				 */
1038 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1039 				      done_ccb, sizeof(union ccb));
1040 
1041 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1042 
1043 				xpt_action(done_ccb);
1044 			}
1045 		} else {
1046 			/*
1047 			 * Eh??  The command failed, but we don't
1048 			 * have any sense.  What's up with that?
1049 			 * Fire the CCB again to return it to the
1050 			 * caller.
1051 			 */
1052 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
1053 			      done_ccb, sizeof(union ccb));
1054 
1055 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1056 
1057 			xpt_action(done_ccb);
1058 
1059 		}
1060 		break;
1061 	default:
1062 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
1063 		      sizeof(union ccb));
1064 
1065 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
1066 
1067 		xpt_action(done_ccb);
1068 
1069 		break;
1070 	}
1071 
1072 	/* decrement the retry count */
1073 	/*
1074 	 * XXX This isn't appropriate in all cases.  Restructure,
1075 	 *     so that the retry count is only decremented on an
1076 	 *     actual retry.  Remeber that the orignal ccb had its
1077 	 *     retry count dropped before entering recovery, so
1078 	 *     doing it again is a bug.
1079 	 */
1080 	if (done_ccb->ccb_h.retry_count > 0)
1081 		done_ccb->ccb_h.retry_count--;
1082 
1083 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1084 				      /*relsim_flags*/relsim_flags,
1085 				      /*openings*/0,
1086 				      /*timeout*/timeout,
1087 				      /*getcount_only*/0);
1088 	if (xpt_done_ccb == TRUE)
1089 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
1090 }
1091 
1092 /*
1093  * Generic Async Event handler.  Peripheral drivers usually
1094  * filter out the events that require personal attention,
1095  * and leave the rest to this function.
1096  */
1097 void
1098 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1099 		 struct cam_path *path, void *arg)
1100 {
1101 	switch (code) {
1102 	case AC_LOST_DEVICE:
1103 		cam_periph_invalidate(periph);
1104 		break;
1105 	case AC_SENT_BDR:
1106 	case AC_BUS_RESET:
1107 	{
1108 		cam_periph_bus_settle(periph, scsi_delay);
1109 		break;
1110 	}
1111 	default:
1112 		break;
1113 	}
1114 }
1115 
1116 void
1117 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1118 {
1119 	struct ccb_getdevstats cgds;
1120 
1121 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1122 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1123 	xpt_action((union ccb *)&cgds);
1124 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1125 }
1126 
1127 void
1128 cam_periph_freeze_after_event(struct cam_periph *periph,
1129 			      struct timeval* event_time, u_int duration_ms)
1130 {
1131 	struct timeval delta;
1132 	struct timeval duration_tv;
1133 
1134 	microuptime(&delta);
1135 	timevalsub(&delta, event_time);
1136 	duration_tv.tv_sec = duration_ms / 1000;
1137 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1138 	if (timevalcmp(&delta, &duration_tv, <)) {
1139 		timevalsub(&duration_tv, &delta);
1140 
1141 		duration_ms = duration_tv.tv_sec * 1000;
1142 		duration_ms += duration_tv.tv_usec / 1000;
1143 		cam_freeze_devq(periph->path);
1144 		cam_release_devq(periph->path,
1145 				RELSIM_RELEASE_AFTER_TIMEOUT,
1146 				/*reduction*/0,
1147 				/*timeout*/duration_ms,
1148 				/*getcount_only*/0);
1149 	}
1150 
1151 }
1152 
1153 static int
1154 camperiphscsistatuserror(union ccb *ccb, cam_flags camflags,
1155 			 u_int32_t sense_flags, union ccb *save_ccb,
1156 			 int *openings, u_int32_t *relsim_flags,
1157 			 u_int32_t *timeout)
1158 {
1159 	int error;
1160 
1161 	switch (ccb->csio.scsi_status) {
1162 	case SCSI_STATUS_OK:
1163 	case SCSI_STATUS_COND_MET:
1164 	case SCSI_STATUS_INTERMED:
1165 	case SCSI_STATUS_INTERMED_COND_MET:
1166 		error = 0;
1167 		break;
1168 	case SCSI_STATUS_CMD_TERMINATED:
1169 	case SCSI_STATUS_CHECK_COND:
1170 		error = camperiphscsisenseerror(ccb,
1171 					        camflags,
1172 					        sense_flags,
1173 					        save_ccb,
1174 					        openings,
1175 					        relsim_flags,
1176 					        timeout);
1177 		break;
1178 	case SCSI_STATUS_QUEUE_FULL:
1179 	{
1180 		/* no decrement */
1181 		struct ccb_getdevstats cgds;
1182 
1183 		/*
1184 		 * First off, find out what the current
1185 		 * transaction counts are.
1186 		 */
1187 		xpt_setup_ccb(&cgds.ccb_h,
1188 			      ccb->ccb_h.path,
1189 			      /*priority*/1);
1190 		cgds.ccb_h.func_code = XPT_GDEV_STATS;
1191 		xpt_action((union ccb *)&cgds);
1192 
1193 		/*
1194 		 * If we were the only transaction active, treat
1195 		 * the QUEUE FULL as if it were a BUSY condition.
1196 		 */
1197 		if (cgds.dev_active != 0) {
1198 			int total_openings;
1199 
1200 			/*
1201 			 * Reduce the number of openings to
1202 			 * be 1 less than the amount it took
1203 			 * to get a queue full bounded by the
1204 			 * minimum allowed tag count for this
1205 			 * device.
1206 			 */
1207 			total_openings = cgds.dev_active + cgds.dev_openings;
1208 			*openings = cgds.dev_active;
1209 			if (*openings < cgds.mintags)
1210 				*openings = cgds.mintags;
1211 			if (*openings < total_openings)
1212 				*relsim_flags = RELSIM_ADJUST_OPENINGS;
1213 			else {
1214 				/*
1215 				 * Some devices report queue full for
1216 				 * temporary resource shortages.  For
1217 				 * this reason, we allow a minimum
1218 				 * tag count to be entered via a
1219 				 * quirk entry to prevent the queue
1220 				 * count on these devices from falling
1221 				 * to a pessimisticly low value.  We
1222 				 * still wait for the next successful
1223 				 * completion, however, before queueing
1224 				 * more transactions to the device.
1225 				 */
1226 				*relsim_flags = RELSIM_RELEASE_AFTER_CMDCMPLT;
1227 			}
1228 			*timeout = 0;
1229 			error = ERESTART;
1230 			if (bootverbose) {
1231 				xpt_print_path(ccb->ccb_h.path);
1232 				kprintf("Queue Full\n");
1233 			}
1234 			break;
1235 		}
1236 		/* FALLTHROUGH */
1237 	}
1238 	case SCSI_STATUS_BUSY:
1239 		/*
1240 		 * Restart the queue after either another
1241 		 * command completes or a 1 second timeout.
1242 		 */
1243 		if (bootverbose) {
1244 			xpt_print_path(ccb->ccb_h.path);
1245 			kprintf("Device Busy\n");
1246 		}
1247 		if (ccb->ccb_h.retry_count > 0) {
1248 			ccb->ccb_h.retry_count--;
1249 			error = ERESTART;
1250 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1251 				      | RELSIM_RELEASE_AFTER_CMDCMPLT;
1252 			*timeout = 1000;
1253 		} else {
1254 			error = EIO;
1255 		}
1256 		break;
1257 	case SCSI_STATUS_RESERV_CONFLICT:
1258 		xpt_print_path(ccb->ccb_h.path);
1259 		kprintf("Reservation Conflict\n");
1260 		error = EIO;
1261 		break;
1262 	default:
1263 		xpt_print_path(ccb->ccb_h.path);
1264 		kprintf("SCSI Status 0x%x\n", ccb->csio.scsi_status);
1265 		error = EIO;
1266 		break;
1267 	}
1268 	return (error);
1269 }
1270 
1271 static int
1272 camperiphscsisenseerror(union ccb *ccb, cam_flags camflags,
1273 			u_int32_t sense_flags, union ccb *save_ccb,
1274 		       int *openings, u_int32_t *relsim_flags,
1275 		       u_int32_t *timeout)
1276 {
1277 	struct cam_periph *periph;
1278 	int error;
1279 
1280 	periph = xpt_path_periph(ccb->ccb_h.path);
1281 	if (periph->flags & CAM_PERIPH_RECOVERY_INPROG) {
1282 
1283 		/*
1284 		 * If error recovery is already in progress, don't attempt
1285 		 * to process this error, but requeue it unconditionally
1286 		 * and attempt to process it once error recovery has
1287 		 * completed.  This failed command is probably related to
1288 		 * the error that caused the currently active error recovery
1289 		 * action so our  current recovery efforts should also
1290 		 * address this command.  Be aware that the error recovery
1291 		 * code assumes that only one recovery action is in progress
1292 		 * on a particular peripheral instance at any given time
1293 		 * (e.g. only one saved CCB for error recovery) so it is
1294 		 * imperitive that we don't violate this assumption.
1295 		 */
1296 		error = ERESTART;
1297 	} else {
1298 		scsi_sense_action err_action;
1299 		struct ccb_getdev cgd;
1300 		const char *action_string;
1301 		union ccb* print_ccb;
1302 
1303 		/* A description of the error recovery action performed */
1304 		action_string = NULL;
1305 
1306 		/*
1307 		 * The location of the orignal ccb
1308 		 * for sense printing purposes.
1309 		 */
1310 		print_ccb = ccb;
1311 
1312 		/*
1313 		 * Grab the inquiry data for this device.
1314 		 */
1315 		xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path, /*priority*/ 1);
1316 		cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1317 		xpt_action((union ccb *)&cgd);
1318 
1319 		if ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)
1320 			err_action = scsi_error_action(&ccb->csio,
1321 						       &cgd.inq_data,
1322 						       sense_flags);
1323 		else if ((ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
1324 			err_action = SS_REQSENSE;
1325 		else
1326 			err_action = SS_RETRY|SSQ_DECREMENT_COUNT|EIO;
1327 
1328 		error = err_action & SS_ERRMASK;
1329 
1330 		/*
1331 		 * If the recovery action will consume a retry,
1332 		 * make sure we actually have retries available.
1333 		 */
1334 		if ((err_action & SSQ_DECREMENT_COUNT) != 0) {
1335 			if (ccb->ccb_h.retry_count > 0)
1336 				ccb->ccb_h.retry_count--;
1337 			else {
1338 				action_string = "Retries Exhausted";
1339 				goto sense_error_done;
1340 			}
1341 		}
1342 
1343 		if ((err_action & SS_MASK) >= SS_START) {
1344 			/*
1345 			 * Do common portions of commands that
1346 			 * use recovery CCBs.
1347 			 */
1348 			if (save_ccb == NULL) {
1349 				action_string = "No recovery CCB supplied";
1350 				goto sense_error_done;
1351 			}
1352 			bcopy(ccb, save_ccb, sizeof(*save_ccb));
1353 			print_ccb = save_ccb;
1354 			periph->flags |= CAM_PERIPH_RECOVERY_INPROG;
1355 		}
1356 
1357 		switch (err_action & SS_MASK) {
1358 		case SS_NOP:
1359 			action_string = "No Recovery Action Needed";
1360 			error = 0;
1361 			break;
1362 		case SS_RETRY:
1363 			action_string = "Retrying Command (per Sense Data)";
1364 			error = ERESTART;
1365 			break;
1366 		case SS_FAIL:
1367 			action_string = "Unretryable error";
1368 			break;
1369 		case SS_START:
1370 		{
1371 			int le;
1372 
1373 			/*
1374 			 * Send a start unit command to the device, and
1375 			 * then retry the command.
1376 			 */
1377 			action_string = "Attempting to Start Unit";
1378 
1379 			/*
1380 			 * Check for removable media and set
1381 			 * load/eject flag appropriately.
1382 			 */
1383 			if (SID_IS_REMOVABLE(&cgd.inq_data))
1384 				le = TRUE;
1385 			else
1386 				le = FALSE;
1387 
1388 			scsi_start_stop(&ccb->csio,
1389 					/*retries*/1,
1390 					camperiphdone,
1391 					MSG_SIMPLE_Q_TAG,
1392 					/*start*/TRUE,
1393 					/*load/eject*/le,
1394 					/*immediate*/FALSE,
1395 					SSD_FULL_SIZE,
1396 					/*timeout*/50000);
1397 			break;
1398 		}
1399 		case SS_TUR:
1400 		{
1401 			/*
1402 			 * Send a Test Unit Ready to the device.
1403 			 * If the 'many' flag is set, we send 120
1404 			 * test unit ready commands, one every half
1405 			 * second.  Otherwise, we just send one TUR.
1406 			 * We only want to do this if the retry
1407 			 * count has not been exhausted.
1408 			 */
1409 			int retries;
1410 
1411 			if ((err_action & SSQ_MANY) != 0) {
1412 				action_string = "Polling device for readiness";
1413 				retries = 120;
1414 			} else {
1415 				action_string = "Testing device for readiness";
1416 				retries = 1;
1417 			}
1418 			scsi_test_unit_ready(&ccb->csio,
1419 					     retries,
1420 					     camperiphdone,
1421 					     MSG_SIMPLE_Q_TAG,
1422 					     SSD_FULL_SIZE,
1423 					     /*timeout*/5000);
1424 
1425 			/*
1426 			 * Accomplish our 500ms delay by deferring
1427 			 * the release of our device queue appropriately.
1428 			 */
1429 			*relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1430 			*timeout = 500;
1431 			break;
1432 		}
1433 		case SS_REQSENSE:
1434 		{
1435 			/*
1436 			 * Send a Request Sense to the device.  We
1437 			 * assume that we are in a contingent allegiance
1438 			 * condition so we do not tag this request.
1439 			 */
1440 			scsi_request_sense(&ccb->csio, /*retries*/1,
1441 					   camperiphdone,
1442 					   &save_ccb->csio.sense_data,
1443 					   sizeof(save_ccb->csio.sense_data),
1444 					   CAM_TAG_ACTION_NONE,
1445 					   /*sense_len*/SSD_FULL_SIZE,
1446 					   /*timeout*/5000);
1447 			break;
1448 		}
1449 		default:
1450 			panic("Unhandled error action %x\n", err_action);
1451 		}
1452 
1453 		if ((err_action & SS_MASK) >= SS_START) {
1454 			/*
1455 			 * Drop the priority to 0 so that the recovery
1456 			 * CCB is the first to execute.  Freeze the queue
1457 			 * after this command is sent so that we can
1458 			 * restore the old csio and have it queued in
1459 			 * the proper order before we release normal
1460 			 * transactions to the device.
1461 			 */
1462 			ccb->ccb_h.pinfo.priority = 0;
1463 			ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1464 			ccb->ccb_h.saved_ccb_ptr = save_ccb;
1465 			error = ERESTART;
1466 		}
1467 
1468 sense_error_done:
1469 		if ((err_action & SSQ_PRINT_SENSE) != 0
1470 		 && (ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0) {
1471 			cam_error_print(print_ccb, CAM_ESF_ALL, CAM_EPF_ALL);
1472 			xpt_print_path(ccb->ccb_h.path);
1473 			if (bootverbose)
1474 				scsi_sense_print(&print_ccb->csio);
1475 			kprintf("%s\n", action_string);
1476 		}
1477 	}
1478 	return (error);
1479 }
1480 
1481 /*
1482  * Generic error handler.  Peripheral drivers usually filter
1483  * out the errors that they handle in a unique mannor, then
1484  * call this function.
1485  */
1486 int
1487 cam_periph_error(union ccb *ccb, cam_flags camflags,
1488 		 u_int32_t sense_flags, union ccb *save_ccb)
1489 {
1490 	const char *action_string;
1491 	cam_status  status;
1492 	int	    frozen;
1493 	int	    error, printed = 0;
1494 	int         openings;
1495 	u_int32_t   relsim_flags;
1496 	u_int32_t   timeout;
1497 
1498 	action_string = NULL;
1499 	status = ccb->ccb_h.status;
1500 	frozen = (status & CAM_DEV_QFRZN) != 0;
1501 	status &= CAM_STATUS_MASK;
1502 	openings = relsim_flags = 0;
1503 
1504 	switch (status) {
1505 	case CAM_REQ_CMP:
1506 		error = 0;
1507 		break;
1508 	case CAM_SCSI_STATUS_ERROR:
1509 		error = camperiphscsistatuserror(ccb,
1510 						 camflags,
1511 						 sense_flags,
1512 						 save_ccb,
1513 						 &openings,
1514 						 &relsim_flags,
1515 						 &timeout);
1516 		break;
1517 	case CAM_AUTOSENSE_FAIL:
1518 		xpt_print_path(ccb->ccb_h.path);
1519 		kprintf("AutoSense Failed\n");
1520 		error = EIO;	/* we have to kill the command */
1521 		break;
1522 	case CAM_REQ_CMP_ERR:
1523 		if (bootverbose && printed == 0) {
1524 			xpt_print_path(ccb->ccb_h.path);
1525 			kprintf("Request completed with CAM_REQ_CMP_ERR\n");
1526 			printed++;
1527 		}
1528 	case CAM_CMD_TIMEOUT:
1529 		if (bootverbose && printed == 0) {
1530 			xpt_print_path(ccb->ccb_h.path);
1531 			kprintf("Command timed out\n");
1532 			printed++;
1533 		}
1534 	case CAM_UNEXP_BUSFREE:
1535 		if (bootverbose && printed == 0) {
1536 			xpt_print_path(ccb->ccb_h.path);
1537 			kprintf("Unexpected Bus Free\n");
1538 			printed++;
1539 		}
1540 	case CAM_UNCOR_PARITY:
1541 		if (bootverbose && printed == 0) {
1542 			xpt_print_path(ccb->ccb_h.path);
1543 			kprintf("Uncorrected Parity Error\n");
1544 			printed++;
1545 		}
1546 	case CAM_DATA_RUN_ERR:
1547 		if (bootverbose && printed == 0) {
1548 			xpt_print_path(ccb->ccb_h.path);
1549 			kprintf("Data Overrun\n");
1550 			printed++;
1551 		}
1552 		error = EIO;	/* we have to kill the command */
1553 		/* decrement the number of retries */
1554 		if (ccb->ccb_h.retry_count > 0) {
1555 			ccb->ccb_h.retry_count--;
1556 			error = ERESTART;
1557 		} else {
1558 			action_string = "Retries Exausted";
1559 			error = EIO;
1560 		}
1561 		break;
1562 	case CAM_UA_ABORT:
1563 	case CAM_UA_TERMIO:
1564 	case CAM_MSG_REJECT_REC:
1565 		/* XXX Don't know that these are correct */
1566 		error = EIO;
1567 		break;
1568 	case CAM_SEL_TIMEOUT:
1569 	{
1570 		struct cam_path *newpath;
1571 
1572 		if ((camflags & CAM_RETRY_SELTO) != 0) {
1573 			if (ccb->ccb_h.retry_count > 0) {
1574 
1575 				ccb->ccb_h.retry_count--;
1576 				error = ERESTART;
1577 				if (bootverbose && printed == 0) {
1578 					xpt_print_path(ccb->ccb_h.path);
1579 					kprintf("Selection Timeout\n");
1580 					printed++;
1581 				}
1582 
1583 				/*
1584 				 * Wait a second to give the device
1585 				 * time to recover before we try again.
1586 				 */
1587 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1588 				timeout = 1000;
1589 				break;
1590 			}
1591 		}
1592 		error = ENXIO;
1593 		/* Should we do more if we can't create the path?? */
1594 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1595 				    xpt_path_path_id(ccb->ccb_h.path),
1596 				    xpt_path_target_id(ccb->ccb_h.path),
1597 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1598 			break;
1599 
1600 		/*
1601 		 * Let peripheral drivers know that this device has gone
1602 		 * away.
1603 		 */
1604 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1605 		xpt_free_path(newpath);
1606 		break;
1607 	}
1608 	case CAM_REQ_INVALID:
1609 	case CAM_PATH_INVALID:
1610 	case CAM_DEV_NOT_THERE:
1611 	case CAM_NO_HBA:
1612 	case CAM_PROVIDE_FAIL:
1613 	case CAM_REQ_TOO_BIG:
1614 		error = EINVAL;
1615 		break;
1616 	case CAM_SCSI_BUS_RESET:
1617 	case CAM_BDR_SENT:
1618 		/*
1619 		 * Commands that repeatedly timeout and cause these
1620 		 * kinds of error recovery actions, should return
1621 		 * CAM_CMD_TIMEOUT, which allows us to safely assume
1622 		 * that this command was an innocent bystander to
1623 		 * these events and should be unconditionally
1624 		 * retried.
1625 		 */
1626 		if (bootverbose && printed == 0) {
1627 			xpt_print_path(ccb->ccb_h.path);
1628 			if (status == CAM_BDR_SENT)
1629 				kprintf("Bus Device Reset sent\n");
1630 			else
1631 				kprintf("Bus Reset issued\n");
1632 			printed++;
1633 		}
1634 		/* FALLTHROUGH */
1635 	case CAM_REQUEUE_REQ:
1636 		/* Unconditional requeue */
1637 		error = ERESTART;
1638 		if (bootverbose && printed == 0) {
1639 			xpt_print_path(ccb->ccb_h.path);
1640 			kprintf("Request Requeued\n");
1641 			printed++;
1642 		}
1643 		break;
1644 	case CAM_RESRC_UNAVAIL:
1645 	case CAM_BUSY:
1646 		/* timeout??? */
1647 	default:
1648 		/* decrement the number of retries */
1649 		if (ccb->ccb_h.retry_count > 0) {
1650 			ccb->ccb_h.retry_count--;
1651 			error = ERESTART;
1652 			if (bootverbose && printed == 0) {
1653 				xpt_print_path(ccb->ccb_h.path);
1654 				kprintf("CAM Status 0x%x\n", status);
1655 				printed++;
1656 			}
1657 		} else {
1658 			error = EIO;
1659 			action_string = "Retries Exhausted";
1660 		}
1661 		break;
1662 	}
1663 
1664 	/* Attempt a retry */
1665 	if (error == ERESTART || error == 0) {
1666 		if (frozen != 0)
1667 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1668 
1669 		if (error == ERESTART) {
1670 			action_string = "Retrying Command";
1671 			xpt_action(ccb);
1672 		}
1673 
1674 		if (frozen != 0)
1675 			cam_release_devq(ccb->ccb_h.path,
1676 					 relsim_flags,
1677 					 openings,
1678 					 timeout,
1679 					 /*getcount_only*/0);
1680 	}
1681 
1682 	/*
1683 	 * If we have an error and are booting verbosely, whine
1684 	 * *unless* this was a non-retryable selection timeout.
1685 	 */
1686 	if (error != 0 && bootverbose &&
1687 	    !(status == CAM_SEL_TIMEOUT && (camflags & CAM_RETRY_SELTO) == 0)) {
1688 
1689 
1690 		if (action_string == NULL)
1691 			action_string = "Unretryable Error";
1692 		if (error != ERESTART) {
1693 			xpt_print_path(ccb->ccb_h.path);
1694 			kprintf("error %d\n", error);
1695 		}
1696 		xpt_print_path(ccb->ccb_h.path);
1697 		kprintf("%s\n", action_string);
1698 	}
1699 
1700 	return (error);
1701 }
1702