xref: /dragonfly/sys/bus/cam/cam_periph.c (revision f02303f9)
1 /*
2  * Common functions for CAM "type" (peripheral) drivers.
3  *
4  * Copyright (c) 1997, 1998 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999, 2000 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_periph.c,v 1.24.2.3 2003/01/25 19:04:40 dillon Exp $
30  * $DragonFly: src/sys/bus/cam/cam_periph.c,v 1.18 2006/12/22 23:12:16 swildner Exp $
31  */
32 
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/types.h>
36 #include <sys/malloc.h>
37 #include <sys/linker_set.h>
38 #include <sys/buf.h>
39 #include <sys/proc.h>
40 #include <sys/devicestat.h>
41 #include <sys/bus.h>
42 #include <vm/vm.h>
43 #include <vm/vm_extern.h>
44 
45 #include <sys/thread2.h>
46 
47 #include "cam.h"
48 #include "cam_ccb.h"
49 #include "cam_xpt_periph.h"
50 #include "cam_periph.h"
51 #include "cam_debug.h"
52 
53 #include <bus/cam/scsi/scsi_all.h>
54 #include <bus/cam/scsi/scsi_message.h>
55 #include <bus/cam/scsi/scsi_da.h>
56 #include <bus/cam/scsi/scsi_pass.h>
57 
58 static	u_int		camperiphnextunit(struct periph_driver *p_drv,
59 					  u_int newunit, int wired,
60 					  path_id_t pathid, target_id_t target,
61 					  lun_id_t lun);
62 static	u_int		camperiphunit(struct periph_driver *p_drv,
63 				      path_id_t pathid, target_id_t target,
64 				      lun_id_t lun);
65 static	void		camperiphdone(struct cam_periph *periph,
66 					union ccb *done_ccb);
67 static  void		camperiphfree(struct cam_periph *periph);
68 
69 cam_status
70 cam_periph_alloc(periph_ctor_t *periph_ctor,
71 		 periph_oninv_t *periph_oninvalidate,
72 		 periph_dtor_t *periph_dtor, periph_start_t *periph_start,
73 		 char *name, cam_periph_type type, struct cam_path *path,
74 		 ac_callback_t *ac_callback, ac_code code, void *arg)
75 {
76 	struct		periph_driver **p_drv;
77 	struct		cam_periph *periph;
78 	struct		cam_periph *cur_periph;
79 	path_id_t	path_id;
80 	target_id_t	target_id;
81 	lun_id_t	lun_id;
82 	cam_status	status;
83 	u_int		init_level;
84 
85 	init_level = 0;
86 	/*
87 	 * Handle Hot-Plug scenarios.  If there is already a peripheral
88 	 * of our type assigned to this path, we are likely waiting for
89 	 * final close on an old, invalidated, peripheral.  If this is
90 	 * the case, queue up a deferred call to the peripheral's async
91 	 * handler.  If it looks like a mistaken re-alloation, complain.
92 	 */
93 	if ((periph = cam_periph_find(path, name)) != NULL) {
94 
95 		if ((periph->flags & CAM_PERIPH_INVALID) != 0
96 		 && (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) == 0) {
97 			periph->flags |= CAM_PERIPH_NEW_DEV_FOUND;
98 			periph->deferred_callback = ac_callback;
99 			periph->deferred_ac = code;
100 			return (CAM_REQ_INPROG);
101 		} else {
102 			kprintf("cam_periph_alloc: attempt to re-allocate "
103 			       "valid device %s%d rejected\n",
104 			       periph->periph_name, periph->unit_number);
105 		}
106 		return (CAM_REQ_INVALID);
107 	}
108 
109 	periph = kmalloc(sizeof(*periph), M_DEVBUF, M_INTWAIT | M_ZERO);
110 
111 	init_level++;
112 
113 	SET_FOREACH(p_drv, periphdriver_set) {
114 		if (strcmp((*p_drv)->driver_name, name) == 0)
115 			break;
116 	}
117 
118 	path_id = xpt_path_path_id(path);
119 	target_id = xpt_path_target_id(path);
120 	lun_id = xpt_path_lun_id(path);
121 	cam_init_pinfo(&periph->pinfo);
122 	periph->periph_start = periph_start;
123 	periph->periph_dtor = periph_dtor;
124 	periph->periph_oninval = periph_oninvalidate;
125 	periph->type = type;
126 	periph->periph_name = name;
127 	periph->unit_number = camperiphunit(*p_drv, path_id, target_id, lun_id);
128 	periph->immediate_priority = CAM_PRIORITY_NONE;
129 	periph->refcount = 0;
130 	SLIST_INIT(&periph->ccb_list);
131 	status = xpt_create_path(&path, periph, path_id, target_id, lun_id);
132 	if (status != CAM_REQ_CMP)
133 		goto failure;
134 
135 	periph->path = path;
136 	init_level++;
137 
138 	status = xpt_add_periph(periph);
139 
140 	if (status != CAM_REQ_CMP)
141 		goto failure;
142 
143 	crit_enter();
144 	cur_periph = TAILQ_FIRST(&(*p_drv)->units);
145 	while (cur_periph != NULL
146 	    && cur_periph->unit_number < periph->unit_number)
147 		cur_periph = TAILQ_NEXT(cur_periph, unit_links);
148 
149 	if (cur_periph != NULL)
150 		TAILQ_INSERT_BEFORE(cur_periph, periph, unit_links);
151 	else {
152 		TAILQ_INSERT_TAIL(&(*p_drv)->units, periph, unit_links);
153 		(*p_drv)->generation++;
154 	}
155 
156 	crit_exit();
157 
158 	init_level++;
159 
160 	status = periph_ctor(periph, arg);
161 
162 	if (status == CAM_REQ_CMP)
163 		init_level++;
164 
165 failure:
166 	switch (init_level) {
167 	case 4:
168 		/* Initialized successfully */
169 		break;
170 	case 3:
171 		crit_enter();
172 		TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
173 		crit_exit();
174 		xpt_remove_periph(periph);
175 	case 2:
176 		xpt_free_path(periph->path);
177 	case 1:
178 		kfree(periph, M_DEVBUF);
179 	case 0:
180 		/* No cleanup to perform. */
181 		break;
182 	default:
183 		panic("cam_periph_alloc: Unkown init level");
184 	}
185 	return(status);
186 }
187 
188 /*
189  * Find a peripheral structure with the specified path, target, lun,
190  * and (optionally) type.  If the name is NULL, this function will return
191  * the first peripheral driver that matches the specified path.
192  */
193 struct cam_periph *
194 cam_periph_find(struct cam_path *path, char *name)
195 {
196 	struct periph_driver **p_drv;
197 	struct cam_periph *periph;
198 
199 	SET_FOREACH(p_drv, periphdriver_set) {
200 		if (name != NULL && (strcmp((*p_drv)->driver_name, name) != 0))
201 			continue;
202 
203 		crit_enter();
204 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
205 		     periph = TAILQ_NEXT(periph, unit_links)) {
206 			if (xpt_path_comp(periph->path, path) == 0) {
207 				crit_exit();
208 				return(periph);
209 			}
210 		}
211 		crit_exit();
212 		if (name != NULL)
213 			return(NULL);
214 	}
215 	return(NULL);
216 }
217 
218 cam_status
219 cam_periph_acquire(struct cam_periph *periph)
220 {
221 	if (periph == NULL)
222 		return(CAM_REQ_CMP_ERR);
223 
224 	crit_enter();
225 	periph->refcount++;
226 	crit_exit();
227 
228 	return(CAM_REQ_CMP);
229 }
230 
231 void
232 cam_periph_release(struct cam_periph *periph)
233 {
234 	if (periph == NULL)
235 		return;
236 
237 	crit_enter();
238 	if ((--periph->refcount == 0)
239 	 && (periph->flags & CAM_PERIPH_INVALID)) {
240 		camperiphfree(periph);
241 	}
242 	crit_exit();
243 }
244 
245 /*
246  * Look for the next unit number that is not currently in use for this
247  * peripheral type starting at "newunit".  Also exclude unit numbers that
248  * are reserved by for future "hardwiring" unless we already know that this
249  * is a potential wired device.  Only assume that the device is "wired" the
250  * first time through the loop since after that we'll be looking at unit
251  * numbers that did not match a wiring entry.
252  */
253 static u_int
254 camperiphnextunit(struct periph_driver *p_drv, u_int newunit, int wired,
255 		  path_id_t pathid, target_id_t target, lun_id_t lun)
256 {
257 	struct	cam_periph *periph;
258 	char	*periph_name, *strval;
259 	int	i, val, dunit;
260 	const char *dname;
261 
262 	crit_enter();
263 	periph_name = p_drv->driver_name;
264 	for (;;newunit++) {
265 
266 		for (periph = TAILQ_FIRST(&p_drv->units);
267 		     periph != NULL && periph->unit_number != newunit;
268 		     periph = TAILQ_NEXT(periph, unit_links))
269 			;
270 
271 		if (periph != NULL && periph->unit_number == newunit) {
272 			if (wired != 0) {
273 				xpt_print_path(periph->path);
274 				kprintf("Duplicate Wired Device entry!\n");
275 				xpt_print_path(periph->path);
276 				kprintf("Second device (%s device at scbus%d "
277 				       "target %d lun %d) will not be wired\n",
278 				       periph_name, pathid, target, lun);
279 				wired = 0;
280 			}
281 			continue;
282 		}
283 		if (wired)
284 			break;
285 
286 		/*
287 		 * Don't match entries like "da 4" as a wired down
288 		 * device, but do match entries like "da 4 target 5"
289 		 * or even "da 4 scbus 1".
290 		 */
291 		i = -1;
292 		while ((i = resource_locate(i, periph_name)) != -1) {
293 			dname = resource_query_name(i);
294 			dunit = resource_query_unit(i);
295 			/* if no "target" and no specific scbus, skip */
296 			if (resource_int_value(dname, dunit, "target", &val) &&
297 			    (resource_string_value(dname, dunit, "at",&strval)||
298 			     strcmp(strval, "scbus") == 0))
299 				continue;
300 			if (newunit == dunit)
301 				break;
302 		}
303 		if (i == -1)
304 			break;
305 	}
306 	crit_exit();
307 	return (newunit);
308 }
309 
310 static u_int
311 camperiphunit(struct periph_driver *p_drv, path_id_t pathid,
312 	      target_id_t target, lun_id_t lun)
313 {
314 	u_int	unit;
315 	int	hit, i, val, dunit;
316 	const char *dname;
317 	char	pathbuf[32], *strval, *periph_name;
318 
319 	unit = 0;
320 
321 	periph_name = p_drv->driver_name;
322 	ksnprintf(pathbuf, sizeof(pathbuf), "scbus%d", pathid);
323 	i = -1;
324 	for (hit = 0; (i = resource_locate(i, periph_name)) != -1; hit = 0) {
325 		dname = resource_query_name(i);
326 		dunit = resource_query_unit(i);
327 		if (resource_string_value(dname, dunit, "at", &strval) == 0) {
328 			if (strcmp(strval, pathbuf) != 0)
329 				continue;
330 			hit++;
331 		}
332 		if (resource_int_value(dname, dunit, "target", &val) == 0) {
333 			if (val != target)
334 				continue;
335 			hit++;
336 		}
337 		if (resource_int_value(dname, dunit, "lun", &val) == 0) {
338 			if (val != lun)
339 				continue;
340 			hit++;
341 		}
342 		if (hit != 0) {
343 			unit = dunit;
344 			break;
345 		}
346 	}
347 
348 	/*
349 	 * Either start from 0 looking for the next unit or from
350 	 * the unit number given in the resource config.  This way,
351 	 * if we have wildcard matches, we don't return the same
352 	 * unit number twice.
353 	 */
354 	unit = camperiphnextunit(p_drv, unit, /*wired*/hit, pathid,
355 				 target, lun);
356 
357 	return (unit);
358 }
359 
360 void
361 cam_periph_invalidate(struct cam_periph *periph)
362 {
363 	/*
364 	 * We only call this routine the first time a peripheral is
365 	 * invalidated.  The oninvalidate() routine is always called in
366 	 * a critical section.
367 	 */
368 	crit_enter();
369 	if (((periph->flags & CAM_PERIPH_INVALID) == 0)
370 	 && (periph->periph_oninval != NULL))
371 		periph->periph_oninval(periph);
372 
373 	periph->flags |= CAM_PERIPH_INVALID;
374 	periph->flags &= ~CAM_PERIPH_NEW_DEV_FOUND;
375 
376 	if (periph->refcount == 0)
377 		camperiphfree(periph);
378 	else if (periph->refcount < 0)
379 		kprintf("cam_invalidate_periph: refcount < 0!!\n");
380 	crit_exit();
381 }
382 
383 static void
384 camperiphfree(struct cam_periph *periph)
385 {
386 	struct periph_driver **p_drv;
387 
388 	SET_FOREACH(p_drv, periphdriver_set) {
389 		if (strcmp((*p_drv)->driver_name, periph->periph_name) == 0)
390 			break;
391 	}
392 
393 	if (*p_drv == NULL) {
394 		kprintf("camperiphfree: attempt to free "
395 			"non-existant periph: %s\n", periph->periph_name);
396 		return;
397 	}
398 
399 	if (periph->periph_dtor != NULL)
400 		periph->periph_dtor(periph);
401 
402 	crit_enter();
403 	TAILQ_REMOVE(&(*p_drv)->units, periph, unit_links);
404 	(*p_drv)->generation++;
405 	crit_exit();
406 
407 	xpt_remove_periph(periph);
408 
409 	if (periph->flags & CAM_PERIPH_NEW_DEV_FOUND) {
410 		union ccb ccb;
411 		void *arg;
412 
413 		switch (periph->deferred_ac) {
414 		case AC_FOUND_DEVICE:
415 			ccb.ccb_h.func_code = XPT_GDEV_TYPE;
416 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
417 			xpt_action(&ccb);
418 			arg = &ccb;
419 			break;
420 		case AC_PATH_REGISTERED:
421 			ccb.ccb_h.func_code = XPT_PATH_INQ;
422 			xpt_setup_ccb(&ccb.ccb_h, periph->path, /*priority*/ 1);
423 			xpt_action(&ccb);
424 			arg = &ccb;
425 			break;
426 		default:
427 			arg = NULL;
428 			break;
429 		}
430 		periph->deferred_callback(NULL, periph->deferred_ac,
431 					  periph->path, arg);
432 	}
433 	xpt_free_path(periph->path);
434 	kfree(periph, M_DEVBUF);
435 }
436 
437 /*
438  * Wait interruptibly for an exclusive lock.
439  */
440 int
441 cam_periph_lock(struct cam_periph *periph, int flags)
442 {
443 	int error;
444 
445 	while ((periph->flags & CAM_PERIPH_LOCKED) != 0) {
446 		periph->flags |= CAM_PERIPH_LOCK_WANTED;
447 		if ((error = tsleep(periph, flags, "caplck", 0)) != 0)
448 			return error;
449 	}
450 
451 	if (cam_periph_acquire(periph) != CAM_REQ_CMP)
452 		return(ENXIO);
453 
454 	periph->flags |= CAM_PERIPH_LOCKED;
455 	return 0;
456 }
457 
458 /*
459  * Unlock and wake up any waiters.
460  */
461 void
462 cam_periph_unlock(struct cam_periph *periph)
463 {
464 	periph->flags &= ~CAM_PERIPH_LOCKED;
465 	if ((periph->flags & CAM_PERIPH_LOCK_WANTED) != 0) {
466 		periph->flags &= ~CAM_PERIPH_LOCK_WANTED;
467 		wakeup(periph);
468 	}
469 
470 	cam_periph_release(periph);
471 }
472 
473 /*
474  * Map user virtual pointers into kernel virtual address space, so we can
475  * access the memory.  This won't work on physical pointers, for now it's
476  * up to the caller to check for that.  (XXX KDM -- should we do that here
477  * instead?)  This also only works for up to MAXPHYS memory.  Since we use
478  * buffers to map stuff in and out, we're limited to the buffer size.
479  */
480 int
481 cam_periph_mapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
482 {
483 	int numbufs, i, j;
484 	buf_cmd_t cmd[CAM_PERIPH_MAXMAPS];
485 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
486 	u_int32_t lengths[CAM_PERIPH_MAXMAPS];
487 	u_int32_t dirs[CAM_PERIPH_MAXMAPS];
488 
489 	switch(ccb->ccb_h.func_code) {
490 	case XPT_DEV_MATCH:
491 		if (ccb->cdm.match_buf_len == 0) {
492 			kprintf("cam_periph_mapmem: invalid match buffer "
493 			       "length 0\n");
494 			return(EINVAL);
495 		}
496 		if (ccb->cdm.pattern_buf_len > 0) {
497 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
498 			lengths[0] = ccb->cdm.pattern_buf_len;
499 			dirs[0] = CAM_DIR_OUT;
500 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
501 			lengths[1] = ccb->cdm.match_buf_len;
502 			dirs[1] = CAM_DIR_IN;
503 			numbufs = 2;
504 		} else {
505 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
506 			lengths[0] = ccb->cdm.match_buf_len;
507 			dirs[0] = CAM_DIR_IN;
508 			numbufs = 1;
509 		}
510 		break;
511 	case XPT_SCSI_IO:
512 	case XPT_CONT_TARGET_IO:
513 		if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE)
514 			return(0);
515 
516 		data_ptrs[0] = &ccb->csio.data_ptr;
517 		lengths[0] = ccb->csio.dxfer_len;
518 		dirs[0] = ccb->ccb_h.flags & CAM_DIR_MASK;
519 		numbufs = 1;
520 		break;
521 	default:
522 		return(EINVAL);
523 		break; /* NOTREACHED */
524 	}
525 
526 	/*
527 	 * Check the transfer length and permissions first, so we don't
528 	 * have to unmap any previously mapped buffers.
529 	 */
530 	for (i = 0; i < numbufs; i++) {
531 		/*
532 		 * Its kinda bogus, we need a R+W command.  For now the
533 		 * buffer needs some sort of command.  Use BUF_CMD_WRITE
534 		 * to indicate a write and BUF_CMD_READ to indicate R+W.
535 		 */
536 		cmd[i] = BUF_CMD_WRITE;
537 
538 		/*
539 		 * The userland data pointer passed in may not be page
540 		 * aligned.  vmapbuf() truncates the address to a page
541 		 * boundary, so if the address isn't page aligned, we'll
542 		 * need enough space for the given transfer length, plus
543 		 * whatever extra space is necessary to make it to the page
544 		 * boundary.
545 		 */
546 		if ((lengths[i] +
547 		    (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)) > DFLTPHYS){
548 			kprintf("cam_periph_mapmem: attempt to map %lu bytes, "
549 			       "which is greater than DFLTPHYS(%d)\n",
550 			       (long)(lengths[i] +
551 			       (((vm_offset_t)(*data_ptrs[i])) & PAGE_MASK)),
552 			       DFLTPHYS);
553 			return(E2BIG);
554 		}
555 
556 		if (dirs[i] & CAM_DIR_OUT) {
557 			if (!useracc(*data_ptrs[i], lengths[i],
558 				     VM_PROT_READ)) {
559 				kprintf("cam_periph_mapmem: error, "
560 					"address %p, length %lu isn't "
561 					"user accessible for READ\n",
562 					(void *)*data_ptrs[i],
563 					(u_long)lengths[i]);
564 				return(EACCES);
565 			}
566 		}
567 
568 		if (dirs[i] & CAM_DIR_IN) {
569 			cmd[i] = BUF_CMD_READ;
570 			if (!useracc(*data_ptrs[i], lengths[i],
571 				     VM_PROT_WRITE)) {
572 				kprintf("cam_periph_mapmem: error, "
573 					"address %p, length %lu isn't "
574 					"user accessible for WRITE\n",
575 					(void *)*data_ptrs[i],
576 					(u_long)lengths[i]);
577 
578 				return(EACCES);
579 			}
580 		}
581 
582 	}
583 
584 	for (i = 0; i < numbufs; i++) {
585 		/*
586 		 * Get the buffer.
587 		 */
588 		mapinfo->bp[i] = getpbuf(NULL);
589 
590 		/* save the original user pointer */
591 		mapinfo->saved_ptrs[i] = *data_ptrs[i];
592 
593 		/* set the flags */
594 		mapinfo->bp[i]->b_cmd = cmd[i];
595 
596 		/* map the user buffer into kernel memory */
597 		if (vmapbuf(mapinfo->bp[i], *data_ptrs[i], lengths[i]) < 0) {
598 			kprintf("cam_periph_mapmem: error, "
599 				"address %p, length %lu isn't "
600 				"user accessible any more\n",
601 				(void *)*data_ptrs[i],
602 				(u_long)lengths[i]);
603 			for (j = 0; j < i; ++j) {
604 				*data_ptrs[j] = mapinfo->saved_ptrs[j];
605 				vunmapbuf(mapinfo->bp[j]);
606 				relpbuf(mapinfo->bp[j], NULL);
607 			}
608 			mapinfo->num_bufs_used -= i;
609 			return(EACCES);
610 		}
611 
612 		/* set our pointer to the new mapped area */
613 		*data_ptrs[i] = mapinfo->bp[i]->b_data;
614 
615 		mapinfo->num_bufs_used++;
616 	}
617 
618 	return(0);
619 }
620 
621 /*
622  * Unmap memory segments mapped into kernel virtual address space by
623  * cam_periph_mapmem().
624  */
625 void
626 cam_periph_unmapmem(union ccb *ccb, struct cam_periph_map_info *mapinfo)
627 {
628 	int numbufs, i;
629 	u_int8_t **data_ptrs[CAM_PERIPH_MAXMAPS];
630 
631 	if (mapinfo->num_bufs_used <= 0) {
632 		/* allow ourselves to be swapped once again */
633 		return;
634 	}
635 
636 	switch (ccb->ccb_h.func_code) {
637 	case XPT_DEV_MATCH:
638 		numbufs = min(mapinfo->num_bufs_used, 2);
639 
640 		if (numbufs == 1) {
641 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.matches;
642 		} else {
643 			data_ptrs[0] = (u_int8_t **)&ccb->cdm.patterns;
644 			data_ptrs[1] = (u_int8_t **)&ccb->cdm.matches;
645 		}
646 		break;
647 	case XPT_SCSI_IO:
648 	case XPT_CONT_TARGET_IO:
649 		data_ptrs[0] = &ccb->csio.data_ptr;
650 		numbufs = min(mapinfo->num_bufs_used, 1);
651 		break;
652 	default:
653 		/* allow ourselves to be swapped once again */
654 		return;
655 		break; /* NOTREACHED */
656 	}
657 
658 	for (i = 0; i < numbufs; i++) {
659 		/* Set the user's pointer back to the original value */
660 		*data_ptrs[i] = mapinfo->saved_ptrs[i];
661 
662 		/* unmap the buffer */
663 		vunmapbuf(mapinfo->bp[i]);
664 
665 		/* release the buffer */
666 		relpbuf(mapinfo->bp[i], NULL);
667 	}
668 
669 	/* allow ourselves to be swapped once again */
670 }
671 
672 union ccb *
673 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
674 {
675 	struct ccb_hdr *ccb_h;
676 
677 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("entering cdgetccb\n"));
678 
679 	crit_enter();
680 
681 	while (periph->ccb_list.slh_first == NULL) {
682 		if (periph->immediate_priority > priority)
683 			periph->immediate_priority = priority;
684 		xpt_schedule(periph, priority);
685 		if ((periph->ccb_list.slh_first != NULL)
686 		 && (periph->ccb_list.slh_first->pinfo.priority == priority))
687 			break;
688 		tsleep(&periph->ccb_list, 0, "cgticb", 0);
689 	}
690 
691 	ccb_h = periph->ccb_list.slh_first;
692 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
693 	crit_exit();
694 	return ((union ccb *)ccb_h);
695 }
696 
697 void
698 cam_periph_ccbwait(union ccb *ccb)
699 {
700 	crit_enter();
701 	if ((ccb->ccb_h.pinfo.index != CAM_UNQUEUED_INDEX)
702 	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG))
703 		tsleep(&ccb->ccb_h.cbfcnp, 0, "cbwait", 0);
704 	crit_exit();
705 }
706 
707 int
708 cam_periph_ioctl(struct cam_periph *periph, int cmd, caddr_t addr,
709 		 int (*error_routine)(union ccb *ccb,
710 				      cam_flags camflags,
711 				      u_int32_t sense_flags))
712 {
713 	union ccb 	     *ccb;
714 	int 		     error;
715 	int		     found;
716 
717 	error = found = 0;
718 
719 	switch(cmd){
720 	case CAMGETPASSTHRU:
721 		ccb = cam_periph_getccb(periph, /* priority */ 1);
722 		xpt_setup_ccb(&ccb->ccb_h,
723 			      ccb->ccb_h.path,
724 			      /*priority*/1);
725 		ccb->ccb_h.func_code = XPT_GDEVLIST;
726 
727 		/*
728 		 * Basically, the point of this is that we go through
729 		 * getting the list of devices, until we find a passthrough
730 		 * device.  In the current version of the CAM code, the
731 		 * only way to determine what type of device we're dealing
732 		 * with is by its name.
733 		 */
734 		while (found == 0) {
735 			ccb->cgdl.index = 0;
736 			ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
737 			while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
738 
739 				/* we want the next device in the list */
740 				xpt_action(ccb);
741 				if (strncmp(ccb->cgdl.periph_name,
742 				    "pass", 4) == 0){
743 					found = 1;
744 					break;
745 				}
746 			}
747 			if ((ccb->cgdl.status == CAM_GDEVLIST_LAST_DEVICE) &&
748 			    (found == 0)) {
749 				ccb->cgdl.periph_name[0] = '\0';
750 				ccb->cgdl.unit_number = 0;
751 				break;
752 			}
753 		}
754 
755 		/* copy the result back out */
756 		bcopy(ccb, addr, sizeof(union ccb));
757 
758 		/* and release the ccb */
759 		xpt_release_ccb(ccb);
760 
761 		break;
762 	default:
763 		error = ENOTTY;
764 		break;
765 	}
766 	return(error);
767 }
768 
769 int
770 cam_periph_runccb(union ccb *ccb,
771 		  int (*error_routine)(union ccb *ccb,
772 				       cam_flags camflags,
773 				       u_int32_t sense_flags),
774 		  cam_flags camflags, u_int32_t sense_flags,
775 		  struct devstat *ds)
776 {
777 	int error;
778 
779 	error = 0;
780 
781 	/*
782 	 * If the user has supplied a stats structure, and if we understand
783 	 * this particular type of ccb, record the transaction start.
784 	 */
785 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
786 		devstat_start_transaction(ds);
787 
788 	xpt_action(ccb);
789 
790 	do {
791 		cam_periph_ccbwait(ccb);
792 		if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
793 			error = 0;
794 		else if (error_routine != NULL)
795 			error = (*error_routine)(ccb, camflags, sense_flags);
796 		else
797 			error = 0;
798 
799 	} while (error == ERESTART);
800 
801 	if ((ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
802 		cam_release_devq(ccb->ccb_h.path,
803 				 /* relsim_flags */0,
804 				 /* openings */0,
805 				 /* timeout */0,
806 				 /* getcount_only */ FALSE);
807 
808 	if ((ds != NULL) && (ccb->ccb_h.func_code == XPT_SCSI_IO))
809 		devstat_end_transaction(ds,
810 					ccb->csio.dxfer_len,
811 					ccb->csio.tag_action & 0xf,
812 					((ccb->ccb_h.flags & CAM_DIR_MASK) ==
813 					CAM_DIR_NONE) ?  DEVSTAT_NO_DATA :
814 					(ccb->ccb_h.flags & CAM_DIR_OUT) ?
815 					DEVSTAT_WRITE :
816 					DEVSTAT_READ);
817 
818 	return(error);
819 }
820 
821 void
822 cam_freeze_devq(struct cam_path *path)
823 {
824 	struct ccb_hdr ccb_h;
825 
826 	xpt_setup_ccb(&ccb_h, path, /*priority*/1);
827 	ccb_h.func_code = XPT_NOOP;
828 	ccb_h.flags = CAM_DEV_QFREEZE;
829 	xpt_action((union ccb *)&ccb_h);
830 }
831 
832 u_int32_t
833 cam_release_devq(struct cam_path *path, u_int32_t relsim_flags,
834 		 u_int32_t openings, u_int32_t timeout,
835 		 int getcount_only)
836 {
837 	struct ccb_relsim crs;
838 
839 	xpt_setup_ccb(&crs.ccb_h, path,
840 		      /*priority*/1);
841 	crs.ccb_h.func_code = XPT_REL_SIMQ;
842 	crs.ccb_h.flags = getcount_only ? CAM_DEV_QFREEZE : 0;
843 	crs.release_flags = relsim_flags;
844 	crs.openings = openings;
845 	crs.release_timeout = timeout;
846 	xpt_action((union ccb *)&crs);
847 	return (crs.qfrozen_cnt);
848 }
849 
850 #define saved_ccb_ptr ppriv_ptr0
851 static void
852 camperiphdone(struct cam_periph *periph, union ccb *done_ccb)
853 {
854 	cam_status	status;
855 	int		frozen;
856 	int		sense;
857 	struct scsi_start_stop_unit *scsi_cmd;
858 	u_int32_t	relsim_flags, timeout;
859 	u_int32_t	qfrozen_cnt;
860 
861 	status = done_ccb->ccb_h.status;
862 	frozen = (status & CAM_DEV_QFRZN) != 0;
863 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
864 	status &= CAM_STATUS_MASK;
865 
866 	timeout = 0;
867 	relsim_flags = 0;
868 
869 	/*
870 	 * Unfreeze the queue once if it is already frozen..
871 	 */
872 	if (frozen != 0) {
873 		qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
874 					      /*relsim_flags*/0,
875 					      /*openings*/0,
876 					      /*timeout*/0,
877 					      /*getcount_only*/0);
878 	}
879 
880 	switch (status) {
881 
882 	case CAM_REQ_CMP:
883 
884 		/*
885 		 * If we have successfully taken a device from the not
886 		 * ready to ready state, re-scan the device and re-get the
887 		 * inquiry information.  Many devices (mostly disks) don't
888 		 * properly report their inquiry information unless they
889 		 * are spun up.
890 		 */
891 		if (done_ccb->ccb_h.func_code == XPT_SCSI_IO) {
892 			scsi_cmd = (struct scsi_start_stop_unit *)
893 					&done_ccb->csio.cdb_io.cdb_bytes;
894 
895 		 	if (scsi_cmd->opcode == START_STOP_UNIT)
896 				xpt_async(AC_INQ_CHANGED,
897 					  done_ccb->ccb_h.path, NULL);
898 		}
899 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
900 		      sizeof(union ccb));
901 
902 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
903 
904 		xpt_action(done_ccb);
905 
906 		break;
907 	case CAM_SCSI_STATUS_ERROR:
908 		scsi_cmd = (struct scsi_start_stop_unit *)
909 				&done_ccb->csio.cdb_io.cdb_bytes;
910 		if (sense != 0) {
911 			struct scsi_sense_data *sense;
912 			int    error_code, sense_key, asc, ascq;
913 
914 			sense = &done_ccb->csio.sense_data;
915 			scsi_extract_sense(sense, &error_code,
916 					   &sense_key, &asc, &ascq);
917 
918 			/*
919 	 		 * If the error is "invalid field in CDB",
920 			 * and the load/eject flag is set, turn the
921 			 * flag off and try again.  This is just in
922 			 * case the drive in question barfs on the
923 			 * load eject flag.  The CAM code should set
924 			 * the load/eject flag by default for
925 			 * removable media.
926 			 */
927 
928 			/* XXX KDM
929 			 * Should we check to see what the specific
930 			 * scsi status is??  Or does it not matter
931 			 * since we already know that there was an
932 			 * error, and we know what the specific
933 			 * error code was, and we know what the
934 			 * opcode is..
935 			 */
936 			if ((scsi_cmd->opcode == START_STOP_UNIT) &&
937 			    ((scsi_cmd->how & SSS_LOEJ) != 0) &&
938 			     (asc == 0x24) && (ascq == 0x00) &&
939 			     (done_ccb->ccb_h.retry_count > 0)) {
940 
941 				scsi_cmd->how &= ~SSS_LOEJ;
942 
943 				xpt_action(done_ccb);
944 
945 			} else if (done_ccb->ccb_h.retry_count > 0) {
946 				/*
947 				 * In this case, the error recovery
948 				 * command failed, but we've got
949 				 * some retries left on it.  Give
950 				 * it another try.
951 				 */
952 
953 				/* set the timeout to .5 sec */
954 				relsim_flags =
955 					RELSIM_RELEASE_AFTER_TIMEOUT;
956 				timeout = 500;
957 
958 				xpt_action(done_ccb);
959 
960 				break;
961 
962 			} else {
963 				/*
964 				 * Copy the original CCB back and
965 				 * send it back to the caller.
966 				 */
967 				bcopy(done_ccb->ccb_h.saved_ccb_ptr,
968 				      done_ccb, sizeof(union ccb));
969 
970 				periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
971 
972 				xpt_action(done_ccb);
973 			}
974 		} else {
975 			/*
976 			 * Eh??  The command failed, but we don't
977 			 * have any sense.  What's up with that?
978 			 * Fire the CCB again to return it to the
979 			 * caller.
980 			 */
981 			bcopy(done_ccb->ccb_h.saved_ccb_ptr,
982 			      done_ccb, sizeof(union ccb));
983 
984 			periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
985 
986 			xpt_action(done_ccb);
987 
988 		}
989 		break;
990 	default:
991 		bcopy(done_ccb->ccb_h.saved_ccb_ptr, done_ccb,
992 		      sizeof(union ccb));
993 
994 		periph->flags &= ~CAM_PERIPH_RECOVERY_INPROG;
995 
996 		xpt_action(done_ccb);
997 
998 		break;
999 	}
1000 
1001 	/* decrement the retry count */
1002 	if (done_ccb->ccb_h.retry_count > 0)
1003 		done_ccb->ccb_h.retry_count--;
1004 
1005 	qfrozen_cnt = cam_release_devq(done_ccb->ccb_h.path,
1006 				      /*relsim_flags*/relsim_flags,
1007 				      /*openings*/0,
1008 				      /*timeout*/timeout,
1009 				      /*getcount_only*/0);
1010 }
1011 
1012 /*
1013  * Generic Async Event handler.  Peripheral drivers usually
1014  * filter out the events that require personal attention,
1015  * and leave the rest to this function.
1016  */
1017 void
1018 cam_periph_async(struct cam_periph *periph, u_int32_t code,
1019 		 struct cam_path *path, void *arg)
1020 {
1021 	switch (code) {
1022 	case AC_LOST_DEVICE:
1023 		cam_periph_invalidate(periph);
1024 		break;
1025 	case AC_SENT_BDR:
1026 	case AC_BUS_RESET:
1027 	{
1028 		cam_periph_bus_settle(periph, SCSI_DELAY);
1029 		break;
1030 	}
1031 	default:
1032 		break;
1033 	}
1034 }
1035 
1036 void
1037 cam_periph_bus_settle(struct cam_periph *periph, u_int bus_settle)
1038 {
1039 	struct ccb_getdevstats cgds;
1040 
1041 	xpt_setup_ccb(&cgds.ccb_h, periph->path, /*priority*/1);
1042 	cgds.ccb_h.func_code = XPT_GDEV_STATS;
1043 	xpt_action((union ccb *)&cgds);
1044 	cam_periph_freeze_after_event(periph, &cgds.last_reset, bus_settle);
1045 }
1046 
1047 void
1048 cam_periph_freeze_after_event(struct cam_periph *periph,
1049 			      struct timeval* event_time, u_int duration_ms)
1050 {
1051 	struct timeval delta;
1052 	struct timeval duration_tv;
1053 
1054 	microuptime(&delta);
1055 	timevalsub(&delta, event_time);
1056 	duration_tv.tv_sec = duration_ms / 1000;
1057 	duration_tv.tv_usec = (duration_ms % 1000) * 1000;
1058 	if (timevalcmp(&delta, &duration_tv, <)) {
1059 		timevalsub(&duration_tv, &delta);
1060 
1061 		duration_ms = duration_tv.tv_sec * 1000;
1062 		duration_ms += duration_tv.tv_usec / 1000;
1063 		cam_freeze_devq(periph->path);
1064 		cam_release_devq(periph->path,
1065 				RELSIM_RELEASE_AFTER_TIMEOUT,
1066 				/*reduction*/0,
1067 				/*timeout*/duration_ms,
1068 				/*getcount_only*/0);
1069 	}
1070 
1071 }
1072 
1073 /*
1074  * Generic error handler.  Peripheral drivers usually filter
1075  * out the errors that they handle in a unique mannor, then
1076  * call this function.
1077  */
1078 int
1079 cam_periph_error(union ccb *ccb, cam_flags camflags,
1080 		 u_int32_t sense_flags, union ccb *save_ccb)
1081 {
1082 	cam_status status;
1083 	int	   frozen;
1084 	int	   sense;
1085 	int	   error;
1086 	int        openings;
1087 	int	   retry;
1088 	u_int32_t  relsim_flags;
1089 	u_int32_t  timeout;
1090 
1091 	status = ccb->ccb_h.status;
1092 	frozen = (status & CAM_DEV_QFRZN) != 0;
1093 	sense  = (status & CAM_AUTOSNS_VALID) != 0;
1094 	status &= CAM_STATUS_MASK;
1095 	relsim_flags = 0;
1096 
1097 	switch (status) {
1098 	case CAM_REQ_CMP:
1099 		/* decrement the number of retries */
1100 		retry = ccb->ccb_h.retry_count > 0;
1101 		if (retry)
1102 			ccb->ccb_h.retry_count--;
1103 		error = 0;
1104 		break;
1105 	case CAM_AUTOSENSE_FAIL:
1106 	case CAM_SCSI_STATUS_ERROR:
1107 
1108 		switch (ccb->csio.scsi_status) {
1109 		case SCSI_STATUS_OK:
1110 		case SCSI_STATUS_COND_MET:
1111 		case SCSI_STATUS_INTERMED:
1112 		case SCSI_STATUS_INTERMED_COND_MET:
1113 			error = 0;
1114 			break;
1115 		case SCSI_STATUS_CMD_TERMINATED:
1116 		case SCSI_STATUS_CHECK_COND:
1117 			if (sense != 0) {
1118 				struct scsi_sense_data *sense;
1119 				int    error_code, sense_key, asc, ascq;
1120 				struct cam_periph *periph;
1121 				scsi_sense_action err_action;
1122 				struct ccb_getdev cgd;
1123 
1124 				sense = &ccb->csio.sense_data;
1125 				scsi_extract_sense(sense, &error_code,
1126 						   &sense_key, &asc, &ascq);
1127 				periph = xpt_path_periph(ccb->ccb_h.path);
1128 
1129 				/*
1130 				 * Grab the inquiry data for this device.
1131 				 */
1132 				xpt_setup_ccb(&cgd.ccb_h, ccb->ccb_h.path,
1133 					      /*priority*/ 1);
1134 				cgd.ccb_h.func_code = XPT_GDEV_TYPE;
1135 				xpt_action((union ccb *)&cgd);
1136 
1137 				err_action = scsi_error_action(asc, ascq,
1138 							       &cgd.inq_data);
1139 
1140 				/*
1141 				 * Send a Test Unit Ready to the device.
1142 				 * If the 'many' flag is set, we send 120
1143 				 * test unit ready commands, one every half
1144 				 * second.  Otherwise, we just send one TUR.
1145 				 * We only want to do this if the retry
1146 				 * count has not been exhausted.
1147 				 */
1148 				if (((err_action & SS_MASK) == SS_TUR)
1149 				 && save_ccb != NULL
1150 				 && ccb->ccb_h.retry_count > 0) {
1151 
1152 					/*
1153 					 * Since error recovery is already
1154 					 * in progress, don't attempt to
1155 					 * process this error.  It is probably
1156 					 * related to the error that caused
1157 					 * the currently active error recovery
1158 					 * action.  Also, we only have
1159 					 * space for one saved CCB, so if we
1160 					 * had two concurrent error recovery
1161 					 * actions, we would end up
1162 					 * over-writing one error recovery
1163 					 * CCB with another one.
1164 					 */
1165 					if (periph->flags &
1166 					    CAM_PERIPH_RECOVERY_INPROG) {
1167 						error = ERESTART;
1168 						break;
1169 					}
1170 
1171 					periph->flags |=
1172 						CAM_PERIPH_RECOVERY_INPROG;
1173 
1174 					/* decrement the number of retries */
1175 					if ((err_action &
1176 					     SSQ_DECREMENT_COUNT) != 0) {
1177 						retry = 1;
1178 						ccb->ccb_h.retry_count--;
1179 					}
1180 
1181 					bcopy(ccb, save_ccb, sizeof(*save_ccb));
1182 
1183 					/*
1184 					 * We retry this one every half
1185 					 * second for a minute.  If the
1186 					 * device hasn't become ready in a
1187 					 * minute's time, it's unlikely to
1188 					 * ever become ready.  If the table
1189 					 * doesn't specify SSQ_MANY, we can
1190 					 * only try this once.  Oh well.
1191 					 */
1192 					if ((err_action & SSQ_MANY) != 0)
1193 						scsi_test_unit_ready(&ccb->csio,
1194 							       /*retries*/120,
1195 							       camperiphdone,
1196 						 	       MSG_SIMPLE_Q_TAG,
1197 							       SSD_FULL_SIZE,
1198 							       /*timeout*/5000);
1199 					else
1200 						scsi_test_unit_ready(&ccb->csio,
1201 							       /*retries*/1,
1202 							       camperiphdone,
1203 						 	       MSG_SIMPLE_Q_TAG,
1204 							       SSD_FULL_SIZE,
1205 							       /*timeout*/5000);
1206 
1207 					/* release the queue after .5 sec.  */
1208 					relsim_flags =
1209 						RELSIM_RELEASE_AFTER_TIMEOUT;
1210 					timeout = 500;
1211 					/*
1212 					 * Drop the priority to 0 so that
1213 					 * we are the first to execute.  Also
1214 					 * freeze the queue after this command
1215 					 * is sent so that we can restore the
1216 					 * old csio and have it queued in the
1217 					 * proper order before we let normal
1218 					 * transactions go to the drive.
1219 					 */
1220 					ccb->ccb_h.pinfo.priority = 0;
1221 					ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1222 
1223 					/*
1224 					 * Save a pointer to the original
1225 					 * CCB in the new CCB.
1226 					 */
1227 					ccb->ccb_h.saved_ccb_ptr = save_ccb;
1228 
1229 					error = ERESTART;
1230 				}
1231 				/*
1232 				 * Send a start unit command to the device,
1233 				 * and then retry the command.  We only
1234 				 * want to do this if the retry count has
1235 				 * not been exhausted.  If the user
1236 				 * specified 0 retries, then we follow
1237 				 * their request and do not retry.
1238 				 */
1239 				else if (((err_action & SS_MASK) == SS_START)
1240 				      && save_ccb != NULL
1241 				      && ccb->ccb_h.retry_count > 0) {
1242 					int le;
1243 
1244 					/*
1245 					 * Only one error recovery action
1246 					 * at a time.  See above.
1247 					 */
1248 					if (periph->flags &
1249 					    CAM_PERIPH_RECOVERY_INPROG) {
1250 						error = ERESTART;
1251 						break;
1252 					}
1253 
1254 					periph->flags |=
1255 						CAM_PERIPH_RECOVERY_INPROG;
1256 
1257 					/* decrement the number of retries */
1258 					retry = 1;
1259 					ccb->ccb_h.retry_count--;
1260 
1261 					/*
1262 					 * Check for removable media and
1263 					 * set load/eject flag
1264 					 * appropriately.
1265 					 */
1266 					if (SID_IS_REMOVABLE(&cgd.inq_data))
1267 						le = TRUE;
1268 					else
1269 						le = FALSE;
1270 
1271 					/*
1272 					 * Attempt to start the drive up.
1273 					 *
1274 					 * Save the current ccb so it can
1275 					 * be restored and retried once the
1276 					 * drive is started up.
1277 					 */
1278 					bcopy(ccb, save_ccb, sizeof(*save_ccb));
1279 
1280 					scsi_start_stop(&ccb->csio,
1281 							/*retries*/1,
1282 							camperiphdone,
1283 							MSG_SIMPLE_Q_TAG,
1284 							/*start*/TRUE,
1285 							/*load/eject*/le,
1286 							/*immediate*/FALSE,
1287 							SSD_FULL_SIZE,
1288 							/*timeout*/50000);
1289 					/*
1290 					 * Drop the priority to 0 so that
1291 					 * we are the first to execute.  Also
1292 					 * freeze the queue after this command
1293 					 * is sent so that we can restore the
1294 					 * old csio and have it queued in the
1295 					 * proper order before we let normal
1296 					 * transactions go to the drive.
1297 					 */
1298 					ccb->ccb_h.pinfo.priority = 0;
1299 					ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1300 
1301 					/*
1302 					 * Save a pointer to the original
1303 					 * CCB in the new CCB.
1304 					 */
1305 					ccb->ccb_h.saved_ccb_ptr = save_ccb;
1306 
1307 					error = ERESTART;
1308 				} else if ((sense_flags & SF_RETRY_UA) != 0) {
1309 					/*
1310 					 * XXX KDM this is a *horrible*
1311 					 * hack.
1312 					 */
1313 					error = scsi_interpret_sense(ccb,
1314 								  sense_flags,
1315 								  &relsim_flags,
1316 								  &openings,
1317 								  &timeout,
1318 								  err_action);
1319 				}
1320 
1321 				/*
1322 				 * Theoretically, this code should send a
1323 				 * test unit ready to the given device, and
1324 				 * if it returns and error, send a start
1325 				 * unit command.  Since we don't yet have
1326 				 * the capability to do two-command error
1327 				 * recovery, just send a start unit.
1328 				 * XXX KDM fix this!
1329 				 */
1330 				else if (((err_action & SS_MASK) == SS_TURSTART)
1331 				      && save_ccb != NULL
1332 				      && ccb->ccb_h.retry_count > 0) {
1333 					int le;
1334 
1335 					/*
1336 					 * Only one error recovery action
1337 					 * at a time.  See above.
1338 					 */
1339 					if (periph->flags &
1340 					    CAM_PERIPH_RECOVERY_INPROG) {
1341 						error = ERESTART;
1342 						break;
1343 					}
1344 
1345 					periph->flags |=
1346 						CAM_PERIPH_RECOVERY_INPROG;
1347 
1348 					/* decrement the number of retries */
1349 					retry = 1;
1350 					ccb->ccb_h.retry_count--;
1351 
1352 					/*
1353 					 * Check for removable media and
1354 					 * set load/eject flag
1355 					 * appropriately.
1356 					 */
1357 					if (SID_IS_REMOVABLE(&cgd.inq_data))
1358 						le = TRUE;
1359 					else
1360 						le = FALSE;
1361 
1362 					/*
1363 					 * Attempt to start the drive up.
1364 					 *
1365 					 * Save the current ccb so it can
1366 					 * be restored and retried once the
1367 					 * drive is started up.
1368 					 */
1369 					bcopy(ccb, save_ccb, sizeof(*save_ccb));
1370 
1371 					scsi_start_stop(&ccb->csio,
1372 							/*retries*/1,
1373 							camperiphdone,
1374 							MSG_SIMPLE_Q_TAG,
1375 							/*start*/TRUE,
1376 							/*load/eject*/le,
1377 							/*immediate*/FALSE,
1378 							SSD_FULL_SIZE,
1379 							/*timeout*/50000);
1380 
1381 					/* release the queue after .5 sec.  */
1382 					relsim_flags =
1383 						RELSIM_RELEASE_AFTER_TIMEOUT;
1384 					timeout = 500;
1385 					/*
1386 					 * Drop the priority to 0 so that
1387 					 * we are the first to execute.  Also
1388 					 * freeze the queue after this command
1389 					 * is sent so that we can restore the
1390 					 * old csio and have it queued in the
1391 					 * proper order before we let normal
1392 					 * transactions go to the drive.
1393 					 */
1394 					ccb->ccb_h.pinfo.priority = 0;
1395 					ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
1396 
1397 					/*
1398 					 * Save a pointer to the original
1399 					 * CCB in the new CCB.
1400 					 */
1401 					ccb->ccb_h.saved_ccb_ptr = save_ccb;
1402 
1403 					error = ERESTART;
1404 				} else {
1405 					error = scsi_interpret_sense(ccb,
1406 								  sense_flags,
1407 								  &relsim_flags,
1408 								  &openings,
1409 								  &timeout,
1410 								  err_action);
1411 				}
1412 			} else if (ccb->csio.scsi_status ==
1413 				   SCSI_STATUS_CHECK_COND
1414 				&& status != CAM_AUTOSENSE_FAIL) {
1415 				/* no point in decrementing the retry count */
1416 				panic("cam_periph_error: scsi status of "
1417 				      "CHECK COND returned but no sense "
1418 				      "information is availible.  "
1419 				      "Controller should have returned "
1420 				      "CAM_AUTOSENSE_FAILED");
1421 				/* NOTREACHED */
1422 				error = EIO;
1423 			} else if (ccb->ccb_h.retry_count == 0) {
1424 				/*
1425 				 * XXX KDM shouldn't there be a better
1426 				 * argument to return??
1427 				 */
1428 				error = EIO;
1429 			} else {
1430 				/* decrement the number of retries */
1431 				retry = ccb->ccb_h.retry_count > 0;
1432 				if (retry)
1433 					ccb->ccb_h.retry_count--;
1434 				/*
1435 				 * If it was aborted with no
1436 				 * clue as to the reason, just
1437 				 * retry it again.
1438 				 */
1439 				error = ERESTART;
1440 			}
1441 			break;
1442 		case SCSI_STATUS_QUEUE_FULL:
1443 		{
1444 			/* no decrement */
1445 			struct ccb_getdevstats cgds;
1446 
1447 			/*
1448 			 * First off, find out what the current
1449 			 * transaction counts are.
1450 			 */
1451 			xpt_setup_ccb(&cgds.ccb_h,
1452 				      ccb->ccb_h.path,
1453 				      /*priority*/1);
1454 			cgds.ccb_h.func_code = XPT_GDEV_STATS;
1455 			xpt_action((union ccb *)&cgds);
1456 
1457 			/*
1458 			 * If we were the only transaction active, treat
1459 			 * the QUEUE FULL as if it were a BUSY condition.
1460 			 */
1461 			if (cgds.dev_active != 0) {
1462 				int total_openings;
1463 
1464 				/*
1465 			 	 * Reduce the number of openings to
1466 				 * be 1 less than the amount it took
1467 				 * to get a queue full bounded by the
1468 				 * minimum allowed tag count for this
1469 				 * device.
1470 			 	 */
1471 				total_openings =
1472 				    cgds.dev_active+cgds.dev_openings;
1473 				openings = cgds.dev_active;
1474 				if (openings < cgds.mintags)
1475 					openings = cgds.mintags;
1476 				if (openings < total_openings)
1477 					relsim_flags = RELSIM_ADJUST_OPENINGS;
1478 				else {
1479 					/*
1480 					 * Some devices report queue full for
1481 					 * temporary resource shortages.  For
1482 					 * this reason, we allow a minimum
1483 					 * tag count to be entered via a
1484 					 * quirk entry to prevent the queue
1485 					 * count on these devices from falling
1486 					 * to a pessimisticly low value.  We
1487 					 * still wait for the next successful
1488 					 * completion, however, before queueing
1489 					 * more transactions to the device.
1490 					 */
1491 					relsim_flags =
1492 					    RELSIM_RELEASE_AFTER_CMDCMPLT;
1493 				}
1494 				timeout = 0;
1495 				error = ERESTART;
1496 				break;
1497 			}
1498 			/* FALLTHROUGH */
1499 		}
1500 		case SCSI_STATUS_BUSY:
1501 			/*
1502 			 * Restart the queue after either another
1503 			 * command completes or a 1 second timeout.
1504 			 * If we have any retries left, that is.
1505 			 */
1506 			retry = ccb->ccb_h.retry_count > 0;
1507 			if (retry) {
1508 				ccb->ccb_h.retry_count--;
1509 				error = ERESTART;
1510 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT
1511 					     | RELSIM_RELEASE_AFTER_CMDCMPLT;
1512 				timeout = 1000;
1513 			} else {
1514 				error = EIO;
1515 			}
1516 			break;
1517 		case SCSI_STATUS_RESERV_CONFLICT:
1518 			error = EIO;
1519 			break;
1520 		default:
1521 			error = EIO;
1522 			break;
1523 		}
1524 		break;
1525 	case CAM_REQ_CMP_ERR:
1526 	case CAM_CMD_TIMEOUT:
1527 	case CAM_UNEXP_BUSFREE:
1528 	case CAM_UNCOR_PARITY:
1529 	case CAM_DATA_RUN_ERR:
1530 		/* decrement the number of retries */
1531 		retry = ccb->ccb_h.retry_count > 0;
1532 		if (retry) {
1533 			ccb->ccb_h.retry_count--;
1534 			error = ERESTART;
1535 		} else {
1536 			error = EIO;
1537 		}
1538 		break;
1539 	case CAM_UA_ABORT:
1540 	case CAM_UA_TERMIO:
1541 	case CAM_MSG_REJECT_REC:
1542 		/* XXX Don't know that these are correct */
1543 		error = EIO;
1544 		break;
1545 	case CAM_SEL_TIMEOUT:
1546 	{
1547 		/*
1548 		 * XXX
1549 		 * A single selection timeout should not be enough
1550 		 * to invalidate a device.  We should retry for multiple
1551 		 * seconds assuming this isn't a probe.  We'll probably
1552 		 * need a special flag for that.
1553 		 */
1554 #if 0
1555 		struct cam_path *newpath;
1556 
1557 		/* Should we do more if we can't create the path?? */
1558 		if (xpt_create_path(&newpath, xpt_path_periph(ccb->ccb_h.path),
1559 				    xpt_path_path_id(ccb->ccb_h.path),
1560 				    xpt_path_target_id(ccb->ccb_h.path),
1561 				    CAM_LUN_WILDCARD) != CAM_REQ_CMP)
1562 			break;
1563 		/*
1564 		 * Let peripheral drivers know that this device has gone
1565 		 * away.
1566 		 */
1567 		xpt_async(AC_LOST_DEVICE, newpath, NULL);
1568 		xpt_free_path(newpath);
1569 #endif
1570 		if ((sense_flags & SF_RETRY_SELTO) != 0) {
1571 			retry = ccb->ccb_h.retry_count > 0;
1572 			if (retry) {
1573 				ccb->ccb_h.retry_count--;
1574 				error = ERESTART;
1575 				/*
1576 				 * Wait half a second to give the device
1577 				 * time to recover before we try again.
1578 				 */
1579 				relsim_flags = RELSIM_RELEASE_AFTER_TIMEOUT;
1580 				timeout = 500;
1581 			} else {
1582 				error = ENXIO;
1583 			}
1584 		} else {
1585 			error = ENXIO;
1586 		}
1587 		break;
1588 	}
1589 	case CAM_REQ_INVALID:
1590 	case CAM_PATH_INVALID:
1591 	case CAM_DEV_NOT_THERE:
1592 	case CAM_NO_HBA:
1593 	case CAM_PROVIDE_FAIL:
1594 	case CAM_REQ_TOO_BIG:
1595 		error = EINVAL;
1596 		break;
1597 	case CAM_SCSI_BUS_RESET:
1598 	case CAM_BDR_SENT:
1599 	case CAM_REQUEUE_REQ:
1600 		/* Unconditional requeue, dammit */
1601 		error = ERESTART;
1602 		break;
1603 	case CAM_RESRC_UNAVAIL:
1604 	case CAM_BUSY:
1605 		/* timeout??? */
1606 	default:
1607 		/* decrement the number of retries */
1608 		retry = ccb->ccb_h.retry_count > 0;
1609 		if (retry) {
1610 			ccb->ccb_h.retry_count--;
1611 			error = ERESTART;
1612 		} else {
1613 			/* Check the sense codes */
1614 			error = EIO;
1615 		}
1616 		break;
1617 	}
1618 
1619 	/* Attempt a retry */
1620 	if (error == ERESTART || error == 0) {
1621 		if (frozen != 0)
1622 			ccb->ccb_h.status &= ~CAM_DEV_QFRZN;
1623 
1624 		if (error == ERESTART)
1625 			xpt_action(ccb);
1626 
1627 		if (frozen != 0) {
1628 			cam_release_devq(ccb->ccb_h.path,
1629 					 relsim_flags,
1630 					 openings,
1631 					 timeout,
1632 					 /*getcount_only*/0);
1633 		}
1634 	}
1635 
1636 
1637 	return (error);
1638 }
1639