xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision 1465342b)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 /* $DragonFly: src/sys/dev/netif/msk/if_msk.c,v 1.1 2007/12/26 14:02:36 sephe Exp $ */
97 
98 /*
99  * Device driver for the Marvell Yukon II Ethernet controller.
100  * Due to lack of documentation, this driver is based on the code from
101  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/endian.h>
106 #include <sys/kernel.h>
107 #include <sys/bus.h>
108 #include <sys/in_cksum.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
178 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
180 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
182 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
184 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
186 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
188 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
189 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
190 	    "D-Link 550SX Gigabit Ethernet" },
191 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
192 	    "D-Link 560T Gigabit Ethernet" },
193 	{ 0, 0, NULL }
194 };
195 
196 static const char *model_name[] = {
197 	"Yukon XL",
198         "Yukon EC Ultra",
199         "Yukon Unknown",
200         "Yukon EC",
201         "Yukon FE"
202 };
203 
204 static int	mskc_probe(device_t);
205 static int	mskc_attach(device_t);
206 static int	mskc_detach(device_t);
207 static int	mskc_shutdown(device_t);
208 static int	mskc_suspend(device_t);
209 static int	mskc_resume(device_t);
210 static void	mskc_intr(void *);
211 
212 static void	mskc_reset(struct msk_softc *);
213 static void	mskc_intr_hwerr(struct msk_softc *);
214 static int	mskc_handle_events(struct msk_softc *);
215 static void	mskc_phy_power(struct msk_softc *, int);
216 static int	mskc_setup_rambuffer(struct msk_softc *);
217 static int	mskc_status_dma_alloc(struct msk_softc *);
218 static void	mskc_status_dma_free(struct msk_softc *);
219 
220 static int	msk_probe(device_t);
221 static int	msk_attach(device_t);
222 static int	msk_detach(device_t);
223 static int	msk_miibus_readreg(device_t, int, int);
224 static int	msk_miibus_writereg(device_t, int, int, int);
225 static void	msk_miibus_statchg(device_t);
226 
227 static void	msk_init(void *);
228 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
229 static void	msk_start(struct ifnet *);
230 static void	msk_watchdog(struct ifnet *);
231 static int	msk_mediachange(struct ifnet *);
232 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
233 
234 static void	msk_tick(void *);
235 static void	msk_intr_phy(struct msk_if_softc *);
236 static void	msk_intr_gmac(struct msk_if_softc *);
237 static __inline void
238 		msk_rxput(struct msk_if_softc *);
239 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
240 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int);
241 static void	msk_txeof(struct msk_if_softc *, int);
242 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
243 static void	msk_set_rambuffer(struct msk_if_softc *);
244 static void	msk_stop(struct msk_if_softc *);
245 
246 static void	msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
247 static void	msk_dmamap_mbuf_cb(void *, bus_dma_segment_t *, int,
248 				   bus_size_t, int);
249 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
250 static void	msk_txrx_dma_free(struct msk_if_softc *);
251 static int	msk_init_rx_ring(struct msk_if_softc *);
252 static void	msk_init_tx_ring(struct msk_if_softc *);
253 static __inline void
254 		msk_discard_rxbuf(struct msk_if_softc *, int);
255 static int	msk_newbuf(struct msk_if_softc *, int);
256 static struct mbuf *
257 		msk_defrag(struct mbuf *, int, int);
258 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
259 
260 #ifdef MSK_JUMBO
261 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
262 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
263 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
264 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
265 static void *msk_jalloc(struct msk_if_softc *);
266 static void msk_jfree(void *, void *);
267 #endif
268 
269 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
270 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
271 
272 static void	msk_setmulti(struct msk_if_softc *);
273 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
274 static void	msk_setpromisc(struct msk_if_softc *);
275 
276 #ifdef notyet
277 static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
278 static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
279 #endif
280 
281 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
282 				  void **, bus_addr_t *, bus_dmamap_t *);
283 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
284 
285 static device_method_t mskc_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		mskc_probe),
288 	DEVMETHOD(device_attach,	mskc_attach),
289 	DEVMETHOD(device_detach,	mskc_detach),
290 	DEVMETHOD(device_suspend,	mskc_suspend),
291 	DEVMETHOD(device_resume,	mskc_resume),
292 	DEVMETHOD(device_shutdown,	mskc_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	{ NULL, NULL }
299 };
300 
301 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
302 static devclass_t mskc_devclass;
303 
304 static device_method_t msk_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		msk_probe),
307 	DEVMETHOD(device_attach,	msk_attach),
308 	DEVMETHOD(device_detach,	msk_detach),
309 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
310 
311 	/* bus interface */
312 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
313 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
314 
315 	/* MII interface */
316 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
317 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
318 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
319 
320 	{ NULL, NULL }
321 };
322 
323 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
324 static devclass_t msk_devclass;
325 
326 DECLARE_DUMMY_MODULE(if_msk);
327 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, 0, 0);
328 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, 0, 0);
329 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
330 
331 static int
332 msk_miibus_readreg(device_t dev, int phy, int reg)
333 {
334 	struct msk_if_softc *sc_if;
335 
336 	if (phy != PHY_ADDR_MARV)
337 		return (0);
338 
339 	sc_if = device_get_softc(dev);
340 
341 	return (msk_phy_readreg(sc_if, phy, reg));
342 }
343 
344 static int
345 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
346 {
347 	struct msk_softc *sc;
348 	int i, val;
349 
350 	sc = sc_if->msk_softc;
351 
352         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
353 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
354 
355 	for (i = 0; i < MSK_TIMEOUT; i++) {
356 		DELAY(1);
357 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
358 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
359 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
360 			break;
361 		}
362 	}
363 
364 	if (i == MSK_TIMEOUT) {
365 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
366 		val = 0;
367 	}
368 
369 	return (val);
370 }
371 
372 static int
373 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
374 {
375 	struct msk_if_softc *sc_if;
376 
377 	if (phy != PHY_ADDR_MARV)
378 		return (0);
379 
380 	sc_if = device_get_softc(dev);
381 
382 	return (msk_phy_writereg(sc_if, phy, reg, val));
383 }
384 
385 static int
386 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
387 {
388 	struct msk_softc *sc;
389 	int i;
390 
391 	sc = sc_if->msk_softc;
392 
393 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
394         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
395 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
396 	for (i = 0; i < MSK_TIMEOUT; i++) {
397 		DELAY(1);
398 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
399 		    GM_SMI_CT_BUSY) == 0)
400 			break;
401 	}
402 	if (i == MSK_TIMEOUT)
403 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
404 
405 	return (0);
406 }
407 
408 static void
409 msk_miibus_statchg(device_t dev)
410 {
411 	struct msk_if_softc *sc_if;
412 	struct msk_softc *sc;
413 	struct mii_data *mii;
414 	struct ifnet *ifp;
415 	uint32_t gmac;
416 
417 	sc_if = device_get_softc(dev);
418 	sc = sc_if->msk_softc;
419 
420 	mii = device_get_softc(sc_if->msk_miibus);
421 	ifp = sc_if->msk_ifp;
422 
423 	if (mii->mii_media_status & IFM_ACTIVE) {
424 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
425 			sc_if->msk_link = 1;
426 	} else
427 		sc_if->msk_link = 0;
428 
429 	if (sc_if->msk_link != 0) {
430 		/* Enable Tx FIFO Underrun. */
431 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
432 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
433 		/*
434 		 * Because mii(4) notify msk(4) that it detected link status
435 		 * change, there is no need to enable automatic
436 		 * speed/flow-control/duplex updates.
437 		 */
438 		gmac = GM_GPCR_AU_ALL_DIS;
439 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
440 		case IFM_1000_SX:
441 		case IFM_1000_T:
442 			gmac |= GM_GPCR_SPEED_1000;
443 			break;
444 		case IFM_100_TX:
445 			gmac |= GM_GPCR_SPEED_100;
446 			break;
447 		case IFM_10_T:
448 			break;
449 		}
450 
451 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
452 			gmac |= GM_GPCR_DUP_FULL;
453 		/* Disable Rx flow control. */
454 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
455 			gmac |= GM_GPCR_FC_RX_DIS;
456 		/* Disable Tx flow control. */
457 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
458 			gmac |= GM_GPCR_FC_TX_DIS;
459 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
460 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
461 		/* Read again to ensure writing. */
462 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
463 
464 		gmac = GMC_PAUSE_ON;
465 		if (((mii->mii_media_active & IFM_GMASK) &
466 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
467 			gmac = GMC_PAUSE_OFF;
468 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
469 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
470 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
471 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
472 			gmac = GMC_PAUSE_OFF;
473 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
474 
475 		/* Enable PHY interrupt for FIFO underrun/overflow. */
476 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
477 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
478 	} else {
479 		/*
480 		 * Link state changed to down.
481 		 * Disable PHY interrupts.
482 		 */
483 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
484 		/* Disable Rx/Tx MAC. */
485 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
486 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
487 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
488 		/* Read again to ensure writing. */
489 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
490 	}
491 }
492 
493 static void
494 msk_setmulti(struct msk_if_softc *sc_if)
495 {
496 	struct msk_softc *sc;
497 	struct ifnet *ifp;
498 	struct ifmultiaddr *ifma;
499 	uint32_t mchash[2];
500 	uint32_t crc;
501 	uint16_t mode;
502 
503 	sc = sc_if->msk_softc;
504 	ifp = sc_if->msk_ifp;
505 
506 	bzero(mchash, sizeof(mchash));
507 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
508 	mode |= GM_RXCR_UCF_ENA;
509 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
510 		if ((ifp->if_flags & IFF_PROMISC) != 0)
511 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
512 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
513 			mchash[0] = 0xffff;
514 			mchash[1] = 0xffff;
515 		}
516 	} else {
517 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
518 			if (ifma->ifma_addr->sa_family != AF_LINK)
519 				continue;
520 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
521 			    ifma->ifma_addr), ETHER_ADDR_LEN);
522 			/* Just want the 6 least significant bits. */
523 			crc &= 0x3f;
524 			/* Set the corresponding bit in the hash table. */
525 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
526 		}
527 		mode |= GM_RXCR_MCF_ENA;
528 	}
529 
530 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
531 	    mchash[0] & 0xffff);
532 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
533 	    (mchash[0] >> 16) & 0xffff);
534 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
535 	    mchash[1] & 0xffff);
536 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
537 	    (mchash[1] >> 16) & 0xffff);
538 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
539 }
540 
541 static void
542 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
543 {
544 	struct msk_softc *sc;
545 
546 	sc = sc_if->msk_softc;
547 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
548 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
549 		    RX_VLAN_STRIP_ON);
550 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
551 		    TX_VLAN_TAG_ON);
552 	} else {
553 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
554 		    RX_VLAN_STRIP_OFF);
555 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
556 		    TX_VLAN_TAG_OFF);
557 	}
558 }
559 
560 static void
561 msk_setpromisc(struct msk_if_softc *sc_if)
562 {
563 	struct msk_softc *sc;
564 	struct ifnet *ifp;
565 	uint16_t mode;
566 
567 	sc = sc_if->msk_softc;
568 	ifp = sc_if->msk_ifp;
569 
570 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
571 	if (ifp->if_flags & IFF_PROMISC)
572 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
573 	else
574 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
575 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
576 }
577 
578 static int
579 msk_init_rx_ring(struct msk_if_softc *sc_if)
580 {
581 	struct msk_ring_data *rd;
582 	struct msk_rxdesc *rxd;
583 	int i, prod;
584 
585 	sc_if->msk_cdata.msk_rx_cons = 0;
586 	sc_if->msk_cdata.msk_rx_prod = 0;
587 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
588 
589 	rd = &sc_if->msk_rdata;
590 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
591 	prod = sc_if->msk_cdata.msk_rx_prod;
592 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
593 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
594 		rxd->rx_m = NULL;
595 		rxd->rx_le = &rd->msk_rx_ring[prod];
596 		if (msk_newbuf(sc_if, prod) != 0)
597 			return (ENOBUFS);
598 		MSK_INC(prod, MSK_RX_RING_CNT);
599 	}
600 
601 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
602 	    sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREWRITE);
603 
604 	/* Update prefetch unit. */
605 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
606 	CSR_WRITE_2(sc_if->msk_softc,
607 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
608 	    sc_if->msk_cdata.msk_rx_prod);
609 
610 	return (0);
611 }
612 
613 #ifdef MSK_JUMBO
614 static int
615 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
616 {
617 	struct msk_ring_data *rd;
618 	struct msk_rxdesc *rxd;
619 	int i, prod;
620 
621 	MSK_IF_LOCK_ASSERT(sc_if);
622 
623 	sc_if->msk_cdata.msk_rx_cons = 0;
624 	sc_if->msk_cdata.msk_rx_prod = 0;
625 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
626 
627 	rd = &sc_if->msk_rdata;
628 	bzero(rd->msk_jumbo_rx_ring,
629 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
630 	prod = sc_if->msk_cdata.msk_rx_prod;
631 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
632 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
633 		rxd->rx_m = NULL;
634 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
635 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
636 			return (ENOBUFS);
637 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
638 	}
639 
640 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
641 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
642 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
643 
644 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
645 	CSR_WRITE_2(sc_if->msk_softc,
646 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
647 	    sc_if->msk_cdata.msk_rx_prod);
648 
649 	return (0);
650 }
651 #endif
652 
653 static void
654 msk_init_tx_ring(struct msk_if_softc *sc_if)
655 {
656 	struct msk_ring_data *rd;
657 	struct msk_txdesc *txd;
658 	int i;
659 
660 	sc_if->msk_cdata.msk_tx_prod = 0;
661 	sc_if->msk_cdata.msk_tx_cons = 0;
662 	sc_if->msk_cdata.msk_tx_cnt = 0;
663 
664 	rd = &sc_if->msk_rdata;
665 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
666 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
667 		txd = &sc_if->msk_cdata.msk_txdesc[i];
668 		txd->tx_m = NULL;
669 		txd->tx_le = &rd->msk_tx_ring[i];
670 	}
671 
672 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
673 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
674 }
675 
676 static __inline void
677 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
678 {
679 	struct msk_rx_desc *rx_le;
680 	struct msk_rxdesc *rxd;
681 	struct mbuf *m;
682 
683 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
684 	m = rxd->rx_m;
685 	rx_le = rxd->rx_le;
686 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
687 }
688 
689 #ifdef MSK_JUMBO
690 static __inline void
691 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
692 {
693 	struct msk_rx_desc *rx_le;
694 	struct msk_rxdesc *rxd;
695 	struct mbuf *m;
696 
697 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
698 	m = rxd->rx_m;
699 	rx_le = rxd->rx_le;
700 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
701 }
702 #endif
703 
704 static int
705 msk_newbuf(struct msk_if_softc *sc_if, int idx)
706 {
707 	struct msk_rx_desc *rx_le;
708 	struct msk_rxdesc *rxd;
709 	struct mbuf *m;
710 	struct msk_dmamap_arg ctx;
711 	bus_dma_segment_t seg;
712 	bus_dmamap_t map;
713 
714 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
715 	if (m == NULL)
716 		return (ENOBUFS);
717 
718 	m->m_len = m->m_pkthdr.len = MCLBYTES;
719 	m_adj(m, ETHER_ALIGN);
720 
721 	bzero(&ctx, sizeof(ctx));
722 	ctx.nseg = 1;
723 	ctx.segs = &seg;
724 	if (bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_rx_tag,
725 	    sc_if->msk_cdata.msk_rx_sparemap, m, msk_dmamap_mbuf_cb, &ctx,
726 	    BUS_DMA_NOWAIT) != 0) {
727 		m_freem(m);
728 		return (ENOBUFS);
729 	}
730 	KASSERT(ctx.nseg == 1,
731 		("%s: %d segments returned!", __func__, ctx.nseg));
732 
733 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
734 	if (rxd->rx_m != NULL) {
735 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
736 		    BUS_DMASYNC_POSTREAD);
737 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
738 	}
739 	map = rxd->rx_dmamap;
740 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
741 	sc_if->msk_cdata.msk_rx_sparemap = map;
742 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
743 	    BUS_DMASYNC_PREREAD);
744 	rxd->rx_m = m;
745 	rx_le = rxd->rx_le;
746 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
747 	rx_le->msk_control =
748 	    htole32(seg.ds_len | OP_PACKET | HW_OWNER);
749 
750 	return (0);
751 }
752 
753 #ifdef MSK_JUMBO
754 static int
755 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
756 {
757 	struct msk_rx_desc *rx_le;
758 	struct msk_rxdesc *rxd;
759 	struct mbuf *m;
760 	bus_dma_segment_t segs[1];
761 	bus_dmamap_t map;
762 	int nsegs;
763 	void *buf;
764 
765 	MGETHDR(m, M_DONTWAIT, MT_DATA);
766 	if (m == NULL)
767 		return (ENOBUFS);
768 	buf = msk_jalloc(sc_if);
769 	if (buf == NULL) {
770 		m_freem(m);
771 		return (ENOBUFS);
772 	}
773 	/* Attach the buffer to the mbuf. */
774 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
775 	    EXT_NET_DRV);
776 	if ((m->m_flags & M_EXT) == 0) {
777 		m_freem(m);
778 		return (ENOBUFS);
779 	}
780 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
781 	m_adj(m, ETHER_ALIGN);
782 
783 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
784 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
785 	    BUS_DMA_NOWAIT) != 0) {
786 		m_freem(m);
787 		return (ENOBUFS);
788 	}
789 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
790 
791 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
792 	if (rxd->rx_m != NULL) {
793 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
794 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
795 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
796 		    rxd->rx_dmamap);
797 	}
798 	map = rxd->rx_dmamap;
799 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
800 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
801 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
802 	    BUS_DMASYNC_PREREAD);
803 	rxd->rx_m = m;
804 	rx_le = rxd->rx_le;
805 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
806 	rx_le->msk_control =
807 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
808 
809 	return (0);
810 }
811 #endif
812 
813 /*
814  * Set media options.
815  */
816 static int
817 msk_mediachange(struct ifnet *ifp)
818 {
819 	struct msk_if_softc *sc_if = ifp->if_softc;
820 	struct mii_data	*mii;
821 
822 	mii = device_get_softc(sc_if->msk_miibus);
823 	mii_mediachg(mii);
824 
825 	return (0);
826 }
827 
828 /*
829  * Report current media status.
830  */
831 static void
832 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
833 {
834 	struct msk_if_softc *sc_if = ifp->if_softc;
835 	struct mii_data	*mii;
836 
837 	mii = device_get_softc(sc_if->msk_miibus);
838 	mii_pollstat(mii);
839 
840 	ifmr->ifm_active = mii->mii_media_active;
841 	ifmr->ifm_status = mii->mii_media_status;
842 }
843 
844 static int
845 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
846 {
847 	struct msk_if_softc *sc_if;
848 	struct ifreq *ifr;
849 	struct mii_data	*mii;
850 	int error, mask;
851 
852 	sc_if = ifp->if_softc;
853 	ifr = (struct ifreq *)data;
854 	error = 0;
855 
856 	switch(command) {
857 	case SIOCSIFMTU:
858 #ifdef MSK_JUMBO
859 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
860 			error = EINVAL;
861 			break;
862 		}
863 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
864 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
865 			error = EINVAL;
866 			break;
867 		}
868 		ifp->if_mtu = ifr->ifr_mtu;
869 		if ((ifp->if_flags & IFF_RUNNING) != 0)
870 			msk_init(sc_if);
871 #else
872 		error = EOPNOTSUPP;
873 #endif
874 		break;
875 
876 	case SIOCSIFFLAGS:
877 		if (ifp->if_flags & IFF_UP) {
878 			if (ifp->if_flags & IFF_RUNNING) {
879 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
880 				    & IFF_PROMISC) != 0) {
881 					msk_setpromisc(sc_if);
882 					msk_setmulti(sc_if);
883 				}
884 			} else {
885 				if (sc_if->msk_detach == 0)
886 					msk_init(sc_if);
887 			}
888 		} else {
889 			if (ifp->if_flags & IFF_RUNNING)
890 				msk_stop(sc_if);
891 		}
892 		sc_if->msk_if_flags = ifp->if_flags;
893 		break;
894 
895 	case SIOCADDMULTI:
896 	case SIOCDELMULTI:
897 		if (ifp->if_flags & IFF_RUNNING)
898 			msk_setmulti(sc_if);
899 		break;
900 
901 	case SIOCGIFMEDIA:
902 	case SIOCSIFMEDIA:
903 		mii = device_get_softc(sc_if->msk_miibus);
904 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
905 		break;
906 
907 	case SIOCSIFCAP:
908 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
909 		if ((mask & IFCAP_TXCSUM) != 0) {
910 			ifp->if_capenable ^= IFCAP_TXCSUM;
911 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
912 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
913 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
914 			else
915 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
916 		}
917 #ifdef notyet
918 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
919 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
920 			msk_setvlan(sc_if, ifp);
921 		}
922 #endif
923 
924 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
925 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
926 			/*
927 			 * In Yukon EC Ultra, TSO & checksum offload is not
928 			 * supported for jumbo frame.
929 			 */
930 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
931 			ifp->if_capenable &= ~IFCAP_TXCSUM;
932 		}
933 		break;
934 
935 	default:
936 		error = ether_ioctl(ifp, command, data);
937 		break;
938 	}
939 
940 	return (error);
941 }
942 
943 static int
944 mskc_probe(device_t dev)
945 {
946 	const struct msk_product *mp;
947 	uint16_t vendor, devid;
948 
949 	vendor = pci_get_vendor(dev);
950 	devid = pci_get_device(dev);
951 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
952 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
953 			device_set_desc(dev, mp->msk_name);
954 			return (0);
955 		}
956 	}
957 	return (ENXIO);
958 }
959 
960 static int
961 mskc_setup_rambuffer(struct msk_softc *sc)
962 {
963 	int next;
964 	int i;
965 	uint8_t val;
966 
967 	/* Get adapter SRAM size. */
968 	val = CSR_READ_1(sc, B2_E_0);
969 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
970 	if (bootverbose) {
971 		device_printf(sc->msk_dev,
972 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
973 	}
974 	/*
975 	 * Give receiver 2/3 of memory and round down to the multiple
976 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
977 	 * of 1024.
978 	 */
979 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
980 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
981 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
982 		sc->msk_rxqstart[i] = next;
983 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
984 		next = sc->msk_rxqend[i] + 1;
985 		sc->msk_txqstart[i] = next;
986 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
987 		next = sc->msk_txqend[i] + 1;
988 		if (bootverbose) {
989 			device_printf(sc->msk_dev,
990 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
991 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
992 			    sc->msk_rxqend[i]);
993 			device_printf(sc->msk_dev,
994 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
995 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
996 			    sc->msk_txqend[i]);
997 		}
998 	}
999 
1000 	return (0);
1001 }
1002 
1003 static void
1004 mskc_phy_power(struct msk_softc *sc, int mode)
1005 {
1006 	uint32_t val;
1007 	int i;
1008 
1009 	switch (mode) {
1010 	case MSK_PHY_POWERUP:
1011 		/* Switch power to VCC (WA for VAUX problem). */
1012 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1013 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1014 		/* Disable Core Clock Division, set Clock Select to 0. */
1015 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1016 
1017 		val = 0;
1018 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1019 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1020 			/* Enable bits are inverted. */
1021 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1022 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1023 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1024 		}
1025 		/*
1026 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1027 		 */
1028 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1029 
1030 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1031 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1032 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1033 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1034 			/* Deassert Low Power for 1st PHY. */
1035 			val |= PCI_Y2_PHY1_COMA;
1036 			if (sc->msk_num_port > 1)
1037 				val |= PCI_Y2_PHY2_COMA;
1038 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1039 			uint32_t our;
1040 
1041 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1042 
1043 			/* Enable all clocks. */
1044 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1045 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1046 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1047 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1048 			/* Set all bits to 0 except bits 15..12. */
1049 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1050 			/* Set to default value. */
1051 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1052 		}
1053 		/* Release PHY from PowerDown/COMA mode. */
1054 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1055 		for (i = 0; i < sc->msk_num_port; i++) {
1056 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1057 			    GMLC_RST_SET);
1058 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1059 			    GMLC_RST_CLR);
1060 		}
1061 		break;
1062 	case MSK_PHY_POWERDOWN:
1063 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1064 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1065 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1066 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1067 			val &= ~PCI_Y2_PHY1_COMA;
1068 			if (sc->msk_num_port > 1)
1069 				val &= ~PCI_Y2_PHY2_COMA;
1070 		}
1071 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1072 
1073 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1074 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1075 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1076 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1077 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1078 			/* Enable bits are inverted. */
1079 			val = 0;
1080 		}
1081 		/*
1082 		 * Disable PCI & Core Clock, disable clock gating for
1083 		 * both Links.
1084 		 */
1085 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1086 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1087 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1088 		break;
1089 	default:
1090 		break;
1091 	}
1092 }
1093 
1094 static void
1095 mskc_reset(struct msk_softc *sc)
1096 {
1097 	bus_addr_t addr;
1098 	uint16_t status;
1099 	uint32_t val;
1100 	int i;
1101 
1102 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1103 
1104 	/* Disable ASF. */
1105 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1106 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1107 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1108 	}
1109 	/*
1110 	 * Since we disabled ASF, S/W reset is required for Power Management.
1111 	 */
1112 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1113 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1114 
1115 	/* Clear all error bits in the PCI status register. */
1116 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1117 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1118 
1119 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1120 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1121 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1122 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1123 
1124 	switch (sc->msk_bustype) {
1125 	case MSK_PEX_BUS:
1126 		/* Clear all PEX errors. */
1127 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1128 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1129 		if ((val & PEX_RX_OV) != 0) {
1130 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1131 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1132 		}
1133 		break;
1134 	case MSK_PCI_BUS:
1135 	case MSK_PCIX_BUS:
1136 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1137 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1138 		if (val == 0)
1139 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1140 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1141 			/* Set Cache Line Size opt. */
1142 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1143 			val |= PCI_CLS_OPT;
1144 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1145 		}
1146 		break;
1147 	}
1148 	/* Set PHY power state. */
1149 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1150 
1151 	/* Reset GPHY/GMAC Control */
1152 	for (i = 0; i < sc->msk_num_port; i++) {
1153 		/* GPHY Control reset. */
1154 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1155 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1156 		/* GMAC Control reset. */
1157 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1158 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1159 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1160 	}
1161 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1162 
1163 	/* LED On. */
1164 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1165 
1166 	/* Clear TWSI IRQ. */
1167 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1168 
1169 	/* Turn off hardware timer. */
1170 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1171 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1172 
1173 	/* Turn off descriptor polling. */
1174 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1175 
1176 	/* Turn off time stamps. */
1177 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1178 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1179 
1180 	/* Configure timeout values. */
1181 	for (i = 0; i < sc->msk_num_port; i++) {
1182 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1183 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1184 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1185 		    MSK_RI_TO_53);
1186 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1187 		    MSK_RI_TO_53);
1188 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1189 		    MSK_RI_TO_53);
1190 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1191 		    MSK_RI_TO_53);
1192 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1193 		    MSK_RI_TO_53);
1194 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1195 		    MSK_RI_TO_53);
1196 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1197 		    MSK_RI_TO_53);
1198 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1199 		    MSK_RI_TO_53);
1200 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1201 		    MSK_RI_TO_53);
1202 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1203 		    MSK_RI_TO_53);
1204 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1205 		    MSK_RI_TO_53);
1206 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1207 		    MSK_RI_TO_53);
1208 	}
1209 
1210 	/* Disable all interrupts. */
1211 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1212 	CSR_READ_4(sc, B0_HWE_IMSK);
1213 	CSR_WRITE_4(sc, B0_IMSK, 0);
1214 	CSR_READ_4(sc, B0_IMSK);
1215 
1216         /*
1217          * On dual port PCI-X card, there is an problem where status
1218          * can be received out of order due to split transactions.
1219          */
1220 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1221 		uint16_t pcix_cmd;
1222 		uint8_t pcix;
1223 
1224 		pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1225 
1226 		pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1227 		/* Clear Max Outstanding Split Transactions. */
1228 		pcix_cmd &= ~0x70;
1229 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1230 		pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1231 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1232         }
1233 	if (sc->msk_bustype == MSK_PEX_BUS) {
1234 		uint16_t v, width;
1235 
1236 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1237 		/* Change Max. Read Request Size to 4096 bytes. */
1238 		v &= ~PEX_DC_MAX_RRS_MSK;
1239 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1240 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1241 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1242 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1243 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1244 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1245 		if (v != width) {
1246 			device_printf(sc->msk_dev,
1247 			    "negotiated width of link(x%d) != "
1248 			    "max. width of link(x%d)\n", width, v);
1249 		}
1250 	}
1251 
1252 	/* Clear status list. */
1253 	bzero(sc->msk_stat_ring,
1254 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1255 	sc->msk_stat_cons = 0;
1256 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1257 			BUS_DMASYNC_PREWRITE);
1258 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1259 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1260 	/* Set the status list base address. */
1261 	addr = sc->msk_stat_ring_paddr;
1262 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1263 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1264 	/* Set the status list last index. */
1265 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1266 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1267 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1268 		/* WA for dev. #4.3 */
1269 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1270 		/* WA for dev. #4.18 */
1271 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1272 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1273 	} else {
1274 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1275 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1276 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1277 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1278 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1279 		else
1280 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1281 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1282 	}
1283 	/*
1284 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1285 	 */
1286 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1287 
1288 	/* Enable status unit. */
1289 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1290 
1291 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1292 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1293 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1294 }
1295 
1296 static int
1297 msk_probe(device_t dev)
1298 {
1299 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1300 	char desc[100];
1301 
1302 	/*
1303 	 * Not much to do here. We always know there will be
1304 	 * at least one GMAC present, and if there are two,
1305 	 * mskc_attach() will create a second device instance
1306 	 * for us.
1307 	 */
1308 	ksnprintf(desc, sizeof(desc),
1309 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1310 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1311 	    sc->msk_hw_rev);
1312 	device_set_desc_copy(dev, desc);
1313 
1314 	return (0);
1315 }
1316 
1317 static int
1318 msk_attach(device_t dev)
1319 {
1320 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1321 	struct msk_if_softc *sc_if = device_get_softc(dev);
1322 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1323 	int i, port, error;
1324 	uint8_t eaddr[ETHER_ADDR_LEN];
1325 
1326 	port = *(int *)device_get_ivars(dev);
1327 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1328 
1329 	kfree(device_get_ivars(dev), M_DEVBUF);
1330 	device_set_ivars(dev, NULL);
1331 
1332 	callout_init(&sc_if->msk_tick_ch);
1333 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1334 
1335 	sc_if->msk_if_dev = dev;
1336 	sc_if->msk_port = port;
1337 	sc_if->msk_softc = sc;
1338 	sc_if->msk_ifp = ifp;
1339 	sc->msk_if[port] = sc_if;
1340 
1341 	/* Setup Tx/Rx queue register offsets. */
1342 	if (port == MSK_PORT_A) {
1343 		sc_if->msk_txq = Q_XA1;
1344 		sc_if->msk_txsq = Q_XS1;
1345 		sc_if->msk_rxq = Q_R1;
1346 	} else {
1347 		sc_if->msk_txq = Q_XA2;
1348 		sc_if->msk_txsq = Q_XS2;
1349 		sc_if->msk_rxq = Q_R2;
1350 	}
1351 
1352 	error = msk_txrx_dma_alloc(sc_if);
1353 	if (error)
1354 		goto fail;
1355 
1356 	ifp->if_softc = sc_if;
1357 	ifp->if_mtu = ETHERMTU;
1358 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1359 	ifp->if_init = msk_init;
1360 	ifp->if_ioctl = msk_ioctl;
1361 	ifp->if_start = msk_start;
1362 	ifp->if_watchdog = msk_watchdog;
1363 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1364 	ifq_set_ready(&ifp->if_snd);
1365 
1366 #ifdef notyet
1367 	/*
1368 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1369 	 * has serious bug in Rx checksum offload for all Yukon II family
1370 	 * hardware. It seems there is a workaround to make it work somtimes.
1371 	 * However, the workaround also have to check OP code sequences to
1372 	 * verify whether the OP code is correct. Sometimes it should compute
1373 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1374 	 * checksum computed by hardware. If you have to compute checksum
1375 	 * with software to verify the hardware's checksum why have hardware
1376 	 * compute the checksum? I think there is no reason to spend time to
1377 	 * make Rx checksum offload work on Yukon II hardware.
1378 	 */
1379 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1380 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1381 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1382 	ifp->if_capenable = ifp->if_capabilities;
1383 #endif
1384 
1385 	/*
1386 	 * Get station address for this interface. Note that
1387 	 * dual port cards actually come with three station
1388 	 * addresses: one for each port, plus an extra. The
1389 	 * extra one is used by the SysKonnect driver software
1390 	 * as a 'virtual' station address for when both ports
1391 	 * are operating in failover mode. Currently we don't
1392 	 * use this extra address.
1393 	 */
1394 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1395 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1396 
1397 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1398 
1399 	/*
1400 	 * Do miibus setup.
1401 	 */
1402 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1403 			      msk_mediachange, msk_mediastatus);
1404 	if (error) {
1405 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1406 		goto fail;
1407 	}
1408 
1409 	/*
1410 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1411 	 */
1412 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1413 #if 0
1414 	/*
1415 	 * Tell the upper layer(s) we support long frames.
1416 	 * Must appear after the call to ether_ifattach() because
1417 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1418 	 */
1419         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1420 #endif
1421 
1422 	return 0;
1423 fail:
1424 	msk_detach(dev);
1425 	sc->msk_if[port] = NULL;
1426 	return (error);
1427 }
1428 
1429 /*
1430  * Attach the interface. Allocate softc structures, do ifmedia
1431  * setup and ethernet/BPF attach.
1432  */
1433 static int
1434 mskc_attach(device_t dev)
1435 {
1436 	struct msk_softc *sc;
1437 	int error, *port;
1438 
1439 	sc = device_get_softc(dev);
1440 	sc->msk_dev = dev;
1441 	lwkt_serialize_init(&sc->msk_serializer);
1442 
1443 #ifndef BURN_BRIDGES
1444 	/*
1445 	 * Handle power management nonsense.
1446 	 */
1447 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1448 		uint32_t irq, bar0, bar1;
1449 
1450 		/* Save important PCI config data. */
1451 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1452 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1453 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1454 
1455 		/* Reset the power state. */
1456 		device_printf(dev, "chip is in D%d power mode "
1457 			      "-- setting to D0\n", pci_get_powerstate(dev));
1458 
1459 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1460 
1461 		/* Restore PCI config data. */
1462 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1463 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1464 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1465 	}
1466 #endif	/* BURN_BRIDGES */
1467 
1468 	/*
1469 	 * Map control/status registers.
1470 	 */
1471 	pci_enable_busmaster(dev);
1472 
1473 	/*
1474 	 * Allocate I/O resource
1475 	 */
1476 #ifdef MSK_USEIOSPACE
1477 	sc->msk_res_type = SYS_RES_IOPORT;
1478 	sc->msk_res_rid = PCIR_BAR(1);
1479 #else
1480 	sc->msk_res_type = SYS_RES_MEMORY;
1481 	sc->msk_res_rid = PCIR_BAR(0);
1482 #endif
1483 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1484 					     &sc->msk_res_rid, RF_ACTIVE);
1485 	if (sc->msk_res == NULL) {
1486 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1487 			sc->msk_res_type = SYS_RES_IOPORT;
1488 			sc->msk_res_rid = PCIR_BAR(1);
1489 		} else {
1490 			sc->msk_res_type = SYS_RES_MEMORY;
1491 			sc->msk_res_rid = PCIR_BAR(0);
1492 		}
1493 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1494 						     &sc->msk_res_rid,
1495 						     RF_ACTIVE);
1496 		if (sc->msk_res == NULL) {
1497 			device_printf(dev, "couldn't allocate %s resources\n",
1498 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1499 			return (ENXIO);
1500 		}
1501 	}
1502 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1503 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1504 
1505 	/*
1506 	 * Allocate IRQ
1507 	 */
1508 	sc->msk_irq_rid = 0;
1509 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1510 					     &sc->msk_irq_rid,
1511 					     RF_SHAREABLE | RF_ACTIVE);
1512 	if (sc->msk_irq == NULL) {
1513 		device_printf(dev, "couldn't allocate IRQ resources\n");
1514 		error = ENXIO;
1515 		goto fail;
1516 	}
1517 
1518 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1519 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1520 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1521 	/* Bail out if chip is not recognized. */
1522 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1523 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1524 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1525 		    sc->msk_hw_id, sc->msk_hw_rev);
1526 		error = ENXIO;
1527 		goto fail;
1528 	}
1529 
1530 #if 0
1531 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
1532 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1533 	    OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1534 	    &sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
1535 	    "max number of Rx events to process");
1536 #endif
1537 
1538 	sc->msk_process_limit = MSK_PROC_DEFAULT;
1539 
1540 #if 0
1541 	error = resource_int_value(device_get_name(dev), device_get_unit(dev),
1542 	    "process_limit", &sc->msk_process_limit);
1543 	if (error == 0) {
1544 		if (sc->msk_process_limit < MSK_PROC_MIN ||
1545 		    sc->msk_process_limit > MSK_PROC_MAX) {
1546 			device_printf(dev, "process_limit value out of range; "
1547 			    "using default: %d\n", MSK_PROC_DEFAULT);
1548 			sc->msk_process_limit = MSK_PROC_DEFAULT;
1549 		}
1550 	}
1551 #endif
1552 
1553 	/* Soft reset. */
1554 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1555 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1556 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1557 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1558 		sc->msk_coppertype = 0;
1559 	else
1560 		sc->msk_coppertype = 1;
1561 	/* Check number of MACs. */
1562 	sc->msk_num_port = 1;
1563 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1564 	    CFG_DUAL_MAC_MSK) {
1565 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1566 			sc->msk_num_port++;
1567 	}
1568 
1569 	/* Check bus type. */
1570 	if (pci_is_pcie(sc->msk_dev) == 0)
1571 		sc->msk_bustype = MSK_PEX_BUS;
1572 	else if (pci_is_pcix(sc->msk_dev) == 0)
1573 		sc->msk_bustype = MSK_PCIX_BUS;
1574 	else
1575 		sc->msk_bustype = MSK_PCI_BUS;
1576 
1577 	switch (sc->msk_hw_id) {
1578 	case CHIP_ID_YUKON_EC:
1579 	case CHIP_ID_YUKON_EC_U:
1580 		sc->msk_clock = 125;	/* 125 Mhz */
1581 		break;
1582 	case CHIP_ID_YUKON_FE:
1583 		sc->msk_clock = 100;	/* 100 Mhz */
1584 		break;
1585 	case CHIP_ID_YUKON_XL:
1586 		sc->msk_clock = 156;	/* 156 Mhz */
1587 		break;
1588 	default:
1589 		sc->msk_clock = 156;	/* 156 Mhz */
1590 		break;
1591 	}
1592 
1593 	error = mskc_status_dma_alloc(sc);
1594 	if (error)
1595 		goto fail;
1596 
1597 	/* Set base interrupt mask. */
1598 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1599 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1600 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1601 
1602 	/* Reset the adapter. */
1603 	mskc_reset(sc);
1604 
1605 	error = mskc_setup_rambuffer(sc);
1606 	if (error)
1607 		goto fail;
1608 
1609 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1610 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1611 		device_printf(dev, "failed to add child for PORT_A\n");
1612 		error = ENXIO;
1613 		goto fail;
1614 	}
1615 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1616 	*port = MSK_PORT_A;
1617 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1618 
1619 	if (sc->msk_num_port > 1) {
1620 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1621 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1622 			device_printf(dev, "failed to add child for PORT_B\n");
1623 			error = ENXIO;
1624 			goto fail;
1625 		}
1626 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1627 		*port = MSK_PORT_B;
1628 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1629 	}
1630 
1631 	bus_generic_attach(dev);
1632 
1633 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1634 			       mskc_intr, sc, &sc->msk_intrhand,
1635 			       &sc->msk_serializer);
1636 	if (error) {
1637 		device_printf(dev, "couldn't set up interrupt handler\n");
1638 		goto fail;
1639 	}
1640 	return 0;
1641 fail:
1642 	mskc_detach(dev);
1643 	return (error);
1644 }
1645 
1646 /*
1647  * Shutdown hardware and free up resources. This can be called any
1648  * time after the mutex has been initialized. It is called in both
1649  * the error case in attach and the normal detach case so it needs
1650  * to be careful about only freeing resources that have actually been
1651  * allocated.
1652  */
1653 static int
1654 msk_detach(device_t dev)
1655 {
1656 	struct msk_if_softc *sc_if = device_get_softc(dev);
1657 
1658 	if (device_is_attached(dev)) {
1659 		struct msk_softc *sc = sc_if->msk_softc;
1660 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1661 
1662 		lwkt_serialize_enter(ifp->if_serializer);
1663 
1664 		if (sc->msk_intrhand != NULL) {
1665 			if (sc->msk_if[MSK_PORT_A] != NULL)
1666 				msk_stop(sc->msk_if[MSK_PORT_A]);
1667 			if (sc->msk_if[MSK_PORT_B] != NULL)
1668 				msk_stop(sc->msk_if[MSK_PORT_B]);
1669 
1670 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1671 					  sc->msk_intrhand);
1672 			sc->msk_intrhand = NULL;
1673 		}
1674 
1675 		lwkt_serialize_exit(ifp->if_serializer);
1676 
1677 		ether_ifdetach(ifp);
1678 	}
1679 
1680 	if (sc_if->msk_miibus != NULL)
1681 		device_delete_child(dev, sc_if->msk_miibus);
1682 
1683 	msk_txrx_dma_free(sc_if);
1684 	return (0);
1685 }
1686 
1687 static int
1688 mskc_detach(device_t dev)
1689 {
1690 	struct msk_softc *sc = device_get_softc(dev);
1691 	int *port, i;
1692 
1693 #ifdef INVARIANTS
1694 	if (device_is_attached(dev)) {
1695 		KASSERT(sc->msk_intrhand == NULL,
1696 			("intr is not torn down yet\n"));
1697 	}
1698 #endif
1699 
1700 	for (i = 0; i < sc->msk_num_port; ++i) {
1701 		if (sc->msk_devs[i] != NULL) {
1702 			port = device_get_ivars(sc->msk_devs[i]);
1703 			if (port != NULL) {
1704 				kfree(port, M_DEVBUF);
1705 				device_set_ivars(sc->msk_devs[i], NULL);
1706 			}
1707 			device_delete_child(dev, sc->msk_devs[i]);
1708 		}
1709 	}
1710 
1711 	/* Disable all interrupts. */
1712 	CSR_WRITE_4(sc, B0_IMSK, 0);
1713 	CSR_READ_4(sc, B0_IMSK);
1714 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1715 	CSR_READ_4(sc, B0_HWE_IMSK);
1716 
1717 	/* LED Off. */
1718 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1719 
1720 	/* Put hardware reset. */
1721 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1722 
1723 	mskc_status_dma_free(sc);
1724 
1725 	if (sc->msk_irq != NULL) {
1726 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1727 				     sc->msk_irq);
1728 	}
1729 	if (sc->msk_res != NULL) {
1730 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1731 				     sc->msk_res);
1732 	}
1733 
1734 	return (0);
1735 }
1736 
1737 static void
1738 msk_dmamap_mbuf_cb(void *arg, bus_dma_segment_t *segs, int nseg,
1739 		   bus_size_t mapsz __unused, int error)
1740 {
1741 	struct msk_dmamap_arg *ctx = arg;
1742 	int i;
1743 
1744 	if (error)
1745 		return;
1746 
1747 	if (ctx->nseg < nseg) {
1748 		ctx->nseg = 0;
1749 		return;
1750 	}
1751 
1752 	ctx->nseg = nseg;
1753 	for (i = 0; i < ctx->nseg; ++i)
1754 		ctx->segs[i] = segs[i];
1755 }
1756 
1757 static void
1758 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1759 {
1760 	struct msk_dmamap_arg *ctx = arg;
1761 	int i;
1762 
1763 	if (error)
1764 		return;
1765 
1766 	KKASSERT(nseg <= ctx->nseg);
1767 
1768 	ctx->nseg = nseg;
1769 	for (i = 0; i < ctx->nseg; ++i)
1770 		ctx->segs[i] = segs[i];
1771 }
1772 
1773 /* Create status DMA region. */
1774 static int
1775 mskc_status_dma_alloc(struct msk_softc *sc)
1776 {
1777 	struct msk_dmamap_arg ctx;
1778 	bus_dma_segment_t seg;
1779 	int error;
1780 
1781 	error = bus_dma_tag_create(
1782 		    NULL,			/* XXX parent */
1783 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1784 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1785 		    BUS_SPACE_MAXADDR,		/* highaddr */
1786 		    NULL, NULL,			/* filter, filterarg */
1787 		    MSK_STAT_RING_SZ,		/* maxsize */
1788 		    1,				/* nsegments */
1789 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1790 		    0,				/* flags */
1791 		    &sc->msk_stat_tag);
1792 	if (error) {
1793 		device_printf(sc->msk_dev,
1794 		    "failed to create status DMA tag\n");
1795 		return (error);
1796 	}
1797 
1798 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1799 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1800 				 (void **)&sc->msk_stat_ring,
1801 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1802 				 &sc->msk_stat_map);
1803 	if (error) {
1804 		device_printf(sc->msk_dev,
1805 		    "failed to allocate DMA'able memory for status ring\n");
1806 		bus_dma_tag_destroy(sc->msk_stat_tag);
1807 		sc->msk_stat_tag = NULL;
1808 		return (error);
1809 	}
1810 
1811 	bzero(&ctx, sizeof(ctx));
1812 	ctx.nseg = 1;
1813 	ctx.segs = &seg;
1814 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
1815 				sc->msk_stat_ring, MSK_STAT_RING_SZ,
1816 				msk_dmamap_cb, &ctx, 0);
1817 	if (error) {
1818 		device_printf(sc->msk_dev,
1819 		    "failed to load DMA'able memory for status ring\n");
1820 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1821 				sc->msk_stat_map);
1822 		bus_dma_tag_destroy(sc->msk_stat_tag);
1823 		sc->msk_stat_tag = NULL;
1824 		return (error);
1825 	}
1826 	sc->msk_stat_ring_paddr = seg.ds_addr;
1827 
1828 	return (0);
1829 }
1830 
1831 static void
1832 mskc_status_dma_free(struct msk_softc *sc)
1833 {
1834 	/* Destroy status block. */
1835 	if (sc->msk_stat_tag) {
1836 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1837 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1838 				sc->msk_stat_map);
1839 		bus_dma_tag_destroy(sc->msk_stat_tag);
1840 		sc->msk_stat_tag = NULL;
1841 	}
1842 }
1843 
1844 static int
1845 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1846 {
1847 	int error, i, j;
1848 #ifdef MSK_JUMBO
1849 	struct msk_rxdesc *jrxd;
1850 	struct msk_jpool_entry *entry;
1851 	uint8_t *ptr;
1852 #endif
1853 
1854 	/* Create parent DMA tag. */
1855 	/*
1856 	 * XXX
1857 	 * It seems that Yukon II supports full 64bits DMA operations. But
1858 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1859 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1860 	 * would be used in advance for each mbufs, we limits its DMA space
1861 	 * to be in range of 32bits address space. Otherwise, we should check
1862 	 * what DMA address is used and chain another descriptor for the
1863 	 * 64bits DMA operation. This also means descriptor ring size is
1864 	 * variable. Limiting DMA address to be in 32bit address space greatly
1865 	 * simplyfies descriptor handling and possibly would increase
1866 	 * performance a bit due to efficient handling of descriptors.
1867 	 * Apart from harassing checksum offloading mechanisms, it seems
1868 	 * it's really bad idea to use a seperate descriptor for 64bit
1869 	 * DMA operation to save small descriptor memory. Anyway, I've
1870 	 * never seen these exotic scheme on ethernet interface hardware.
1871 	 */
1872 	error = bus_dma_tag_create(
1873 		    NULL,			/* parent */
1874 		    1, 0,			/* alignment, boundary */
1875 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1876 		    BUS_SPACE_MAXADDR,		/* highaddr */
1877 		    NULL, NULL,			/* filter, filterarg */
1878 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1879 		    0,				/* nsegments */
1880 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1881 		    0,				/* flags */
1882 		    &sc_if->msk_cdata.msk_parent_tag);
1883 	if (error) {
1884 		device_printf(sc_if->msk_if_dev,
1885 			      "failed to create parent DMA tag\n");
1886 		return error;
1887 	}
1888 
1889 	/* Create DMA stuffs for Tx ring. */
1890 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1891 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1892 				  (void **)&sc_if->msk_rdata.msk_tx_ring,
1893 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1894 				  &sc_if->msk_cdata.msk_tx_ring_map);
1895 	if (error) {
1896 		device_printf(sc_if->msk_if_dev,
1897 			      "failed to create TX ring DMA stuffs\n");
1898 		return error;
1899 	}
1900 
1901 	/* Create DMA stuffs for Rx ring. */
1902 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1903 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1904 				  (void **)&sc_if->msk_rdata.msk_rx_ring,
1905 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1906 				  &sc_if->msk_cdata.msk_rx_ring_map);
1907 	if (error) {
1908 		device_printf(sc_if->msk_if_dev,
1909 			      "failed to create RX ring DMA stuffs\n");
1910 		return error;
1911 	}
1912 
1913 	/* Create tag for Tx buffers. */
1914 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1915 		    1, 0,			/* alignment, boundary */
1916 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1917 		    BUS_SPACE_MAXADDR,		/* highaddr */
1918 		    NULL, NULL,			/* filter, filterarg */
1919 		    MSK_TSO_MAXSIZE,		/* maxsize */
1920 		    MSK_MAXTXSEGS,		/* nsegments */
1921 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
1922 		    0,				/* flags */
1923 		    &sc_if->msk_cdata.msk_tx_tag);
1924 	if (error) {
1925 		device_printf(sc_if->msk_if_dev,
1926 			      "failed to create Tx DMA tag\n");
1927 		return error;
1928 	}
1929 
1930 	/* Create DMA maps for Tx buffers. */
1931 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1932 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1933 
1934 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
1935 		    &txd->tx_dmamap);
1936 		if (error) {
1937 			device_printf(sc_if->msk_if_dev,
1938 				      "failed to create %dth Tx dmamap\n", i);
1939 
1940 			for (j = 0; j < i; ++j) {
1941 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1942 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1943 						   txd->tx_dmamap);
1944 			}
1945 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1946 			sc_if->msk_cdata.msk_tx_tag = NULL;
1947 
1948 			return error;
1949 		}
1950 	}
1951 
1952 	/* Create tag for Rx buffers. */
1953 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1954 		    1, 0,			/* alignment, boundary */
1955 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1956 		    BUS_SPACE_MAXADDR,		/* highaddr */
1957 		    NULL, NULL,			/* filter, filterarg */
1958 		    MCLBYTES,			/* maxsize */
1959 		    1,				/* nsegments */
1960 		    MCLBYTES,			/* maxsegsize */
1961 		    0,				/* flags */
1962 		    &sc_if->msk_cdata.msk_rx_tag);
1963 	if (error) {
1964 		device_printf(sc_if->msk_if_dev,
1965 			      "failed to create Rx DMA tag\n");
1966 		return error;
1967 	}
1968 
1969 	/* Create DMA maps for Rx buffers. */
1970 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
1971 				  &sc_if->msk_cdata.msk_rx_sparemap);
1972 	if (error) {
1973 		device_printf(sc_if->msk_if_dev,
1974 			      "failed to create spare Rx dmamap\n");
1975 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
1976 		sc_if->msk_cdata.msk_rx_tag = NULL;
1977 		return error;
1978 	}
1979 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1980 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
1981 
1982 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
1983 					  &rxd->rx_dmamap);
1984 		if (error) {
1985 			device_printf(sc_if->msk_if_dev,
1986 				      "failed to create %dth Rx dmamap\n", i);
1987 
1988 			for (j = 0; j < i; ++j) {
1989 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
1990 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
1991 						   rxd->rx_dmamap);
1992 			}
1993 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
1994 			sc_if->msk_cdata.msk_rx_tag = NULL;
1995 
1996 			return error;
1997 		}
1998 	}
1999 
2000 #ifdef MSK_JUMBO
2001 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2002 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2003 
2004 	/* Create tag for jumbo Rx ring. */
2005 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2006 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2007 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2008 		    BUS_SPACE_MAXADDR,		/* highaddr */
2009 		    NULL, NULL,			/* filter, filterarg */
2010 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2011 		    1,				/* nsegments */
2012 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2013 		    0,				/* flags */
2014 		    NULL, NULL,			/* lockfunc, lockarg */
2015 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2016 	if (error != 0) {
2017 		device_printf(sc_if->msk_if_dev,
2018 		    "failed to create jumbo Rx ring DMA tag\n");
2019 		goto fail;
2020 	}
2021 
2022 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2023 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2024 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2025 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2026 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2027 	if (error != 0) {
2028 		device_printf(sc_if->msk_if_dev,
2029 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2030 		goto fail;
2031 	}
2032 
2033 	ctx.msk_busaddr = 0;
2034 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2035 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2036 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2037 	    msk_dmamap_cb, &ctx, 0);
2038 	if (error != 0) {
2039 		device_printf(sc_if->msk_if_dev,
2040 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2041 		goto fail;
2042 	}
2043 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2044 
2045 	/* Create tag for jumbo buffer blocks. */
2046 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2047 		    PAGE_SIZE, 0,		/* alignment, boundary */
2048 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2049 		    BUS_SPACE_MAXADDR,		/* highaddr */
2050 		    NULL, NULL,			/* filter, filterarg */
2051 		    MSK_JMEM,			/* maxsize */
2052 		    1,				/* nsegments */
2053 		    MSK_JMEM,			/* maxsegsize */
2054 		    0,				/* flags */
2055 		    NULL, NULL,			/* lockfunc, lockarg */
2056 		    &sc_if->msk_cdata.msk_jumbo_tag);
2057 	if (error != 0) {
2058 		device_printf(sc_if->msk_if_dev,
2059 		    "failed to create jumbo Rx buffer block DMA tag\n");
2060 		goto fail;
2061 	}
2062 
2063 	/* Create tag for jumbo Rx buffers. */
2064 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2065 		    PAGE_SIZE, 0,		/* alignment, boundary */
2066 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2067 		    BUS_SPACE_MAXADDR,		/* highaddr */
2068 		    NULL, NULL,			/* filter, filterarg */
2069 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2070 		    MSK_MAXRXSEGS,		/* nsegments */
2071 		    MSK_JLEN,			/* maxsegsize */
2072 		    0,				/* flags */
2073 		    NULL, NULL,			/* lockfunc, lockarg */
2074 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2075 	if (error != 0) {
2076 		device_printf(sc_if->msk_if_dev,
2077 		    "failed to create jumbo Rx DMA tag\n");
2078 		goto fail;
2079 	}
2080 
2081 	/* Create DMA maps for jumbo Rx buffers. */
2082 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2083 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2084 		device_printf(sc_if->msk_if_dev,
2085 		    "failed to create spare jumbo Rx dmamap\n");
2086 		goto fail;
2087 	}
2088 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2089 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2090 		jrxd->rx_m = NULL;
2091 		jrxd->rx_dmamap = NULL;
2092 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2093 		    &jrxd->rx_dmamap);
2094 		if (error != 0) {
2095 			device_printf(sc_if->msk_if_dev,
2096 			    "failed to create jumbo Rx dmamap\n");
2097 			goto fail;
2098 		}
2099 	}
2100 
2101 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2102 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2103 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2104 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2105 	    &sc_if->msk_cdata.msk_jumbo_map);
2106 	if (error != 0) {
2107 		device_printf(sc_if->msk_if_dev,
2108 		    "failed to allocate DMA'able memory for jumbo buf\n");
2109 		goto fail;
2110 	}
2111 
2112 	ctx.msk_busaddr = 0;
2113 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2114 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2115 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2116 	if (error != 0) {
2117 		device_printf(sc_if->msk_if_dev,
2118 		    "failed to load DMA'able memory for jumbobuf\n");
2119 		goto fail;
2120 	}
2121 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2122 
2123 	/*
2124 	 * Now divide it up into 9K pieces and save the addresses
2125 	 * in an array.
2126 	 */
2127 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2128 	for (i = 0; i < MSK_JSLOTS; i++) {
2129 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2130 		ptr += MSK_JLEN;
2131 		entry = malloc(sizeof(struct msk_jpool_entry),
2132 		    M_DEVBUF, M_WAITOK);
2133 		if (entry == NULL) {
2134 			device_printf(sc_if->msk_if_dev,
2135 			    "no memory for jumbo buffers!\n");
2136 			error = ENOMEM;
2137 			goto fail;
2138 		}
2139 		entry->slot = i;
2140 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2141 		    jpool_entries);
2142 	}
2143 #endif
2144 	return 0;
2145 }
2146 
2147 static void
2148 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2149 {
2150 	struct msk_txdesc *txd;
2151 	struct msk_rxdesc *rxd;
2152 #ifdef MSK_JUMBO
2153 	struct msk_rxdesc *jrxd;
2154 	struct msk_jpool_entry *entry;
2155 #endif
2156 	int i;
2157 
2158 #ifdef MSK_JUMBO
2159 	MSK_JLIST_LOCK(sc_if);
2160 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2161 		device_printf(sc_if->msk_if_dev,
2162 		    "asked to free buffer that is in use!\n");
2163 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2164 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2165 		    jpool_entries);
2166 	}
2167 
2168 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2169 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2170 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2171 		free(entry, M_DEVBUF);
2172 	}
2173 	MSK_JLIST_UNLOCK(sc_if);
2174 
2175 	/* Destroy jumbo buffer block. */
2176 	if (sc_if->msk_cdata.msk_jumbo_map)
2177 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2178 		    sc_if->msk_cdata.msk_jumbo_map);
2179 
2180 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2181 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2182 		    sc_if->msk_rdata.msk_jumbo_buf,
2183 		    sc_if->msk_cdata.msk_jumbo_map);
2184 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2185 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2186 	}
2187 
2188 	/* Jumbo Rx ring. */
2189 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2190 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2191 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2192 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2193 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2194 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2195 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2196 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2197 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2198 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2199 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2200 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2201 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2202 	}
2203 
2204 	/* Jumbo Rx buffers. */
2205 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2206 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2207 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2208 			if (jrxd->rx_dmamap) {
2209 				bus_dmamap_destroy(
2210 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2211 				    jrxd->rx_dmamap);
2212 				jrxd->rx_dmamap = NULL;
2213 			}
2214 		}
2215 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2216 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2217 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2218 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2219 		}
2220 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2221 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2222 	}
2223 #endif
2224 
2225 	/* Tx ring. */
2226 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2227 			   sc_if->msk_rdata.msk_tx_ring,
2228 			   sc_if->msk_cdata.msk_tx_ring_map);
2229 
2230 	/* Rx ring. */
2231 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2232 			   sc_if->msk_rdata.msk_rx_ring,
2233 			   sc_if->msk_cdata.msk_rx_ring_map);
2234 
2235 	/* Tx buffers. */
2236 	if (sc_if->msk_cdata.msk_tx_tag) {
2237 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2238 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2239 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2240 					   txd->tx_dmamap);
2241 		}
2242 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2243 		sc_if->msk_cdata.msk_tx_tag = NULL;
2244 	}
2245 
2246 	/* Rx buffers. */
2247 	if (sc_if->msk_cdata.msk_rx_tag) {
2248 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2249 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2250 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2251 					   rxd->rx_dmamap);
2252 		}
2253 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2254 				   sc_if->msk_cdata.msk_rx_sparemap);
2255 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2256 		sc_if->msk_cdata.msk_rx_tag = NULL;
2257 	}
2258 
2259 	if (sc_if->msk_cdata.msk_parent_tag) {
2260 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2261 		sc_if->msk_cdata.msk_parent_tag = NULL;
2262 	}
2263 }
2264 
2265 #ifdef MSK_JUMBO
2266 /*
2267  * Allocate a jumbo buffer.
2268  */
2269 static void *
2270 msk_jalloc(struct msk_if_softc *sc_if)
2271 {
2272 	struct msk_jpool_entry *entry;
2273 
2274 	MSK_JLIST_LOCK(sc_if);
2275 
2276 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2277 
2278 	if (entry == NULL) {
2279 		MSK_JLIST_UNLOCK(sc_if);
2280 		return (NULL);
2281 	}
2282 
2283 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2284 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2285 
2286 	MSK_JLIST_UNLOCK(sc_if);
2287 
2288 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2289 }
2290 
2291 /*
2292  * Release a jumbo buffer.
2293  */
2294 static void
2295 msk_jfree(void *buf, void *args)
2296 {
2297 	struct msk_if_softc *sc_if;
2298 	struct msk_jpool_entry *entry;
2299 	int i;
2300 
2301 	/* Extract the softc struct pointer. */
2302 	sc_if = (struct msk_if_softc *)args;
2303 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2304 
2305 	MSK_JLIST_LOCK(sc_if);
2306 	/* Calculate the slot this buffer belongs to. */
2307 	i = ((vm_offset_t)buf
2308 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2309 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2310 	    ("%s: asked to free buffer that we don't manage!", __func__));
2311 
2312 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2313 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2314 	entry->slot = i;
2315 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2316 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2317 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2318 		wakeup(sc_if);
2319 
2320 	MSK_JLIST_UNLOCK(sc_if);
2321 }
2322 #endif
2323 
2324 /*
2325  * It's copy of ath_defrag(ath(4)).
2326  *
2327  * Defragment an mbuf chain, returning at most maxfrags separate
2328  * mbufs+clusters.  If this is not possible NULL is returned and
2329  * the original mbuf chain is left in it's present (potentially
2330  * modified) state.  We use two techniques: collapsing consecutive
2331  * mbufs and replacing consecutive mbufs by a cluster.
2332  */
2333 static struct mbuf *
2334 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2335 {
2336 	struct mbuf *m, *n, *n2, **prev;
2337 	u_int curfrags;
2338 
2339 	/*
2340 	 * Calculate the current number of frags.
2341 	 */
2342 	curfrags = 0;
2343 	for (m = m0; m != NULL; m = m->m_next)
2344 		curfrags++;
2345 	/*
2346 	 * First, try to collapse mbufs.  Note that we always collapse
2347 	 * towards the front so we don't need to deal with moving the
2348 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2349 	 * less data than the following.
2350 	 */
2351 	m = m0;
2352 again:
2353 	for (;;) {
2354 		n = m->m_next;
2355 		if (n == NULL)
2356 			break;
2357 		if (n->m_len < M_TRAILINGSPACE(m)) {
2358 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2359 				n->m_len);
2360 			m->m_len += n->m_len;
2361 			m->m_next = n->m_next;
2362 			m_free(n);
2363 			if (--curfrags <= maxfrags)
2364 				return (m0);
2365 		} else
2366 			m = n;
2367 	}
2368 	KASSERT(maxfrags > 1,
2369 		("maxfrags %u, but normal collapse failed", maxfrags));
2370 	/*
2371 	 * Collapse consecutive mbufs to a cluster.
2372 	 */
2373 	prev = &m0->m_next;		/* NB: not the first mbuf */
2374 	while ((n = *prev) != NULL) {
2375 		if ((n2 = n->m_next) != NULL &&
2376 		    n->m_len + n2->m_len < MCLBYTES) {
2377 			m = m_getcl(how, MT_DATA, 0);
2378 			if (m == NULL)
2379 				goto bad;
2380 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2381 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2382 				n2->m_len);
2383 			m->m_len = n->m_len + n2->m_len;
2384 			m->m_next = n2->m_next;
2385 			*prev = m;
2386 			m_free(n);
2387 			m_free(n2);
2388 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2389 				return m0;
2390 			/*
2391 			 * Still not there, try the normal collapse
2392 			 * again before we allocate another cluster.
2393 			 */
2394 			goto again;
2395 		}
2396 		prev = &n->m_next;
2397 	}
2398 	/*
2399 	 * No place where we can collapse to a cluster; punt.
2400 	 * This can occur if, for example, you request 2 frags
2401 	 * but the packet requires that both be clusters (we
2402 	 * never reallocate the first mbuf to avoid moving the
2403 	 * packet header).
2404 	 */
2405 bad:
2406 	return (NULL);
2407 }
2408 
2409 static int
2410 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2411 {
2412 	struct msk_txdesc *txd, *txd_last;
2413 	struct msk_tx_desc *tx_le;
2414 	struct mbuf *m;
2415 	bus_dmamap_t map;
2416 	struct msk_dmamap_arg ctx;
2417 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2418 	uint32_t control, prod, si;
2419 	uint16_t offset, tcp_offset;
2420 	int error, i;
2421 
2422 	tcp_offset = offset = 0;
2423 	m = *m_head;
2424 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2425 		/*
2426 		 * Since mbuf has no protocol specific structure information
2427 		 * in it we have to inspect protocol information here to
2428 		 * setup TSO and checksum offload. I don't know why Marvell
2429 		 * made a such decision in chip design because other GigE
2430 		 * hardwares normally takes care of all these chores in
2431 		 * hardware. However, TSO performance of Yukon II is very
2432 		 * good such that it's worth to implement it.
2433 		 */
2434 		struct ether_header *eh;
2435 		struct ip *ip;
2436 
2437 		/* TODO check for M_WRITABLE(m) */
2438 
2439 		offset = sizeof(struct ether_header);
2440 		m = m_pullup(m, offset);
2441 		if (m == NULL) {
2442 			*m_head = NULL;
2443 			return (ENOBUFS);
2444 		}
2445 		eh = mtod(m, struct ether_header *);
2446 		/* Check if hardware VLAN insertion is off. */
2447 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2448 			offset = sizeof(struct ether_vlan_header);
2449 			m = m_pullup(m, offset);
2450 			if (m == NULL) {
2451 				*m_head = NULL;
2452 				return (ENOBUFS);
2453 			}
2454 		}
2455 		m = m_pullup(m, offset + sizeof(struct ip));
2456 		if (m == NULL) {
2457 			*m_head = NULL;
2458 			return (ENOBUFS);
2459 		}
2460 		ip = (struct ip *)(mtod(m, char *) + offset);
2461 		offset += (ip->ip_hl << 2);
2462 		tcp_offset = offset;
2463 		/*
2464 		 * It seems that Yukon II has Tx checksum offload bug for
2465 		 * small TCP packets that's less than 60 bytes in size
2466 		 * (e.g. TCP window probe packet, pure ACK packet).
2467 		 * Common work around like padding with zeros to make the
2468 		 * frame minimum ethernet frame size didn't work at all.
2469 		 * Instead of disabling checksum offload completely we
2470 		 * resort to S/W checksum routine when we encounter short
2471 		 * TCP frames.
2472 		 * Short UDP packets appear to be handled correctly by
2473 		 * Yukon II.
2474 		 */
2475 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2476 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2477 			uint16_t csum;
2478 
2479 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2480 			    (ip->ip_hl << 2), offset);
2481 			*(uint16_t *)(m->m_data + offset +
2482 			    m->m_pkthdr.csum_data) = csum;
2483 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2484 		}
2485 		*m_head = m;
2486 	}
2487 
2488 	prod = sc_if->msk_cdata.msk_tx_prod;
2489 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2490 	txd_last = txd;
2491 	map = txd->tx_dmamap;
2492 	bzero(&ctx, sizeof(ctx));
2493 	ctx.nseg = MSK_MAXTXSEGS;
2494 	ctx.segs = txsegs;
2495 	error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag, map,
2496 	    *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2497 	if (error == 0 && ctx.nseg == 0) {
2498 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2499 		error = EFBIG;
2500 	}
2501 	if (error == EFBIG) {
2502 		m = msk_defrag(*m_head, MB_DONTWAIT, MSK_MAXTXSEGS);
2503 		if (m == NULL) {
2504 			m_freem(*m_head);
2505 			*m_head = NULL;
2506 			return (ENOBUFS);
2507 		}
2508 		*m_head = m;
2509 
2510 		bzero(&ctx, sizeof(ctx));
2511 		ctx.nseg = MSK_MAXTXSEGS;
2512 		ctx.segs = txsegs;
2513 		error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag,
2514 		    map, *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2515 		if (error == 0 && ctx.nseg == 0) {
2516 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2517 			error = EFBIG;
2518 		}
2519 		if (error != 0) {
2520 			m_freem(*m_head);
2521 			*m_head = NULL;
2522 			return (error);
2523 		}
2524 	} else if (error != 0) {
2525 		return (error);
2526 	}
2527 
2528 	/* Check number of available descriptors. */
2529 	if (sc_if->msk_cdata.msk_tx_cnt + ctx.nseg >=
2530 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2531 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2532 		return (ENOBUFS);
2533 	}
2534 
2535 	control = 0;
2536 	tx_le = NULL;
2537 
2538 #ifdef notyet
2539 	/* Check if we have a VLAN tag to insert. */
2540 	if ((m->m_flags & M_VLANTAG) != 0) {
2541 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2542 		tx_le->msk_addr = htole32(0);
2543 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2544 		    htons(m->m_pkthdr.ether_vtag));
2545 		sc_if->msk_cdata.msk_tx_cnt++;
2546 		MSK_INC(prod, MSK_TX_RING_CNT);
2547 		control |= INS_VLAN;
2548 	}
2549 #endif
2550 	/* Check if we have to handle checksum offload. */
2551 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2552 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2553 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2554 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2555 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2556 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2557 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2558 			control |= UDPTCP;
2559 		sc_if->msk_cdata.msk_tx_cnt++;
2560 		MSK_INC(prod, MSK_TX_RING_CNT);
2561 	}
2562 
2563 	si = prod;
2564 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2565 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2566 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2567 	    OP_PACKET);
2568 	sc_if->msk_cdata.msk_tx_cnt++;
2569 	MSK_INC(prod, MSK_TX_RING_CNT);
2570 
2571 	for (i = 1; i < ctx.nseg; i++) {
2572 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2573 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2574 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2575 		    OP_BUFFER | HW_OWNER);
2576 		sc_if->msk_cdata.msk_tx_cnt++;
2577 		MSK_INC(prod, MSK_TX_RING_CNT);
2578 	}
2579 	/* Update producer index. */
2580 	sc_if->msk_cdata.msk_tx_prod = prod;
2581 
2582 	/* Set EOP on the last desciptor. */
2583 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2584 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2585 	tx_le->msk_control |= htole32(EOP);
2586 
2587 	/* Turn the first descriptor ownership to hardware. */
2588 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2589 	tx_le->msk_control |= htole32(HW_OWNER);
2590 
2591 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2592 	map = txd_last->tx_dmamap;
2593 	txd_last->tx_dmamap = txd->tx_dmamap;
2594 	txd->tx_dmamap = map;
2595 	txd->tx_m = m;
2596 
2597 	/* Sync descriptors. */
2598 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2599 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2600 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
2601 
2602 	return (0);
2603 }
2604 
2605 static void
2606 msk_start(struct ifnet *ifp)
2607 {
2608         struct msk_if_softc *sc_if;
2609         struct mbuf *m_head;
2610 	int enq;
2611 
2612 	sc_if = ifp->if_softc;
2613 
2614 	ASSERT_SERIALIZED(ifp->if_serializer);
2615 
2616 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) !=
2617 	    IFF_RUNNING || sc_if->msk_link == 0)
2618 		return;
2619 
2620 	for (enq = 0; !ifq_is_empty(&ifp->if_snd) &&
2621 	    sc_if->msk_cdata.msk_tx_cnt <
2622 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2623 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2624 		if (m_head == NULL)
2625 			break;
2626 
2627 		/*
2628 		 * Pack the data into the transmit ring. If we
2629 		 * don't have room, set the OACTIVE flag and wait
2630 		 * for the NIC to drain the ring.
2631 		 */
2632 		if (msk_encap(sc_if, &m_head) != 0) {
2633 			if (m_head == NULL)
2634 				break;
2635 			m_freem(m_head);
2636 			ifp->if_flags |= IFF_OACTIVE;
2637 			break;
2638 		}
2639 
2640 		enq++;
2641 		/*
2642 		 * If there's a BPF listener, bounce a copy of this frame
2643 		 * to him.
2644 		 */
2645 		BPF_MTAP(ifp, m_head);
2646 	}
2647 
2648 	if (enq > 0) {
2649 		/* Transmit */
2650 		CSR_WRITE_2(sc_if->msk_softc,
2651 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2652 		    sc_if->msk_cdata.msk_tx_prod);
2653 
2654 		/* Set a timeout in case the chip goes out to lunch. */
2655 		ifp->if_timer = MSK_TX_TIMEOUT;
2656 	}
2657 }
2658 
2659 static void
2660 msk_watchdog(struct ifnet *ifp)
2661 {
2662 	struct msk_if_softc *sc_if = ifp->if_softc;
2663 	uint32_t ridx;
2664 	int idx;
2665 
2666 	ASSERT_SERIALIZED(ifp->if_serializer);
2667 
2668 	if (sc_if->msk_link == 0) {
2669 		if (bootverbose)
2670 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2671 			   "(missed link)\n");
2672 		ifp->if_oerrors++;
2673 		msk_init(sc_if);
2674 		return;
2675 	}
2676 
2677 	/*
2678 	 * Reclaim first as there is a possibility of losing Tx completion
2679 	 * interrupts.
2680 	 */
2681 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2682 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2683 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2684 		msk_txeof(sc_if, idx);
2685 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2686 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2687 			    "-- recovering\n");
2688 			if (!ifq_is_empty(&ifp->if_snd))
2689 				ifp->if_start(ifp);
2690 			return;
2691 		}
2692 	}
2693 
2694 	if_printf(ifp, "watchdog timeout\n");
2695 	ifp->if_oerrors++;
2696 	msk_init(sc_if);
2697 	if (!ifq_is_empty(&ifp->if_snd))
2698 		ifp->if_start(ifp);
2699 }
2700 
2701 static int
2702 mskc_shutdown(device_t dev)
2703 {
2704 	struct msk_softc *sc = device_get_softc(dev);
2705 	int i;
2706 
2707 	lwkt_serialize_enter(&sc->msk_serializer);
2708 
2709 	for (i = 0; i < sc->msk_num_port; i++) {
2710 		if (sc->msk_if[i] != NULL)
2711 			msk_stop(sc->msk_if[i]);
2712 	}
2713 
2714 	/* Disable all interrupts. */
2715 	CSR_WRITE_4(sc, B0_IMSK, 0);
2716 	CSR_READ_4(sc, B0_IMSK);
2717 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2718 	CSR_READ_4(sc, B0_HWE_IMSK);
2719 
2720 	/* Put hardware reset. */
2721 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2722 
2723 	lwkt_serialize_exit(&sc->msk_serializer);
2724 	return (0);
2725 }
2726 
2727 static int
2728 mskc_suspend(device_t dev)
2729 {
2730 	struct msk_softc *sc = device_get_softc(dev);
2731 	int i;
2732 
2733 	lwkt_serialize_enter(&sc->msk_serializer);
2734 
2735 	for (i = 0; i < sc->msk_num_port; i++) {
2736 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2737 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2738 			msk_stop(sc->msk_if[i]);
2739 	}
2740 
2741 	/* Disable all interrupts. */
2742 	CSR_WRITE_4(sc, B0_IMSK, 0);
2743 	CSR_READ_4(sc, B0_IMSK);
2744 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2745 	CSR_READ_4(sc, B0_HWE_IMSK);
2746 
2747 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2748 
2749 	/* Put hardware reset. */
2750 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2751 	sc->msk_suspended = 1;
2752 
2753 	lwkt_serialize_exit(&sc->msk_serializer);
2754 
2755 	return (0);
2756 }
2757 
2758 static int
2759 mskc_resume(device_t dev)
2760 {
2761 	struct msk_softc *sc = device_get_softc(dev);
2762 	int i;
2763 
2764 	lwkt_serialize_enter(&sc->msk_serializer);
2765 
2766 	mskc_reset(sc);
2767 	for (i = 0; i < sc->msk_num_port; i++) {
2768 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2769 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2770 			msk_init(sc->msk_if[i]);
2771 	}
2772 	sc->msk_suspended = 0;
2773 
2774 	lwkt_serialize_exit(&sc->msk_serializer);
2775 
2776 	return (0);
2777 }
2778 
2779 static void
2780 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2781 {
2782 	struct mbuf *m;
2783 	struct ifnet *ifp;
2784 	struct msk_rxdesc *rxd;
2785 	int cons, rxlen;
2786 
2787 	ifp = sc_if->msk_ifp;
2788 
2789 	cons = sc_if->msk_cdata.msk_rx_cons;
2790 	do {
2791 		rxlen = status >> 16;
2792 		if ((status & GMR_FS_VLAN) != 0 &&
2793 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2794 			rxlen -= EVL_ENCAPLEN;
2795 		if (len > sc_if->msk_framesize ||
2796 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2797 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2798 			/* Don't count flow-control packet as errors. */
2799 			if ((status & GMR_FS_GOOD_FC) == 0)
2800 				ifp->if_ierrors++;
2801 			msk_discard_rxbuf(sc_if, cons);
2802 			break;
2803 		}
2804 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2805 		m = rxd->rx_m;
2806 		if (msk_newbuf(sc_if, cons) != 0) {
2807 			ifp->if_iqdrops++;
2808 			/* Reuse old buffer. */
2809 			msk_discard_rxbuf(sc_if, cons);
2810 			break;
2811 		}
2812 		m->m_pkthdr.rcvif = ifp;
2813 		m->m_pkthdr.len = m->m_len = len;
2814 		ifp->if_ipackets++;
2815 #ifdef notyet
2816 		/* Check for VLAN tagged packets. */
2817 		if ((status & GMR_FS_VLAN) != 0 &&
2818 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2819 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2820 			m->m_flags |= M_VLANTAG;
2821 		}
2822 #endif
2823 		ifp->if_input(ifp, m);
2824 	} while (0);
2825 
2826 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2827 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2828 }
2829 
2830 #ifdef MSK_JUMBO
2831 static void
2832 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2833 {
2834 	struct mbuf *m;
2835 	struct ifnet *ifp;
2836 	struct msk_rxdesc *jrxd;
2837 	int cons, rxlen;
2838 
2839 	ifp = sc_if->msk_ifp;
2840 
2841 	MSK_IF_LOCK_ASSERT(sc_if);
2842 
2843 	cons = sc_if->msk_cdata.msk_rx_cons;
2844 	do {
2845 		rxlen = status >> 16;
2846 		if ((status & GMR_FS_VLAN) != 0 &&
2847 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2848 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2849 		if (len > sc_if->msk_framesize ||
2850 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2851 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2852 			/* Don't count flow-control packet as errors. */
2853 			if ((status & GMR_FS_GOOD_FC) == 0)
2854 				ifp->if_ierrors++;
2855 			msk_discard_jumbo_rxbuf(sc_if, cons);
2856 			break;
2857 		}
2858 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2859 		m = jrxd->rx_m;
2860 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2861 			ifp->if_iqdrops++;
2862 			/* Reuse old buffer. */
2863 			msk_discard_jumbo_rxbuf(sc_if, cons);
2864 			break;
2865 		}
2866 		m->m_pkthdr.rcvif = ifp;
2867 		m->m_pkthdr.len = m->m_len = len;
2868 		ifp->if_ipackets++;
2869 		/* Check for VLAN tagged packets. */
2870 		if ((status & GMR_FS_VLAN) != 0 &&
2871 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2872 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2873 			m->m_flags |= M_VLANTAG;
2874 		}
2875 		MSK_IF_UNLOCK(sc_if);
2876 		(*ifp->if_input)(ifp, m);
2877 		MSK_IF_LOCK(sc_if);
2878 	} while (0);
2879 
2880 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2881 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2882 }
2883 #endif
2884 
2885 static void
2886 msk_txeof(struct msk_if_softc *sc_if, int idx)
2887 {
2888 	struct msk_txdesc *txd;
2889 	struct msk_tx_desc *cur_tx;
2890 	struct ifnet *ifp;
2891 	uint32_t control;
2892 	int cons, prog;
2893 
2894 	ifp = sc_if->msk_ifp;
2895 
2896 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2897 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2898 
2899 	/*
2900 	 * Go through our tx ring and free mbufs for those
2901 	 * frames that have been sent.
2902 	 */
2903 	cons = sc_if->msk_cdata.msk_tx_cons;
2904 	prog = 0;
2905 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2906 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2907 			break;
2908 		prog++;
2909 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2910 		control = le32toh(cur_tx->msk_control);
2911 		sc_if->msk_cdata.msk_tx_cnt--;
2912 		ifp->if_flags &= ~IFF_OACTIVE;
2913 		if ((control & EOP) == 0)
2914 			continue;
2915 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2916 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
2917 		    BUS_DMASYNC_POSTWRITE);
2918 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2919 
2920 		ifp->if_opackets++;
2921 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2922 		    __func__));
2923 		m_freem(txd->tx_m);
2924 		txd->tx_m = NULL;
2925 	}
2926 
2927 	if (prog > 0) {
2928 		sc_if->msk_cdata.msk_tx_cons = cons;
2929 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2930 			ifp->if_timer = 0;
2931 		/* No need to sync LEs as we didn't update LEs. */
2932 	}
2933 }
2934 
2935 static void
2936 msk_tick(void *xsc_if)
2937 {
2938 	struct msk_if_softc *sc_if = xsc_if;
2939 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2940 	struct mii_data *mii;
2941 
2942 	lwkt_serialize_enter(ifp->if_serializer);
2943 
2944 	mii = device_get_softc(sc_if->msk_miibus);
2945 
2946 	mii_tick(mii);
2947 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2948 
2949 	lwkt_serialize_exit(ifp->if_serializer);
2950 }
2951 
2952 static void
2953 msk_intr_phy(struct msk_if_softc *sc_if)
2954 {
2955 	uint16_t status;
2956 
2957 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2958 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2959 	/* Handle FIFO Underrun/Overflow? */
2960 	if (status & PHY_M_IS_FIFO_ERROR) {
2961 		device_printf(sc_if->msk_if_dev,
2962 		    "PHY FIFO underrun/overflow.\n");
2963 	}
2964 }
2965 
2966 static void
2967 msk_intr_gmac(struct msk_if_softc *sc_if)
2968 {
2969 	struct msk_softc *sc;
2970 	uint8_t status;
2971 
2972 	sc = sc_if->msk_softc;
2973 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2974 
2975 	/* GMAC Rx FIFO overrun. */
2976 	if ((status & GM_IS_RX_FF_OR) != 0) {
2977 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2978 		    GMF_CLI_RX_FO);
2979 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
2980 	}
2981 	/* GMAC Tx FIFO underrun. */
2982 	if ((status & GM_IS_TX_FF_UR) != 0) {
2983 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2984 		    GMF_CLI_TX_FU);
2985 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2986 		/*
2987 		 * XXX
2988 		 * In case of Tx underrun, we may need to flush/reset
2989 		 * Tx MAC but that would also require resynchronization
2990 		 * with status LEs. Reintializing status LEs would
2991 		 * affect other port in dual MAC configuration so it
2992 		 * should be avoided as possible as we can.
2993 		 * Due to lack of documentation it's all vague guess but
2994 		 * it needs more investigation.
2995 		 */
2996 	}
2997 }
2998 
2999 static void
3000 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3001 {
3002 	struct msk_softc *sc;
3003 
3004 	sc = sc_if->msk_softc;
3005 	if ((status & Y2_IS_PAR_RD1) != 0) {
3006 		device_printf(sc_if->msk_if_dev,
3007 		    "RAM buffer read parity error\n");
3008 		/* Clear IRQ. */
3009 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3010 		    RI_CLR_RD_PERR);
3011 	}
3012 	if ((status & Y2_IS_PAR_WR1) != 0) {
3013 		device_printf(sc_if->msk_if_dev,
3014 		    "RAM buffer write parity error\n");
3015 		/* Clear IRQ. */
3016 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3017 		    RI_CLR_WR_PERR);
3018 	}
3019 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3020 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3021 		/* Clear IRQ. */
3022 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3023 		    GMF_CLI_TX_PE);
3024 	}
3025 	if ((status & Y2_IS_PAR_RX1) != 0) {
3026 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3027 		/* Clear IRQ. */
3028 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3029 	}
3030 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3031 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3032 		/* Clear IRQ. */
3033 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3034 	}
3035 }
3036 
3037 static void
3038 mskc_intr_hwerr(struct msk_softc *sc)
3039 {
3040 	uint32_t status;
3041 	uint32_t tlphead[4];
3042 
3043 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3044 	/* Time Stamp timer overflow. */
3045 	if ((status & Y2_IS_TIST_OV) != 0)
3046 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3047 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3048 		/*
3049 		 * PCI Express Error occured which is not described in PEX
3050 		 * spec.
3051 		 * This error is also mapped either to Master Abort(
3052 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3053 		 * can only be cleared there.
3054                  */
3055 		device_printf(sc->msk_dev,
3056 		    "PCI Express protocol violation error\n");
3057 	}
3058 
3059 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3060 		uint16_t v16;
3061 
3062 		if ((status & Y2_IS_MST_ERR) != 0)
3063 			device_printf(sc->msk_dev,
3064 			    "unexpected IRQ Status error\n");
3065 		else
3066 			device_printf(sc->msk_dev,
3067 			    "unexpected IRQ Master error\n");
3068 		/* Reset all bits in the PCI status register. */
3069 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3070 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3071 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3072 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3073 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3074 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3075 	}
3076 
3077 	/* Check for PCI Express Uncorrectable Error. */
3078 	if ((status & Y2_IS_PCI_EXP) != 0) {
3079 		uint32_t v32;
3080 
3081 		/*
3082 		 * On PCI Express bus bridges are called root complexes (RC).
3083 		 * PCI Express errors are recognized by the root complex too,
3084 		 * which requests the system to handle the problem. After
3085 		 * error occurence it may be that no access to the adapter
3086 		 * may be performed any longer.
3087 		 */
3088 
3089 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3090 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3091 			/* Ignore unsupported request error. */
3092 			if (bootverbose) {
3093 				device_printf(sc->msk_dev,
3094 				    "Uncorrectable PCI Express error\n");
3095 			}
3096 		}
3097 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3098 			int i;
3099 
3100 			/* Get TLP header form Log Registers. */
3101 			for (i = 0; i < 4; i++)
3102 				tlphead[i] = CSR_PCI_READ_4(sc,
3103 				    PEX_HEADER_LOG + i * 4);
3104 			/* Check for vendor defined broadcast message. */
3105 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3106 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3107 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3108 				    sc->msk_intrhwemask);
3109 				CSR_READ_4(sc, B0_HWE_IMSK);
3110 			}
3111 		}
3112 		/* Clear the interrupt. */
3113 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3114 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3115 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3116 	}
3117 
3118 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3119 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3120 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3121 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3122 }
3123 
3124 static __inline void
3125 msk_rxput(struct msk_if_softc *sc_if)
3126 {
3127 	struct msk_softc *sc;
3128 
3129 	sc = sc_if->msk_softc;
3130 #ifdef MSK_JUMBO
3131 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3132 		bus_dmamap_sync(
3133 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3134 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3135 		    BUS_DMASYNC_PREWRITE);
3136 	} else
3137 #endif
3138 	{
3139 		bus_dmamap_sync(
3140 		    sc_if->msk_cdata.msk_rx_ring_tag,
3141 		    sc_if->msk_cdata.msk_rx_ring_map,
3142 		    BUS_DMASYNC_PREWRITE);
3143 	}
3144 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3145 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3146 }
3147 
3148 static int
3149 mskc_handle_events(struct msk_softc *sc)
3150 {
3151 	struct msk_if_softc *sc_if;
3152 	int rxput[2];
3153 	struct msk_stat_desc *sd;
3154 	uint32_t control, status;
3155 	int cons, idx, len, port, rxprog;
3156 
3157 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3158 	if (idx == sc->msk_stat_cons)
3159 		return (0);
3160 
3161 	/* Sync status LEs. */
3162 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3163 			BUS_DMASYNC_POSTREAD);
3164 	/* XXX Sync Rx LEs here. */
3165 
3166 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3167 
3168 	rxprog = 0;
3169 	for (cons = sc->msk_stat_cons; cons != idx;) {
3170 		sd = &sc->msk_stat_ring[cons];
3171 		control = le32toh(sd->msk_control);
3172 		if ((control & HW_OWNER) == 0)
3173 			break;
3174 		/*
3175 		 * Marvell's FreeBSD driver updates status LE after clearing
3176 		 * HW_OWNER. However we don't have a way to sync single LE
3177 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3178 		 * an entire DMA map. So don't sync LE until we have a better
3179 		 * way to sync LEs.
3180 		 */
3181 		control &= ~HW_OWNER;
3182 		sd->msk_control = htole32(control);
3183 		status = le32toh(sd->msk_status);
3184 		len = control & STLE_LEN_MASK;
3185 		port = (control >> 16) & 0x01;
3186 		sc_if = sc->msk_if[port];
3187 		if (sc_if == NULL) {
3188 			device_printf(sc->msk_dev, "invalid port opcode "
3189 			    "0x%08x\n", control & STLE_OP_MASK);
3190 			continue;
3191 		}
3192 
3193 		switch (control & STLE_OP_MASK) {
3194 		case OP_RXVLAN:
3195 			sc_if->msk_vtag = ntohs(len);
3196 			break;
3197 		case OP_RXCHKSVLAN:
3198 			sc_if->msk_vtag = ntohs(len);
3199 			break;
3200 		case OP_RXSTAT:
3201 #ifdef MSK_JUMBO
3202 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3203 				msk_jumbo_rxeof(sc_if, status, len);
3204 			else
3205 #endif
3206 				msk_rxeof(sc_if, status, len);
3207 			rxprog++;
3208 			/*
3209 			 * Because there is no way to sync single Rx LE
3210 			 * put the DMA sync operation off until the end of
3211 			 * event processing.
3212 			 */
3213 			rxput[port]++;
3214 			/* Update prefetch unit if we've passed water mark. */
3215 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3216 				msk_rxput(sc_if);
3217 				rxput[port] = 0;
3218 			}
3219 			break;
3220 		case OP_TXINDEXLE:
3221 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3222 				msk_txeof(sc->msk_if[MSK_PORT_A],
3223 				    status & STLE_TXA1_MSKL);
3224 			}
3225 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3226 				msk_txeof(sc->msk_if[MSK_PORT_B],
3227 				    ((status & STLE_TXA2_MSKL) >>
3228 				    STLE_TXA2_SHIFTL) |
3229 				    ((len & STLE_TXA2_MSKH) <<
3230 				    STLE_TXA2_SHIFTH));
3231 			}
3232 			break;
3233 		default:
3234 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3235 			    control & STLE_OP_MASK);
3236 			break;
3237 		}
3238 		MSK_INC(cons, MSK_STAT_RING_CNT);
3239 		if (rxprog > sc->msk_process_limit)
3240 			break;
3241 	}
3242 
3243 	sc->msk_stat_cons = cons;
3244 	/* XXX We should sync status LEs here. See above notes. */
3245 
3246 	if (rxput[MSK_PORT_A] > 0)
3247 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3248 	if (rxput[MSK_PORT_B] > 0)
3249 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3250 
3251 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3252 }
3253 
3254 /* Legacy interrupt handler for shared interrupt. */
3255 static void
3256 mskc_intr(void *xsc)
3257 {
3258 	struct msk_softc *sc;
3259 	struct msk_if_softc *sc_if0, *sc_if1;
3260 	struct ifnet *ifp0, *ifp1;
3261 	uint32_t status;
3262 
3263 	sc = xsc;
3264 	ASSERT_SERIALIZED(&sc->msk_serializer);
3265 
3266 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3267 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3268 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3269 	    (status & sc->msk_intrmask) == 0) {
3270 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3271 		return;
3272 	}
3273 
3274 	sc_if0 = sc->msk_if[MSK_PORT_A];
3275 	sc_if1 = sc->msk_if[MSK_PORT_B];
3276 	ifp0 = ifp1 = NULL;
3277 	if (sc_if0 != NULL)
3278 		ifp0 = sc_if0->msk_ifp;
3279 	if (sc_if1 != NULL)
3280 		ifp1 = sc_if1->msk_ifp;
3281 
3282 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3283 		msk_intr_phy(sc_if0);
3284 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3285 		msk_intr_phy(sc_if1);
3286 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3287 		msk_intr_gmac(sc_if0);
3288 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3289 		msk_intr_gmac(sc_if1);
3290 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3291 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3292 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3293 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3294 		CSR_READ_4(sc, B0_IMSK);
3295 	}
3296         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3297 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3298 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3299 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3300 		CSR_READ_4(sc, B0_IMSK);
3301 	}
3302 	if ((status & Y2_IS_HW_ERR) != 0)
3303 		mskc_intr_hwerr(sc);
3304 
3305 	while (mskc_handle_events(sc) != 0)
3306 		;
3307 	if ((status & Y2_IS_STAT_BMU) != 0)
3308 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3309 
3310 	/* Reenable interrupts. */
3311 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3312 
3313 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3314 	    !ifq_is_empty(&ifp0->if_snd))
3315 		ifp0->if_start(ifp0);
3316 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3317 	    !ifq_is_empty(&ifp1->if_snd))
3318 		ifp1->if_start(ifp1);
3319 }
3320 
3321 static void
3322 msk_init(void *xsc)
3323 {
3324 	struct msk_if_softc *sc_if = xsc;
3325 	struct msk_softc *sc = sc_if->msk_softc;
3326 	struct ifnet *ifp = sc_if->msk_ifp;
3327 	struct mii_data	 *mii;
3328 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3329 	uint16_t gmac;
3330 	int error, i;
3331 
3332 	ASSERT_SERIALIZED(ifp->if_serializer);
3333 
3334 	mii = device_get_softc(sc_if->msk_miibus);
3335 
3336 	error = 0;
3337 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3338 	msk_stop(sc_if);
3339 
3340 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3341 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3342 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3343 		/*
3344 		 * In Yukon EC Ultra, TSO & checksum offload is not
3345 		 * supported for jumbo frame.
3346 		 */
3347 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3348 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3349 	}
3350 
3351 	/*
3352 	 * Initialize GMAC first.
3353 	 * Without this initialization, Rx MAC did not work as expected
3354 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3355 	 * or duplicated frame delivery which in turn showed very poor
3356 	 * Rx performance.(I had to write a packet analysis code that
3357 	 * could be embeded in driver to diagnose this issue.)
3358 	 * I've spent almost 2 months to fix this issue. If I have had
3359 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3360 	 */
3361 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3362 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3363 
3364 	/* Dummy read the Interrupt Source Register. */
3365 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3366 
3367 	/* Set MIB Clear Counter Mode. */
3368 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3369 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3370 	/* Read all MIB Counters with Clear Mode set. */
3371 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3372 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3373 	/* Clear MIB Clear Counter Mode. */
3374 	gmac &= ~GM_PAR_MIB_CLR;
3375 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3376 
3377 	/* Disable FCS. */
3378 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3379 
3380 	/* Setup Transmit Control Register. */
3381 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3382 
3383 	/* Setup Transmit Flow Control Register. */
3384 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3385 
3386 	/* Setup Transmit Parameter Register. */
3387 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3388 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3389 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3390 
3391 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3392 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3393 
3394 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3395 		gmac |= GM_SMOD_JUMBO_ENA;
3396 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3397 
3398 	/* Set station address. */
3399         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3400         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3401 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3402 		    eaddr[i]);
3403         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3404 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3405 		    eaddr[i]);
3406 
3407 	/* Disable interrupts for counter overflows. */
3408 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3409 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3410 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3411 
3412 	/* Configure Rx MAC FIFO. */
3413 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3414 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3415 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3416 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3417 
3418 	/* Set promiscuous mode. */
3419 	msk_setpromisc(sc_if);
3420 
3421 	/* Set multicast filter. */
3422 	msk_setmulti(sc_if);
3423 
3424 	/* Flush Rx MAC FIFO on any flow control or error. */
3425 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3426 	    GMR_FS_ANY_ERR);
3427 
3428 	/* Set Rx FIFO flush threshold to 64 bytes. */
3429 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3430 	    RX_GMF_FL_THR_DEF);
3431 
3432 	/* Configure Tx MAC FIFO. */
3433 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3434 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3435 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3436 
3437 	/* Configure hardware VLAN tag insertion/stripping. */
3438 	msk_setvlan(sc_if, ifp);
3439 
3440 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3441 		/* Set Rx Pause threshould. */
3442 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3443 		    MSK_ECU_LLPP);
3444 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3445 		    MSK_ECU_ULPP);
3446 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3447 			/*
3448 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3449 			 */
3450 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3451 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3452 			/* Disable Store & Forward mode for Tx. */
3453 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3454 			    TX_JUMBO_ENA | TX_STFW_DIS);
3455 		} else {
3456 			/* Enable Store & Forward mode for Tx. */
3457 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3458 			    TX_JUMBO_DIS | TX_STFW_ENA);
3459 		}
3460 	}
3461 
3462 	/*
3463 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3464 	 * arbiter as we don't use Sync Tx queue.
3465 	 */
3466 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3467 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3468 	/* Enable the RAM Interface Arbiter. */
3469 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3470 
3471 	/* Setup RAM buffer. */
3472 	msk_set_rambuffer(sc_if);
3473 
3474 	/* Disable Tx sync Queue. */
3475 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3476 
3477 	/* Setup Tx Queue Bus Memory Interface. */
3478 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3479 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3480 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3481 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3482 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3483 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3484 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3485 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3486 	}
3487 
3488 	/* Setup Rx Queue Bus Memory Interface. */
3489 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3490 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3491 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3492 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3493         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3494 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3495 		/* MAC Rx RAM Read is controlled by hardware. */
3496                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3497 	}
3498 
3499 	msk_set_prefetch(sc, sc_if->msk_txq,
3500 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3501 	msk_init_tx_ring(sc_if);
3502 
3503 	/* Disable Rx checksum offload and RSS hash. */
3504 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3505 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3506 #ifdef MSK_JUMBO
3507 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3508 		msk_set_prefetch(sc, sc_if->msk_rxq,
3509 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3510 		    MSK_JUMBO_RX_RING_CNT - 1);
3511 		error = msk_init_jumbo_rx_ring(sc_if);
3512 	} else
3513 #endif
3514 	{
3515 		msk_set_prefetch(sc, sc_if->msk_rxq,
3516 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3517 		    MSK_RX_RING_CNT - 1);
3518 		error = msk_init_rx_ring(sc_if);
3519 	}
3520 	if (error != 0) {
3521 		device_printf(sc_if->msk_if_dev,
3522 		    "initialization failed: no memory for Rx buffers\n");
3523 		msk_stop(sc_if);
3524 		return;
3525 	}
3526 
3527 	/* Configure interrupt handling. */
3528 	if (sc_if->msk_port == MSK_PORT_A) {
3529 		sc->msk_intrmask |= Y2_IS_PORT_A;
3530 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3531 	} else {
3532 		sc->msk_intrmask |= Y2_IS_PORT_B;
3533 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3534 	}
3535 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3536 	CSR_READ_4(sc, B0_HWE_IMSK);
3537 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3538 	CSR_READ_4(sc, B0_IMSK);
3539 
3540 	sc_if->msk_link = 0;
3541 	mii_mediachg(mii);
3542 
3543 	ifp->if_flags |= IFF_RUNNING;
3544 	ifp->if_flags &= ~IFF_OACTIVE;
3545 
3546 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3547 }
3548 
3549 static void
3550 msk_set_rambuffer(struct msk_if_softc *sc_if)
3551 {
3552 	struct msk_softc *sc;
3553 	int ltpp, utpp;
3554 
3555 	sc = sc_if->msk_softc;
3556 
3557 	/* Setup Rx Queue. */
3558 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3559 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3560 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3561 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3562 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3563 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3564 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3565 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3566 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3567 
3568 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3569 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3570 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3571 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3572 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3573 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3574 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3575 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3576 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3577 
3578 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3579 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3580 
3581 	/* Setup Tx Queue. */
3582 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3583 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3584 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3585 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3586 	    sc->msk_txqend[sc_if->msk_port] / 8);
3587 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3588 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3589 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3590 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3591 	/* Enable Store & Forward for Tx side. */
3592 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3593 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3594 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3595 }
3596 
3597 static void
3598 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3599     uint32_t count)
3600 {
3601 
3602 	/* Reset the prefetch unit. */
3603 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3604 	    PREF_UNIT_RST_SET);
3605 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3606 	    PREF_UNIT_RST_CLR);
3607 	/* Set LE base address. */
3608 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3609 	    MSK_ADDR_LO(addr));
3610 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3611 	    MSK_ADDR_HI(addr));
3612 	/* Set the list last index. */
3613 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3614 	    count);
3615 	/* Turn on prefetch unit. */
3616 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3617 	    PREF_UNIT_OP_ON);
3618 	/* Dummy read to ensure write. */
3619 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3620 }
3621 
3622 static void
3623 msk_stop(struct msk_if_softc *sc_if)
3624 {
3625 	struct msk_softc *sc = sc_if->msk_softc;
3626 	struct ifnet *ifp = sc_if->msk_ifp;
3627 	struct msk_txdesc *txd;
3628 	struct msk_rxdesc *rxd;
3629 #ifdef MSK_JUMBO
3630 	struct msk_rxdesc *jrxd;
3631 #endif
3632 	uint32_t val;
3633 	int i;
3634 
3635 	ASSERT_SERIALIZED(ifp->if_serializer);
3636 
3637 	callout_stop(&sc_if->msk_tick_ch);
3638 	ifp->if_timer = 0;
3639 
3640 	/* Disable interrupts. */
3641 	if (sc_if->msk_port == MSK_PORT_A) {
3642 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3643 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3644 	} else {
3645 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3646 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3647 	}
3648 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3649 	CSR_READ_4(sc, B0_HWE_IMSK);
3650 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3651 	CSR_READ_4(sc, B0_IMSK);
3652 
3653 	/* Disable Tx/Rx MAC. */
3654 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3655 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3656 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3657 	/* Read again to ensure writing. */
3658 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3659 
3660 	/* Stop Tx BMU. */
3661 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3662 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3663 	for (i = 0; i < MSK_TIMEOUT; i++) {
3664 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3665 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3666 			    BMU_STOP);
3667 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3668 		} else
3669 			break;
3670 		DELAY(1);
3671 	}
3672 	if (i == MSK_TIMEOUT)
3673 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3674 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3675 	    RB_RST_SET | RB_DIS_OP_MD);
3676 
3677 	/* Disable all GMAC interrupt. */
3678 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3679 	/* Disable PHY interrupt. */
3680 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3681 
3682 	/* Disable the RAM Interface Arbiter. */
3683 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3684 
3685 	/* Reset the PCI FIFO of the async Tx queue */
3686 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3687 	    BMU_RST_SET | BMU_FIFO_RST);
3688 
3689 	/* Reset the Tx prefetch units. */
3690 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3691 	    PREF_UNIT_RST_SET);
3692 
3693 	/* Reset the RAM Buffer async Tx queue. */
3694 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3695 
3696 	/* Reset Tx MAC FIFO. */
3697 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3698 	/* Set Pause Off. */
3699 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3700 
3701 	/*
3702 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3703 	 * reach the end of packet and since we can't make sure that we have
3704 	 * incoming data, we must reset the BMU while it is not during a DMA
3705 	 * transfer. Since it is possible that the Rx path is still active,
3706 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3707 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3708 	 * BMU is polled until any DMA in progress is ended and only then it
3709 	 * will be reset.
3710 	 */
3711 
3712 	/* Disable the RAM Buffer receive queue. */
3713 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3714 	for (i = 0; i < MSK_TIMEOUT; i++) {
3715 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3716 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3717 			break;
3718 		DELAY(1);
3719 	}
3720 	if (i == MSK_TIMEOUT)
3721 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3722 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3723 	    BMU_RST_SET | BMU_FIFO_RST);
3724 	/* Reset the Rx prefetch unit. */
3725 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3726 	    PREF_UNIT_RST_SET);
3727 	/* Reset the RAM Buffer receive queue. */
3728 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3729 	/* Reset Rx MAC FIFO. */
3730 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3731 
3732 	/* Free Rx and Tx mbufs still in the queues. */
3733 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3734 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3735 		if (rxd->rx_m != NULL) {
3736 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3737 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3738 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3739 			    rxd->rx_dmamap);
3740 			m_freem(rxd->rx_m);
3741 			rxd->rx_m = NULL;
3742 		}
3743 	}
3744 #ifdef MSK_JUMBO
3745 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3746 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3747 		if (jrxd->rx_m != NULL) {
3748 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3749 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3750 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3751 			    jrxd->rx_dmamap);
3752 			m_freem(jrxd->rx_m);
3753 			jrxd->rx_m = NULL;
3754 		}
3755 	}
3756 #endif
3757 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3758 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3759 		if (txd->tx_m != NULL) {
3760 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3761 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3762 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3763 			    txd->tx_dmamap);
3764 			m_freem(txd->tx_m);
3765 			txd->tx_m = NULL;
3766 		}
3767 	}
3768 
3769 	/*
3770 	 * Mark the interface down.
3771 	 */
3772 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3773 	sc_if->msk_link = 0;
3774 }
3775 
3776 #ifdef notyet
3777 
3778 static int
3779 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3780 {
3781 	int error, value;
3782 
3783 	if (!arg1)
3784 		return (EINVAL);
3785 	value = *(int *)arg1;
3786 	error = sysctl_handle_int(oidp, &value, 0, req);
3787 	if (error || !req->newptr)
3788 		return (error);
3789 	if (value < low || value > high)
3790 		return (EINVAL);
3791 	*(int *)arg1 = value;
3792 
3793 	return (0);
3794 }
3795 
3796 static int
3797 sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
3798 {
3799 
3800 	return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
3801 	    MSK_PROC_MAX));
3802 }
3803 
3804 #endif
3805 
3806 static int
3807 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3808 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3809 {
3810 	struct msk_if_softc *sc_if = device_get_softc(dev);
3811 	struct msk_dmamap_arg ctx;
3812 	bus_dma_segment_t seg;
3813 	int error;
3814 
3815 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,
3816 				   MSK_RING_ALIGN, 0,
3817 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3818 				   NULL, NULL,
3819 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
3820 				   0, dtag);
3821 	if (error) {
3822 		device_printf(dev, "can't create DMA tag\n");
3823 		return error;
3824 	}
3825 
3826 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3827 				 dmap);
3828 	if (error) {
3829 		device_printf(dev, "can't allocate DMA mem\n");
3830 		bus_dma_tag_destroy(*dtag);
3831 		*dtag = NULL;
3832 		return error;
3833 	}
3834 
3835 	bzero(&ctx, sizeof(ctx));
3836 	ctx.nseg = 1;
3837 	ctx.segs = &seg;
3838 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
3839 				msk_dmamap_cb, &ctx, BUS_DMA_WAITOK);
3840 	if (error) {
3841 		device_printf(dev, "can't load DMA mem\n");
3842 		bus_dmamem_free(*dtag, *addr, *dmap);
3843 		bus_dma_tag_destroy(*dtag);
3844 		*dtag = NULL;
3845 		return error;
3846 	}
3847 	*paddr = seg.ds_addr;
3848 	return 0;
3849 }
3850 
3851 static void
3852 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3853 {
3854 	if (dtag != NULL) {
3855 		bus_dmamap_unload(dtag, dmap);
3856 		bus_dmamem_free(dtag, addr, dmap);
3857 		bus_dma_tag_destroy(dtag);
3858 	}
3859 }
3860