xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision 23e52a52)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Fast Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Fast Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Fast Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Fast Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 	    "Marvell Yukon 88E8040 Fast Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 	    "Marvell Yukon 88E8040T Fast Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 	    "Marvell Yukon 88E8042 Fast Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 	    "Marvell Yukon 88E8048 Fast Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
204 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
206 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
208 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
210 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
211 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
212 	    "D-Link 550SX Gigabit Ethernet" },
213 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
214 	    "D-Link 560T Gigabit Ethernet" },
215 	{ 0, 0, NULL }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220 	"Yukon EC Ultra",
221 	"Yukon EX",
222 	"Yukon EC",
223 	"Yukon FE",
224 	"Yukon FE+",
225 	"Yukon Supreme",
226 	"Yukon Ultra 2",
227 	"Yukon Unknown",
228 	"Yukon Optima"
229 };
230 
231 static int	mskc_probe(device_t);
232 static int	mskc_attach(device_t);
233 static int	mskc_detach(device_t);
234 static int	mskc_shutdown(device_t);
235 static int	mskc_suspend(device_t);
236 static int	mskc_resume(device_t);
237 static void	mskc_intr(void *);
238 
239 static void	mskc_reset(struct msk_softc *);
240 static void	mskc_set_imtimer(struct msk_softc *);
241 static void	mskc_intr_hwerr(struct msk_softc *);
242 static int	mskc_handle_events(struct msk_softc *);
243 static void	mskc_phy_power(struct msk_softc *, int);
244 static int	mskc_setup_rambuffer(struct msk_softc *);
245 static int	mskc_status_dma_alloc(struct msk_softc *);
246 static void	mskc_status_dma_free(struct msk_softc *);
247 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
248 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
249 
250 static int	msk_probe(device_t);
251 static int	msk_attach(device_t);
252 static int	msk_detach(device_t);
253 static int	msk_miibus_readreg(device_t, int, int);
254 static int	msk_miibus_writereg(device_t, int, int, int);
255 static void	msk_miibus_statchg(device_t);
256 
257 static void	msk_init(void *);
258 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	msk_start(struct ifnet *, struct ifaltq_subque *);
260 static void	msk_watchdog(struct ifnet *);
261 static int	msk_mediachange(struct ifnet *);
262 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
263 
264 static void	msk_tick(void *);
265 static void	msk_intr_phy(struct msk_if_softc *);
266 static void	msk_intr_gmac(struct msk_if_softc *);
267 static __inline void
268 		msk_rxput(struct msk_if_softc *);
269 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
270 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int);
271 static void	msk_txeof(struct msk_if_softc *, int);
272 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
273 static void	msk_set_rambuffer(struct msk_if_softc *);
274 static void	msk_stop(struct msk_if_softc *);
275 
276 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
277 static void	msk_txrx_dma_free(struct msk_if_softc *);
278 static int	msk_init_rx_ring(struct msk_if_softc *);
279 static void	msk_init_tx_ring(struct msk_if_softc *);
280 static __inline void
281 		msk_discard_rxbuf(struct msk_if_softc *, int);
282 static int	msk_newbuf(struct msk_if_softc *, int, int);
283 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
284 
285 #ifdef MSK_JUMBO
286 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
287 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
288 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
289 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
290 static void *msk_jalloc(struct msk_if_softc *);
291 static void msk_jfree(void *, void *);
292 #endif
293 
294 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
295 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
296 
297 static void	msk_rxfilter(struct msk_if_softc *);
298 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
299 static void	msk_set_tx_stfwd(struct msk_if_softc *);
300 
301 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
302 				  void **, bus_addr_t *, bus_dmamap_t *);
303 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
304 
305 static device_method_t mskc_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		mskc_probe),
308 	DEVMETHOD(device_attach,	mskc_attach),
309 	DEVMETHOD(device_detach,	mskc_detach),
310 	DEVMETHOD(device_suspend,	mskc_suspend),
311 	DEVMETHOD(device_resume,	mskc_resume),
312 	DEVMETHOD(device_shutdown,	mskc_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	{ NULL, NULL }
319 };
320 
321 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
322 static devclass_t mskc_devclass;
323 
324 static device_method_t msk_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		msk_probe),
327 	DEVMETHOD(device_attach,	msk_attach),
328 	DEVMETHOD(device_detach,	msk_detach),
329 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
330 
331 	/* bus interface */
332 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
333 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
334 
335 	/* MII interface */
336 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
337 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
338 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
339 
340 	{ NULL, NULL }
341 };
342 
343 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
344 static devclass_t msk_devclass;
345 
346 DECLARE_DUMMY_MODULE(if_msk);
347 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
348 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
349 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
350 
351 static int	mskc_msi_enable = 0;
352 static int	mskc_intr_rate = 0;
353 static int	mskc_process_limit = MSK_PROC_DEFAULT;
354 
355 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
356 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
357 TUNABLE_INT("hw.mskc.msi.enable", &mskc_msi_enable);
358 
359 static int
360 msk_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct msk_if_softc *sc_if;
363 
364 	if (phy != PHY_ADDR_MARV)
365 		return (0);
366 
367 	sc_if = device_get_softc(dev);
368 
369 	return (msk_phy_readreg(sc_if, phy, reg));
370 }
371 
372 static int
373 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
374 {
375 	struct msk_softc *sc;
376 	int i, val;
377 
378 	sc = sc_if->msk_softc;
379 
380         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
381 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
382 
383 	for (i = 0; i < MSK_TIMEOUT; i++) {
384 		DELAY(1);
385 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
386 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
387 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
388 			break;
389 		}
390 	}
391 
392 	if (i == MSK_TIMEOUT) {
393 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
394 		val = 0;
395 	}
396 
397 	return (val);
398 }
399 
400 static int
401 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
402 {
403 	struct msk_if_softc *sc_if;
404 
405 	if (phy != PHY_ADDR_MARV)
406 		return (0);
407 
408 	sc_if = device_get_softc(dev);
409 
410 	return (msk_phy_writereg(sc_if, phy, reg, val));
411 }
412 
413 static int
414 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
415 {
416 	struct msk_softc *sc;
417 	int i;
418 
419 	sc = sc_if->msk_softc;
420 
421 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
422         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
423 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
424 	for (i = 0; i < MSK_TIMEOUT; i++) {
425 		DELAY(1);
426 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
427 		    GM_SMI_CT_BUSY) == 0)
428 			break;
429 	}
430 	if (i == MSK_TIMEOUT)
431 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
432 
433 	return (0);
434 }
435 
436 static void
437 msk_miibus_statchg(device_t dev)
438 {
439 	struct msk_if_softc *sc_if;
440 	struct msk_softc *sc;
441 	struct mii_data *mii;
442 	uint32_t gmac;
443 
444 	sc_if = device_get_softc(dev);
445 	sc = sc_if->msk_softc;
446 
447 	mii = device_get_softc(sc_if->msk_miibus);
448 
449 	sc_if->msk_link = 0;
450 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
451 	    (IFM_AVALID | IFM_ACTIVE)) {
452 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
453 		case IFM_10_T:
454 		case IFM_100_TX:
455 			sc_if->msk_link = 1;
456 			break;
457 		case IFM_1000_T:
458 		case IFM_1000_SX:
459 		case IFM_1000_LX:
460 		case IFM_1000_CX:
461 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
462 				sc_if->msk_link = 1;
463 			break;
464 		}
465 	}
466 
467 	if (sc_if->msk_link != 0) {
468 		/* Enable Tx FIFO Underrun. */
469 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
470 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
471 		/*
472 		 * Because mii(4) notify msk(4) that it detected link status
473 		 * change, there is no need to enable automatic
474 		 * speed/flow-control/duplex updates.
475 		 */
476 		gmac = GM_GPCR_AU_ALL_DIS;
477 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
478 		case IFM_1000_SX:
479 		case IFM_1000_T:
480 			gmac |= GM_GPCR_SPEED_1000;
481 			break;
482 		case IFM_100_TX:
483 			gmac |= GM_GPCR_SPEED_100;
484 			break;
485 		case IFM_10_T:
486 			break;
487 		}
488 
489 		if ((mii->mii_media_active & IFM_GMASK) & IFM_FDX)
490 			gmac |= GM_GPCR_DUP_FULL;
491 		else
492 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
493 		/* Disable Rx flow control. */
494 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
495 			gmac |= GM_GPCR_FC_RX_DIS;
496 		/* Disable Tx flow control. */
497 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
498 			gmac |= GM_GPCR_FC_TX_DIS;
499 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
500 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
501 		/* Read again to ensure writing. */
502 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
503 
504 		gmac = GMC_PAUSE_OFF;
505 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) &&
506 		    ((mii->mii_media_active & IFM_GMASK) & IFM_FDX))
507 			gmac = GMC_PAUSE_ON;
508 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
509 
510 		/* Enable PHY interrupt for FIFO underrun/overflow. */
511 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
512 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
513 	} else {
514 		/*
515 		 * Link state changed to down.
516 		 * Disable PHY interrupts.
517 		 */
518 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
519 		/* Disable Rx/Tx MAC. */
520 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
521 		if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
522 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
523 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
524 			/* Read again to ensure writing. */
525 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
526 		}
527 	}
528 }
529 
530 static void
531 msk_rxfilter(struct msk_if_softc *sc_if)
532 {
533 	struct msk_softc *sc;
534 	struct ifnet *ifp;
535 	struct ifmultiaddr *ifma;
536 	uint32_t mchash[2];
537 	uint32_t crc;
538 	uint16_t mode;
539 
540 	sc = sc_if->msk_softc;
541 	ifp = sc_if->msk_ifp;
542 
543 	bzero(mchash, sizeof(mchash));
544 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
545 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
546 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
547 	} else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
548 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
549 		mchash[0] = 0xffff;
550 		mchash[1] = 0xffff;
551 	} else {
552 		mode |= GM_RXCR_UCF_ENA;
553 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
554 			if (ifma->ifma_addr->sa_family != AF_LINK)
555 				continue;
556 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
557 			    ifma->ifma_addr), ETHER_ADDR_LEN);
558 			/* Just want the 6 least significant bits. */
559 			crc &= 0x3f;
560 			/* Set the corresponding bit in the hash table. */
561 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
562 		}
563 		if (mchash[0] != 0 || mchash[1] != 0)
564 			mode |= GM_RXCR_MCF_ENA;
565 	}
566 
567 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
568 	    mchash[0] & 0xffff);
569 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
570 	    (mchash[0] >> 16) & 0xffff);
571 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
572 	    mchash[1] & 0xffff);
573 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
574 	    (mchash[1] >> 16) & 0xffff);
575 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
576 }
577 
578 static void
579 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
580 {
581 	struct msk_softc *sc;
582 
583 	sc = sc_if->msk_softc;
584 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
585 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
586 		    RX_VLAN_STRIP_ON);
587 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
588 		    TX_VLAN_TAG_ON);
589 	} else {
590 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
591 		    RX_VLAN_STRIP_OFF);
592 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
593 		    TX_VLAN_TAG_OFF);
594 	}
595 }
596 
597 static int
598 msk_init_rx_ring(struct msk_if_softc *sc_if)
599 {
600 	struct msk_ring_data *rd;
601 	struct msk_rxdesc *rxd;
602 	int i, prod;
603 
604 	sc_if->msk_cdata.msk_rx_cons = 0;
605 	sc_if->msk_cdata.msk_rx_prod = 0;
606 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
607 
608 	rd = &sc_if->msk_rdata;
609 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
610 	prod = sc_if->msk_cdata.msk_rx_prod;
611 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
612 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
613 		rxd->rx_m = NULL;
614 		rxd->rx_le = &rd->msk_rx_ring[prod];
615 		if (msk_newbuf(sc_if, prod, 1) != 0)
616 			return (ENOBUFS);
617 		MSK_INC(prod, MSK_RX_RING_CNT);
618 	}
619 
620 	/* Update prefetch unit. */
621 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
622 	CSR_WRITE_2(sc_if->msk_softc,
623 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
624 	    sc_if->msk_cdata.msk_rx_prod);
625 
626 	return (0);
627 }
628 
629 #ifdef MSK_JUMBO
630 static int
631 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
632 {
633 	struct msk_ring_data *rd;
634 	struct msk_rxdesc *rxd;
635 	int i, prod;
636 
637 	MSK_IF_LOCK_ASSERT(sc_if);
638 
639 	sc_if->msk_cdata.msk_rx_cons = 0;
640 	sc_if->msk_cdata.msk_rx_prod = 0;
641 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
642 
643 	rd = &sc_if->msk_rdata;
644 	bzero(rd->msk_jumbo_rx_ring,
645 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
646 	prod = sc_if->msk_cdata.msk_rx_prod;
647 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
648 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
649 		rxd->rx_m = NULL;
650 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
651 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
652 			return (ENOBUFS);
653 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
654 	}
655 
656 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
657 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
659 
660 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
661 	CSR_WRITE_2(sc_if->msk_softc,
662 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
663 	    sc_if->msk_cdata.msk_rx_prod);
664 
665 	return (0);
666 }
667 #endif
668 
669 static void
670 msk_init_tx_ring(struct msk_if_softc *sc_if)
671 {
672 	struct msk_ring_data *rd;
673 	struct msk_txdesc *txd;
674 	int i;
675 
676 	sc_if->msk_cdata.msk_tx_prod = 0;
677 	sc_if->msk_cdata.msk_tx_cons = 0;
678 	sc_if->msk_cdata.msk_tx_cnt = 0;
679 
680 	rd = &sc_if->msk_rdata;
681 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
682 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
683 		txd = &sc_if->msk_cdata.msk_txdesc[i];
684 		txd->tx_m = NULL;
685 		txd->tx_le = &rd->msk_tx_ring[i];
686 	}
687 }
688 
689 static __inline void
690 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
691 {
692 	struct msk_rx_desc *rx_le;
693 	struct msk_rxdesc *rxd;
694 	struct mbuf *m;
695 
696 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
697 	m = rxd->rx_m;
698 	rx_le = rxd->rx_le;
699 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
700 }
701 
702 #ifdef MSK_JUMBO
703 static __inline void
704 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
705 {
706 	struct msk_rx_desc *rx_le;
707 	struct msk_rxdesc *rxd;
708 	struct mbuf *m;
709 
710 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
711 	m = rxd->rx_m;
712 	rx_le = rxd->rx_le;
713 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
714 }
715 #endif
716 
717 static int
718 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
719 {
720 	struct msk_rx_desc *rx_le;
721 	struct msk_rxdesc *rxd;
722 	struct mbuf *m;
723 	bus_dma_segment_t seg;
724 	bus_dmamap_t map;
725 	int error, nseg;
726 
727 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
728 	if (m == NULL)
729 		return (ENOBUFS);
730 
731 	m->m_len = m->m_pkthdr.len = MCLBYTES;
732 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
733 		m_adj(m, ETHER_ALIGN);
734 
735 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
736 			sc_if->msk_cdata.msk_rx_sparemap,
737 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
738 	if (error) {
739 		m_freem(m);
740 		if (init)
741 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
742 		return (error);
743 	}
744 
745 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
746 	if (rxd->rx_m != NULL) {
747 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
748 		    BUS_DMASYNC_POSTREAD);
749 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
750 	}
751 
752 	map = rxd->rx_dmamap;
753 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
754 	sc_if->msk_cdata.msk_rx_sparemap = map;
755 
756 	rxd->rx_m = m;
757 	rx_le = rxd->rx_le;
758 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
759 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
760 
761 	return (0);
762 }
763 
764 #ifdef MSK_JUMBO
765 static int
766 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
767 {
768 	struct msk_rx_desc *rx_le;
769 	struct msk_rxdesc *rxd;
770 	struct mbuf *m;
771 	bus_dma_segment_t segs[1];
772 	bus_dmamap_t map;
773 	int nsegs;
774 	void *buf;
775 
776 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
777 	if (m == NULL)
778 		return (ENOBUFS);
779 	buf = msk_jalloc(sc_if);
780 	if (buf == NULL) {
781 		m_freem(m);
782 		return (ENOBUFS);
783 	}
784 	/* Attach the buffer to the mbuf. */
785 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, sc_if, 0, EXT_NET_DRV);
786 	if ((m->m_flags & M_EXT) == 0) {
787 		m_freem(m);
788 		return (ENOBUFS);
789 	}
790 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
791 	m_adj(m, ETHER_ALIGN);
792 
793 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
794 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
795 	    BUS_DMA_NOWAIT) != 0) {
796 		m_freem(m);
797 		return (ENOBUFS);
798 	}
799 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
800 
801 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
802 	if (rxd->rx_m != NULL) {
803 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
804 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
805 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
806 		    rxd->rx_dmamap);
807 	}
808 	map = rxd->rx_dmamap;
809 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
810 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
811 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
812 	    BUS_DMASYNC_PREREAD);
813 	rxd->rx_m = m;
814 	rx_le = rxd->rx_le;
815 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
816 	rx_le->msk_control =
817 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
818 
819 	return (0);
820 }
821 #endif
822 
823 /*
824  * Set media options.
825  */
826 static int
827 msk_mediachange(struct ifnet *ifp)
828 {
829 	struct msk_if_softc *sc_if = ifp->if_softc;
830 	struct mii_data	*mii;
831 	int error;
832 
833 	mii = device_get_softc(sc_if->msk_miibus);
834 	error = mii_mediachg(mii);
835 
836 	return (error);
837 }
838 
839 /*
840  * Report current media status.
841  */
842 static void
843 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
844 {
845 	struct msk_if_softc *sc_if = ifp->if_softc;
846 	struct mii_data	*mii;
847 
848 	mii = device_get_softc(sc_if->msk_miibus);
849 	mii_pollstat(mii);
850 
851 	ifmr->ifm_active = mii->mii_media_active;
852 	ifmr->ifm_status = mii->mii_media_status;
853 }
854 
855 static int
856 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
857 {
858 	struct msk_if_softc *sc_if;
859 	struct ifreq *ifr;
860 	struct mii_data	*mii;
861 	int error, mask;
862 
863 	sc_if = ifp->if_softc;
864 	ifr = (struct ifreq *)data;
865 	error = 0;
866 
867 	switch(command) {
868 	case SIOCSIFMTU:
869 #ifdef MSK_JUMBO
870 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
871 			error = EINVAL;
872 			break;
873 		}
874 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
875 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
876 			error = EINVAL;
877 			break;
878 		}
879 		ifp->if_mtu = ifr->ifr_mtu;
880 		if ((ifp->if_flags & IFF_RUNNING) != 0)
881 			msk_init(sc_if);
882 #else
883 		error = EOPNOTSUPP;
884 #endif
885 		break;
886 
887 	case SIOCSIFFLAGS:
888 		if (ifp->if_flags & IFF_UP) {
889 			if (ifp->if_flags & IFF_RUNNING) {
890 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
891 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
892 					msk_rxfilter(sc_if);
893 			} else {
894 				if (sc_if->msk_detach == 0)
895 					msk_init(sc_if);
896 			}
897 		} else {
898 			if (ifp->if_flags & IFF_RUNNING)
899 				msk_stop(sc_if);
900 		}
901 		sc_if->msk_if_flags = ifp->if_flags;
902 		break;
903 
904 	case SIOCADDMULTI:
905 	case SIOCDELMULTI:
906 		if (ifp->if_flags & IFF_RUNNING)
907 			msk_rxfilter(sc_if);
908 		break;
909 
910 	case SIOCGIFMEDIA:
911 	case SIOCSIFMEDIA:
912 		mii = device_get_softc(sc_if->msk_miibus);
913 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
914 		break;
915 
916 	case SIOCSIFCAP:
917 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
918 		if ((mask & IFCAP_TXCSUM) != 0) {
919 			ifp->if_capenable ^= IFCAP_TXCSUM;
920 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
921 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
922 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
923 			else
924 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
925 		}
926 #ifdef notyet
927 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
928 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
929 			msk_setvlan(sc_if, ifp);
930 		}
931 #endif
932 
933 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
934 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
935 			/*
936 			 * In Yukon EC Ultra, TSO & checksum offload is not
937 			 * supported for jumbo frame.
938 			 */
939 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
940 			ifp->if_capenable &= ~IFCAP_TXCSUM;
941 		}
942 		break;
943 
944 	default:
945 		error = ether_ioctl(ifp, command, data);
946 		break;
947 	}
948 
949 	return (error);
950 }
951 
952 static int
953 mskc_probe(device_t dev)
954 {
955 	const struct msk_product *mp;
956 	uint16_t vendor, devid;
957 
958 	vendor = pci_get_vendor(dev);
959 	devid = pci_get_device(dev);
960 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
961 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
962 			device_set_desc(dev, mp->msk_name);
963 			return (0);
964 		}
965 	}
966 	return (ENXIO);
967 }
968 
969 static int
970 mskc_setup_rambuffer(struct msk_softc *sc)
971 {
972 	int next;
973 	int i;
974 
975 	/* Get adapter SRAM size. */
976 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
977 	if (bootverbose) {
978 		device_printf(sc->msk_dev,
979 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
980 	}
981 	if (sc->msk_ramsize == 0)
982 		return (0);
983 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
984 
985 	/*
986 	 * Give receiver 2/3 of memory and round down to the multiple
987 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
988 	 * of 1024.
989 	 */
990 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
991 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
992 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
993 		sc->msk_rxqstart[i] = next;
994 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
995 		next = sc->msk_rxqend[i] + 1;
996 		sc->msk_txqstart[i] = next;
997 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
998 		next = sc->msk_txqend[i] + 1;
999 		if (bootverbose) {
1000 			device_printf(sc->msk_dev,
1001 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1002 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1003 			    sc->msk_rxqend[i]);
1004 			device_printf(sc->msk_dev,
1005 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1006 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1007 			    sc->msk_txqend[i]);
1008 		}
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 static void
1015 mskc_phy_power(struct msk_softc *sc, int mode)
1016 {
1017 	uint32_t our, val;
1018 	int i;
1019 
1020 	switch (mode) {
1021 	case MSK_PHY_POWERUP:
1022 		/* Switch power to VCC (WA for VAUX problem). */
1023 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1024 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1025 		/* Disable Core Clock Division, set Clock Select to 0. */
1026 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1027 
1028 		val = 0;
1029 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1030 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1031 			/* Enable bits are inverted. */
1032 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1033 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1034 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1035 		}
1036 		/*
1037 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1038 		 */
1039 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1040 
1041 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1042 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1043 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1044 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1045 				/* Deassert Low Power for 1st PHY. */
1046 				our |= PCI_Y2_PHY1_COMA;
1047 				if (sc->msk_num_port > 1)
1048 					our |= PCI_Y2_PHY2_COMA;
1049 			}
1050 		}
1051 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1052 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1053 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1054 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1055 			val &= (PCI_FORCE_ASPM_REQUEST |
1056 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1057 			    PCI_ASPM_CLKRUN_REQUEST);
1058 			/* Set all bits to 0 except bits 15..12. */
1059 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1060 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1061 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1062 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1063 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1064 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1065 			/*
1066 			 * Disable status race, workaround for
1067 			 * Yukon EC Ultra & Yukon EX.
1068 			 */
1069 			val = CSR_READ_4(sc, B2_GP_IO);
1070 			val |= GLB_GPIO_STAT_RACE_DIS;
1071 			CSR_WRITE_4(sc, B2_GP_IO, val);
1072 			CSR_READ_4(sc, B2_GP_IO);
1073 		}
1074 		/* Release PHY from PowerDown/COMA mode. */
1075 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1076 
1077 		for (i = 0; i < sc->msk_num_port; i++) {
1078 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1079 			    GMLC_RST_SET);
1080 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1081 			    GMLC_RST_CLR);
1082 		}
1083 		break;
1084 	case MSK_PHY_POWERDOWN:
1085 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1086 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1087 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1088 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1089 			val &= ~PCI_Y2_PHY1_COMA;
1090 			if (sc->msk_num_port > 1)
1091 				val &= ~PCI_Y2_PHY2_COMA;
1092 		}
1093 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1094 
1095 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1096 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1097 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1098 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1099 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1100 			/* Enable bits are inverted. */
1101 			val = 0;
1102 		}
1103 		/*
1104 		 * Disable PCI & Core Clock, disable clock gating for
1105 		 * both Links.
1106 		 */
1107 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1108 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1109 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1110 		break;
1111 	default:
1112 		break;
1113 	}
1114 }
1115 
1116 static void
1117 mskc_reset(struct msk_softc *sc)
1118 {
1119 	bus_addr_t addr;
1120 	uint16_t status;
1121 	uint32_t val;
1122 	int i;
1123 
1124 	/* Disable ASF. */
1125 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1126 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1127 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1128 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1129 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1130 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1131 			/* Clear AHB bridge & microcontroller reset. */
1132 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1133 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1134 			/* Clear ASF microcontroller state. */
1135 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1136 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1137 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1138 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1139 		} else {
1140 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1141 		}
1142 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1143 		/*
1144 		 * Since we disabled ASF, S/W reset is required for
1145 		 * Power Management.
1146 		 */
1147 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1148 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1149 	}
1150 
1151 	/* Clear all error bits in the PCI status register. */
1152 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1153 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1154 
1155 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1156 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1157 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1158 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1159 
1160 	switch (sc->msk_bustype) {
1161 	case MSK_PEX_BUS:
1162 		/* Clear all PEX errors. */
1163 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1164 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1165 		if ((val & PEX_RX_OV) != 0) {
1166 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1167 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1168 		}
1169 		break;
1170 	case MSK_PCI_BUS:
1171 	case MSK_PCIX_BUS:
1172 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1173 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1174 		if (val == 0)
1175 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1176 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1177 			/* Set Cache Line Size opt. */
1178 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1179 			val |= PCI_CLS_OPT;
1180 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1181 		}
1182 		break;
1183 	}
1184 	/* Set PHY power state. */
1185 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1186 
1187 	/* Reset GPHY/GMAC Control */
1188 	for (i = 0; i < sc->msk_num_port; i++) {
1189 		/* GPHY Control reset. */
1190 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1191 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1192 		/* GMAC Control reset. */
1193 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1194 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1195 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1196 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1197 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1198 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1199 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1200 			    GMC_BYP_RETR_ON);
1201 		}
1202 	}
1203 
1204 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1205 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1206 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1207 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1208 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1209 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1210 	}
1211 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1212 
1213 	/* LED On. */
1214 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1215 
1216 	/* Clear TWSI IRQ. */
1217 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1218 
1219 	/* Turn off hardware timer. */
1220 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1221 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1222 
1223 	/* Turn off descriptor polling. */
1224 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1225 
1226 	/* Turn off time stamps. */
1227 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1228 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1229 
1230 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1231 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1232 	    sc->msk_hw_id == CHIP_ID_YUKON_FE) {
1233 		/* Configure timeout values. */
1234 		for (i = 0; i < sc->msk_num_port; i++) {
1235 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1236 			    RI_RST_SET);
1237 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1238 			    RI_RST_CLR);
1239 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1240 			    MSK_RI_TO_53);
1241 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1242 			    MSK_RI_TO_53);
1243 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1244 			    MSK_RI_TO_53);
1245 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1246 			    MSK_RI_TO_53);
1247 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1248 			    MSK_RI_TO_53);
1249 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1250 			    MSK_RI_TO_53);
1251 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1252 			    MSK_RI_TO_53);
1253 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1254 			    MSK_RI_TO_53);
1255 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1256 			    MSK_RI_TO_53);
1257 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1258 			    MSK_RI_TO_53);
1259 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1260 			    MSK_RI_TO_53);
1261 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1262 			    MSK_RI_TO_53);
1263 		}
1264 	}
1265 
1266 	/* Disable all interrupts. */
1267 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1268 	CSR_READ_4(sc, B0_HWE_IMSK);
1269 	CSR_WRITE_4(sc, B0_IMSK, 0);
1270 	CSR_READ_4(sc, B0_IMSK);
1271 
1272         /*
1273          * On dual port PCI-X card, there is an problem where status
1274          * can be received out of order due to split transactions.
1275          */
1276 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1277 		uint16_t pcix_cmd;
1278 
1279 		pcix_cmd = pci_read_config(sc->msk_dev,
1280 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1281 		/* Clear Max Outstanding Split Transactions. */
1282 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1283 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1284 		pci_write_config(sc->msk_dev,
1285 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1286 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1287 	}
1288 	if (sc->msk_pciecap != 0) {
1289 		/* Change Max. Read Request Size to 2048 bytes. */
1290 		if (pcie_get_max_readrq(sc->msk_dev) ==
1291 		    PCIEM_DEVCTL_MAX_READRQ_512) {
1292 			pcie_set_max_readrq(sc->msk_dev,
1293 			    PCIEM_DEVCTL_MAX_READRQ_2048);
1294 		}
1295 	}
1296 
1297 	/* Clear status list. */
1298 	bzero(sc->msk_stat_ring,
1299 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1300 	sc->msk_stat_cons = 0;
1301 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1302 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1303 	/* Set the status list base address. */
1304 	addr = sc->msk_stat_ring_paddr;
1305 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1306 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1307 	/* Set the status list last index. */
1308 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1309 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1310 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1311 		/* WA for dev. #4.3 */
1312 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1313 		/* WA for dev. #4.18 */
1314 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1315 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1316 	} else {
1317 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1318 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1319 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1320 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1321 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1322 		else
1323 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1324 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1325 	}
1326 	/*
1327 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1328 	 */
1329 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1330 
1331 	/* Enable status unit. */
1332 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1333 
1334 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1335 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1336 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1337 }
1338 
1339 static int
1340 msk_probe(device_t dev)
1341 {
1342 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1343 	char desc[100];
1344 
1345 	/*
1346 	 * Not much to do here. We always know there will be
1347 	 * at least one GMAC present, and if there are two,
1348 	 * mskc_attach() will create a second device instance
1349 	 * for us.
1350 	 */
1351 	ksnprintf(desc, sizeof(desc),
1352 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1353 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1354 	    sc->msk_hw_rev);
1355 	device_set_desc_copy(dev, desc);
1356 
1357 	return (0);
1358 }
1359 
1360 static int
1361 msk_attach(device_t dev)
1362 {
1363 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1364 	struct msk_if_softc *sc_if = device_get_softc(dev);
1365 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1366 	int i, port, error;
1367 	uint8_t eaddr[ETHER_ADDR_LEN];
1368 
1369 	port = *(int *)device_get_ivars(dev);
1370 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1371 
1372 	kfree(device_get_ivars(dev), M_DEVBUF);
1373 	device_set_ivars(dev, NULL);
1374 
1375 	callout_init(&sc_if->msk_tick_ch);
1376 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1377 
1378 	sc_if->msk_if_dev = dev;
1379 	sc_if->msk_port = port;
1380 	sc_if->msk_softc = sc;
1381 	sc_if->msk_ifp = ifp;
1382 	sc_if->msk_flags = sc->msk_pflags;
1383 	sc->msk_if[port] = sc_if;
1384 
1385 	/* Setup Tx/Rx queue register offsets. */
1386 	if (port == MSK_PORT_A) {
1387 		sc_if->msk_txq = Q_XA1;
1388 		sc_if->msk_txsq = Q_XS1;
1389 		sc_if->msk_rxq = Q_R1;
1390 	} else {
1391 		sc_if->msk_txq = Q_XA2;
1392 		sc_if->msk_txsq = Q_XS2;
1393 		sc_if->msk_rxq = Q_R2;
1394 	}
1395 
1396 	error = msk_txrx_dma_alloc(sc_if);
1397 	if (error)
1398 		goto fail;
1399 
1400 	ifp->if_softc = sc_if;
1401 	ifp->if_mtu = ETHERMTU;
1402 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1403 	ifp->if_init = msk_init;
1404 	ifp->if_ioctl = msk_ioctl;
1405 	ifp->if_start = msk_start;
1406 	ifp->if_watchdog = msk_watchdog;
1407 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1408 	ifq_set_ready(&ifp->if_snd);
1409 
1410 #ifdef notyet
1411 	/*
1412 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1413 	 * has serious bug in Rx checksum offload for all Yukon II family
1414 	 * hardware. It seems there is a workaround to make it work somtimes.
1415 	 * However, the workaround also have to check OP code sequences to
1416 	 * verify whether the OP code is correct. Sometimes it should compute
1417 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1418 	 * checksum computed by hardware. If you have to compute checksum
1419 	 * with software to verify the hardware's checksum why have hardware
1420 	 * compute the checksum? I think there is no reason to spend time to
1421 	 * make Rx checksum offload work on Yukon II hardware.
1422 	 */
1423 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1424 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1425 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1426 	ifp->if_capenable = ifp->if_capabilities;
1427 #endif
1428 
1429 	/*
1430 	 * Get station address for this interface. Note that
1431 	 * dual port cards actually come with three station
1432 	 * addresses: one for each port, plus an extra. The
1433 	 * extra one is used by the SysKonnect driver software
1434 	 * as a 'virtual' station address for when both ports
1435 	 * are operating in failover mode. Currently we don't
1436 	 * use this extra address.
1437 	 */
1438 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1439 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1440 
1441 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1442 
1443 	/*
1444 	 * Do miibus setup.
1445 	 */
1446 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1447 			      msk_mediachange, msk_mediastatus);
1448 	if (error) {
1449 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1450 		goto fail;
1451 	}
1452 
1453 	/*
1454 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1455 	 */
1456 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1457 #if 0
1458 	/*
1459 	 * Tell the upper layer(s) we support long frames.
1460 	 * Must appear after the call to ether_ifattach() because
1461 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1462 	 */
1463         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1464 #endif
1465 
1466 	return 0;
1467 fail:
1468 	msk_detach(dev);
1469 	sc->msk_if[port] = NULL;
1470 	return (error);
1471 }
1472 
1473 /*
1474  * Attach the interface. Allocate softc structures, do ifmedia
1475  * setup and ethernet/BPF attach.
1476  */
1477 static int
1478 mskc_attach(device_t dev)
1479 {
1480 	struct msk_softc *sc;
1481 	int error, *port, cpuid;
1482 	u_int irq_flags;
1483 
1484 	sc = device_get_softc(dev);
1485 	sc->msk_dev = dev;
1486 	lwkt_serialize_init(&sc->msk_serializer);
1487 
1488 	/*
1489 	 * Initailize sysctl variables
1490 	 */
1491 	sc->msk_process_limit = mskc_process_limit;
1492 	sc->msk_intr_rate = mskc_intr_rate;
1493 
1494 #ifndef BURN_BRIDGES
1495 	/*
1496 	 * Handle power management nonsense.
1497 	 */
1498 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1499 		uint32_t irq, bar0, bar1;
1500 
1501 		/* Save important PCI config data. */
1502 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1503 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1504 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1505 
1506 		/* Reset the power state. */
1507 		device_printf(dev, "chip is in D%d power mode "
1508 			      "-- setting to D0\n", pci_get_powerstate(dev));
1509 
1510 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1511 
1512 		/* Restore PCI config data. */
1513 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1514 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1515 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1516 	}
1517 #endif	/* BURN_BRIDGES */
1518 
1519 	/*
1520 	 * Map control/status registers.
1521 	 */
1522 	pci_enable_busmaster(dev);
1523 
1524 	/*
1525 	 * Allocate I/O resource
1526 	 */
1527 #ifdef MSK_USEIOSPACE
1528 	sc->msk_res_type = SYS_RES_IOPORT;
1529 	sc->msk_res_rid = PCIR_BAR(1);
1530 #else
1531 	sc->msk_res_type = SYS_RES_MEMORY;
1532 	sc->msk_res_rid = PCIR_BAR(0);
1533 #endif
1534 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1535 					     &sc->msk_res_rid, RF_ACTIVE);
1536 	if (sc->msk_res == NULL) {
1537 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1538 			sc->msk_res_type = SYS_RES_IOPORT;
1539 			sc->msk_res_rid = PCIR_BAR(1);
1540 		} else {
1541 			sc->msk_res_type = SYS_RES_MEMORY;
1542 			sc->msk_res_rid = PCIR_BAR(0);
1543 		}
1544 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1545 						     &sc->msk_res_rid,
1546 						     RF_ACTIVE);
1547 		if (sc->msk_res == NULL) {
1548 			device_printf(dev, "couldn't allocate %s resources\n",
1549 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1550 			return (ENXIO);
1551 		}
1552 	}
1553 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1554 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1555 
1556 	/*
1557 	 * Allocate IRQ
1558 	 */
1559 	sc->msk_irq_type = pci_alloc_1intr(dev, mskc_msi_enable,
1560 	    &sc->msk_irq_rid, &irq_flags);
1561 
1562 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->msk_irq_rid,
1563 	    irq_flags);
1564 	if (sc->msk_irq == NULL) {
1565 		device_printf(dev, "couldn't allocate IRQ resources\n");
1566 		error = ENXIO;
1567 		goto fail;
1568 	}
1569 
1570 	/* Enable all clocks before accessing any registers. */
1571 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1572 
1573 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1574 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1575 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1576 	/* Bail out if chip is not recognized. */
1577 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1578 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1579 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1580 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1581 		    sc->msk_hw_id, sc->msk_hw_rev);
1582 		error = ENXIO;
1583 		goto fail;
1584 	}
1585 
1586 	/*
1587 	 * Create sysctl tree
1588 	 */
1589 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1590 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1591 					      SYSCTL_STATIC_CHILDREN(_hw),
1592 					      OID_AUTO,
1593 					      device_get_nameunit(dev),
1594 					      CTLFLAG_RD, 0, "");
1595 	if (sc->msk_sysctl_tree == NULL) {
1596 		device_printf(dev, "can't add sysctl node\n");
1597 		error = ENXIO;
1598 		goto fail;
1599 	}
1600 
1601 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1602 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1603 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1604 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1605 			"I", "max number of Rx events to process");
1606 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1607 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1608 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1609 			sc, 0, mskc_sysctl_intr_rate,
1610 			"I", "max number of interrupt per second");
1611 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1612 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1613 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1614 		       0, "# of avoided m_defrag on TX path");
1615 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1616 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1617 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1618 		       0, "# of leading copies on TX path");
1619 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1620 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1621 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1622 		       0, "# of trailing copies on TX path");
1623 
1624 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1625 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1626 		sc->msk_coppertype = 0;
1627 	else
1628 		sc->msk_coppertype = 1;
1629 	/* Check number of MACs. */
1630 	sc->msk_num_port = 1;
1631 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1632 	    CFG_DUAL_MAC_MSK) {
1633 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1634 			sc->msk_num_port++;
1635 	}
1636 
1637 	/* Check bus type. */
1638 	if (pci_is_pcie(sc->msk_dev) == 0) {
1639 		sc->msk_bustype = MSK_PEX_BUS;
1640 		sc->msk_pciecap = pci_get_pciecap_ptr(sc->msk_dev);
1641 	} else if (pci_is_pcix(sc->msk_dev) == 0) {
1642 		sc->msk_bustype = MSK_PCIX_BUS;
1643 		sc->msk_pcixcap = pci_get_pcixcap_ptr(sc->msk_dev);
1644 	} else {
1645 		sc->msk_bustype = MSK_PCI_BUS;
1646 	}
1647 
1648 	switch (sc->msk_hw_id) {
1649 	case CHIP_ID_YUKON_EC:
1650 	case CHIP_ID_YUKON_EC_U:
1651 		sc->msk_clock = 125;	/* 125 Mhz */
1652 		break;
1653 	case CHIP_ID_YUKON_EX:
1654 		sc->msk_clock = 125;	/* 125 Mhz */
1655 		break;
1656 	case CHIP_ID_YUKON_FE:
1657 		sc->msk_clock = 100;	/* 100 Mhz */
1658 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1659 		break;
1660 	case CHIP_ID_YUKON_FE_P:
1661 		sc->msk_clock = 50;	/* 50 Mhz */
1662 		/* DESCV2 */
1663 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1664 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1665 			/*
1666 			 * XXX
1667 			 * FE+ A0 has status LE writeback bug so msk(4)
1668 			 * does not rely on status word of received frame
1669 			 * in msk_rxeof() which in turn disables all
1670 			 * hardware assistance bits reported by the status
1671 			 * word as well as validity of the recevied frame.
1672 			 * Just pass received frames to upper stack with
1673 			 * minimal test and let upper stack handle them.
1674 			 */
1675 			sc->msk_pflags |= MSK_FLAG_NORXCHK;
1676 		}
1677 		break;
1678 	case CHIP_ID_YUKON_XL:
1679 		sc->msk_clock = 156;	/* 156 Mhz */
1680 		break;
1681 	case CHIP_ID_YUKON_SUPR:
1682 		sc->msk_clock = 125;	/* 125 MHz */
1683 		break;
1684 	case CHIP_ID_YUKON_UL_2:
1685 		sc->msk_clock = 125;	/* 125 Mhz */
1686 		break;
1687 	case CHIP_ID_YUKON_OPT:
1688 		sc->msk_clock = 125;	/* 125 MHz */
1689 		break;
1690 	default:
1691 		sc->msk_clock = 156;	/* 156 Mhz */
1692 		break;
1693 	}
1694 
1695 	error = mskc_status_dma_alloc(sc);
1696 	if (error)
1697 		goto fail;
1698 
1699 	/* Set base interrupt mask. */
1700 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1701 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1702 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1703 
1704 	/* Reset the adapter. */
1705 	mskc_reset(sc);
1706 
1707 	error = mskc_setup_rambuffer(sc);
1708 	if (error)
1709 		goto fail;
1710 
1711 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1712 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1713 		device_printf(dev, "failed to add child for PORT_A\n");
1714 		error = ENXIO;
1715 		goto fail;
1716 	}
1717 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1718 	*port = MSK_PORT_A;
1719 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1720 
1721 	if (sc->msk_num_port > 1) {
1722 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1723 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1724 			device_printf(dev, "failed to add child for PORT_B\n");
1725 			error = ENXIO;
1726 			goto fail;
1727 		}
1728 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1729 		*port = MSK_PORT_B;
1730 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1731 	}
1732 
1733 	bus_generic_attach(dev);
1734 
1735 	cpuid = rman_get_cpuid(sc->msk_irq);
1736 	if (sc->msk_if[0] != NULL)
1737 		ifq_set_cpuid(&sc->msk_if[0]->msk_ifp->if_snd, cpuid);
1738 	if (sc->msk_if[1] != NULL)
1739 		ifq_set_cpuid(&sc->msk_if[1]->msk_ifp->if_snd, cpuid);
1740 
1741 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1742 			       mskc_intr, sc, &sc->msk_intrhand,
1743 			       &sc->msk_serializer);
1744 	if (error) {
1745 		device_printf(dev, "couldn't set up interrupt handler\n");
1746 		goto fail;
1747 	}
1748 	return 0;
1749 fail:
1750 	mskc_detach(dev);
1751 	return (error);
1752 }
1753 
1754 /*
1755  * Shutdown hardware and free up resources. This can be called any
1756  * time after the mutex has been initialized. It is called in both
1757  * the error case in attach and the normal detach case so it needs
1758  * to be careful about only freeing resources that have actually been
1759  * allocated.
1760  */
1761 static int
1762 msk_detach(device_t dev)
1763 {
1764 	struct msk_if_softc *sc_if = device_get_softc(dev);
1765 
1766 	if (device_is_attached(dev)) {
1767 		struct msk_softc *sc = sc_if->msk_softc;
1768 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1769 
1770 		lwkt_serialize_enter(ifp->if_serializer);
1771 
1772 		if (sc->msk_intrhand != NULL) {
1773 			if (sc->msk_if[MSK_PORT_A] != NULL)
1774 				msk_stop(sc->msk_if[MSK_PORT_A]);
1775 			if (sc->msk_if[MSK_PORT_B] != NULL)
1776 				msk_stop(sc->msk_if[MSK_PORT_B]);
1777 
1778 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1779 					  sc->msk_intrhand);
1780 			sc->msk_intrhand = NULL;
1781 		}
1782 
1783 		lwkt_serialize_exit(ifp->if_serializer);
1784 
1785 		ether_ifdetach(ifp);
1786 	}
1787 
1788 	if (sc_if->msk_miibus != NULL)
1789 		device_delete_child(dev, sc_if->msk_miibus);
1790 
1791 	msk_txrx_dma_free(sc_if);
1792 	return (0);
1793 }
1794 
1795 static int
1796 mskc_detach(device_t dev)
1797 {
1798 	struct msk_softc *sc = device_get_softc(dev);
1799 	int *port, i;
1800 
1801 #ifdef INVARIANTS
1802 	if (device_is_attached(dev)) {
1803 		KASSERT(sc->msk_intrhand == NULL,
1804 			("intr is not torn down yet"));
1805 	}
1806 #endif
1807 
1808 	for (i = 0; i < sc->msk_num_port; ++i) {
1809 		if (sc->msk_devs[i] != NULL) {
1810 			port = device_get_ivars(sc->msk_devs[i]);
1811 			if (port != NULL) {
1812 				kfree(port, M_DEVBUF);
1813 				device_set_ivars(sc->msk_devs[i], NULL);
1814 			}
1815 			device_delete_child(dev, sc->msk_devs[i]);
1816 		}
1817 	}
1818 
1819 	/* Disable all interrupts. */
1820 	CSR_WRITE_4(sc, B0_IMSK, 0);
1821 	CSR_READ_4(sc, B0_IMSK);
1822 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1823 	CSR_READ_4(sc, B0_HWE_IMSK);
1824 
1825 	/* LED Off. */
1826 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1827 
1828 	/* Put hardware reset. */
1829 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1830 
1831 	mskc_status_dma_free(sc);
1832 
1833 	if (sc->msk_irq != NULL) {
1834 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1835 				     sc->msk_irq);
1836 	}
1837 	if (sc->msk_irq_type == PCI_INTR_TYPE_MSI)
1838 		pci_release_msi(dev);
1839 
1840 	if (sc->msk_res != NULL) {
1841 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1842 				     sc->msk_res);
1843 	}
1844 
1845 	if (sc->msk_sysctl_tree != NULL)
1846 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1847 
1848 	return (0);
1849 }
1850 
1851 /* Create status DMA region. */
1852 static int
1853 mskc_status_dma_alloc(struct msk_softc *sc)
1854 {
1855 	bus_dmamem_t dmem;
1856 	int error;
1857 
1858 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1859 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1860 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1861 	if (error) {
1862 		device_printf(sc->msk_dev,
1863 		    "failed to create status coherent DMA memory\n");
1864 		return error;
1865 	}
1866 	sc->msk_stat_tag = dmem.dmem_tag;
1867 	sc->msk_stat_map = dmem.dmem_map;
1868 	sc->msk_stat_ring = dmem.dmem_addr;
1869 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1870 
1871 	return (0);
1872 }
1873 
1874 static void
1875 mskc_status_dma_free(struct msk_softc *sc)
1876 {
1877 	/* Destroy status block. */
1878 	if (sc->msk_stat_tag) {
1879 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1880 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1881 				sc->msk_stat_map);
1882 		bus_dma_tag_destroy(sc->msk_stat_tag);
1883 		sc->msk_stat_tag = NULL;
1884 	}
1885 }
1886 
1887 static int
1888 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1889 {
1890 	int error, i, j;
1891 #ifdef MSK_JUMBO
1892 	struct msk_rxdesc *jrxd;
1893 	struct msk_jpool_entry *entry;
1894 	uint8_t *ptr;
1895 #endif
1896 	bus_size_t rxalign;
1897 
1898 	/* Create parent DMA tag. */
1899 	/*
1900 	 * XXX
1901 	 * It seems that Yukon II supports full 64bits DMA operations. But
1902 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1903 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1904 	 * would be used in advance for each mbufs, we limits its DMA space
1905 	 * to be in range of 32bits address space. Otherwise, we should check
1906 	 * what DMA address is used and chain another descriptor for the
1907 	 * 64bits DMA operation. This also means descriptor ring size is
1908 	 * variable. Limiting DMA address to be in 32bit address space greatly
1909 	 * simplyfies descriptor handling and possibly would increase
1910 	 * performance a bit due to efficient handling of descriptors.
1911 	 * Apart from harassing checksum offloading mechanisms, it seems
1912 	 * it's really bad idea to use a seperate descriptor for 64bit
1913 	 * DMA operation to save small descriptor memory. Anyway, I've
1914 	 * never seen these exotic scheme on ethernet interface hardware.
1915 	 */
1916 	error = bus_dma_tag_create(
1917 		    NULL,			/* parent */
1918 		    1, 0,			/* alignment, boundary */
1919 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1920 		    BUS_SPACE_MAXADDR,		/* highaddr */
1921 		    NULL, NULL,			/* filter, filterarg */
1922 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1923 		    0,				/* nsegments */
1924 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1925 		    0,				/* flags */
1926 		    &sc_if->msk_cdata.msk_parent_tag);
1927 	if (error) {
1928 		device_printf(sc_if->msk_if_dev,
1929 			      "failed to create parent DMA tag\n");
1930 		return error;
1931 	}
1932 
1933 	/* Create DMA stuffs for Tx ring. */
1934 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1935 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1936 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1937 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1938 				  &sc_if->msk_cdata.msk_tx_ring_map);
1939 	if (error) {
1940 		device_printf(sc_if->msk_if_dev,
1941 			      "failed to create TX ring DMA stuffs\n");
1942 		return error;
1943 	}
1944 
1945 	/* Create DMA stuffs for Rx ring. */
1946 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1947 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1948 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1949 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1950 				  &sc_if->msk_cdata.msk_rx_ring_map);
1951 	if (error) {
1952 		device_printf(sc_if->msk_if_dev,
1953 			      "failed to create RX ring DMA stuffs\n");
1954 		return error;
1955 	}
1956 
1957 	/* Create tag for Tx buffers. */
1958 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1959 		    1, 0,			/* alignment, boundary */
1960 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1961 		    BUS_SPACE_MAXADDR,		/* highaddr */
1962 		    NULL, NULL,			/* filter, filterarg */
1963 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1964 		    MSK_MAXTXSEGS,		/* nsegments */
1965 		    MSK_MAXSGSIZE,		/* maxsegsize */
1966 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1967 		    BUS_DMA_ONEBPAGE,		/* flags */
1968 		    &sc_if->msk_cdata.msk_tx_tag);
1969 	if (error) {
1970 		device_printf(sc_if->msk_if_dev,
1971 			      "failed to create Tx DMA tag\n");
1972 		return error;
1973 	}
1974 
1975 	/* Create DMA maps for Tx buffers. */
1976 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1977 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1978 
1979 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1980 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1981 				&txd->tx_dmamap);
1982 		if (error) {
1983 			device_printf(sc_if->msk_if_dev,
1984 				      "failed to create %dth Tx dmamap\n", i);
1985 
1986 			for (j = 0; j < i; ++j) {
1987 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1988 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1989 						   txd->tx_dmamap);
1990 			}
1991 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1992 			sc_if->msk_cdata.msk_tx_tag = NULL;
1993 
1994 			return error;
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * Workaround hardware hang which seems to happen when Rx buffer
2000 	 * is not aligned on multiple of FIFO word(8 bytes).
2001 	 */
2002 	if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
2003 		rxalign = MSK_RX_BUF_ALIGN;
2004 	else
2005 		rxalign = 1;
2006 
2007 	/* Create tag for Rx buffers. */
2008 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2009 		    rxalign, 0,			/* alignment, boundary */
2010 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2011 		    BUS_SPACE_MAXADDR,		/* highaddr */
2012 		    NULL, NULL,			/* filter, filterarg */
2013 		    MCLBYTES,			/* maxsize */
2014 		    1,				/* nsegments */
2015 		    MCLBYTES,			/* maxsegsize */
2016 		    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2017 		    BUS_DMA_WAITOK,		/* flags */
2018 		    &sc_if->msk_cdata.msk_rx_tag);
2019 	if (error) {
2020 		device_printf(sc_if->msk_if_dev,
2021 			      "failed to create Rx DMA tag\n");
2022 		return error;
2023 	}
2024 
2025 	/* Create DMA maps for Rx buffers. */
2026 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
2027 				  &sc_if->msk_cdata.msk_rx_sparemap);
2028 	if (error) {
2029 		device_printf(sc_if->msk_if_dev,
2030 			      "failed to create spare Rx dmamap\n");
2031 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2032 		sc_if->msk_cdata.msk_rx_tag = NULL;
2033 		return error;
2034 	}
2035 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2036 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2037 
2038 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2039 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
2040 		if (error) {
2041 			device_printf(sc_if->msk_if_dev,
2042 				      "failed to create %dth Rx dmamap\n", i);
2043 
2044 			for (j = 0; j < i; ++j) {
2045 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2046 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2047 						   rxd->rx_dmamap);
2048 			}
2049 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2050 					   sc_if->msk_cdata.msk_rx_sparemap);
2051 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2052 			sc_if->msk_cdata.msk_rx_tag = NULL;
2053 
2054 			return error;
2055 		}
2056 	}
2057 
2058 #ifdef MSK_JUMBO
2059 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2060 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2061 
2062 	/* Create tag for jumbo Rx ring. */
2063 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2064 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2065 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2066 		    BUS_SPACE_MAXADDR,		/* highaddr */
2067 		    NULL, NULL,			/* filter, filterarg */
2068 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2069 		    1,				/* nsegments */
2070 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2071 		    0,				/* flags */
2072 		    NULL, NULL,			/* lockfunc, lockarg */
2073 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2074 	if (error != 0) {
2075 		device_printf(sc_if->msk_if_dev,
2076 		    "failed to create jumbo Rx ring DMA tag\n");
2077 		goto fail;
2078 	}
2079 
2080 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2081 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2082 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2083 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2084 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2085 	if (error != 0) {
2086 		device_printf(sc_if->msk_if_dev,
2087 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2088 		goto fail;
2089 	}
2090 
2091 	ctx.msk_busaddr = 0;
2092 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2093 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2094 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2095 	    msk_dmamap_cb, &ctx, 0);
2096 	if (error != 0) {
2097 		device_printf(sc_if->msk_if_dev,
2098 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2099 		goto fail;
2100 	}
2101 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2102 
2103 	/* Create tag for jumbo buffer blocks. */
2104 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2105 		    PAGE_SIZE, 0,		/* alignment, boundary */
2106 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2107 		    BUS_SPACE_MAXADDR,		/* highaddr */
2108 		    NULL, NULL,			/* filter, filterarg */
2109 		    MSK_JMEM,			/* maxsize */
2110 		    1,				/* nsegments */
2111 		    MSK_JMEM,			/* maxsegsize */
2112 		    0,				/* flags */
2113 		    NULL, NULL,			/* lockfunc, lockarg */
2114 		    &sc_if->msk_cdata.msk_jumbo_tag);
2115 	if (error != 0) {
2116 		device_printf(sc_if->msk_if_dev,
2117 		    "failed to create jumbo Rx buffer block DMA tag\n");
2118 		goto fail;
2119 	}
2120 
2121 	/* Create tag for jumbo Rx buffers. */
2122 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2123 		    PAGE_SIZE, 0,		/* alignment, boundary */
2124 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2125 		    BUS_SPACE_MAXADDR,		/* highaddr */
2126 		    NULL, NULL,			/* filter, filterarg */
2127 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2128 		    MSK_MAXRXSEGS,		/* nsegments */
2129 		    MSK_JLEN,			/* maxsegsize */
2130 		    0,				/* flags */
2131 		    NULL, NULL,			/* lockfunc, lockarg */
2132 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2133 	if (error != 0) {
2134 		device_printf(sc_if->msk_if_dev,
2135 		    "failed to create jumbo Rx DMA tag\n");
2136 		goto fail;
2137 	}
2138 
2139 	/* Create DMA maps for jumbo Rx buffers. */
2140 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2141 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2142 		device_printf(sc_if->msk_if_dev,
2143 		    "failed to create spare jumbo Rx dmamap\n");
2144 		goto fail;
2145 	}
2146 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2147 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2148 		jrxd->rx_m = NULL;
2149 		jrxd->rx_dmamap = NULL;
2150 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2151 		    &jrxd->rx_dmamap);
2152 		if (error != 0) {
2153 			device_printf(sc_if->msk_if_dev,
2154 			    "failed to create jumbo Rx dmamap\n");
2155 			goto fail;
2156 		}
2157 	}
2158 
2159 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2160 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2161 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2162 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2163 	    &sc_if->msk_cdata.msk_jumbo_map);
2164 	if (error != 0) {
2165 		device_printf(sc_if->msk_if_dev,
2166 		    "failed to allocate DMA'able memory for jumbo buf\n");
2167 		goto fail;
2168 	}
2169 
2170 	ctx.msk_busaddr = 0;
2171 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2172 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2173 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2174 	if (error != 0) {
2175 		device_printf(sc_if->msk_if_dev,
2176 		    "failed to load DMA'able memory for jumbobuf\n");
2177 		goto fail;
2178 	}
2179 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2180 
2181 	/*
2182 	 * Now divide it up into 9K pieces and save the addresses
2183 	 * in an array.
2184 	 */
2185 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2186 	for (i = 0; i < MSK_JSLOTS; i++) {
2187 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2188 		ptr += MSK_JLEN;
2189 		entry = malloc(sizeof(struct msk_jpool_entry),
2190 		    M_DEVBUF, M_WAITOK);
2191 		if (entry == NULL) {
2192 			device_printf(sc_if->msk_if_dev,
2193 			    "no memory for jumbo buffers!\n");
2194 			error = ENOMEM;
2195 			goto fail;
2196 		}
2197 		entry->slot = i;
2198 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2199 		    jpool_entries);
2200 	}
2201 #endif
2202 	return 0;
2203 }
2204 
2205 static void
2206 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2207 {
2208 	struct msk_txdesc *txd;
2209 	struct msk_rxdesc *rxd;
2210 #ifdef MSK_JUMBO
2211 	struct msk_rxdesc *jrxd;
2212 	struct msk_jpool_entry *entry;
2213 #endif
2214 	int i;
2215 
2216 #ifdef MSK_JUMBO
2217 	MSK_JLIST_LOCK(sc_if);
2218 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2219 		device_printf(sc_if->msk_if_dev,
2220 		    "asked to free buffer that is in use!\n");
2221 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2222 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2223 		    jpool_entries);
2224 	}
2225 
2226 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2227 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2228 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2229 		free(entry, M_DEVBUF);
2230 	}
2231 	MSK_JLIST_UNLOCK(sc_if);
2232 
2233 	/* Destroy jumbo buffer block. */
2234 	if (sc_if->msk_cdata.msk_jumbo_map)
2235 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2236 		    sc_if->msk_cdata.msk_jumbo_map);
2237 
2238 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2239 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2240 		    sc_if->msk_rdata.msk_jumbo_buf,
2241 		    sc_if->msk_cdata.msk_jumbo_map);
2242 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2243 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2244 	}
2245 
2246 	/* Jumbo Rx ring. */
2247 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2248 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2249 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2250 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2251 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2252 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2253 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2254 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2255 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2256 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2257 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2258 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2259 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2260 	}
2261 
2262 	/* Jumbo Rx buffers. */
2263 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2264 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2265 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2266 			if (jrxd->rx_dmamap) {
2267 				bus_dmamap_destroy(
2268 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2269 				    jrxd->rx_dmamap);
2270 				jrxd->rx_dmamap = NULL;
2271 			}
2272 		}
2273 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2274 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2275 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2276 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2277 		}
2278 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2279 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2280 	}
2281 #endif
2282 
2283 	/* Tx ring. */
2284 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2285 			   sc_if->msk_rdata.msk_tx_ring,
2286 			   sc_if->msk_cdata.msk_tx_ring_map);
2287 
2288 	/* Rx ring. */
2289 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2290 			   sc_if->msk_rdata.msk_rx_ring,
2291 			   sc_if->msk_cdata.msk_rx_ring_map);
2292 
2293 	/* Tx buffers. */
2294 	if (sc_if->msk_cdata.msk_tx_tag) {
2295 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2296 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2297 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2298 					   txd->tx_dmamap);
2299 		}
2300 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2301 		sc_if->msk_cdata.msk_tx_tag = NULL;
2302 	}
2303 
2304 	/* Rx buffers. */
2305 	if (sc_if->msk_cdata.msk_rx_tag) {
2306 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2307 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2308 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2309 					   rxd->rx_dmamap);
2310 		}
2311 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2312 				   sc_if->msk_cdata.msk_rx_sparemap);
2313 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2314 		sc_if->msk_cdata.msk_rx_tag = NULL;
2315 	}
2316 
2317 	if (sc_if->msk_cdata.msk_parent_tag) {
2318 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2319 		sc_if->msk_cdata.msk_parent_tag = NULL;
2320 	}
2321 }
2322 
2323 #ifdef MSK_JUMBO
2324 /*
2325  * Allocate a jumbo buffer.
2326  */
2327 static void *
2328 msk_jalloc(struct msk_if_softc *sc_if)
2329 {
2330 	struct msk_jpool_entry *entry;
2331 
2332 	MSK_JLIST_LOCK(sc_if);
2333 
2334 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2335 
2336 	if (entry == NULL) {
2337 		MSK_JLIST_UNLOCK(sc_if);
2338 		return (NULL);
2339 	}
2340 
2341 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2342 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2343 
2344 	MSK_JLIST_UNLOCK(sc_if);
2345 
2346 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2347 }
2348 
2349 /*
2350  * Release a jumbo buffer.
2351  */
2352 static void
2353 msk_jfree(void *buf, void *args)
2354 {
2355 	struct msk_if_softc *sc_if;
2356 	struct msk_jpool_entry *entry;
2357 	int i;
2358 
2359 	/* Extract the softc struct pointer. */
2360 	sc_if = (struct msk_if_softc *)args;
2361 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2362 
2363 	MSK_JLIST_LOCK(sc_if);
2364 	/* Calculate the slot this buffer belongs to. */
2365 	i = ((vm_offset_t)buf
2366 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2367 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2368 	    ("%s: asked to free buffer that we don't manage!", __func__));
2369 
2370 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2371 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2372 	entry->slot = i;
2373 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2374 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2375 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2376 		wakeup(sc_if);
2377 
2378 	MSK_JLIST_UNLOCK(sc_if);
2379 }
2380 #endif
2381 
2382 static int
2383 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2384 {
2385 	struct msk_txdesc *txd, *txd_last;
2386 	struct msk_tx_desc *tx_le;
2387 	struct mbuf *m;
2388 	bus_dmamap_t map;
2389 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2390 	uint32_t control, prod, si;
2391 	uint16_t offset, tcp_offset;
2392 	int error, i, nsegs, maxsegs, defrag;
2393 
2394 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2395 		  MSK_RESERVED_TX_DESC_CNT;
2396 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2397 		("not enough spare TX desc"));
2398 	if (maxsegs > MSK_MAXTXSEGS)
2399 		maxsegs = MSK_MAXTXSEGS;
2400 
2401 	/*
2402 	 * Align TX buffer to 64bytes boundary.  This greately improves
2403 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2404 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2405 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2406 	 */
2407 
2408 #define MSK_TXBUF_ALIGN	64
2409 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2410 
2411 	defrag = 1;
2412 	m = *m_head;
2413 	if (m->m_len == m->m_pkthdr.len) {
2414 		int space;
2415 
2416 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2417 		if (space) {
2418 			if (M_WRITABLE(m)) {
2419 				if (M_TRAILINGSPACE(m) >= space) {
2420 					/* e.g. TCP ACKs */
2421 					bcopy(m->m_data, m->m_data + space,
2422 					      m->m_len);
2423 					m->m_data += space;
2424 					defrag = 0;
2425 					sc_if->msk_softc->msk_trailing_copied++;
2426 				} else {
2427 					space = MSK_TXBUF_ALIGN - space;
2428 					if (M_LEADINGSPACE(m) >= space) {
2429 						/* e.g. Small UDP datagrams */
2430 						bcopy(m->m_data,
2431 						      m->m_data - space,
2432 						      m->m_len);
2433 						m->m_data -= space;
2434 						defrag = 0;
2435 						sc_if->msk_softc->
2436 						msk_leading_copied++;
2437 					}
2438 				}
2439 			}
2440 		} else {
2441 			/* e.g. on forwarding path */
2442 			defrag = 0;
2443 		}
2444 	}
2445 	if (defrag) {
2446 		m = m_defrag(*m_head, MB_DONTWAIT);
2447 		if (m == NULL) {
2448 			m_freem(*m_head);
2449 			*m_head = NULL;
2450 			return ENOBUFS;
2451 		}
2452 		*m_head = m;
2453 	} else {
2454 		sc_if->msk_softc->msk_defrag_avoided++;
2455 	}
2456 
2457 #undef MSK_TXBUF_MASK
2458 #undef MSK_TXBUF_ALIGN
2459 
2460 	tcp_offset = offset = 0;
2461 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2462 		/*
2463 		 * Since mbuf has no protocol specific structure information
2464 		 * in it we have to inspect protocol information here to
2465 		 * setup TSO and checksum offload. I don't know why Marvell
2466 		 * made a such decision in chip design because other GigE
2467 		 * hardwares normally takes care of all these chores in
2468 		 * hardware. However, TSO performance of Yukon II is very
2469 		 * good such that it's worth to implement it.
2470 		 */
2471 		struct ether_header *eh;
2472 		struct ip *ip;
2473 
2474 		/* TODO check for M_WRITABLE(m) */
2475 
2476 		offset = sizeof(struct ether_header);
2477 		m = m_pullup(m, offset);
2478 		if (m == NULL) {
2479 			*m_head = NULL;
2480 			return (ENOBUFS);
2481 		}
2482 		eh = mtod(m, struct ether_header *);
2483 		/* Check if hardware VLAN insertion is off. */
2484 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2485 			offset = sizeof(struct ether_vlan_header);
2486 			m = m_pullup(m, offset);
2487 			if (m == NULL) {
2488 				*m_head = NULL;
2489 				return (ENOBUFS);
2490 			}
2491 		}
2492 		m = m_pullup(m, offset + sizeof(struct ip));
2493 		if (m == NULL) {
2494 			*m_head = NULL;
2495 			return (ENOBUFS);
2496 		}
2497 		ip = (struct ip *)(mtod(m, char *) + offset);
2498 		offset += (ip->ip_hl << 2);
2499 		tcp_offset = offset;
2500 		/*
2501 		 * It seems that Yukon II has Tx checksum offload bug for
2502 		 * small TCP packets that's less than 60 bytes in size
2503 		 * (e.g. TCP window probe packet, pure ACK packet).
2504 		 * Common work around like padding with zeros to make the
2505 		 * frame minimum ethernet frame size didn't work at all.
2506 		 * Instead of disabling checksum offload completely we
2507 		 * resort to S/W checksum routine when we encounter short
2508 		 * TCP frames.
2509 		 * Short UDP packets appear to be handled correctly by
2510 		 * Yukon II.
2511 		 */
2512 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2513 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2514 			uint16_t csum;
2515 
2516 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2517 			    (ip->ip_hl << 2), offset);
2518 			*(uint16_t *)(m->m_data + offset +
2519 			    m->m_pkthdr.csum_data) = csum;
2520 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2521 		}
2522 		*m_head = m;
2523 	}
2524 
2525 	prod = sc_if->msk_cdata.msk_tx_prod;
2526 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2527 	txd_last = txd;
2528 	map = txd->tx_dmamap;
2529 
2530 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2531 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2532 	if (error) {
2533 		m_freem(*m_head);
2534 		*m_head = NULL;
2535 		return error;
2536 	}
2537 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2538 
2539 	m = *m_head;
2540 	control = 0;
2541 	tx_le = NULL;
2542 
2543 #ifdef notyet
2544 	/* Check if we have a VLAN tag to insert. */
2545 	if ((m->m_flags & M_VLANTAG) != 0) {
2546 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2547 		tx_le->msk_addr = htole32(0);
2548 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2549 		    htons(m->m_pkthdr.ether_vtag));
2550 		sc_if->msk_cdata.msk_tx_cnt++;
2551 		MSK_INC(prod, MSK_TX_RING_CNT);
2552 		control |= INS_VLAN;
2553 	}
2554 #endif
2555 	/* Check if we have to handle checksum offload. */
2556 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2557 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2558 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2559 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2560 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2561 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2562 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2563 			control |= UDPTCP;
2564 		sc_if->msk_cdata.msk_tx_cnt++;
2565 		MSK_INC(prod, MSK_TX_RING_CNT);
2566 	}
2567 
2568 	si = prod;
2569 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2570 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2571 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2572 	    OP_PACKET);
2573 	sc_if->msk_cdata.msk_tx_cnt++;
2574 	MSK_INC(prod, MSK_TX_RING_CNT);
2575 
2576 	for (i = 1; i < nsegs; i++) {
2577 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2578 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2579 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2580 		    OP_BUFFER | HW_OWNER);
2581 		sc_if->msk_cdata.msk_tx_cnt++;
2582 		MSK_INC(prod, MSK_TX_RING_CNT);
2583 	}
2584 	/* Update producer index. */
2585 	sc_if->msk_cdata.msk_tx_prod = prod;
2586 
2587 	/* Set EOP on the last desciptor. */
2588 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2589 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2590 	tx_le->msk_control |= htole32(EOP);
2591 
2592 	/* Turn the first descriptor ownership to hardware. */
2593 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2594 	tx_le->msk_control |= htole32(HW_OWNER);
2595 
2596 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2597 	map = txd_last->tx_dmamap;
2598 	txd_last->tx_dmamap = txd->tx_dmamap;
2599 	txd->tx_dmamap = map;
2600 	txd->tx_m = m;
2601 
2602 	return (0);
2603 }
2604 
2605 static void
2606 msk_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2607 {
2608         struct msk_if_softc *sc_if;
2609         struct mbuf *m_head;
2610 	int enq;
2611 
2612 	sc_if = ifp->if_softc;
2613 
2614 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2615 	ASSERT_SERIALIZED(ifp->if_serializer);
2616 
2617 	if (!sc_if->msk_link) {
2618 		ifq_purge(&ifp->if_snd);
2619 		return;
2620 	}
2621 
2622 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2623 		return;
2624 
2625 	enq = 0;
2626 	while (!ifq_is_empty(&ifp->if_snd)) {
2627 		if (MSK_IS_OACTIVE(sc_if)) {
2628 			ifq_set_oactive(&ifp->if_snd);
2629 			break;
2630 		}
2631 
2632 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2633 		if (m_head == NULL)
2634 			break;
2635 
2636 		/*
2637 		 * Pack the data into the transmit ring. If we
2638 		 * don't have room, set the OACTIVE flag and wait
2639 		 * for the NIC to drain the ring.
2640 		 */
2641 		if (msk_encap(sc_if, &m_head) != 0) {
2642 			IFNET_STAT_INC(ifp, oerrors, 1);
2643 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2644 				continue;
2645 			} else {
2646 				ifq_set_oactive(&ifp->if_snd);
2647 				break;
2648 			}
2649 		}
2650 		enq = 1;
2651 
2652 		/*
2653 		 * If there's a BPF listener, bounce a copy of this frame
2654 		 * to him.
2655 		 */
2656 		BPF_MTAP(ifp, m_head);
2657 	}
2658 
2659 	if (enq) {
2660 		/* Transmit */
2661 		CSR_WRITE_2(sc_if->msk_softc,
2662 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2663 		    sc_if->msk_cdata.msk_tx_prod);
2664 
2665 		/* Set a timeout in case the chip goes out to lunch. */
2666 		ifp->if_timer = MSK_TX_TIMEOUT;
2667 	}
2668 }
2669 
2670 static void
2671 msk_watchdog(struct ifnet *ifp)
2672 {
2673 	struct msk_if_softc *sc_if = ifp->if_softc;
2674 	uint32_t ridx;
2675 	int idx;
2676 
2677 	ASSERT_SERIALIZED(ifp->if_serializer);
2678 
2679 	if (sc_if->msk_link == 0) {
2680 		if (bootverbose)
2681 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2682 			   "(missed link)\n");
2683 		IFNET_STAT_INC(ifp, oerrors, 1);
2684 		msk_init(sc_if);
2685 		return;
2686 	}
2687 
2688 	/*
2689 	 * Reclaim first as there is a possibility of losing Tx completion
2690 	 * interrupts.
2691 	 */
2692 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2693 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2694 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2695 		msk_txeof(sc_if, idx);
2696 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2697 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2698 			    "-- recovering\n");
2699 			if (!ifq_is_empty(&ifp->if_snd))
2700 				if_devstart(ifp);
2701 			return;
2702 		}
2703 	}
2704 
2705 	if_printf(ifp, "watchdog timeout\n");
2706 	IFNET_STAT_INC(ifp, oerrors, 1);
2707 	msk_init(sc_if);
2708 	if (!ifq_is_empty(&ifp->if_snd))
2709 		if_devstart(ifp);
2710 }
2711 
2712 static int
2713 mskc_shutdown(device_t dev)
2714 {
2715 	struct msk_softc *sc = device_get_softc(dev);
2716 	int i;
2717 
2718 	lwkt_serialize_enter(&sc->msk_serializer);
2719 
2720 	for (i = 0; i < sc->msk_num_port; i++) {
2721 		if (sc->msk_if[i] != NULL)
2722 			msk_stop(sc->msk_if[i]);
2723 	}
2724 
2725 	/* Put hardware reset. */
2726 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2727 
2728 	lwkt_serialize_exit(&sc->msk_serializer);
2729 	return (0);
2730 }
2731 
2732 static int
2733 mskc_suspend(device_t dev)
2734 {
2735 	struct msk_softc *sc = device_get_softc(dev);
2736 	int i;
2737 
2738 	lwkt_serialize_enter(&sc->msk_serializer);
2739 
2740 	for (i = 0; i < sc->msk_num_port; i++) {
2741 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2742 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2743 			msk_stop(sc->msk_if[i]);
2744 	}
2745 
2746 	/* Disable all interrupts. */
2747 	CSR_WRITE_4(sc, B0_IMSK, 0);
2748 	CSR_READ_4(sc, B0_IMSK);
2749 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2750 	CSR_READ_4(sc, B0_HWE_IMSK);
2751 
2752 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2753 
2754 	/* Put hardware reset. */
2755 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2756 	sc->msk_suspended = 1;
2757 
2758 	lwkt_serialize_exit(&sc->msk_serializer);
2759 
2760 	return (0);
2761 }
2762 
2763 static int
2764 mskc_resume(device_t dev)
2765 {
2766 	struct msk_softc *sc = device_get_softc(dev);
2767 	int i;
2768 
2769 	lwkt_serialize_enter(&sc->msk_serializer);
2770 
2771 	/* Enable all clocks before accessing any registers. */
2772 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
2773 	mskc_reset(sc);
2774 	for (i = 0; i < sc->msk_num_port; i++) {
2775 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2776 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2777 			msk_init(sc->msk_if[i]);
2778 	}
2779 	sc->msk_suspended = 0;
2780 
2781 	lwkt_serialize_exit(&sc->msk_serializer);
2782 
2783 	return (0);
2784 }
2785 
2786 static void
2787 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2788 {
2789 	struct mbuf *m;
2790 	struct ifnet *ifp;
2791 	struct msk_rxdesc *rxd;
2792 	int cons, rxlen;
2793 
2794 	ifp = sc_if->msk_ifp;
2795 
2796 	cons = sc_if->msk_cdata.msk_rx_cons;
2797 	do {
2798 		rxlen = status >> 16;
2799 		if ((status & GMR_FS_VLAN) != 0 &&
2800 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2801 			rxlen -= EVL_ENCAPLEN;
2802 		if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2803 			/*
2804 			 * For controllers that returns bogus status code
2805 			 * just do minimal check and let upper stack
2806 			 * handle this frame.
2807 			 */
2808 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2809 				IFNET_STAT_INC(ifp, ierrors, 1);
2810 				msk_discard_rxbuf(sc_if, cons);
2811 				break;
2812 			}
2813 		} else if (len > sc_if->msk_framesize ||
2814 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2815 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2816 			/* Don't count flow-control packet as errors. */
2817 			if ((status & GMR_FS_GOOD_FC) == 0)
2818 				IFNET_STAT_INC(ifp, ierrors, 1);
2819 			msk_discard_rxbuf(sc_if, cons);
2820 			break;
2821 		}
2822 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2823 		m = rxd->rx_m;
2824 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2825 			IFNET_STAT_INC(ifp, iqdrops, 1);
2826 			/* Reuse old buffer. */
2827 			msk_discard_rxbuf(sc_if, cons);
2828 			break;
2829 		}
2830 		m->m_pkthdr.rcvif = ifp;
2831 		m->m_pkthdr.len = m->m_len = len;
2832 		IFNET_STAT_INC(ifp, ipackets, 1);
2833 #ifdef notyet
2834 		/* Check for VLAN tagged packets. */
2835 		if ((status & GMR_FS_VLAN) != 0 &&
2836 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2837 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2838 			m->m_flags |= M_VLANTAG;
2839 		}
2840 #endif
2841 
2842 		ifp->if_input(ifp, m);
2843 	} while (0);
2844 
2845 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2846 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2847 }
2848 
2849 #ifdef MSK_JUMBO
2850 static void
2851 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2852 {
2853 	struct mbuf *m;
2854 	struct ifnet *ifp;
2855 	struct msk_rxdesc *jrxd;
2856 	int cons, rxlen;
2857 
2858 	ifp = sc_if->msk_ifp;
2859 
2860 	MSK_IF_LOCK_ASSERT(sc_if);
2861 
2862 	cons = sc_if->msk_cdata.msk_rx_cons;
2863 	do {
2864 		rxlen = status >> 16;
2865 		if ((status & GMR_FS_VLAN) != 0 &&
2866 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2867 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2868 		if (len > sc_if->msk_framesize ||
2869 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2870 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2871 			/* Don't count flow-control packet as errors. */
2872 			if ((status & GMR_FS_GOOD_FC) == 0)
2873 				ifp->if_ierrors++;
2874 			msk_discard_jumbo_rxbuf(sc_if, cons);
2875 			break;
2876 		}
2877 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2878 		m = jrxd->rx_m;
2879 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2880 			ifp->if_iqdrops++;
2881 			/* Reuse old buffer. */
2882 			msk_discard_jumbo_rxbuf(sc_if, cons);
2883 			break;
2884 		}
2885 		m->m_pkthdr.rcvif = ifp;
2886 		m->m_pkthdr.len = m->m_len = len;
2887 		ifp->if_ipackets++;
2888 		/* Check for VLAN tagged packets. */
2889 		if ((status & GMR_FS_VLAN) != 0 &&
2890 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2891 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2892 			m->m_flags |= M_VLANTAG;
2893 		}
2894 		MSK_IF_UNLOCK(sc_if);
2895 		(*ifp->if_input)(ifp, m);
2896 		MSK_IF_LOCK(sc_if);
2897 	} while (0);
2898 
2899 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2900 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2901 }
2902 #endif
2903 
2904 static void
2905 msk_txeof(struct msk_if_softc *sc_if, int idx)
2906 {
2907 	struct msk_txdesc *txd;
2908 	struct msk_tx_desc *cur_tx;
2909 	struct ifnet *ifp;
2910 	uint32_t control;
2911 	int cons, prog;
2912 
2913 	ifp = sc_if->msk_ifp;
2914 
2915 	/*
2916 	 * Go through our tx ring and free mbufs for those
2917 	 * frames that have been sent.
2918 	 */
2919 	cons = sc_if->msk_cdata.msk_tx_cons;
2920 	prog = 0;
2921 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2922 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2923 			break;
2924 		prog++;
2925 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2926 		control = le32toh(cur_tx->msk_control);
2927 		sc_if->msk_cdata.msk_tx_cnt--;
2928 		if ((control & EOP) == 0)
2929 			continue;
2930 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2931 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2932 
2933 		IFNET_STAT_INC(ifp, opackets, 1);
2934 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2935 		    __func__));
2936 		m_freem(txd->tx_m);
2937 		txd->tx_m = NULL;
2938 	}
2939 
2940 	if (prog > 0) {
2941 		sc_if->msk_cdata.msk_tx_cons = cons;
2942 		if (!MSK_IS_OACTIVE(sc_if))
2943 			ifq_clr_oactive(&ifp->if_snd);
2944 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2945 			ifp->if_timer = 0;
2946 		/* No need to sync LEs as we didn't update LEs. */
2947 	}
2948 }
2949 
2950 static void
2951 msk_tick(void *xsc_if)
2952 {
2953 	struct msk_if_softc *sc_if = xsc_if;
2954 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2955 	struct mii_data *mii;
2956 
2957 	lwkt_serialize_enter(ifp->if_serializer);
2958 
2959 	mii = device_get_softc(sc_if->msk_miibus);
2960 
2961 	mii_tick(mii);
2962 	if (!sc_if->msk_link)
2963 		msk_miibus_statchg(sc_if->msk_if_dev);
2964 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2965 
2966 	lwkt_serialize_exit(ifp->if_serializer);
2967 }
2968 
2969 static void
2970 msk_intr_phy(struct msk_if_softc *sc_if)
2971 {
2972 	uint16_t status;
2973 
2974 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2975 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2976 	/* Handle FIFO Underrun/Overflow? */
2977 	if (status & PHY_M_IS_FIFO_ERROR) {
2978 		device_printf(sc_if->msk_if_dev,
2979 		    "PHY FIFO underrun/overflow.\n");
2980 	}
2981 }
2982 
2983 static void
2984 msk_intr_gmac(struct msk_if_softc *sc_if)
2985 {
2986 	struct msk_softc *sc;
2987 	uint8_t status;
2988 
2989 	sc = sc_if->msk_softc;
2990 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2991 
2992 	/* GMAC Rx FIFO overrun. */
2993 	if ((status & GM_IS_RX_FF_OR) != 0) {
2994 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2995 		    GMF_CLI_RX_FO);
2996 	}
2997 	/* GMAC Tx FIFO underrun. */
2998 	if ((status & GM_IS_TX_FF_UR) != 0) {
2999 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3000 		    GMF_CLI_TX_FU);
3001 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3002 		/*
3003 		 * XXX
3004 		 * In case of Tx underrun, we may need to flush/reset
3005 		 * Tx MAC but that would also require resynchronization
3006 		 * with status LEs. Reintializing status LEs would
3007 		 * affect other port in dual MAC configuration so it
3008 		 * should be avoided as possible as we can.
3009 		 * Due to lack of documentation it's all vague guess but
3010 		 * it needs more investigation.
3011 		 */
3012 	}
3013 }
3014 
3015 static void
3016 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3017 {
3018 	struct msk_softc *sc;
3019 
3020 	sc = sc_if->msk_softc;
3021 	if ((status & Y2_IS_PAR_RD1) != 0) {
3022 		device_printf(sc_if->msk_if_dev,
3023 		    "RAM buffer read parity error\n");
3024 		/* Clear IRQ. */
3025 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3026 		    RI_CLR_RD_PERR);
3027 	}
3028 	if ((status & Y2_IS_PAR_WR1) != 0) {
3029 		device_printf(sc_if->msk_if_dev,
3030 		    "RAM buffer write parity error\n");
3031 		/* Clear IRQ. */
3032 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3033 		    RI_CLR_WR_PERR);
3034 	}
3035 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3036 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3037 		/* Clear IRQ. */
3038 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3039 		    GMF_CLI_TX_PE);
3040 	}
3041 	if ((status & Y2_IS_PAR_RX1) != 0) {
3042 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3043 		/* Clear IRQ. */
3044 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3045 	}
3046 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3047 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3048 		/* Clear IRQ. */
3049 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3050 	}
3051 }
3052 
3053 static void
3054 mskc_intr_hwerr(struct msk_softc *sc)
3055 {
3056 	uint32_t status;
3057 	uint32_t tlphead[4];
3058 
3059 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3060 	/* Time Stamp timer overflow. */
3061 	if ((status & Y2_IS_TIST_OV) != 0)
3062 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3063 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3064 		/*
3065 		 * PCI Express Error occured which is not described in PEX
3066 		 * spec.
3067 		 * This error is also mapped either to Master Abort(
3068 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3069 		 * can only be cleared there.
3070                  */
3071 		device_printf(sc->msk_dev,
3072 		    "PCI Express protocol violation error\n");
3073 	}
3074 
3075 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3076 		uint16_t v16;
3077 
3078 		if ((status & Y2_IS_MST_ERR) != 0)
3079 			device_printf(sc->msk_dev,
3080 			    "unexpected IRQ Status error\n");
3081 		else
3082 			device_printf(sc->msk_dev,
3083 			    "unexpected IRQ Master error\n");
3084 		/* Reset all bits in the PCI status register. */
3085 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3086 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3087 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3088 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3089 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3090 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3091 	}
3092 
3093 	/* Check for PCI Express Uncorrectable Error. */
3094 	if ((status & Y2_IS_PCI_EXP) != 0) {
3095 		uint32_t v32;
3096 
3097 		/*
3098 		 * On PCI Express bus bridges are called root complexes (RC).
3099 		 * PCI Express errors are recognized by the root complex too,
3100 		 * which requests the system to handle the problem. After
3101 		 * error occurence it may be that no access to the adapter
3102 		 * may be performed any longer.
3103 		 */
3104 
3105 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3106 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3107 			/* Ignore unsupported request error. */
3108 			if (bootverbose) {
3109 				device_printf(sc->msk_dev,
3110 				    "Uncorrectable PCI Express error\n");
3111 			}
3112 		}
3113 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3114 			int i;
3115 
3116 			/* Get TLP header form Log Registers. */
3117 			for (i = 0; i < 4; i++)
3118 				tlphead[i] = CSR_PCI_READ_4(sc,
3119 				    PEX_HEADER_LOG + i * 4);
3120 			/* Check for vendor defined broadcast message. */
3121 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3122 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3123 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3124 				    sc->msk_intrhwemask);
3125 				CSR_READ_4(sc, B0_HWE_IMSK);
3126 			}
3127 		}
3128 		/* Clear the interrupt. */
3129 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3130 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3131 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3132 	}
3133 
3134 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3135 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3136 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3137 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3138 }
3139 
3140 static __inline void
3141 msk_rxput(struct msk_if_softc *sc_if)
3142 {
3143 	struct msk_softc *sc;
3144 
3145 	sc = sc_if->msk_softc;
3146 #ifdef MSK_JUMBO
3147 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3148 		bus_dmamap_sync(
3149 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3150 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3151 		    BUS_DMASYNC_PREWRITE);
3152 	}
3153 #endif
3154 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3155 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3156 }
3157 
3158 static int
3159 mskc_handle_events(struct msk_softc *sc)
3160 {
3161 	struct msk_if_softc *sc_if;
3162 	int rxput[2];
3163 	struct msk_stat_desc *sd;
3164 	uint32_t control, status;
3165 	int cons, idx, len, port, rxprog;
3166 
3167 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3168 	if (idx == sc->msk_stat_cons)
3169 		return (0);
3170 
3171 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3172 
3173 	rxprog = 0;
3174 	for (cons = sc->msk_stat_cons; cons != idx;) {
3175 		sd = &sc->msk_stat_ring[cons];
3176 		control = le32toh(sd->msk_control);
3177 		if ((control & HW_OWNER) == 0)
3178 			break;
3179 		/*
3180 		 * Marvell's FreeBSD driver updates status LE after clearing
3181 		 * HW_OWNER. However we don't have a way to sync single LE
3182 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3183 		 * an entire DMA map. So don't sync LE until we have a better
3184 		 * way to sync LEs.
3185 		 */
3186 		control &= ~HW_OWNER;
3187 		sd->msk_control = htole32(control);
3188 		status = le32toh(sd->msk_status);
3189 		len = control & STLE_LEN_MASK;
3190 		port = (control >> 16) & 0x01;
3191 		sc_if = sc->msk_if[port];
3192 		if (sc_if == NULL) {
3193 			device_printf(sc->msk_dev, "invalid port opcode "
3194 			    "0x%08x\n", control & STLE_OP_MASK);
3195 			continue;
3196 		}
3197 
3198 		switch (control & STLE_OP_MASK) {
3199 		case OP_RXVLAN:
3200 			sc_if->msk_vtag = ntohs(len);
3201 			break;
3202 		case OP_RXCHKSVLAN:
3203 			sc_if->msk_vtag = ntohs(len);
3204 			break;
3205 		case OP_RXSTAT:
3206 			if ((sc_if->msk_ifp->if_flags & IFF_RUNNING) == 0)
3207 				break;
3208 #ifdef MSK_JUMBO
3209 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3210 				msk_jumbo_rxeof(sc_if, status, len);
3211 			else
3212 #endif
3213 				msk_rxeof(sc_if, status, len);
3214 			rxprog++;
3215 			/*
3216 			 * Because there is no way to sync single Rx LE
3217 			 * put the DMA sync operation off until the end of
3218 			 * event processing.
3219 			 */
3220 			rxput[port]++;
3221 			/* Update prefetch unit if we've passed water mark. */
3222 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3223 				msk_rxput(sc_if);
3224 				rxput[port] = 0;
3225 			}
3226 			break;
3227 		case OP_TXINDEXLE:
3228 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3229 				msk_txeof(sc->msk_if[MSK_PORT_A],
3230 				    status & STLE_TXA1_MSKL);
3231 			}
3232 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3233 				msk_txeof(sc->msk_if[MSK_PORT_B],
3234 				    ((status & STLE_TXA2_MSKL) >>
3235 				    STLE_TXA2_SHIFTL) |
3236 				    ((len & STLE_TXA2_MSKH) <<
3237 				    STLE_TXA2_SHIFTH));
3238 			}
3239 			break;
3240 		default:
3241 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3242 			    control & STLE_OP_MASK);
3243 			break;
3244 		}
3245 		MSK_INC(cons, MSK_STAT_RING_CNT);
3246 		if (rxprog > sc->msk_process_limit)
3247 			break;
3248 	}
3249 
3250 	sc->msk_stat_cons = cons;
3251 	/* XXX We should sync status LEs here. See above notes. */
3252 
3253 	if (rxput[MSK_PORT_A] > 0)
3254 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3255 	if (rxput[MSK_PORT_B] > 0)
3256 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3257 
3258 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3259 }
3260 
3261 /* Legacy interrupt handler for shared interrupt. */
3262 static void
3263 mskc_intr(void *xsc)
3264 {
3265 	struct msk_softc *sc;
3266 	struct msk_if_softc *sc_if0, *sc_if1;
3267 	struct ifnet *ifp0, *ifp1;
3268 	uint32_t status;
3269 
3270 	sc = xsc;
3271 	ASSERT_SERIALIZED(&sc->msk_serializer);
3272 
3273 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3274 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3275 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3276 	    (status & sc->msk_intrmask) == 0) {
3277 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3278 		return;
3279 	}
3280 
3281 	sc_if0 = sc->msk_if[MSK_PORT_A];
3282 	sc_if1 = sc->msk_if[MSK_PORT_B];
3283 	ifp0 = ifp1 = NULL;
3284 	if (sc_if0 != NULL)
3285 		ifp0 = sc_if0->msk_ifp;
3286 	if (sc_if1 != NULL)
3287 		ifp1 = sc_if1->msk_ifp;
3288 
3289 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3290 		msk_intr_phy(sc_if0);
3291 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3292 		msk_intr_phy(sc_if1);
3293 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3294 		msk_intr_gmac(sc_if0);
3295 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3296 		msk_intr_gmac(sc_if1);
3297 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3298 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3299 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3300 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3301 		CSR_READ_4(sc, B0_IMSK);
3302 	}
3303         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3304 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3305 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3306 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3307 		CSR_READ_4(sc, B0_IMSK);
3308 	}
3309 	if ((status & Y2_IS_HW_ERR) != 0)
3310 		mskc_intr_hwerr(sc);
3311 
3312 	while (mskc_handle_events(sc) != 0)
3313 		;
3314 	if ((status & Y2_IS_STAT_BMU) != 0)
3315 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3316 
3317 	/* Reenable interrupts. */
3318 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3319 
3320 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3321 	    !ifq_is_empty(&ifp0->if_snd))
3322 		if_devstart(ifp0);
3323 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3324 	    !ifq_is_empty(&ifp1->if_snd))
3325 		if_devstart(ifp1);
3326 }
3327 
3328 static void
3329 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3330 {
3331 	struct msk_softc *sc = sc_if->msk_softc;
3332 	struct ifnet *ifp = sc_if->msk_ifp;
3333 
3334 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3335 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3336 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3337 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3338 		    TX_STFW_ENA);
3339 	} else {
3340 		if (ifp->if_mtu > ETHERMTU) {
3341 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3342 			CSR_WRITE_4(sc,
3343 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3344 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3345 			/* Disable Store & Forward mode for Tx. */
3346 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3347 			    TX_STFW_DIS);
3348 		} else {
3349 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3350 			    TX_STFW_ENA);
3351 		}
3352 	}
3353 }
3354 
3355 static void
3356 msk_init(void *xsc)
3357 {
3358 	struct msk_if_softc *sc_if = xsc;
3359 	struct msk_softc *sc = sc_if->msk_softc;
3360 	struct ifnet *ifp = sc_if->msk_ifp;
3361 	struct mii_data	 *mii;
3362 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3363 	uint16_t gmac;
3364 	uint32_t reg;
3365 	int error, i;
3366 
3367 	ASSERT_SERIALIZED(ifp->if_serializer);
3368 
3369 	mii = device_get_softc(sc_if->msk_miibus);
3370 
3371 	error = 0;
3372 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3373 	msk_stop(sc_if);
3374 
3375 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3376 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3377 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3378 		/*
3379 		 * In Yukon EC Ultra, TSO & checksum offload is not
3380 		 * supported for jumbo frame.
3381 		 */
3382 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3383 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3384 	}
3385 
3386 	/* GMAC Control reset. */
3387 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3388 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3389 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3390 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3391 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3392 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3393 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3394 		    GMC_BYP_RETR_ON);
3395 	}
3396 
3397 	/*
3398 	 * Initialize GMAC first such that speed/duplex/flow-control
3399 	 * parameters are renegotiated when interface is brought up.
3400 	 */
3401 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3402 
3403 	/* Dummy read the Interrupt Source Register. */
3404 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3405 
3406 	/* Set MIB Clear Counter Mode. */
3407 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3408 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3409 	/* Read all MIB Counters with Clear Mode set. */
3410 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3411 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3412 	/* Clear MIB Clear Counter Mode. */
3413 	gmac &= ~GM_PAR_MIB_CLR;
3414 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3415 
3416 	/* Disable FCS. */
3417 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3418 
3419 	/* Setup Transmit Control Register. */
3420 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3421 
3422 	/* Setup Transmit Flow Control Register. */
3423 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3424 
3425 	/* Setup Transmit Parameter Register. */
3426 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3427 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3428 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3429 
3430 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3431 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3432 
3433 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3434 		gmac |= GM_SMOD_JUMBO_ENA;
3435 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3436 
3437 	/* Set station address. */
3438         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3439         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3440 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3441 		    eaddr[i]);
3442         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3443 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3444 		    eaddr[i]);
3445 
3446 	/* Disable interrupts for counter overflows. */
3447 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3448 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3449 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3450 
3451 	/* Configure Rx MAC FIFO. */
3452 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3453 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3454 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3455 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3456 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3457 		reg |= GMF_RX_OVER_ON;
3458 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3459 
3460 	/* Set receive filter. */
3461 	msk_rxfilter(sc_if);
3462 
3463 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3464 		/* Clear flush mask - HW bug. */
3465 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3466 	} else {
3467 		/* Flush Rx MAC FIFO on any flow control or error. */
3468 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3469 		    GMR_FS_ANY_ERR);
3470 	}
3471 
3472 	/*
3473 	 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3474 	 * due to hardware hang on receipt of pause frames.
3475 	 */
3476 	reg = RX_GMF_FL_THR_DEF + 1;
3477 	/* Another magic for Yukon FE+ - From Linux. */
3478 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3479 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3480 		reg = 0x178;
3481 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3482 
3483 
3484 	/* Configure Tx MAC FIFO. */
3485 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3486 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3487 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3488 
3489 	/* Configure hardware VLAN tag insertion/stripping. */
3490 	msk_setvlan(sc_if, ifp);
3491 
3492 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3493 		/* Set Rx Pause threshould. */
3494 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3495 		    MSK_ECU_LLPP);
3496 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3497 		    MSK_ECU_ULPP);
3498 		/* Configure store-and-forward for Tx. */
3499 		msk_set_tx_stfwd(sc_if);
3500 	}
3501 
3502 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3503 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3504 		/* Disable dynamic watermark - from Linux. */
3505 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3506 		reg &= ~0x03;
3507 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3508 	}
3509 
3510 	/*
3511 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3512 	 * arbiter as we don't use Sync Tx queue.
3513 	 */
3514 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3515 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3516 	/* Enable the RAM Interface Arbiter. */
3517 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3518 
3519 	/* Setup RAM buffer. */
3520 	msk_set_rambuffer(sc_if);
3521 
3522 	/* Disable Tx sync Queue. */
3523 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3524 
3525 	/* Setup Tx Queue Bus Memory Interface. */
3526 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3527 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3528 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3529 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3530 	switch (sc->msk_hw_id) {
3531 	case CHIP_ID_YUKON_EC_U:
3532 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3533 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3534 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3535 			    MSK_ECU_TXFF_LEV);
3536 		}
3537 		break;
3538 	case CHIP_ID_YUKON_EX:
3539 		/*
3540 		 * Yukon Extreme seems to have silicon bug for
3541 		 * automatic Tx checksum calculation capability.
3542 		 */
3543 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3544 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3545 			    F_TX_CHK_AUTO_OFF);
3546 		}
3547 		break;
3548  	}
3549 
3550 	/* Setup Rx Queue Bus Memory Interface. */
3551 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3552 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3553 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3554 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3555         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3556 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3557 		/* MAC Rx RAM Read is controlled by hardware. */
3558                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3559 	}
3560 
3561 	msk_set_prefetch(sc, sc_if->msk_txq,
3562 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3563 	msk_init_tx_ring(sc_if);
3564 
3565 	/* Disable Rx checksum offload and RSS hash. */
3566 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3567 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3568 #ifdef MSK_JUMBO
3569 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3570 		msk_set_prefetch(sc, sc_if->msk_rxq,
3571 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3572 		    MSK_JUMBO_RX_RING_CNT - 1);
3573 		error = msk_init_jumbo_rx_ring(sc_if);
3574 	} else
3575 #endif
3576 	{
3577 		msk_set_prefetch(sc, sc_if->msk_rxq,
3578 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3579 		    MSK_RX_RING_CNT - 1);
3580 		error = msk_init_rx_ring(sc_if);
3581 	}
3582 	if (error != 0) {
3583 		device_printf(sc_if->msk_if_dev,
3584 		    "initialization failed: no memory for Rx buffers\n");
3585 		msk_stop(sc_if);
3586 		return;
3587 	}
3588 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3589 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3590 		/* Disable flushing of non-ASF packets. */
3591 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3592 		    GMF_RX_MACSEC_FLUSH_OFF);
3593 	}
3594 
3595 	/* Configure interrupt handling. */
3596 	if (sc_if->msk_port == MSK_PORT_A) {
3597 		sc->msk_intrmask |= Y2_IS_PORT_A;
3598 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3599 	} else {
3600 		sc->msk_intrmask |= Y2_IS_PORT_B;
3601 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3602 	}
3603 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3604 	CSR_READ_4(sc, B0_HWE_IMSK);
3605 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3606 	CSR_READ_4(sc, B0_IMSK);
3607 
3608 	sc_if->msk_link = 0;
3609 	mii_mediachg(mii);
3610 
3611 	mskc_set_imtimer(sc);
3612 
3613 	ifp->if_flags |= IFF_RUNNING;
3614 	ifq_clr_oactive(&ifp->if_snd);
3615 
3616 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3617 }
3618 
3619 static void
3620 msk_set_rambuffer(struct msk_if_softc *sc_if)
3621 {
3622 	struct msk_softc *sc;
3623 	int ltpp, utpp;
3624 
3625 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3626 		return;
3627 
3628 	sc = sc_if->msk_softc;
3629 
3630 	/* Setup Rx Queue. */
3631 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3632 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3633 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3634 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3635 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3636 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3637 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3638 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3639 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3640 
3641 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3642 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3643 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3644 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3645 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3646 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3647 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3648 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3649 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3650 
3651 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3652 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3653 
3654 	/* Setup Tx Queue. */
3655 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3656 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3657 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3658 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3659 	    sc->msk_txqend[sc_if->msk_port] / 8);
3660 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3661 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3662 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3663 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3664 	/* Enable Store & Forward for Tx side. */
3665 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3666 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3667 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3668 }
3669 
3670 static void
3671 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3672     uint32_t count)
3673 {
3674 
3675 	/* Reset the prefetch unit. */
3676 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3677 	    PREF_UNIT_RST_SET);
3678 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3679 	    PREF_UNIT_RST_CLR);
3680 	/* Set LE base address. */
3681 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3682 	    MSK_ADDR_LO(addr));
3683 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3684 	    MSK_ADDR_HI(addr));
3685 	/* Set the list last index. */
3686 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3687 	    count);
3688 	/* Turn on prefetch unit. */
3689 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3690 	    PREF_UNIT_OP_ON);
3691 	/* Dummy read to ensure write. */
3692 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3693 }
3694 
3695 static void
3696 msk_stop(struct msk_if_softc *sc_if)
3697 {
3698 	struct msk_softc *sc = sc_if->msk_softc;
3699 	struct ifnet *ifp = sc_if->msk_ifp;
3700 	struct msk_txdesc *txd;
3701 	struct msk_rxdesc *rxd;
3702 #ifdef MSK_JUMBO
3703 	struct msk_rxdesc *jrxd;
3704 #endif
3705 	uint32_t val;
3706 	int i;
3707 
3708 	ASSERT_SERIALIZED(ifp->if_serializer);
3709 
3710 	callout_stop(&sc_if->msk_tick_ch);
3711 	ifp->if_timer = 0;
3712 
3713 	/* Disable interrupts. */
3714 	if (sc_if->msk_port == MSK_PORT_A) {
3715 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3716 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3717 	} else {
3718 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3719 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3720 	}
3721 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3722 	CSR_READ_4(sc, B0_HWE_IMSK);
3723 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3724 	CSR_READ_4(sc, B0_IMSK);
3725 
3726 	/* Disable Tx/Rx MAC. */
3727 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3728 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3729 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3730 	/* Read again to ensure writing. */
3731 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3732 
3733 	/* Stop Tx BMU. */
3734 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3735 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3736 	for (i = 0; i < MSK_TIMEOUT; i++) {
3737 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3738 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3739 			    BMU_STOP);
3740 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3741 		} else
3742 			break;
3743 		DELAY(1);
3744 	}
3745 	if (i == MSK_TIMEOUT)
3746 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3747 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3748 	    RB_RST_SET | RB_DIS_OP_MD);
3749 
3750 	/* Disable all GMAC interrupt. */
3751 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3752 	/* Disable PHY interrupt. */
3753 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3754 
3755 	/* Disable the RAM Interface Arbiter. */
3756 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3757 
3758 	/* Reset the PCI FIFO of the async Tx queue */
3759 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3760 	    BMU_RST_SET | BMU_FIFO_RST);
3761 
3762 	/* Reset the Tx prefetch units. */
3763 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3764 	    PREF_UNIT_RST_SET);
3765 
3766 	/* Reset the RAM Buffer async Tx queue. */
3767 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3768 
3769 	/* Reset Tx MAC FIFO. */
3770 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3771 	/* Set Pause Off. */
3772 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3773 
3774 	/*
3775 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3776 	 * reach the end of packet and since we can't make sure that we have
3777 	 * incoming data, we must reset the BMU while it is not during a DMA
3778 	 * transfer. Since it is possible that the Rx path is still active,
3779 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3780 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3781 	 * BMU is polled until any DMA in progress is ended and only then it
3782 	 * will be reset.
3783 	 */
3784 
3785 	/* Disable the RAM Buffer receive queue. */
3786 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3787 	for (i = 0; i < MSK_TIMEOUT; i++) {
3788 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3789 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3790 			break;
3791 		DELAY(1);
3792 	}
3793 	if (i == MSK_TIMEOUT)
3794 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3795 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3796 	    BMU_RST_SET | BMU_FIFO_RST);
3797 	/* Reset the Rx prefetch unit. */
3798 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3799 	    PREF_UNIT_RST_SET);
3800 	/* Reset the RAM Buffer receive queue. */
3801 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3802 	/* Reset Rx MAC FIFO. */
3803 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3804 
3805 	/* Free Rx and Tx mbufs still in the queues. */
3806 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3807 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3808 		if (rxd->rx_m != NULL) {
3809 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3810 			    rxd->rx_dmamap);
3811 			m_freem(rxd->rx_m);
3812 			rxd->rx_m = NULL;
3813 		}
3814 	}
3815 #ifdef MSK_JUMBO
3816 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3817 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3818 		if (jrxd->rx_m != NULL) {
3819 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3820 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3821 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3822 			    jrxd->rx_dmamap);
3823 			m_freem(jrxd->rx_m);
3824 			jrxd->rx_m = NULL;
3825 		}
3826 	}
3827 #endif
3828 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3829 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3830 		if (txd->tx_m != NULL) {
3831 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3832 			    txd->tx_dmamap);
3833 			m_freem(txd->tx_m);
3834 			txd->tx_m = NULL;
3835 		}
3836 	}
3837 
3838 	/*
3839 	 * Mark the interface down.
3840 	 */
3841 	ifp->if_flags &= ~IFF_RUNNING;
3842 	ifq_clr_oactive(&ifp->if_snd);
3843 	sc_if->msk_link = 0;
3844 }
3845 
3846 static int
3847 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3848 {
3849 	return sysctl_int_range(oidp, arg1, arg2, req,
3850 				MSK_PROC_MIN, MSK_PROC_MAX);
3851 }
3852 
3853 static int
3854 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3855 {
3856 	struct msk_softc *sc = arg1;
3857 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3858 	int error = 0, v;
3859 
3860 	lwkt_serialize_enter(serializer);
3861 
3862 	v = sc->msk_intr_rate;
3863 	error = sysctl_handle_int(oidp, &v, 0, req);
3864 	if (error || req->newptr == NULL)
3865 		goto back;
3866 	if (v < 0) {
3867 		error = EINVAL;
3868 		goto back;
3869 	}
3870 
3871 	if (sc->msk_intr_rate != v) {
3872 		int flag = 0, i;
3873 
3874 		sc->msk_intr_rate = v;
3875 		for (i = 0; i < 2; ++i) {
3876 			if (sc->msk_if[i] != NULL) {
3877 				flag |= sc->msk_if[i]->
3878 					arpcom.ac_if.if_flags & IFF_RUNNING;
3879 			}
3880 		}
3881 		if (flag)
3882 			mskc_set_imtimer(sc);
3883 	}
3884 back:
3885 	lwkt_serialize_exit(serializer);
3886 	return error;
3887 }
3888 
3889 static int
3890 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3891 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3892 {
3893 	struct msk_if_softc *sc_if = device_get_softc(dev);
3894 	bus_dmamem_t dmem;
3895 	int error;
3896 
3897 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3898 			MSK_RING_ALIGN, 0,
3899 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3900 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3901 	if (error) {
3902 		device_printf(dev, "can't create coherent DMA memory\n");
3903 		return error;
3904 	}
3905 
3906 	*dtag = dmem.dmem_tag;
3907 	*dmap = dmem.dmem_map;
3908 	*addr = dmem.dmem_addr;
3909 	*paddr = dmem.dmem_busaddr;
3910 
3911 	return 0;
3912 }
3913 
3914 static void
3915 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3916 {
3917 	if (dtag != NULL) {
3918 		bus_dmamap_unload(dtag, dmap);
3919 		bus_dmamem_free(dtag, addr, dmap);
3920 		bus_dma_tag_destroy(dtag);
3921 	}
3922 }
3923 
3924 static void
3925 mskc_set_imtimer(struct msk_softc *sc)
3926 {
3927 	if (sc->msk_intr_rate > 0) {
3928 		/*
3929 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3930 		 *     and 78.125MHz for rest of chip types
3931 		 */
3932 		CSR_WRITE_4(sc, B2_IRQM_INI,
3933 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3934 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3935 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3936 	} else {
3937 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3938 	}
3939 }
3940