xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision 36a3d1d6)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 /* $DragonFly: src/sys/dev/netif/msk/if_msk.c,v 1.10 2008/11/23 04:28:27 sephe Exp $ */
97 
98 /*
99  * Device driver for the Marvell Yukon II Ethernet controller.
100  * Due to lack of documentation, this driver is based on the code from
101  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/endian.h>
106 #include <sys/kernel.h>
107 #include <sys/bus.h>
108 #include <sys/in_cksum.h>
109 #include <sys/interrupt.h>
110 #include <sys/malloc.h>
111 #include <sys/proc.h>
112 #include <sys/rman.h>
113 #include <sys/serialize.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/sysctl.h>
117 
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/bpf.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/ifq_var.h>
125 #include <net/vlan/if_vlan_var.h>
126 
127 #include <netinet/ip.h>
128 #include <netinet/ip_var.h>
129 
130 #include <dev/netif/mii_layer/miivar.h>
131 
132 #include <bus/pci/pcireg.h>
133 #include <bus/pci/pcivar.h>
134 
135 #include "if_mskreg.h"
136 
137 /* "device miibus" required.  See GENERIC if you get errors here. */
138 #include "miibus_if.h"
139 
140 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
141 
142 /*
143  * Devices supported by this driver.
144  */
145 static const struct msk_product {
146 	uint16_t	msk_vendorid;
147 	uint16_t	msk_deviceid;
148 	const char	*msk_name;
149 } msk_products[] = {
150 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
151 	    "SK-9Sxx Gigabit Ethernet" },
152 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
153 	    "SK-9Exx Gigabit Ethernet"},
154 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
155 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
156 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
157 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
158 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
159 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
160 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
161 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
162 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
163 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
164 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
165 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
166 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
167 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
168 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
169 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
170 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
171 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
172 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
173 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
175 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
177 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
179 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
181 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
183 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
185 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
187 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
189 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
190 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
191 	    "D-Link 550SX Gigabit Ethernet" },
192 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
193 	    "D-Link 560T Gigabit Ethernet" },
194 	{ 0, 0, NULL }
195 };
196 
197 static const char *model_name[] = {
198 	"Yukon XL",
199         "Yukon EC Ultra",
200         "Yukon Unknown",
201         "Yukon EC",
202         "Yukon FE"
203 };
204 
205 static int	mskc_probe(device_t);
206 static int	mskc_attach(device_t);
207 static int	mskc_detach(device_t);
208 static int	mskc_shutdown(device_t);
209 static int	mskc_suspend(device_t);
210 static int	mskc_resume(device_t);
211 static void	mskc_intr(void *);
212 
213 static void	mskc_reset(struct msk_softc *);
214 static void	mskc_set_imtimer(struct msk_softc *);
215 static void	mskc_intr_hwerr(struct msk_softc *);
216 static int	mskc_handle_events(struct msk_softc *);
217 static void	mskc_phy_power(struct msk_softc *, int);
218 static int	mskc_setup_rambuffer(struct msk_softc *);
219 static int	mskc_status_dma_alloc(struct msk_softc *);
220 static void	mskc_status_dma_free(struct msk_softc *);
221 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
222 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
223 
224 static int	msk_probe(device_t);
225 static int	msk_attach(device_t);
226 static int	msk_detach(device_t);
227 static int	msk_miibus_readreg(device_t, int, int);
228 static int	msk_miibus_writereg(device_t, int, int, int);
229 static void	msk_miibus_statchg(device_t);
230 
231 static void	msk_init(void *);
232 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
233 static void	msk_start(struct ifnet *);
234 static void	msk_watchdog(struct ifnet *);
235 static int	msk_mediachange(struct ifnet *);
236 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 static void	msk_tick(void *);
239 static void	msk_intr_phy(struct msk_if_softc *);
240 static void	msk_intr_gmac(struct msk_if_softc *);
241 static __inline void
242 		msk_rxput(struct msk_if_softc *);
243 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
244 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int,
245 			  struct mbuf_chain *);
246 static void	msk_txeof(struct msk_if_softc *, int);
247 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
248 static void	msk_set_rambuffer(struct msk_if_softc *);
249 static void	msk_stop(struct msk_if_softc *);
250 
251 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
252 static void	msk_txrx_dma_free(struct msk_if_softc *);
253 static int	msk_init_rx_ring(struct msk_if_softc *);
254 static void	msk_init_tx_ring(struct msk_if_softc *);
255 static __inline void
256 		msk_discard_rxbuf(struct msk_if_softc *, int);
257 static int	msk_newbuf(struct msk_if_softc *, int, int);
258 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
259 
260 #ifdef MSK_JUMBO
261 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
262 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
263 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
264 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
265 static void *msk_jalloc(struct msk_if_softc *);
266 static void msk_jfree(void *, void *);
267 #endif
268 
269 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
270 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
271 
272 static void	msk_setmulti(struct msk_if_softc *);
273 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
274 static void	msk_setpromisc(struct msk_if_softc *);
275 
276 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
277 				  void **, bus_addr_t *, bus_dmamap_t *);
278 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
279 
280 static device_method_t mskc_methods[] = {
281 	/* Device interface */
282 	DEVMETHOD(device_probe,		mskc_probe),
283 	DEVMETHOD(device_attach,	mskc_attach),
284 	DEVMETHOD(device_detach,	mskc_detach),
285 	DEVMETHOD(device_suspend,	mskc_suspend),
286 	DEVMETHOD(device_resume,	mskc_resume),
287 	DEVMETHOD(device_shutdown,	mskc_shutdown),
288 
289 	/* bus interface */
290 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
291 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
292 
293 	{ NULL, NULL }
294 };
295 
296 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
297 static devclass_t mskc_devclass;
298 
299 static device_method_t msk_methods[] = {
300 	/* Device interface */
301 	DEVMETHOD(device_probe,		msk_probe),
302 	DEVMETHOD(device_attach,	msk_attach),
303 	DEVMETHOD(device_detach,	msk_detach),
304 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
305 
306 	/* bus interface */
307 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
308 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
309 
310 	/* MII interface */
311 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
312 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
313 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
314 
315 	{ NULL, NULL }
316 };
317 
318 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
319 static devclass_t msk_devclass;
320 
321 DECLARE_DUMMY_MODULE(if_msk);
322 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, 0, 0);
323 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, 0, 0);
324 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
325 
326 static int	mskc_intr_rate = 0;
327 static int	mskc_process_limit = MSK_PROC_DEFAULT;
328 
329 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
330 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
331 
332 static int
333 msk_miibus_readreg(device_t dev, int phy, int reg)
334 {
335 	struct msk_if_softc *sc_if;
336 
337 	if (phy != PHY_ADDR_MARV)
338 		return (0);
339 
340 	sc_if = device_get_softc(dev);
341 
342 	return (msk_phy_readreg(sc_if, phy, reg));
343 }
344 
345 static int
346 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
347 {
348 	struct msk_softc *sc;
349 	int i, val;
350 
351 	sc = sc_if->msk_softc;
352 
353         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
354 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
355 
356 	for (i = 0; i < MSK_TIMEOUT; i++) {
357 		DELAY(1);
358 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
359 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
360 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
361 			break;
362 		}
363 	}
364 
365 	if (i == MSK_TIMEOUT) {
366 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
367 		val = 0;
368 	}
369 
370 	return (val);
371 }
372 
373 static int
374 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
375 {
376 	struct msk_if_softc *sc_if;
377 
378 	if (phy != PHY_ADDR_MARV)
379 		return (0);
380 
381 	sc_if = device_get_softc(dev);
382 
383 	return (msk_phy_writereg(sc_if, phy, reg, val));
384 }
385 
386 static int
387 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
388 {
389 	struct msk_softc *sc;
390 	int i;
391 
392 	sc = sc_if->msk_softc;
393 
394 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
395         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
396 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
397 	for (i = 0; i < MSK_TIMEOUT; i++) {
398 		DELAY(1);
399 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
400 		    GM_SMI_CT_BUSY) == 0)
401 			break;
402 	}
403 	if (i == MSK_TIMEOUT)
404 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
405 
406 	return (0);
407 }
408 
409 static void
410 msk_miibus_statchg(device_t dev)
411 {
412 	struct msk_if_softc *sc_if;
413 	struct msk_softc *sc;
414 	struct mii_data *mii;
415 	struct ifnet *ifp;
416 	uint32_t gmac;
417 
418 	sc_if = device_get_softc(dev);
419 	sc = sc_if->msk_softc;
420 
421 	mii = device_get_softc(sc_if->msk_miibus);
422 	ifp = sc_if->msk_ifp;
423 
424 	if (mii->mii_media_status & IFM_ACTIVE) {
425 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
426 			sc_if->msk_link = 1;
427 	} else
428 		sc_if->msk_link = 0;
429 
430 	if (sc_if->msk_link != 0) {
431 		/* Enable Tx FIFO Underrun. */
432 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
433 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
434 		/*
435 		 * Because mii(4) notify msk(4) that it detected link status
436 		 * change, there is no need to enable automatic
437 		 * speed/flow-control/duplex updates.
438 		 */
439 		gmac = GM_GPCR_AU_ALL_DIS;
440 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
441 		case IFM_1000_SX:
442 		case IFM_1000_T:
443 			gmac |= GM_GPCR_SPEED_1000;
444 			break;
445 		case IFM_100_TX:
446 			gmac |= GM_GPCR_SPEED_100;
447 			break;
448 		case IFM_10_T:
449 			break;
450 		}
451 
452 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
453 			gmac |= GM_GPCR_DUP_FULL;
454 		/* Disable Rx flow control. */
455 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
456 			gmac |= GM_GPCR_FC_RX_DIS;
457 		/* Disable Tx flow control. */
458 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
459 			gmac |= GM_GPCR_FC_TX_DIS;
460 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
461 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
462 		/* Read again to ensure writing. */
463 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
464 
465 		gmac = GMC_PAUSE_ON;
466 		if (((mii->mii_media_active & IFM_GMASK) &
467 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
468 			gmac = GMC_PAUSE_OFF;
469 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
470 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
471 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
472 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
473 			gmac = GMC_PAUSE_OFF;
474 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
475 
476 		/* Enable PHY interrupt for FIFO underrun/overflow. */
477 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
478 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
479 	} else {
480 		/*
481 		 * Link state changed to down.
482 		 * Disable PHY interrupts.
483 		 */
484 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
485 		/* Disable Rx/Tx MAC. */
486 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
487 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
488 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
489 		/* Read again to ensure writing. */
490 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
491 	}
492 }
493 
494 static void
495 msk_setmulti(struct msk_if_softc *sc_if)
496 {
497 	struct msk_softc *sc;
498 	struct ifnet *ifp;
499 	struct ifmultiaddr *ifma;
500 	uint32_t mchash[2];
501 	uint32_t crc;
502 	uint16_t mode;
503 
504 	sc = sc_if->msk_softc;
505 	ifp = sc_if->msk_ifp;
506 
507 	bzero(mchash, sizeof(mchash));
508 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
509 	mode |= GM_RXCR_UCF_ENA;
510 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
511 		if ((ifp->if_flags & IFF_PROMISC) != 0)
512 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
513 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
514 			mchash[0] = 0xffff;
515 			mchash[1] = 0xffff;
516 		}
517 	} else {
518 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
519 			if (ifma->ifma_addr->sa_family != AF_LINK)
520 				continue;
521 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
522 			    ifma->ifma_addr), ETHER_ADDR_LEN);
523 			/* Just want the 6 least significant bits. */
524 			crc &= 0x3f;
525 			/* Set the corresponding bit in the hash table. */
526 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
527 		}
528 		mode |= GM_RXCR_MCF_ENA;
529 	}
530 
531 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
532 	    mchash[0] & 0xffff);
533 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
534 	    (mchash[0] >> 16) & 0xffff);
535 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
536 	    mchash[1] & 0xffff);
537 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
538 	    (mchash[1] >> 16) & 0xffff);
539 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
540 }
541 
542 static void
543 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
544 {
545 	struct msk_softc *sc;
546 
547 	sc = sc_if->msk_softc;
548 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
549 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
550 		    RX_VLAN_STRIP_ON);
551 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
552 		    TX_VLAN_TAG_ON);
553 	} else {
554 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
555 		    RX_VLAN_STRIP_OFF);
556 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
557 		    TX_VLAN_TAG_OFF);
558 	}
559 }
560 
561 static void
562 msk_setpromisc(struct msk_if_softc *sc_if)
563 {
564 	struct msk_softc *sc;
565 	struct ifnet *ifp;
566 	uint16_t mode;
567 
568 	sc = sc_if->msk_softc;
569 	ifp = sc_if->msk_ifp;
570 
571 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
572 	if (ifp->if_flags & IFF_PROMISC)
573 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
574 	else
575 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
576 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
577 }
578 
579 static int
580 msk_init_rx_ring(struct msk_if_softc *sc_if)
581 {
582 	struct msk_ring_data *rd;
583 	struct msk_rxdesc *rxd;
584 	int i, prod;
585 
586 	sc_if->msk_cdata.msk_rx_cons = 0;
587 	sc_if->msk_cdata.msk_rx_prod = 0;
588 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
589 
590 	rd = &sc_if->msk_rdata;
591 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
592 	prod = sc_if->msk_cdata.msk_rx_prod;
593 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
594 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
595 		rxd->rx_m = NULL;
596 		rxd->rx_le = &rd->msk_rx_ring[prod];
597 		if (msk_newbuf(sc_if, prod, 1) != 0)
598 			return (ENOBUFS);
599 		MSK_INC(prod, MSK_RX_RING_CNT);
600 	}
601 
602 	/* Update prefetch unit. */
603 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
604 	CSR_WRITE_2(sc_if->msk_softc,
605 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
606 	    sc_if->msk_cdata.msk_rx_prod);
607 
608 	return (0);
609 }
610 
611 #ifdef MSK_JUMBO
612 static int
613 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
614 {
615 	struct msk_ring_data *rd;
616 	struct msk_rxdesc *rxd;
617 	int i, prod;
618 
619 	MSK_IF_LOCK_ASSERT(sc_if);
620 
621 	sc_if->msk_cdata.msk_rx_cons = 0;
622 	sc_if->msk_cdata.msk_rx_prod = 0;
623 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
624 
625 	rd = &sc_if->msk_rdata;
626 	bzero(rd->msk_jumbo_rx_ring,
627 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
628 	prod = sc_if->msk_cdata.msk_rx_prod;
629 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
630 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
631 		rxd->rx_m = NULL;
632 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
633 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
634 			return (ENOBUFS);
635 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
636 	}
637 
638 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
639 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
640 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
641 
642 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
643 	CSR_WRITE_2(sc_if->msk_softc,
644 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
645 	    sc_if->msk_cdata.msk_rx_prod);
646 
647 	return (0);
648 }
649 #endif
650 
651 static void
652 msk_init_tx_ring(struct msk_if_softc *sc_if)
653 {
654 	struct msk_ring_data *rd;
655 	struct msk_txdesc *txd;
656 	int i;
657 
658 	sc_if->msk_cdata.msk_tx_prod = 0;
659 	sc_if->msk_cdata.msk_tx_cons = 0;
660 	sc_if->msk_cdata.msk_tx_cnt = 0;
661 
662 	rd = &sc_if->msk_rdata;
663 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
664 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
665 		txd = &sc_if->msk_cdata.msk_txdesc[i];
666 		txd->tx_m = NULL;
667 		txd->tx_le = &rd->msk_tx_ring[i];
668 	}
669 }
670 
671 static __inline void
672 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
673 {
674 	struct msk_rx_desc *rx_le;
675 	struct msk_rxdesc *rxd;
676 	struct mbuf *m;
677 
678 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
679 	m = rxd->rx_m;
680 	rx_le = rxd->rx_le;
681 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
682 }
683 
684 #ifdef MSK_JUMBO
685 static __inline void
686 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
687 {
688 	struct msk_rx_desc *rx_le;
689 	struct msk_rxdesc *rxd;
690 	struct mbuf *m;
691 
692 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
693 	m = rxd->rx_m;
694 	rx_le = rxd->rx_le;
695 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
696 }
697 #endif
698 
699 static int
700 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
701 {
702 	struct msk_rx_desc *rx_le;
703 	struct msk_rxdesc *rxd;
704 	struct mbuf *m;
705 	bus_dma_segment_t seg;
706 	bus_dmamap_t map;
707 	int error, nseg;
708 
709 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
710 	if (m == NULL)
711 		return (ENOBUFS);
712 
713 	m->m_len = m->m_pkthdr.len = MCLBYTES;
714 	m_adj(m, ETHER_ALIGN);
715 
716 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
717 			sc_if->msk_cdata.msk_rx_sparemap,
718 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
719 	if (error) {
720 		m_freem(m);
721 		if (init)
722 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
723 		return (error);
724 	}
725 
726 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
727 	if (rxd->rx_m != NULL) {
728 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
729 		    BUS_DMASYNC_POSTREAD);
730 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
731 	}
732 
733 	map = rxd->rx_dmamap;
734 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
735 	sc_if->msk_cdata.msk_rx_sparemap = map;
736 
737 	rxd->rx_m = m;
738 	rx_le = rxd->rx_le;
739 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
740 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
741 
742 	return (0);
743 }
744 
745 #ifdef MSK_JUMBO
746 static int
747 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
748 {
749 	struct msk_rx_desc *rx_le;
750 	struct msk_rxdesc *rxd;
751 	struct mbuf *m;
752 	bus_dma_segment_t segs[1];
753 	bus_dmamap_t map;
754 	int nsegs;
755 	void *buf;
756 
757 	MGETHDR(m, M_DONTWAIT, MT_DATA);
758 	if (m == NULL)
759 		return (ENOBUFS);
760 	buf = msk_jalloc(sc_if);
761 	if (buf == NULL) {
762 		m_freem(m);
763 		return (ENOBUFS);
764 	}
765 	/* Attach the buffer to the mbuf. */
766 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
767 	    EXT_NET_DRV);
768 	if ((m->m_flags & M_EXT) == 0) {
769 		m_freem(m);
770 		return (ENOBUFS);
771 	}
772 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
773 	m_adj(m, ETHER_ALIGN);
774 
775 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
776 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
777 	    BUS_DMA_NOWAIT) != 0) {
778 		m_freem(m);
779 		return (ENOBUFS);
780 	}
781 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
782 
783 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
784 	if (rxd->rx_m != NULL) {
785 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
786 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
787 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
788 		    rxd->rx_dmamap);
789 	}
790 	map = rxd->rx_dmamap;
791 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
792 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
793 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
794 	    BUS_DMASYNC_PREREAD);
795 	rxd->rx_m = m;
796 	rx_le = rxd->rx_le;
797 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
798 	rx_le->msk_control =
799 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
800 
801 	return (0);
802 }
803 #endif
804 
805 /*
806  * Set media options.
807  */
808 static int
809 msk_mediachange(struct ifnet *ifp)
810 {
811 	struct msk_if_softc *sc_if = ifp->if_softc;
812 	struct mii_data	*mii;
813 
814 	mii = device_get_softc(sc_if->msk_miibus);
815 	mii_mediachg(mii);
816 
817 	return (0);
818 }
819 
820 /*
821  * Report current media status.
822  */
823 static void
824 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
825 {
826 	struct msk_if_softc *sc_if = ifp->if_softc;
827 	struct mii_data	*mii;
828 
829 	mii = device_get_softc(sc_if->msk_miibus);
830 	mii_pollstat(mii);
831 
832 	ifmr->ifm_active = mii->mii_media_active;
833 	ifmr->ifm_status = mii->mii_media_status;
834 }
835 
836 static int
837 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
838 {
839 	struct msk_if_softc *sc_if;
840 	struct ifreq *ifr;
841 	struct mii_data	*mii;
842 	int error, mask;
843 
844 	sc_if = ifp->if_softc;
845 	ifr = (struct ifreq *)data;
846 	error = 0;
847 
848 	switch(command) {
849 	case SIOCSIFMTU:
850 #ifdef MSK_JUMBO
851 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
852 			error = EINVAL;
853 			break;
854 		}
855 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
856 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
857 			error = EINVAL;
858 			break;
859 		}
860 		ifp->if_mtu = ifr->ifr_mtu;
861 		if ((ifp->if_flags & IFF_RUNNING) != 0)
862 			msk_init(sc_if);
863 #else
864 		error = EOPNOTSUPP;
865 #endif
866 		break;
867 
868 	case SIOCSIFFLAGS:
869 		if (ifp->if_flags & IFF_UP) {
870 			if (ifp->if_flags & IFF_RUNNING) {
871 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
872 				    & IFF_PROMISC) != 0) {
873 					msk_setpromisc(sc_if);
874 					msk_setmulti(sc_if);
875 				}
876 			} else {
877 				if (sc_if->msk_detach == 0)
878 					msk_init(sc_if);
879 			}
880 		} else {
881 			if (ifp->if_flags & IFF_RUNNING)
882 				msk_stop(sc_if);
883 		}
884 		sc_if->msk_if_flags = ifp->if_flags;
885 		break;
886 
887 	case SIOCADDMULTI:
888 	case SIOCDELMULTI:
889 		if (ifp->if_flags & IFF_RUNNING)
890 			msk_setmulti(sc_if);
891 		break;
892 
893 	case SIOCGIFMEDIA:
894 	case SIOCSIFMEDIA:
895 		mii = device_get_softc(sc_if->msk_miibus);
896 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
897 		break;
898 
899 	case SIOCSIFCAP:
900 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
901 		if ((mask & IFCAP_TXCSUM) != 0) {
902 			ifp->if_capenable ^= IFCAP_TXCSUM;
903 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
904 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
905 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
906 			else
907 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
908 		}
909 #ifdef notyet
910 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
911 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
912 			msk_setvlan(sc_if, ifp);
913 		}
914 #endif
915 
916 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
917 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
918 			/*
919 			 * In Yukon EC Ultra, TSO & checksum offload is not
920 			 * supported for jumbo frame.
921 			 */
922 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
923 			ifp->if_capenable &= ~IFCAP_TXCSUM;
924 		}
925 		break;
926 
927 	default:
928 		error = ether_ioctl(ifp, command, data);
929 		break;
930 	}
931 
932 	return (error);
933 }
934 
935 static int
936 mskc_probe(device_t dev)
937 {
938 	const struct msk_product *mp;
939 	uint16_t vendor, devid;
940 
941 	vendor = pci_get_vendor(dev);
942 	devid = pci_get_device(dev);
943 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
944 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
945 			device_set_desc(dev, mp->msk_name);
946 			return (0);
947 		}
948 	}
949 	return (ENXIO);
950 }
951 
952 static int
953 mskc_setup_rambuffer(struct msk_softc *sc)
954 {
955 	int next;
956 	int i;
957 	uint8_t val;
958 
959 	/* Get adapter SRAM size. */
960 	val = CSR_READ_1(sc, B2_E_0);
961 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
962 	if (bootverbose) {
963 		device_printf(sc->msk_dev,
964 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
965 	}
966 	/*
967 	 * Give receiver 2/3 of memory and round down to the multiple
968 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
969 	 * of 1024.
970 	 */
971 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
972 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
973 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
974 		sc->msk_rxqstart[i] = next;
975 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
976 		next = sc->msk_rxqend[i] + 1;
977 		sc->msk_txqstart[i] = next;
978 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
979 		next = sc->msk_txqend[i] + 1;
980 		if (bootverbose) {
981 			device_printf(sc->msk_dev,
982 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
983 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
984 			    sc->msk_rxqend[i]);
985 			device_printf(sc->msk_dev,
986 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
987 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
988 			    sc->msk_txqend[i]);
989 		}
990 	}
991 
992 	return (0);
993 }
994 
995 static void
996 mskc_phy_power(struct msk_softc *sc, int mode)
997 {
998 	uint32_t val;
999 	int i;
1000 
1001 	switch (mode) {
1002 	case MSK_PHY_POWERUP:
1003 		/* Switch power to VCC (WA for VAUX problem). */
1004 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1005 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1006 		/* Disable Core Clock Division, set Clock Select to 0. */
1007 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1008 
1009 		val = 0;
1010 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1011 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1012 			/* Enable bits are inverted. */
1013 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1014 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1015 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1016 		}
1017 		/*
1018 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1019 		 */
1020 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1021 
1022 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1023 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1024 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1025 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1026 			/* Deassert Low Power for 1st PHY. */
1027 			val |= PCI_Y2_PHY1_COMA;
1028 			if (sc->msk_num_port > 1)
1029 				val |= PCI_Y2_PHY2_COMA;
1030 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1031 			uint32_t our;
1032 
1033 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1034 
1035 			/* Enable all clocks. */
1036 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1037 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1038 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1039 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1040 			/* Set all bits to 0 except bits 15..12. */
1041 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1042 			/* Set to default value. */
1043 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1044 		}
1045 		/* Release PHY from PowerDown/COMA mode. */
1046 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1047 		for (i = 0; i < sc->msk_num_port; i++) {
1048 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1049 			    GMLC_RST_SET);
1050 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1051 			    GMLC_RST_CLR);
1052 		}
1053 		break;
1054 	case MSK_PHY_POWERDOWN:
1055 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1056 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1057 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1058 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1059 			val &= ~PCI_Y2_PHY1_COMA;
1060 			if (sc->msk_num_port > 1)
1061 				val &= ~PCI_Y2_PHY2_COMA;
1062 		}
1063 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1064 
1065 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1066 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1067 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1068 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1069 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1070 			/* Enable bits are inverted. */
1071 			val = 0;
1072 		}
1073 		/*
1074 		 * Disable PCI & Core Clock, disable clock gating for
1075 		 * both Links.
1076 		 */
1077 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1078 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1079 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 }
1085 
1086 static void
1087 mskc_reset(struct msk_softc *sc)
1088 {
1089 	bus_addr_t addr;
1090 	uint16_t status;
1091 	uint32_t val;
1092 	int i;
1093 
1094 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1095 
1096 	/* Disable ASF. */
1097 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1098 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1099 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1100 	}
1101 	/*
1102 	 * Since we disabled ASF, S/W reset is required for Power Management.
1103 	 */
1104 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1105 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1106 
1107 	/* Clear all error bits in the PCI status register. */
1108 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1109 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1110 
1111 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1112 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1113 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1114 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1115 
1116 	switch (sc->msk_bustype) {
1117 	case MSK_PEX_BUS:
1118 		/* Clear all PEX errors. */
1119 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1120 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1121 		if ((val & PEX_RX_OV) != 0) {
1122 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1123 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1124 		}
1125 		break;
1126 	case MSK_PCI_BUS:
1127 	case MSK_PCIX_BUS:
1128 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1129 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1130 		if (val == 0)
1131 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1132 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1133 			/* Set Cache Line Size opt. */
1134 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1135 			val |= PCI_CLS_OPT;
1136 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1137 		}
1138 		break;
1139 	}
1140 	/* Set PHY power state. */
1141 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1142 
1143 	/* Reset GPHY/GMAC Control */
1144 	for (i = 0; i < sc->msk_num_port; i++) {
1145 		/* GPHY Control reset. */
1146 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1147 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1148 		/* GMAC Control reset. */
1149 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1150 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1151 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1152 	}
1153 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1154 
1155 	/* LED On. */
1156 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1157 
1158 	/* Clear TWSI IRQ. */
1159 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1160 
1161 	/* Turn off hardware timer. */
1162 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1163 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1164 
1165 	/* Turn off descriptor polling. */
1166 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1167 
1168 	/* Turn off time stamps. */
1169 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1170 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1171 
1172 	/* Configure timeout values. */
1173 	for (i = 0; i < sc->msk_num_port; i++) {
1174 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1175 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1176 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1177 		    MSK_RI_TO_53);
1178 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1179 		    MSK_RI_TO_53);
1180 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1181 		    MSK_RI_TO_53);
1182 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1183 		    MSK_RI_TO_53);
1184 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1185 		    MSK_RI_TO_53);
1186 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1187 		    MSK_RI_TO_53);
1188 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1189 		    MSK_RI_TO_53);
1190 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1191 		    MSK_RI_TO_53);
1192 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1193 		    MSK_RI_TO_53);
1194 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1195 		    MSK_RI_TO_53);
1196 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1197 		    MSK_RI_TO_53);
1198 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1199 		    MSK_RI_TO_53);
1200 	}
1201 
1202 	/* Disable all interrupts. */
1203 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1204 	CSR_READ_4(sc, B0_HWE_IMSK);
1205 	CSR_WRITE_4(sc, B0_IMSK, 0);
1206 	CSR_READ_4(sc, B0_IMSK);
1207 
1208         /*
1209          * On dual port PCI-X card, there is an problem where status
1210          * can be received out of order due to split transactions.
1211          */
1212 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1213 		uint16_t pcix_cmd;
1214 		uint8_t pcix;
1215 
1216 		pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1217 
1218 		pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1219 		/* Clear Max Outstanding Split Transactions. */
1220 		pcix_cmd &= ~0x70;
1221 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1222 		pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1223 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1224         }
1225 	if (sc->msk_bustype == MSK_PEX_BUS) {
1226 		uint16_t v, width;
1227 
1228 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1229 		/* Change Max. Read Request Size to 4096 bytes. */
1230 		v &= ~PEX_DC_MAX_RRS_MSK;
1231 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1232 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1233 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1234 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1235 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1236 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1237 		if (v != width) {
1238 			device_printf(sc->msk_dev,
1239 			    "negotiated width of link(x%d) != "
1240 			    "max. width of link(x%d)\n", width, v);
1241 		}
1242 	}
1243 
1244 	/* Clear status list. */
1245 	bzero(sc->msk_stat_ring,
1246 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1247 	sc->msk_stat_cons = 0;
1248 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1249 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1250 	/* Set the status list base address. */
1251 	addr = sc->msk_stat_ring_paddr;
1252 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1253 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1254 	/* Set the status list last index. */
1255 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1256 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1257 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1258 		/* WA for dev. #4.3 */
1259 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1260 		/* WA for dev. #4.18 */
1261 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1262 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1263 	} else {
1264 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1265 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1266 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1267 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1268 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1269 		else
1270 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1271 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1272 	}
1273 	/*
1274 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1275 	 */
1276 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1277 
1278 	/* Enable status unit. */
1279 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1280 
1281 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1282 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1283 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1284 }
1285 
1286 static int
1287 msk_probe(device_t dev)
1288 {
1289 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1290 	char desc[100];
1291 
1292 	/*
1293 	 * Not much to do here. We always know there will be
1294 	 * at least one GMAC present, and if there are two,
1295 	 * mskc_attach() will create a second device instance
1296 	 * for us.
1297 	 */
1298 	ksnprintf(desc, sizeof(desc),
1299 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1300 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1301 	    sc->msk_hw_rev);
1302 	device_set_desc_copy(dev, desc);
1303 
1304 	return (0);
1305 }
1306 
1307 static int
1308 msk_attach(device_t dev)
1309 {
1310 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1311 	struct msk_if_softc *sc_if = device_get_softc(dev);
1312 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1313 	int i, port, error;
1314 	uint8_t eaddr[ETHER_ADDR_LEN];
1315 
1316 	port = *(int *)device_get_ivars(dev);
1317 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1318 
1319 	kfree(device_get_ivars(dev), M_DEVBUF);
1320 	device_set_ivars(dev, NULL);
1321 
1322 	callout_init(&sc_if->msk_tick_ch);
1323 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1324 
1325 	sc_if->msk_if_dev = dev;
1326 	sc_if->msk_port = port;
1327 	sc_if->msk_softc = sc;
1328 	sc_if->msk_ifp = ifp;
1329 	sc->msk_if[port] = sc_if;
1330 
1331 	/* Setup Tx/Rx queue register offsets. */
1332 	if (port == MSK_PORT_A) {
1333 		sc_if->msk_txq = Q_XA1;
1334 		sc_if->msk_txsq = Q_XS1;
1335 		sc_if->msk_rxq = Q_R1;
1336 	} else {
1337 		sc_if->msk_txq = Q_XA2;
1338 		sc_if->msk_txsq = Q_XS2;
1339 		sc_if->msk_rxq = Q_R2;
1340 	}
1341 
1342 	error = msk_txrx_dma_alloc(sc_if);
1343 	if (error)
1344 		goto fail;
1345 
1346 	ifp->if_softc = sc_if;
1347 	ifp->if_mtu = ETHERMTU;
1348 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1349 	ifp->if_init = msk_init;
1350 	ifp->if_ioctl = msk_ioctl;
1351 	ifp->if_start = msk_start;
1352 	ifp->if_watchdog = msk_watchdog;
1353 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1354 	ifq_set_ready(&ifp->if_snd);
1355 
1356 #ifdef notyet
1357 	/*
1358 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1359 	 * has serious bug in Rx checksum offload for all Yukon II family
1360 	 * hardware. It seems there is a workaround to make it work somtimes.
1361 	 * However, the workaround also have to check OP code sequences to
1362 	 * verify whether the OP code is correct. Sometimes it should compute
1363 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1364 	 * checksum computed by hardware. If you have to compute checksum
1365 	 * with software to verify the hardware's checksum why have hardware
1366 	 * compute the checksum? I think there is no reason to spend time to
1367 	 * make Rx checksum offload work on Yukon II hardware.
1368 	 */
1369 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1370 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1371 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1372 	ifp->if_capenable = ifp->if_capabilities;
1373 #endif
1374 
1375 	/*
1376 	 * Get station address for this interface. Note that
1377 	 * dual port cards actually come with three station
1378 	 * addresses: one for each port, plus an extra. The
1379 	 * extra one is used by the SysKonnect driver software
1380 	 * as a 'virtual' station address for when both ports
1381 	 * are operating in failover mode. Currently we don't
1382 	 * use this extra address.
1383 	 */
1384 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1385 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1386 
1387 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1388 
1389 	/*
1390 	 * Do miibus setup.
1391 	 */
1392 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1393 			      msk_mediachange, msk_mediastatus);
1394 	if (error) {
1395 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1396 		goto fail;
1397 	}
1398 
1399 	/*
1400 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1401 	 */
1402 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1403 #if 0
1404 	/*
1405 	 * Tell the upper layer(s) we support long frames.
1406 	 * Must appear after the call to ether_ifattach() because
1407 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1408 	 */
1409         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1410 #endif
1411 
1412 	return 0;
1413 fail:
1414 	msk_detach(dev);
1415 	sc->msk_if[port] = NULL;
1416 	return (error);
1417 }
1418 
1419 /*
1420  * Attach the interface. Allocate softc structures, do ifmedia
1421  * setup and ethernet/BPF attach.
1422  */
1423 static int
1424 mskc_attach(device_t dev)
1425 {
1426 	struct msk_softc *sc;
1427 	int error, *port, cpuid;
1428 
1429 	sc = device_get_softc(dev);
1430 	sc->msk_dev = dev;
1431 	lwkt_serialize_init(&sc->msk_serializer);
1432 
1433 	/*
1434 	 * Initailize sysctl variables
1435 	 */
1436 	sc->msk_process_limit = mskc_process_limit;
1437 	sc->msk_intr_rate = mskc_intr_rate;
1438 
1439 #ifndef BURN_BRIDGES
1440 	/*
1441 	 * Handle power management nonsense.
1442 	 */
1443 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1444 		uint32_t irq, bar0, bar1;
1445 
1446 		/* Save important PCI config data. */
1447 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1448 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1449 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1450 
1451 		/* Reset the power state. */
1452 		device_printf(dev, "chip is in D%d power mode "
1453 			      "-- setting to D0\n", pci_get_powerstate(dev));
1454 
1455 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1456 
1457 		/* Restore PCI config data. */
1458 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1459 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1460 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1461 	}
1462 #endif	/* BURN_BRIDGES */
1463 
1464 	/*
1465 	 * Map control/status registers.
1466 	 */
1467 	pci_enable_busmaster(dev);
1468 
1469 	/*
1470 	 * Allocate I/O resource
1471 	 */
1472 #ifdef MSK_USEIOSPACE
1473 	sc->msk_res_type = SYS_RES_IOPORT;
1474 	sc->msk_res_rid = PCIR_BAR(1);
1475 #else
1476 	sc->msk_res_type = SYS_RES_MEMORY;
1477 	sc->msk_res_rid = PCIR_BAR(0);
1478 #endif
1479 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1480 					     &sc->msk_res_rid, RF_ACTIVE);
1481 	if (sc->msk_res == NULL) {
1482 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1483 			sc->msk_res_type = SYS_RES_IOPORT;
1484 			sc->msk_res_rid = PCIR_BAR(1);
1485 		} else {
1486 			sc->msk_res_type = SYS_RES_MEMORY;
1487 			sc->msk_res_rid = PCIR_BAR(0);
1488 		}
1489 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1490 						     &sc->msk_res_rid,
1491 						     RF_ACTIVE);
1492 		if (sc->msk_res == NULL) {
1493 			device_printf(dev, "couldn't allocate %s resources\n",
1494 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1495 			return (ENXIO);
1496 		}
1497 	}
1498 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1499 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1500 
1501 	/*
1502 	 * Allocate IRQ
1503 	 */
1504 	sc->msk_irq_rid = 0;
1505 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1506 					     &sc->msk_irq_rid,
1507 					     RF_SHAREABLE | RF_ACTIVE);
1508 	if (sc->msk_irq == NULL) {
1509 		device_printf(dev, "couldn't allocate IRQ resources\n");
1510 		error = ENXIO;
1511 		goto fail;
1512 	}
1513 
1514 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1515 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1516 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1517 	/* Bail out if chip is not recognized. */
1518 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1519 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1520 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1521 		    sc->msk_hw_id, sc->msk_hw_rev);
1522 		error = ENXIO;
1523 		goto fail;
1524 	}
1525 
1526 	/*
1527 	 * Create sysctl tree
1528 	 */
1529 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1530 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1531 					      SYSCTL_STATIC_CHILDREN(_hw),
1532 					      OID_AUTO,
1533 					      device_get_nameunit(dev),
1534 					      CTLFLAG_RD, 0, "");
1535 	if (sc->msk_sysctl_tree == NULL) {
1536 		device_printf(dev, "can't add sysctl node\n");
1537 		error = ENXIO;
1538 		goto fail;
1539 	}
1540 
1541 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1542 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1543 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1544 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1545 			"I", "max number of Rx events to process");
1546 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1547 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1548 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1549 			sc, 0, mskc_sysctl_intr_rate,
1550 			"I", "max number of interrupt per second");
1551 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1552 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1553 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1554 		       0, "# of avoided m_defrag on TX path");
1555 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1556 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1557 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1558 		       0, "# of leading copies on TX path");
1559 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1560 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1561 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1562 		       0, "# of trailing copies on TX path");
1563 
1564 	/* Soft reset. */
1565 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1566 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1567 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1568 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1569 		sc->msk_coppertype = 0;
1570 	else
1571 		sc->msk_coppertype = 1;
1572 	/* Check number of MACs. */
1573 	sc->msk_num_port = 1;
1574 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1575 	    CFG_DUAL_MAC_MSK) {
1576 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1577 			sc->msk_num_port++;
1578 	}
1579 
1580 	/* Check bus type. */
1581 	if (pci_is_pcie(sc->msk_dev) == 0)
1582 		sc->msk_bustype = MSK_PEX_BUS;
1583 	else if (pci_is_pcix(sc->msk_dev) == 0)
1584 		sc->msk_bustype = MSK_PCIX_BUS;
1585 	else
1586 		sc->msk_bustype = MSK_PCI_BUS;
1587 
1588 	switch (sc->msk_hw_id) {
1589 	case CHIP_ID_YUKON_EC:
1590 	case CHIP_ID_YUKON_EC_U:
1591 		sc->msk_clock = 125;	/* 125 Mhz */
1592 		break;
1593 	case CHIP_ID_YUKON_FE:
1594 		sc->msk_clock = 100;	/* 100 Mhz */
1595 		break;
1596 	case CHIP_ID_YUKON_XL:
1597 		sc->msk_clock = 156;	/* 156 Mhz */
1598 		break;
1599 	default:
1600 		sc->msk_clock = 156;	/* 156 Mhz */
1601 		break;
1602 	}
1603 
1604 	error = mskc_status_dma_alloc(sc);
1605 	if (error)
1606 		goto fail;
1607 
1608 	/* Set base interrupt mask. */
1609 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1610 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1611 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1612 
1613 	/* Reset the adapter. */
1614 	mskc_reset(sc);
1615 
1616 	error = mskc_setup_rambuffer(sc);
1617 	if (error)
1618 		goto fail;
1619 
1620 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1621 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1622 		device_printf(dev, "failed to add child for PORT_A\n");
1623 		error = ENXIO;
1624 		goto fail;
1625 	}
1626 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1627 	*port = MSK_PORT_A;
1628 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1629 
1630 	if (sc->msk_num_port > 1) {
1631 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1632 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1633 			device_printf(dev, "failed to add child for PORT_B\n");
1634 			error = ENXIO;
1635 			goto fail;
1636 		}
1637 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1638 		*port = MSK_PORT_B;
1639 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1640 	}
1641 
1642 	bus_generic_attach(dev);
1643 
1644 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1645 			       mskc_intr, sc, &sc->msk_intrhand,
1646 			       &sc->msk_serializer);
1647 	if (error) {
1648 		device_printf(dev, "couldn't set up interrupt handler\n");
1649 		goto fail;
1650 	}
1651 
1652 	cpuid = ithread_cpuid(rman_get_start(sc->msk_irq));
1653 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1654 
1655 	if (sc->msk_if[0] != NULL)
1656 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1657 	if (sc->msk_if[1] != NULL)
1658 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1659 	return 0;
1660 fail:
1661 	mskc_detach(dev);
1662 	return (error);
1663 }
1664 
1665 /*
1666  * Shutdown hardware and free up resources. This can be called any
1667  * time after the mutex has been initialized. It is called in both
1668  * the error case in attach and the normal detach case so it needs
1669  * to be careful about only freeing resources that have actually been
1670  * allocated.
1671  */
1672 static int
1673 msk_detach(device_t dev)
1674 {
1675 	struct msk_if_softc *sc_if = device_get_softc(dev);
1676 
1677 	if (device_is_attached(dev)) {
1678 		struct msk_softc *sc = sc_if->msk_softc;
1679 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1680 
1681 		lwkt_serialize_enter(ifp->if_serializer);
1682 
1683 		if (sc->msk_intrhand != NULL) {
1684 			if (sc->msk_if[MSK_PORT_A] != NULL)
1685 				msk_stop(sc->msk_if[MSK_PORT_A]);
1686 			if (sc->msk_if[MSK_PORT_B] != NULL)
1687 				msk_stop(sc->msk_if[MSK_PORT_B]);
1688 
1689 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1690 					  sc->msk_intrhand);
1691 			sc->msk_intrhand = NULL;
1692 		}
1693 
1694 		lwkt_serialize_exit(ifp->if_serializer);
1695 
1696 		ether_ifdetach(ifp);
1697 	}
1698 
1699 	if (sc_if->msk_miibus != NULL)
1700 		device_delete_child(dev, sc_if->msk_miibus);
1701 
1702 	msk_txrx_dma_free(sc_if);
1703 	return (0);
1704 }
1705 
1706 static int
1707 mskc_detach(device_t dev)
1708 {
1709 	struct msk_softc *sc = device_get_softc(dev);
1710 	int *port, i;
1711 
1712 #ifdef INVARIANTS
1713 	if (device_is_attached(dev)) {
1714 		KASSERT(sc->msk_intrhand == NULL,
1715 			("intr is not torn down yet\n"));
1716 	}
1717 #endif
1718 
1719 	for (i = 0; i < sc->msk_num_port; ++i) {
1720 		if (sc->msk_devs[i] != NULL) {
1721 			port = device_get_ivars(sc->msk_devs[i]);
1722 			if (port != NULL) {
1723 				kfree(port, M_DEVBUF);
1724 				device_set_ivars(sc->msk_devs[i], NULL);
1725 			}
1726 			device_delete_child(dev, sc->msk_devs[i]);
1727 		}
1728 	}
1729 
1730 	/* Disable all interrupts. */
1731 	CSR_WRITE_4(sc, B0_IMSK, 0);
1732 	CSR_READ_4(sc, B0_IMSK);
1733 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1734 	CSR_READ_4(sc, B0_HWE_IMSK);
1735 
1736 	/* LED Off. */
1737 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1738 
1739 	/* Put hardware reset. */
1740 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1741 
1742 	mskc_status_dma_free(sc);
1743 
1744 	if (sc->msk_irq != NULL) {
1745 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1746 				     sc->msk_irq);
1747 	}
1748 	if (sc->msk_res != NULL) {
1749 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1750 				     sc->msk_res);
1751 	}
1752 
1753 	if (sc->msk_sysctl_tree != NULL)
1754 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1755 
1756 	return (0);
1757 }
1758 
1759 /* Create status DMA region. */
1760 static int
1761 mskc_status_dma_alloc(struct msk_softc *sc)
1762 {
1763 	bus_dmamem_t dmem;
1764 	int error;
1765 
1766 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1767 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1768 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1769 	if (error) {
1770 		device_printf(sc->msk_dev,
1771 		    "failed to create status coherent DMA memory\n");
1772 		return error;
1773 	}
1774 	sc->msk_stat_tag = dmem.dmem_tag;
1775 	sc->msk_stat_map = dmem.dmem_map;
1776 	sc->msk_stat_ring = dmem.dmem_addr;
1777 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1778 
1779 	return (0);
1780 }
1781 
1782 static void
1783 mskc_status_dma_free(struct msk_softc *sc)
1784 {
1785 	/* Destroy status block. */
1786 	if (sc->msk_stat_tag) {
1787 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1788 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1789 				sc->msk_stat_map);
1790 		bus_dma_tag_destroy(sc->msk_stat_tag);
1791 		sc->msk_stat_tag = NULL;
1792 	}
1793 }
1794 
1795 static int
1796 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1797 {
1798 	int error, i, j;
1799 #ifdef MSK_JUMBO
1800 	struct msk_rxdesc *jrxd;
1801 	struct msk_jpool_entry *entry;
1802 	uint8_t *ptr;
1803 #endif
1804 
1805 	/* Create parent DMA tag. */
1806 	/*
1807 	 * XXX
1808 	 * It seems that Yukon II supports full 64bits DMA operations. But
1809 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1810 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1811 	 * would be used in advance for each mbufs, we limits its DMA space
1812 	 * to be in range of 32bits address space. Otherwise, we should check
1813 	 * what DMA address is used and chain another descriptor for the
1814 	 * 64bits DMA operation. This also means descriptor ring size is
1815 	 * variable. Limiting DMA address to be in 32bit address space greatly
1816 	 * simplyfies descriptor handling and possibly would increase
1817 	 * performance a bit due to efficient handling of descriptors.
1818 	 * Apart from harassing checksum offloading mechanisms, it seems
1819 	 * it's really bad idea to use a seperate descriptor for 64bit
1820 	 * DMA operation to save small descriptor memory. Anyway, I've
1821 	 * never seen these exotic scheme on ethernet interface hardware.
1822 	 */
1823 	error = bus_dma_tag_create(
1824 		    NULL,			/* parent */
1825 		    1, 0,			/* alignment, boundary */
1826 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1827 		    BUS_SPACE_MAXADDR,		/* highaddr */
1828 		    NULL, NULL,			/* filter, filterarg */
1829 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1830 		    0,				/* nsegments */
1831 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1832 		    0,				/* flags */
1833 		    &sc_if->msk_cdata.msk_parent_tag);
1834 	if (error) {
1835 		device_printf(sc_if->msk_if_dev,
1836 			      "failed to create parent DMA tag\n");
1837 		return error;
1838 	}
1839 
1840 	/* Create DMA stuffs for Tx ring. */
1841 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1842 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1843 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1844 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1845 				  &sc_if->msk_cdata.msk_tx_ring_map);
1846 	if (error) {
1847 		device_printf(sc_if->msk_if_dev,
1848 			      "failed to create TX ring DMA stuffs\n");
1849 		return error;
1850 	}
1851 
1852 	/* Create DMA stuffs for Rx ring. */
1853 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1854 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1855 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1856 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1857 				  &sc_if->msk_cdata.msk_rx_ring_map);
1858 	if (error) {
1859 		device_printf(sc_if->msk_if_dev,
1860 			      "failed to create RX ring DMA stuffs\n");
1861 		return error;
1862 	}
1863 
1864 	/* Create tag for Tx buffers. */
1865 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1866 		    1, 0,			/* alignment, boundary */
1867 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1868 		    BUS_SPACE_MAXADDR,		/* highaddr */
1869 		    NULL, NULL,			/* filter, filterarg */
1870 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1871 		    MSK_MAXTXSEGS,		/* nsegments */
1872 		    MSK_MAXSGSIZE,		/* maxsegsize */
1873 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1874 		    BUS_DMA_ONEBPAGE,		/* flags */
1875 		    &sc_if->msk_cdata.msk_tx_tag);
1876 	if (error) {
1877 		device_printf(sc_if->msk_if_dev,
1878 			      "failed to create Tx DMA tag\n");
1879 		return error;
1880 	}
1881 
1882 	/* Create DMA maps for Tx buffers. */
1883 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1884 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1885 
1886 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1887 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1888 				&txd->tx_dmamap);
1889 		if (error) {
1890 			device_printf(sc_if->msk_if_dev,
1891 				      "failed to create %dth Tx dmamap\n", i);
1892 
1893 			for (j = 0; j < i; ++j) {
1894 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1895 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1896 						   txd->tx_dmamap);
1897 			}
1898 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1899 			sc_if->msk_cdata.msk_tx_tag = NULL;
1900 
1901 			return error;
1902 		}
1903 	}
1904 
1905 	/* Create tag for Rx buffers. */
1906 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1907 		    1, 0,			/* alignment, boundary */
1908 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1909 		    BUS_SPACE_MAXADDR,		/* highaddr */
1910 		    NULL, NULL,			/* filter, filterarg */
1911 		    MCLBYTES,			/* maxsize */
1912 		    1,				/* nsegments */
1913 		    MCLBYTES,			/* maxsegsize */
1914 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,/* flags */
1915 		    &sc_if->msk_cdata.msk_rx_tag);
1916 	if (error) {
1917 		device_printf(sc_if->msk_if_dev,
1918 			      "failed to create Rx DMA tag\n");
1919 		return error;
1920 	}
1921 
1922 	/* Create DMA maps for Rx buffers. */
1923 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
1924 				  &sc_if->msk_cdata.msk_rx_sparemap);
1925 	if (error) {
1926 		device_printf(sc_if->msk_if_dev,
1927 			      "failed to create spare Rx dmamap\n");
1928 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
1929 		sc_if->msk_cdata.msk_rx_tag = NULL;
1930 		return error;
1931 	}
1932 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
1933 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
1934 
1935 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
1936 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
1937 		if (error) {
1938 			device_printf(sc_if->msk_if_dev,
1939 				      "failed to create %dth Rx dmamap\n", i);
1940 
1941 			for (j = 0; j < i; ++j) {
1942 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
1943 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
1944 						   rxd->rx_dmamap);
1945 			}
1946 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
1947 					   sc_if->msk_cdata.msk_rx_sparemap);
1948 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
1949 			sc_if->msk_cdata.msk_rx_tag = NULL;
1950 
1951 			return error;
1952 		}
1953 	}
1954 
1955 #ifdef MSK_JUMBO
1956 	SLIST_INIT(&sc_if->msk_jfree_listhead);
1957 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
1958 
1959 	/* Create tag for jumbo Rx ring. */
1960 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1961 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
1962 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1963 		    BUS_SPACE_MAXADDR,		/* highaddr */
1964 		    NULL, NULL,			/* filter, filterarg */
1965 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
1966 		    1,				/* nsegments */
1967 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
1968 		    0,				/* flags */
1969 		    NULL, NULL,			/* lockfunc, lockarg */
1970 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
1971 	if (error != 0) {
1972 		device_printf(sc_if->msk_if_dev,
1973 		    "failed to create jumbo Rx ring DMA tag\n");
1974 		goto fail;
1975 	}
1976 
1977 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
1978 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
1979 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
1980 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1981 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
1982 	if (error != 0) {
1983 		device_printf(sc_if->msk_if_dev,
1984 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
1985 		goto fail;
1986 	}
1987 
1988 	ctx.msk_busaddr = 0;
1989 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
1990 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
1991 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
1992 	    msk_dmamap_cb, &ctx, 0);
1993 	if (error != 0) {
1994 		device_printf(sc_if->msk_if_dev,
1995 		    "failed to load DMA'able memory for jumbo Rx ring\n");
1996 		goto fail;
1997 	}
1998 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
1999 
2000 	/* Create tag for jumbo buffer blocks. */
2001 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2002 		    PAGE_SIZE, 0,		/* alignment, boundary */
2003 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2004 		    BUS_SPACE_MAXADDR,		/* highaddr */
2005 		    NULL, NULL,			/* filter, filterarg */
2006 		    MSK_JMEM,			/* maxsize */
2007 		    1,				/* nsegments */
2008 		    MSK_JMEM,			/* maxsegsize */
2009 		    0,				/* flags */
2010 		    NULL, NULL,			/* lockfunc, lockarg */
2011 		    &sc_if->msk_cdata.msk_jumbo_tag);
2012 	if (error != 0) {
2013 		device_printf(sc_if->msk_if_dev,
2014 		    "failed to create jumbo Rx buffer block DMA tag\n");
2015 		goto fail;
2016 	}
2017 
2018 	/* Create tag for jumbo Rx buffers. */
2019 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2020 		    PAGE_SIZE, 0,		/* alignment, boundary */
2021 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2022 		    BUS_SPACE_MAXADDR,		/* highaddr */
2023 		    NULL, NULL,			/* filter, filterarg */
2024 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2025 		    MSK_MAXRXSEGS,		/* nsegments */
2026 		    MSK_JLEN,			/* maxsegsize */
2027 		    0,				/* flags */
2028 		    NULL, NULL,			/* lockfunc, lockarg */
2029 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2030 	if (error != 0) {
2031 		device_printf(sc_if->msk_if_dev,
2032 		    "failed to create jumbo Rx DMA tag\n");
2033 		goto fail;
2034 	}
2035 
2036 	/* Create DMA maps for jumbo Rx buffers. */
2037 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2038 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2039 		device_printf(sc_if->msk_if_dev,
2040 		    "failed to create spare jumbo Rx dmamap\n");
2041 		goto fail;
2042 	}
2043 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2044 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2045 		jrxd->rx_m = NULL;
2046 		jrxd->rx_dmamap = NULL;
2047 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2048 		    &jrxd->rx_dmamap);
2049 		if (error != 0) {
2050 			device_printf(sc_if->msk_if_dev,
2051 			    "failed to create jumbo Rx dmamap\n");
2052 			goto fail;
2053 		}
2054 	}
2055 
2056 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2057 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2058 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2059 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2060 	    &sc_if->msk_cdata.msk_jumbo_map);
2061 	if (error != 0) {
2062 		device_printf(sc_if->msk_if_dev,
2063 		    "failed to allocate DMA'able memory for jumbo buf\n");
2064 		goto fail;
2065 	}
2066 
2067 	ctx.msk_busaddr = 0;
2068 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2069 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2070 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2071 	if (error != 0) {
2072 		device_printf(sc_if->msk_if_dev,
2073 		    "failed to load DMA'able memory for jumbobuf\n");
2074 		goto fail;
2075 	}
2076 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2077 
2078 	/*
2079 	 * Now divide it up into 9K pieces and save the addresses
2080 	 * in an array.
2081 	 */
2082 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2083 	for (i = 0; i < MSK_JSLOTS; i++) {
2084 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2085 		ptr += MSK_JLEN;
2086 		entry = malloc(sizeof(struct msk_jpool_entry),
2087 		    M_DEVBUF, M_WAITOK);
2088 		if (entry == NULL) {
2089 			device_printf(sc_if->msk_if_dev,
2090 			    "no memory for jumbo buffers!\n");
2091 			error = ENOMEM;
2092 			goto fail;
2093 		}
2094 		entry->slot = i;
2095 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2096 		    jpool_entries);
2097 	}
2098 #endif
2099 	return 0;
2100 }
2101 
2102 static void
2103 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2104 {
2105 	struct msk_txdesc *txd;
2106 	struct msk_rxdesc *rxd;
2107 #ifdef MSK_JUMBO
2108 	struct msk_rxdesc *jrxd;
2109 	struct msk_jpool_entry *entry;
2110 #endif
2111 	int i;
2112 
2113 #ifdef MSK_JUMBO
2114 	MSK_JLIST_LOCK(sc_if);
2115 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2116 		device_printf(sc_if->msk_if_dev,
2117 		    "asked to free buffer that is in use!\n");
2118 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2119 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2120 		    jpool_entries);
2121 	}
2122 
2123 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2124 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2125 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2126 		free(entry, M_DEVBUF);
2127 	}
2128 	MSK_JLIST_UNLOCK(sc_if);
2129 
2130 	/* Destroy jumbo buffer block. */
2131 	if (sc_if->msk_cdata.msk_jumbo_map)
2132 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2133 		    sc_if->msk_cdata.msk_jumbo_map);
2134 
2135 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2136 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2137 		    sc_if->msk_rdata.msk_jumbo_buf,
2138 		    sc_if->msk_cdata.msk_jumbo_map);
2139 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2140 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2141 	}
2142 
2143 	/* Jumbo Rx ring. */
2144 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2145 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2146 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2147 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2148 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2149 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2150 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2151 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2152 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2153 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2154 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2155 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2156 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2157 	}
2158 
2159 	/* Jumbo Rx buffers. */
2160 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2161 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2162 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2163 			if (jrxd->rx_dmamap) {
2164 				bus_dmamap_destroy(
2165 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2166 				    jrxd->rx_dmamap);
2167 				jrxd->rx_dmamap = NULL;
2168 			}
2169 		}
2170 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2171 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2172 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2173 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2174 		}
2175 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2176 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2177 	}
2178 #endif
2179 
2180 	/* Tx ring. */
2181 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2182 			   sc_if->msk_rdata.msk_tx_ring,
2183 			   sc_if->msk_cdata.msk_tx_ring_map);
2184 
2185 	/* Rx ring. */
2186 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2187 			   sc_if->msk_rdata.msk_rx_ring,
2188 			   sc_if->msk_cdata.msk_rx_ring_map);
2189 
2190 	/* Tx buffers. */
2191 	if (sc_if->msk_cdata.msk_tx_tag) {
2192 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2193 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2194 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2195 					   txd->tx_dmamap);
2196 		}
2197 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2198 		sc_if->msk_cdata.msk_tx_tag = NULL;
2199 	}
2200 
2201 	/* Rx buffers. */
2202 	if (sc_if->msk_cdata.msk_rx_tag) {
2203 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2204 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2205 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2206 					   rxd->rx_dmamap);
2207 		}
2208 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2209 				   sc_if->msk_cdata.msk_rx_sparemap);
2210 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2211 		sc_if->msk_cdata.msk_rx_tag = NULL;
2212 	}
2213 
2214 	if (sc_if->msk_cdata.msk_parent_tag) {
2215 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2216 		sc_if->msk_cdata.msk_parent_tag = NULL;
2217 	}
2218 }
2219 
2220 #ifdef MSK_JUMBO
2221 /*
2222  * Allocate a jumbo buffer.
2223  */
2224 static void *
2225 msk_jalloc(struct msk_if_softc *sc_if)
2226 {
2227 	struct msk_jpool_entry *entry;
2228 
2229 	MSK_JLIST_LOCK(sc_if);
2230 
2231 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2232 
2233 	if (entry == NULL) {
2234 		MSK_JLIST_UNLOCK(sc_if);
2235 		return (NULL);
2236 	}
2237 
2238 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2239 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2240 
2241 	MSK_JLIST_UNLOCK(sc_if);
2242 
2243 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2244 }
2245 
2246 /*
2247  * Release a jumbo buffer.
2248  */
2249 static void
2250 msk_jfree(void *buf, void *args)
2251 {
2252 	struct msk_if_softc *sc_if;
2253 	struct msk_jpool_entry *entry;
2254 	int i;
2255 
2256 	/* Extract the softc struct pointer. */
2257 	sc_if = (struct msk_if_softc *)args;
2258 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2259 
2260 	MSK_JLIST_LOCK(sc_if);
2261 	/* Calculate the slot this buffer belongs to. */
2262 	i = ((vm_offset_t)buf
2263 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2264 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2265 	    ("%s: asked to free buffer that we don't manage!", __func__));
2266 
2267 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2268 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2269 	entry->slot = i;
2270 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2271 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2272 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2273 		wakeup(sc_if);
2274 
2275 	MSK_JLIST_UNLOCK(sc_if);
2276 }
2277 #endif
2278 
2279 static int
2280 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2281 {
2282 	struct msk_txdesc *txd, *txd_last;
2283 	struct msk_tx_desc *tx_le;
2284 	struct mbuf *m;
2285 	bus_dmamap_t map;
2286 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2287 	uint32_t control, prod, si;
2288 	uint16_t offset, tcp_offset;
2289 	int error, i, nsegs, maxsegs, defrag;
2290 
2291 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2292 		  MSK_RESERVED_TX_DESC_CNT;
2293 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2294 		("not enough spare TX desc\n"));
2295 	if (maxsegs > MSK_MAXTXSEGS)
2296 		maxsegs = MSK_MAXTXSEGS;
2297 
2298 	/*
2299 	 * Align TX buffer to 64bytes boundary.  This greately improves
2300 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2301 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2302 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2303 	 */
2304 
2305 #define MSK_TXBUF_ALIGN	64
2306 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2307 
2308 	defrag = 1;
2309 	m = *m_head;
2310 	if (m->m_len == m->m_pkthdr.len) {
2311 		int space;
2312 
2313 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2314 		if (space) {
2315 			if (M_WRITABLE(m)) {
2316 				if (M_TRAILINGSPACE(m) >= space) {
2317 					/* e.g. TCP ACKs */
2318 					bcopy(m->m_data, m->m_data + space,
2319 					      m->m_len);
2320 					m->m_data += space;
2321 					defrag = 0;
2322 					sc_if->msk_softc->msk_trailing_copied++;
2323 				} else {
2324 					space = MSK_TXBUF_ALIGN - space;
2325 					if (M_LEADINGSPACE(m) >= space) {
2326 						/* e.g. Small UDP datagrams */
2327 						bcopy(m->m_data,
2328 						      m->m_data - space,
2329 						      m->m_len);
2330 						m->m_data -= space;
2331 						defrag = 0;
2332 						sc_if->msk_softc->
2333 						msk_leading_copied++;
2334 					}
2335 				}
2336 			}
2337 		} else {
2338 			/* e.g. on forwarding path */
2339 			defrag = 0;
2340 		}
2341 	}
2342 	if (defrag) {
2343 		m = m_defrag(*m_head, MB_DONTWAIT);
2344 		if (m == NULL) {
2345 			m_freem(*m_head);
2346 			*m_head = NULL;
2347 			return ENOBUFS;
2348 		}
2349 		*m_head = m;
2350 	} else {
2351 		sc_if->msk_softc->msk_defrag_avoided++;
2352 	}
2353 
2354 #undef MSK_TXBUF_MASK
2355 #undef MSK_TXBUF_ALIGN
2356 
2357 	tcp_offset = offset = 0;
2358 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2359 		/*
2360 		 * Since mbuf has no protocol specific structure information
2361 		 * in it we have to inspect protocol information here to
2362 		 * setup TSO and checksum offload. I don't know why Marvell
2363 		 * made a such decision in chip design because other GigE
2364 		 * hardwares normally takes care of all these chores in
2365 		 * hardware. However, TSO performance of Yukon II is very
2366 		 * good such that it's worth to implement it.
2367 		 */
2368 		struct ether_header *eh;
2369 		struct ip *ip;
2370 
2371 		/* TODO check for M_WRITABLE(m) */
2372 
2373 		offset = sizeof(struct ether_header);
2374 		m = m_pullup(m, offset);
2375 		if (m == NULL) {
2376 			*m_head = NULL;
2377 			return (ENOBUFS);
2378 		}
2379 		eh = mtod(m, struct ether_header *);
2380 		/* Check if hardware VLAN insertion is off. */
2381 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2382 			offset = sizeof(struct ether_vlan_header);
2383 			m = m_pullup(m, offset);
2384 			if (m == NULL) {
2385 				*m_head = NULL;
2386 				return (ENOBUFS);
2387 			}
2388 		}
2389 		m = m_pullup(m, offset + sizeof(struct ip));
2390 		if (m == NULL) {
2391 			*m_head = NULL;
2392 			return (ENOBUFS);
2393 		}
2394 		ip = (struct ip *)(mtod(m, char *) + offset);
2395 		offset += (ip->ip_hl << 2);
2396 		tcp_offset = offset;
2397 		/*
2398 		 * It seems that Yukon II has Tx checksum offload bug for
2399 		 * small TCP packets that's less than 60 bytes in size
2400 		 * (e.g. TCP window probe packet, pure ACK packet).
2401 		 * Common work around like padding with zeros to make the
2402 		 * frame minimum ethernet frame size didn't work at all.
2403 		 * Instead of disabling checksum offload completely we
2404 		 * resort to S/W checksum routine when we encounter short
2405 		 * TCP frames.
2406 		 * Short UDP packets appear to be handled correctly by
2407 		 * Yukon II.
2408 		 */
2409 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2410 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2411 			uint16_t csum;
2412 
2413 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2414 			    (ip->ip_hl << 2), offset);
2415 			*(uint16_t *)(m->m_data + offset +
2416 			    m->m_pkthdr.csum_data) = csum;
2417 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2418 		}
2419 		*m_head = m;
2420 	}
2421 
2422 	prod = sc_if->msk_cdata.msk_tx_prod;
2423 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2424 	txd_last = txd;
2425 	map = txd->tx_dmamap;
2426 
2427 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2428 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2429 	if (error) {
2430 		m_freem(*m_head);
2431 		*m_head = NULL;
2432 		return error;
2433 	}
2434 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2435 
2436 	m = *m_head;
2437 	control = 0;
2438 	tx_le = NULL;
2439 
2440 #ifdef notyet
2441 	/* Check if we have a VLAN tag to insert. */
2442 	if ((m->m_flags & M_VLANTAG) != 0) {
2443 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2444 		tx_le->msk_addr = htole32(0);
2445 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2446 		    htons(m->m_pkthdr.ether_vtag));
2447 		sc_if->msk_cdata.msk_tx_cnt++;
2448 		MSK_INC(prod, MSK_TX_RING_CNT);
2449 		control |= INS_VLAN;
2450 	}
2451 #endif
2452 	/* Check if we have to handle checksum offload. */
2453 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2454 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2455 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2456 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2457 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2458 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2459 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2460 			control |= UDPTCP;
2461 		sc_if->msk_cdata.msk_tx_cnt++;
2462 		MSK_INC(prod, MSK_TX_RING_CNT);
2463 	}
2464 
2465 	si = prod;
2466 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2467 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2468 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2469 	    OP_PACKET);
2470 	sc_if->msk_cdata.msk_tx_cnt++;
2471 	MSK_INC(prod, MSK_TX_RING_CNT);
2472 
2473 	for (i = 1; i < nsegs; i++) {
2474 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2475 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2476 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2477 		    OP_BUFFER | HW_OWNER);
2478 		sc_if->msk_cdata.msk_tx_cnt++;
2479 		MSK_INC(prod, MSK_TX_RING_CNT);
2480 	}
2481 	/* Update producer index. */
2482 	sc_if->msk_cdata.msk_tx_prod = prod;
2483 
2484 	/* Set EOP on the last desciptor. */
2485 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2486 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2487 	tx_le->msk_control |= htole32(EOP);
2488 
2489 	/* Turn the first descriptor ownership to hardware. */
2490 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2491 	tx_le->msk_control |= htole32(HW_OWNER);
2492 
2493 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2494 	map = txd_last->tx_dmamap;
2495 	txd_last->tx_dmamap = txd->tx_dmamap;
2496 	txd->tx_dmamap = map;
2497 	txd->tx_m = m;
2498 
2499 	return (0);
2500 }
2501 
2502 static void
2503 msk_start(struct ifnet *ifp)
2504 {
2505         struct msk_if_softc *sc_if;
2506         struct mbuf *m_head;
2507 	int enq;
2508 
2509 	sc_if = ifp->if_softc;
2510 
2511 	ASSERT_SERIALIZED(ifp->if_serializer);
2512 
2513 	if (!sc_if->msk_link) {
2514 		ifq_purge(&ifp->if_snd);
2515 		return;
2516 	}
2517 
2518 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2519 		return;
2520 
2521 	enq = 0;
2522 	while (!ifq_is_empty(&ifp->if_snd)) {
2523 		if (MSK_IS_OACTIVE(sc_if)) {
2524 			ifp->if_flags |= IFF_OACTIVE;
2525 			break;
2526 		}
2527 
2528 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2529 		if (m_head == NULL)
2530 			break;
2531 
2532 		/*
2533 		 * Pack the data into the transmit ring. If we
2534 		 * don't have room, set the OACTIVE flag and wait
2535 		 * for the NIC to drain the ring.
2536 		 */
2537 		if (msk_encap(sc_if, &m_head) != 0) {
2538 			ifp->if_oerrors++;
2539 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2540 				continue;
2541 			} else {
2542 				ifp->if_flags |= IFF_OACTIVE;
2543 				break;
2544 			}
2545 		}
2546 		enq = 1;
2547 
2548 		/*
2549 		 * If there's a BPF listener, bounce a copy of this frame
2550 		 * to him.
2551 		 */
2552 		BPF_MTAP(ifp, m_head);
2553 	}
2554 
2555 	if (enq) {
2556 		/* Transmit */
2557 		CSR_WRITE_2(sc_if->msk_softc,
2558 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2559 		    sc_if->msk_cdata.msk_tx_prod);
2560 
2561 		/* Set a timeout in case the chip goes out to lunch. */
2562 		ifp->if_timer = MSK_TX_TIMEOUT;
2563 	}
2564 }
2565 
2566 static void
2567 msk_watchdog(struct ifnet *ifp)
2568 {
2569 	struct msk_if_softc *sc_if = ifp->if_softc;
2570 	uint32_t ridx;
2571 	int idx;
2572 
2573 	ASSERT_SERIALIZED(ifp->if_serializer);
2574 
2575 	if (sc_if->msk_link == 0) {
2576 		if (bootverbose)
2577 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2578 			   "(missed link)\n");
2579 		ifp->if_oerrors++;
2580 		msk_init(sc_if);
2581 		return;
2582 	}
2583 
2584 	/*
2585 	 * Reclaim first as there is a possibility of losing Tx completion
2586 	 * interrupts.
2587 	 */
2588 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2589 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2590 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2591 		msk_txeof(sc_if, idx);
2592 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2593 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2594 			    "-- recovering\n");
2595 			if (!ifq_is_empty(&ifp->if_snd))
2596 				if_devstart(ifp);
2597 			return;
2598 		}
2599 	}
2600 
2601 	if_printf(ifp, "watchdog timeout\n");
2602 	ifp->if_oerrors++;
2603 	msk_init(sc_if);
2604 	if (!ifq_is_empty(&ifp->if_snd))
2605 		if_devstart(ifp);
2606 }
2607 
2608 static int
2609 mskc_shutdown(device_t dev)
2610 {
2611 	struct msk_softc *sc = device_get_softc(dev);
2612 	int i;
2613 
2614 	lwkt_serialize_enter(&sc->msk_serializer);
2615 
2616 	for (i = 0; i < sc->msk_num_port; i++) {
2617 		if (sc->msk_if[i] != NULL)
2618 			msk_stop(sc->msk_if[i]);
2619 	}
2620 
2621 	/* Disable all interrupts. */
2622 	CSR_WRITE_4(sc, B0_IMSK, 0);
2623 	CSR_READ_4(sc, B0_IMSK);
2624 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2625 	CSR_READ_4(sc, B0_HWE_IMSK);
2626 
2627 	/* Put hardware reset. */
2628 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2629 
2630 	lwkt_serialize_exit(&sc->msk_serializer);
2631 	return (0);
2632 }
2633 
2634 static int
2635 mskc_suspend(device_t dev)
2636 {
2637 	struct msk_softc *sc = device_get_softc(dev);
2638 	int i;
2639 
2640 	lwkt_serialize_enter(&sc->msk_serializer);
2641 
2642 	for (i = 0; i < sc->msk_num_port; i++) {
2643 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2644 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2645 			msk_stop(sc->msk_if[i]);
2646 	}
2647 
2648 	/* Disable all interrupts. */
2649 	CSR_WRITE_4(sc, B0_IMSK, 0);
2650 	CSR_READ_4(sc, B0_IMSK);
2651 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2652 	CSR_READ_4(sc, B0_HWE_IMSK);
2653 
2654 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2655 
2656 	/* Put hardware reset. */
2657 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2658 	sc->msk_suspended = 1;
2659 
2660 	lwkt_serialize_exit(&sc->msk_serializer);
2661 
2662 	return (0);
2663 }
2664 
2665 static int
2666 mskc_resume(device_t dev)
2667 {
2668 	struct msk_softc *sc = device_get_softc(dev);
2669 	int i;
2670 
2671 	lwkt_serialize_enter(&sc->msk_serializer);
2672 
2673 	mskc_reset(sc);
2674 	for (i = 0; i < sc->msk_num_port; i++) {
2675 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2676 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2677 			msk_init(sc->msk_if[i]);
2678 	}
2679 	sc->msk_suspended = 0;
2680 
2681 	lwkt_serialize_exit(&sc->msk_serializer);
2682 
2683 	return (0);
2684 }
2685 
2686 static void
2687 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2688 	  struct mbuf_chain *chain)
2689 {
2690 	struct mbuf *m;
2691 	struct ifnet *ifp;
2692 	struct msk_rxdesc *rxd;
2693 	int cons, rxlen;
2694 
2695 	ifp = sc_if->msk_ifp;
2696 
2697 	cons = sc_if->msk_cdata.msk_rx_cons;
2698 	do {
2699 		rxlen = status >> 16;
2700 		if ((status & GMR_FS_VLAN) != 0 &&
2701 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2702 			rxlen -= EVL_ENCAPLEN;
2703 		if (len > sc_if->msk_framesize ||
2704 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2705 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2706 			/* Don't count flow-control packet as errors. */
2707 			if ((status & GMR_FS_GOOD_FC) == 0)
2708 				ifp->if_ierrors++;
2709 			msk_discard_rxbuf(sc_if, cons);
2710 			break;
2711 		}
2712 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2713 		m = rxd->rx_m;
2714 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2715 			ifp->if_iqdrops++;
2716 			/* Reuse old buffer. */
2717 			msk_discard_rxbuf(sc_if, cons);
2718 			break;
2719 		}
2720 		m->m_pkthdr.rcvif = ifp;
2721 		m->m_pkthdr.len = m->m_len = len;
2722 		ifp->if_ipackets++;
2723 #ifdef notyet
2724 		/* Check for VLAN tagged packets. */
2725 		if ((status & GMR_FS_VLAN) != 0 &&
2726 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2727 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2728 			m->m_flags |= M_VLANTAG;
2729 		}
2730 #endif
2731 
2732 		ether_input_chain(ifp, m, NULL, chain);
2733 	} while (0);
2734 
2735 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2736 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2737 }
2738 
2739 #ifdef MSK_JUMBO
2740 static void
2741 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2742 {
2743 	struct mbuf *m;
2744 	struct ifnet *ifp;
2745 	struct msk_rxdesc *jrxd;
2746 	int cons, rxlen;
2747 
2748 	ifp = sc_if->msk_ifp;
2749 
2750 	MSK_IF_LOCK_ASSERT(sc_if);
2751 
2752 	cons = sc_if->msk_cdata.msk_rx_cons;
2753 	do {
2754 		rxlen = status >> 16;
2755 		if ((status & GMR_FS_VLAN) != 0 &&
2756 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2757 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2758 		if (len > sc_if->msk_framesize ||
2759 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2760 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2761 			/* Don't count flow-control packet as errors. */
2762 			if ((status & GMR_FS_GOOD_FC) == 0)
2763 				ifp->if_ierrors++;
2764 			msk_discard_jumbo_rxbuf(sc_if, cons);
2765 			break;
2766 		}
2767 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2768 		m = jrxd->rx_m;
2769 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2770 			ifp->if_iqdrops++;
2771 			/* Reuse old buffer. */
2772 			msk_discard_jumbo_rxbuf(sc_if, cons);
2773 			break;
2774 		}
2775 		m->m_pkthdr.rcvif = ifp;
2776 		m->m_pkthdr.len = m->m_len = len;
2777 		ifp->if_ipackets++;
2778 		/* Check for VLAN tagged packets. */
2779 		if ((status & GMR_FS_VLAN) != 0 &&
2780 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2781 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2782 			m->m_flags |= M_VLANTAG;
2783 		}
2784 		MSK_IF_UNLOCK(sc_if);
2785 		(*ifp->if_input)(ifp, m);
2786 		MSK_IF_LOCK(sc_if);
2787 	} while (0);
2788 
2789 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2790 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2791 }
2792 #endif
2793 
2794 static void
2795 msk_txeof(struct msk_if_softc *sc_if, int idx)
2796 {
2797 	struct msk_txdesc *txd;
2798 	struct msk_tx_desc *cur_tx;
2799 	struct ifnet *ifp;
2800 	uint32_t control;
2801 	int cons, prog;
2802 
2803 	ifp = sc_if->msk_ifp;
2804 
2805 	/*
2806 	 * Go through our tx ring and free mbufs for those
2807 	 * frames that have been sent.
2808 	 */
2809 	cons = sc_if->msk_cdata.msk_tx_cons;
2810 	prog = 0;
2811 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2812 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2813 			break;
2814 		prog++;
2815 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2816 		control = le32toh(cur_tx->msk_control);
2817 		sc_if->msk_cdata.msk_tx_cnt--;
2818 		if ((control & EOP) == 0)
2819 			continue;
2820 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2821 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2822 
2823 		ifp->if_opackets++;
2824 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2825 		    __func__));
2826 		m_freem(txd->tx_m);
2827 		txd->tx_m = NULL;
2828 	}
2829 
2830 	if (prog > 0) {
2831 		sc_if->msk_cdata.msk_tx_cons = cons;
2832 		if (!MSK_IS_OACTIVE(sc_if))
2833 			ifp->if_flags &= ~IFF_OACTIVE;
2834 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2835 			ifp->if_timer = 0;
2836 		/* No need to sync LEs as we didn't update LEs. */
2837 	}
2838 }
2839 
2840 static void
2841 msk_tick(void *xsc_if)
2842 {
2843 	struct msk_if_softc *sc_if = xsc_if;
2844 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2845 	struct mii_data *mii;
2846 
2847 	lwkt_serialize_enter(ifp->if_serializer);
2848 
2849 	mii = device_get_softc(sc_if->msk_miibus);
2850 
2851 	mii_tick(mii);
2852 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2853 
2854 	lwkt_serialize_exit(ifp->if_serializer);
2855 }
2856 
2857 static void
2858 msk_intr_phy(struct msk_if_softc *sc_if)
2859 {
2860 	uint16_t status;
2861 
2862 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2863 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2864 	/* Handle FIFO Underrun/Overflow? */
2865 	if (status & PHY_M_IS_FIFO_ERROR) {
2866 		device_printf(sc_if->msk_if_dev,
2867 		    "PHY FIFO underrun/overflow.\n");
2868 	}
2869 }
2870 
2871 static void
2872 msk_intr_gmac(struct msk_if_softc *sc_if)
2873 {
2874 	struct msk_softc *sc;
2875 	uint8_t status;
2876 
2877 	sc = sc_if->msk_softc;
2878 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2879 
2880 	/* GMAC Rx FIFO overrun. */
2881 	if ((status & GM_IS_RX_FF_OR) != 0) {
2882 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2883 		    GMF_CLI_RX_FO);
2884 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
2885 	}
2886 	/* GMAC Tx FIFO underrun. */
2887 	if ((status & GM_IS_TX_FF_UR) != 0) {
2888 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2889 		    GMF_CLI_TX_FU);
2890 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2891 		/*
2892 		 * XXX
2893 		 * In case of Tx underrun, we may need to flush/reset
2894 		 * Tx MAC but that would also require resynchronization
2895 		 * with status LEs. Reintializing status LEs would
2896 		 * affect other port in dual MAC configuration so it
2897 		 * should be avoided as possible as we can.
2898 		 * Due to lack of documentation it's all vague guess but
2899 		 * it needs more investigation.
2900 		 */
2901 	}
2902 }
2903 
2904 static void
2905 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
2906 {
2907 	struct msk_softc *sc;
2908 
2909 	sc = sc_if->msk_softc;
2910 	if ((status & Y2_IS_PAR_RD1) != 0) {
2911 		device_printf(sc_if->msk_if_dev,
2912 		    "RAM buffer read parity error\n");
2913 		/* Clear IRQ. */
2914 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
2915 		    RI_CLR_RD_PERR);
2916 	}
2917 	if ((status & Y2_IS_PAR_WR1) != 0) {
2918 		device_printf(sc_if->msk_if_dev,
2919 		    "RAM buffer write parity error\n");
2920 		/* Clear IRQ. */
2921 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
2922 		    RI_CLR_WR_PERR);
2923 	}
2924 	if ((status & Y2_IS_PAR_MAC1) != 0) {
2925 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
2926 		/* Clear IRQ. */
2927 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2928 		    GMF_CLI_TX_PE);
2929 	}
2930 	if ((status & Y2_IS_PAR_RX1) != 0) {
2931 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
2932 		/* Clear IRQ. */
2933 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
2934 	}
2935 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
2936 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
2937 		/* Clear IRQ. */
2938 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
2939 	}
2940 }
2941 
2942 static void
2943 mskc_intr_hwerr(struct msk_softc *sc)
2944 {
2945 	uint32_t status;
2946 	uint32_t tlphead[4];
2947 
2948 	status = CSR_READ_4(sc, B0_HWE_ISRC);
2949 	/* Time Stamp timer overflow. */
2950 	if ((status & Y2_IS_TIST_OV) != 0)
2951 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2952 	if ((status & Y2_IS_PCI_NEXP) != 0) {
2953 		/*
2954 		 * PCI Express Error occured which is not described in PEX
2955 		 * spec.
2956 		 * This error is also mapped either to Master Abort(
2957 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
2958 		 * can only be cleared there.
2959                  */
2960 		device_printf(sc->msk_dev,
2961 		    "PCI Express protocol violation error\n");
2962 	}
2963 
2964 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
2965 		uint16_t v16;
2966 
2967 		if ((status & Y2_IS_MST_ERR) != 0)
2968 			device_printf(sc->msk_dev,
2969 			    "unexpected IRQ Status error\n");
2970 		else
2971 			device_printf(sc->msk_dev,
2972 			    "unexpected IRQ Master error\n");
2973 		/* Reset all bits in the PCI status register. */
2974 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
2975 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2976 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
2977 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
2978 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
2979 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2980 	}
2981 
2982 	/* Check for PCI Express Uncorrectable Error. */
2983 	if ((status & Y2_IS_PCI_EXP) != 0) {
2984 		uint32_t v32;
2985 
2986 		/*
2987 		 * On PCI Express bus bridges are called root complexes (RC).
2988 		 * PCI Express errors are recognized by the root complex too,
2989 		 * which requests the system to handle the problem. After
2990 		 * error occurence it may be that no access to the adapter
2991 		 * may be performed any longer.
2992 		 */
2993 
2994 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
2995 		if ((v32 & PEX_UNSUP_REQ) != 0) {
2996 			/* Ignore unsupported request error. */
2997 			if (bootverbose) {
2998 				device_printf(sc->msk_dev,
2999 				    "Uncorrectable PCI Express error\n");
3000 			}
3001 		}
3002 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3003 			int i;
3004 
3005 			/* Get TLP header form Log Registers. */
3006 			for (i = 0; i < 4; i++)
3007 				tlphead[i] = CSR_PCI_READ_4(sc,
3008 				    PEX_HEADER_LOG + i * 4);
3009 			/* Check for vendor defined broadcast message. */
3010 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3011 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3012 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3013 				    sc->msk_intrhwemask);
3014 				CSR_READ_4(sc, B0_HWE_IMSK);
3015 			}
3016 		}
3017 		/* Clear the interrupt. */
3018 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3019 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3020 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3021 	}
3022 
3023 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3024 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3025 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3026 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3027 }
3028 
3029 static __inline void
3030 msk_rxput(struct msk_if_softc *sc_if)
3031 {
3032 	struct msk_softc *sc;
3033 
3034 	sc = sc_if->msk_softc;
3035 #ifdef MSK_JUMBO
3036 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3037 		bus_dmamap_sync(
3038 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3039 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3040 		    BUS_DMASYNC_PREWRITE);
3041 	}
3042 #endif
3043 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3044 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3045 }
3046 
3047 static int
3048 mskc_handle_events(struct msk_softc *sc)
3049 {
3050 	struct msk_if_softc *sc_if;
3051 	int rxput[2];
3052 	struct msk_stat_desc *sd;
3053 	uint32_t control, status;
3054 	int cons, idx, len, port, rxprog;
3055 	struct mbuf_chain chain[MAXCPU];
3056 
3057 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3058 	if (idx == sc->msk_stat_cons)
3059 		return (0);
3060 
3061 	ether_input_chain_init(chain);
3062 
3063 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3064 
3065 	rxprog = 0;
3066 	for (cons = sc->msk_stat_cons; cons != idx;) {
3067 		sd = &sc->msk_stat_ring[cons];
3068 		control = le32toh(sd->msk_control);
3069 		if ((control & HW_OWNER) == 0)
3070 			break;
3071 		/*
3072 		 * Marvell's FreeBSD driver updates status LE after clearing
3073 		 * HW_OWNER. However we don't have a way to sync single LE
3074 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3075 		 * an entire DMA map. So don't sync LE until we have a better
3076 		 * way to sync LEs.
3077 		 */
3078 		control &= ~HW_OWNER;
3079 		sd->msk_control = htole32(control);
3080 		status = le32toh(sd->msk_status);
3081 		len = control & STLE_LEN_MASK;
3082 		port = (control >> 16) & 0x01;
3083 		sc_if = sc->msk_if[port];
3084 		if (sc_if == NULL) {
3085 			device_printf(sc->msk_dev, "invalid port opcode "
3086 			    "0x%08x\n", control & STLE_OP_MASK);
3087 			continue;
3088 		}
3089 
3090 		switch (control & STLE_OP_MASK) {
3091 		case OP_RXVLAN:
3092 			sc_if->msk_vtag = ntohs(len);
3093 			break;
3094 		case OP_RXCHKSVLAN:
3095 			sc_if->msk_vtag = ntohs(len);
3096 			break;
3097 		case OP_RXSTAT:
3098 #ifdef MSK_JUMBO
3099 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3100 				msk_jumbo_rxeof(sc_if, status, len);
3101 			else
3102 #endif
3103 				msk_rxeof(sc_if, status, len, chain);
3104 			rxprog++;
3105 			/*
3106 			 * Because there is no way to sync single Rx LE
3107 			 * put the DMA sync operation off until the end of
3108 			 * event processing.
3109 			 */
3110 			rxput[port]++;
3111 			/* Update prefetch unit if we've passed water mark. */
3112 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3113 				msk_rxput(sc_if);
3114 				rxput[port] = 0;
3115 			}
3116 			break;
3117 		case OP_TXINDEXLE:
3118 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3119 				msk_txeof(sc->msk_if[MSK_PORT_A],
3120 				    status & STLE_TXA1_MSKL);
3121 			}
3122 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3123 				msk_txeof(sc->msk_if[MSK_PORT_B],
3124 				    ((status & STLE_TXA2_MSKL) >>
3125 				    STLE_TXA2_SHIFTL) |
3126 				    ((len & STLE_TXA2_MSKH) <<
3127 				    STLE_TXA2_SHIFTH));
3128 			}
3129 			break;
3130 		default:
3131 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3132 			    control & STLE_OP_MASK);
3133 			break;
3134 		}
3135 		MSK_INC(cons, MSK_STAT_RING_CNT);
3136 		if (rxprog > sc->msk_process_limit)
3137 			break;
3138 	}
3139 
3140 	if (rxprog > 0)
3141 		ether_input_dispatch(chain);
3142 
3143 	sc->msk_stat_cons = cons;
3144 	/* XXX We should sync status LEs here. See above notes. */
3145 
3146 	if (rxput[MSK_PORT_A] > 0)
3147 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3148 	if (rxput[MSK_PORT_B] > 0)
3149 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3150 
3151 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3152 }
3153 
3154 /* Legacy interrupt handler for shared interrupt. */
3155 static void
3156 mskc_intr(void *xsc)
3157 {
3158 	struct msk_softc *sc;
3159 	struct msk_if_softc *sc_if0, *sc_if1;
3160 	struct ifnet *ifp0, *ifp1;
3161 	uint32_t status;
3162 
3163 	sc = xsc;
3164 	ASSERT_SERIALIZED(&sc->msk_serializer);
3165 
3166 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3167 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3168 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3169 	    (status & sc->msk_intrmask) == 0) {
3170 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3171 		return;
3172 	}
3173 
3174 	sc_if0 = sc->msk_if[MSK_PORT_A];
3175 	sc_if1 = sc->msk_if[MSK_PORT_B];
3176 	ifp0 = ifp1 = NULL;
3177 	if (sc_if0 != NULL)
3178 		ifp0 = sc_if0->msk_ifp;
3179 	if (sc_if1 != NULL)
3180 		ifp1 = sc_if1->msk_ifp;
3181 
3182 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3183 		msk_intr_phy(sc_if0);
3184 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3185 		msk_intr_phy(sc_if1);
3186 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3187 		msk_intr_gmac(sc_if0);
3188 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3189 		msk_intr_gmac(sc_if1);
3190 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3191 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3192 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3193 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3194 		CSR_READ_4(sc, B0_IMSK);
3195 	}
3196         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3197 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3198 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3199 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3200 		CSR_READ_4(sc, B0_IMSK);
3201 	}
3202 	if ((status & Y2_IS_HW_ERR) != 0)
3203 		mskc_intr_hwerr(sc);
3204 
3205 	while (mskc_handle_events(sc) != 0)
3206 		;
3207 	if ((status & Y2_IS_STAT_BMU) != 0)
3208 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3209 
3210 	/* Reenable interrupts. */
3211 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3212 
3213 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3214 	    !ifq_is_empty(&ifp0->if_snd))
3215 		if_devstart(ifp0);
3216 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3217 	    !ifq_is_empty(&ifp1->if_snd))
3218 		if_devstart(ifp1);
3219 }
3220 
3221 static void
3222 msk_init(void *xsc)
3223 {
3224 	struct msk_if_softc *sc_if = xsc;
3225 	struct msk_softc *sc = sc_if->msk_softc;
3226 	struct ifnet *ifp = sc_if->msk_ifp;
3227 	struct mii_data	 *mii;
3228 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3229 	uint16_t gmac;
3230 	int error, i;
3231 
3232 	ASSERT_SERIALIZED(ifp->if_serializer);
3233 
3234 	mii = device_get_softc(sc_if->msk_miibus);
3235 
3236 	error = 0;
3237 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3238 	msk_stop(sc_if);
3239 
3240 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3241 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3242 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3243 		/*
3244 		 * In Yukon EC Ultra, TSO & checksum offload is not
3245 		 * supported for jumbo frame.
3246 		 */
3247 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3248 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3249 	}
3250 
3251 	/*
3252 	 * Initialize GMAC first.
3253 	 * Without this initialization, Rx MAC did not work as expected
3254 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3255 	 * or duplicated frame delivery which in turn showed very poor
3256 	 * Rx performance.(I had to write a packet analysis code that
3257 	 * could be embeded in driver to diagnose this issue.)
3258 	 * I've spent almost 2 months to fix this issue. If I have had
3259 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3260 	 */
3261 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3262 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3263 
3264 	/* Dummy read the Interrupt Source Register. */
3265 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3266 
3267 	/* Set MIB Clear Counter Mode. */
3268 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3269 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3270 	/* Read all MIB Counters with Clear Mode set. */
3271 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3272 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3273 	/* Clear MIB Clear Counter Mode. */
3274 	gmac &= ~GM_PAR_MIB_CLR;
3275 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3276 
3277 	/* Disable FCS. */
3278 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3279 
3280 	/* Setup Transmit Control Register. */
3281 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3282 
3283 	/* Setup Transmit Flow Control Register. */
3284 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3285 
3286 	/* Setup Transmit Parameter Register. */
3287 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3288 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3289 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3290 
3291 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3292 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3293 
3294 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3295 		gmac |= GM_SMOD_JUMBO_ENA;
3296 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3297 
3298 	/* Set station address. */
3299         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3300         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3301 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3302 		    eaddr[i]);
3303         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3304 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3305 		    eaddr[i]);
3306 
3307 	/* Disable interrupts for counter overflows. */
3308 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3309 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3310 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3311 
3312 	/* Configure Rx MAC FIFO. */
3313 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3314 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3315 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3316 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3317 
3318 	/* Set promiscuous mode. */
3319 	msk_setpromisc(sc_if);
3320 
3321 	/* Set multicast filter. */
3322 	msk_setmulti(sc_if);
3323 
3324 	/* Flush Rx MAC FIFO on any flow control or error. */
3325 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3326 	    GMR_FS_ANY_ERR);
3327 
3328 	/* Set Rx FIFO flush threshold to 64 bytes. */
3329 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3330 	    RX_GMF_FL_THR_DEF);
3331 
3332 	/* Configure Tx MAC FIFO. */
3333 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3334 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3335 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3336 
3337 	/* Configure hardware VLAN tag insertion/stripping. */
3338 	msk_setvlan(sc_if, ifp);
3339 
3340 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3341 		/* Set Rx Pause threshould. */
3342 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3343 		    MSK_ECU_LLPP);
3344 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3345 		    MSK_ECU_ULPP);
3346 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3347 			/*
3348 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3349 			 */
3350 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3351 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3352 			/* Disable Store & Forward mode for Tx. */
3353 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3354 			    TX_JUMBO_ENA | TX_STFW_DIS);
3355 		} else {
3356 			/* Enable Store & Forward mode for Tx. */
3357 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3358 			    TX_JUMBO_DIS | TX_STFW_ENA);
3359 		}
3360 	}
3361 
3362 	/*
3363 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3364 	 * arbiter as we don't use Sync Tx queue.
3365 	 */
3366 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3367 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3368 	/* Enable the RAM Interface Arbiter. */
3369 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3370 
3371 	/* Setup RAM buffer. */
3372 	msk_set_rambuffer(sc_if);
3373 
3374 	/* Disable Tx sync Queue. */
3375 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3376 
3377 	/* Setup Tx Queue Bus Memory Interface. */
3378 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3379 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3380 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3381 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3382 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3383 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3384 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3385 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3386 	}
3387 
3388 	/* Setup Rx Queue Bus Memory Interface. */
3389 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3390 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3391 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3392 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3393         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3394 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3395 		/* MAC Rx RAM Read is controlled by hardware. */
3396                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3397 	}
3398 
3399 	msk_set_prefetch(sc, sc_if->msk_txq,
3400 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3401 	msk_init_tx_ring(sc_if);
3402 
3403 	/* Disable Rx checksum offload and RSS hash. */
3404 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3405 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3406 #ifdef MSK_JUMBO
3407 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3408 		msk_set_prefetch(sc, sc_if->msk_rxq,
3409 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3410 		    MSK_JUMBO_RX_RING_CNT - 1);
3411 		error = msk_init_jumbo_rx_ring(sc_if);
3412 	} else
3413 #endif
3414 	{
3415 		msk_set_prefetch(sc, sc_if->msk_rxq,
3416 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3417 		    MSK_RX_RING_CNT - 1);
3418 		error = msk_init_rx_ring(sc_if);
3419 	}
3420 	if (error != 0) {
3421 		device_printf(sc_if->msk_if_dev,
3422 		    "initialization failed: no memory for Rx buffers\n");
3423 		msk_stop(sc_if);
3424 		return;
3425 	}
3426 
3427 	/* Configure interrupt handling. */
3428 	if (sc_if->msk_port == MSK_PORT_A) {
3429 		sc->msk_intrmask |= Y2_IS_PORT_A;
3430 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3431 	} else {
3432 		sc->msk_intrmask |= Y2_IS_PORT_B;
3433 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3434 	}
3435 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3436 	CSR_READ_4(sc, B0_HWE_IMSK);
3437 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3438 	CSR_READ_4(sc, B0_IMSK);
3439 
3440 	sc_if->msk_link = 0;
3441 	mii_mediachg(mii);
3442 
3443 	mskc_set_imtimer(sc);
3444 
3445 	ifp->if_flags |= IFF_RUNNING;
3446 	ifp->if_flags &= ~IFF_OACTIVE;
3447 
3448 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3449 }
3450 
3451 static void
3452 msk_set_rambuffer(struct msk_if_softc *sc_if)
3453 {
3454 	struct msk_softc *sc;
3455 	int ltpp, utpp;
3456 
3457 	sc = sc_if->msk_softc;
3458 
3459 	/* Setup Rx Queue. */
3460 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3461 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3462 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3463 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3464 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3465 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3466 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3467 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3468 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3469 
3470 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3471 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3472 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3473 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3474 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3475 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3476 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3477 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3478 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3479 
3480 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3481 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3482 
3483 	/* Setup Tx Queue. */
3484 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3485 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3486 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3487 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3488 	    sc->msk_txqend[sc_if->msk_port] / 8);
3489 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3490 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3491 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3492 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3493 	/* Enable Store & Forward for Tx side. */
3494 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3495 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3496 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3497 }
3498 
3499 static void
3500 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3501     uint32_t count)
3502 {
3503 
3504 	/* Reset the prefetch unit. */
3505 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3506 	    PREF_UNIT_RST_SET);
3507 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3508 	    PREF_UNIT_RST_CLR);
3509 	/* Set LE base address. */
3510 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3511 	    MSK_ADDR_LO(addr));
3512 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3513 	    MSK_ADDR_HI(addr));
3514 	/* Set the list last index. */
3515 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3516 	    count);
3517 	/* Turn on prefetch unit. */
3518 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3519 	    PREF_UNIT_OP_ON);
3520 	/* Dummy read to ensure write. */
3521 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3522 }
3523 
3524 static void
3525 msk_stop(struct msk_if_softc *sc_if)
3526 {
3527 	struct msk_softc *sc = sc_if->msk_softc;
3528 	struct ifnet *ifp = sc_if->msk_ifp;
3529 	struct msk_txdesc *txd;
3530 	struct msk_rxdesc *rxd;
3531 #ifdef MSK_JUMBO
3532 	struct msk_rxdesc *jrxd;
3533 #endif
3534 	uint32_t val;
3535 	int i;
3536 
3537 	ASSERT_SERIALIZED(ifp->if_serializer);
3538 
3539 	callout_stop(&sc_if->msk_tick_ch);
3540 	ifp->if_timer = 0;
3541 
3542 	/* Disable interrupts. */
3543 	if (sc_if->msk_port == MSK_PORT_A) {
3544 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3545 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3546 	} else {
3547 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3548 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3549 	}
3550 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3551 	CSR_READ_4(sc, B0_HWE_IMSK);
3552 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3553 	CSR_READ_4(sc, B0_IMSK);
3554 
3555 	/* Disable Tx/Rx MAC. */
3556 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3557 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3558 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3559 	/* Read again to ensure writing. */
3560 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3561 
3562 	/* Stop Tx BMU. */
3563 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3564 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3565 	for (i = 0; i < MSK_TIMEOUT; i++) {
3566 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3567 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3568 			    BMU_STOP);
3569 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3570 		} else
3571 			break;
3572 		DELAY(1);
3573 	}
3574 	if (i == MSK_TIMEOUT)
3575 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3576 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3577 	    RB_RST_SET | RB_DIS_OP_MD);
3578 
3579 	/* Disable all GMAC interrupt. */
3580 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3581 	/* Disable PHY interrupt. */
3582 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3583 
3584 	/* Disable the RAM Interface Arbiter. */
3585 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3586 
3587 	/* Reset the PCI FIFO of the async Tx queue */
3588 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3589 	    BMU_RST_SET | BMU_FIFO_RST);
3590 
3591 	/* Reset the Tx prefetch units. */
3592 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3593 	    PREF_UNIT_RST_SET);
3594 
3595 	/* Reset the RAM Buffer async Tx queue. */
3596 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3597 
3598 	/* Reset Tx MAC FIFO. */
3599 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3600 	/* Set Pause Off. */
3601 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3602 
3603 	/*
3604 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3605 	 * reach the end of packet and since we can't make sure that we have
3606 	 * incoming data, we must reset the BMU while it is not during a DMA
3607 	 * transfer. Since it is possible that the Rx path is still active,
3608 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3609 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3610 	 * BMU is polled until any DMA in progress is ended and only then it
3611 	 * will be reset.
3612 	 */
3613 
3614 	/* Disable the RAM Buffer receive queue. */
3615 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3616 	for (i = 0; i < MSK_TIMEOUT; i++) {
3617 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3618 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3619 			break;
3620 		DELAY(1);
3621 	}
3622 	if (i == MSK_TIMEOUT)
3623 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3624 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3625 	    BMU_RST_SET | BMU_FIFO_RST);
3626 	/* Reset the Rx prefetch unit. */
3627 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3628 	    PREF_UNIT_RST_SET);
3629 	/* Reset the RAM Buffer receive queue. */
3630 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3631 	/* Reset Rx MAC FIFO. */
3632 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3633 
3634 	/* Free Rx and Tx mbufs still in the queues. */
3635 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3636 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3637 		if (rxd->rx_m != NULL) {
3638 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3639 			    rxd->rx_dmamap);
3640 			m_freem(rxd->rx_m);
3641 			rxd->rx_m = NULL;
3642 		}
3643 	}
3644 #ifdef MSK_JUMBO
3645 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3646 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3647 		if (jrxd->rx_m != NULL) {
3648 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3649 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3650 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3651 			    jrxd->rx_dmamap);
3652 			m_freem(jrxd->rx_m);
3653 			jrxd->rx_m = NULL;
3654 		}
3655 	}
3656 #endif
3657 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3658 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3659 		if (txd->tx_m != NULL) {
3660 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3661 			    txd->tx_dmamap);
3662 			m_freem(txd->tx_m);
3663 			txd->tx_m = NULL;
3664 		}
3665 	}
3666 
3667 	/*
3668 	 * Mark the interface down.
3669 	 */
3670 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3671 	sc_if->msk_link = 0;
3672 }
3673 
3674 static int
3675 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3676 {
3677 	return sysctl_int_range(oidp, arg1, arg2, req,
3678 				MSK_PROC_MIN, MSK_PROC_MAX);
3679 }
3680 
3681 static int
3682 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3683 {
3684 	struct msk_softc *sc = arg1;
3685 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3686 	int error = 0, v;
3687 
3688 	lwkt_serialize_enter(serializer);
3689 
3690 	v = sc->msk_intr_rate;
3691 	error = sysctl_handle_int(oidp, &v, 0, req);
3692 	if (error || req->newptr == NULL)
3693 		goto back;
3694 	if (v < 0) {
3695 		error = EINVAL;
3696 		goto back;
3697 	}
3698 
3699 	if (sc->msk_intr_rate != v) {
3700 		int flag = 0, i;
3701 
3702 		sc->msk_intr_rate = v;
3703 		for (i = 0; i < 2; ++i) {
3704 			if (sc->msk_if[i] != NULL) {
3705 				flag |= sc->msk_if[i]->
3706 					arpcom.ac_if.if_flags & IFF_RUNNING;
3707 			}
3708 		}
3709 		if (flag)
3710 			mskc_set_imtimer(sc);
3711 	}
3712 back:
3713 	lwkt_serialize_exit(serializer);
3714 	return error;
3715 }
3716 
3717 static int
3718 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3719 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3720 {
3721 	struct msk_if_softc *sc_if = device_get_softc(dev);
3722 	bus_dmamem_t dmem;
3723 	int error;
3724 
3725 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3726 			MSK_RING_ALIGN, 0,
3727 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3728 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3729 	if (error) {
3730 		device_printf(dev, "can't create coherent DMA memory\n");
3731 		return error;
3732 	}
3733 
3734 	*dtag = dmem.dmem_tag;
3735 	*dmap = dmem.dmem_map;
3736 	*addr = dmem.dmem_addr;
3737 	*paddr = dmem.dmem_busaddr;
3738 
3739 	return 0;
3740 }
3741 
3742 static void
3743 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3744 {
3745 	if (dtag != NULL) {
3746 		bus_dmamap_unload(dtag, dmap);
3747 		bus_dmamem_free(dtag, addr, dmap);
3748 		bus_dma_tag_destroy(dtag);
3749 	}
3750 }
3751 
3752 static void
3753 mskc_set_imtimer(struct msk_softc *sc)
3754 {
3755 	if (sc->msk_intr_rate > 0) {
3756 		/*
3757 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3758 		 *     and 78.125MHz for rest of chip types
3759 		 */
3760 		CSR_WRITE_4(sc, B2_IRQM_INI,
3761 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3762 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3763 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3764 	} else {
3765 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3766 	}
3767 }
3768