xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision 4353aa4e)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Fast Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Fast Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Fast Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Fast Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 	    "Marvell Yukon 88E8040 Fast Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 	    "Marvell Yukon 88E8040T Fast Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 	    "Marvell Yukon 88E8042 Fast Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 	    "Marvell Yukon 88E8048 Fast Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
204 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
206 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
208 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
210 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
211 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
212 	    "D-Link 550SX Gigabit Ethernet" },
213 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
214 	    "D-Link 560T Gigabit Ethernet" },
215 	{ 0, 0, NULL }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220 	"Yukon EC Ultra",
221 	"Yukon EX",
222 	"Yukon EC",
223 	"Yukon FE",
224 	"Yukon FE+",
225 	"Yukon Supreme",
226 	"Yukon Ultra 2",
227 	"Yukon Unknown",
228 	"Yukon Optima"
229 };
230 
231 static int	mskc_probe(device_t);
232 static int	mskc_attach(device_t);
233 static int	mskc_detach(device_t);
234 static int	mskc_shutdown(device_t);
235 static int	mskc_suspend(device_t);
236 static int	mskc_resume(device_t);
237 static void	mskc_intr(void *);
238 
239 static void	mskc_reset(struct msk_softc *);
240 static void	mskc_set_imtimer(struct msk_softc *);
241 static void	mskc_intr_hwerr(struct msk_softc *);
242 static int	mskc_handle_events(struct msk_softc *);
243 static void	mskc_phy_power(struct msk_softc *, int);
244 static int	mskc_setup_rambuffer(struct msk_softc *);
245 static int	mskc_status_dma_alloc(struct msk_softc *);
246 static void	mskc_status_dma_free(struct msk_softc *);
247 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
248 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
249 
250 static int	msk_probe(device_t);
251 static int	msk_attach(device_t);
252 static int	msk_detach(device_t);
253 static int	msk_miibus_readreg(device_t, int, int);
254 static int	msk_miibus_writereg(device_t, int, int, int);
255 static void	msk_miibus_statchg(device_t);
256 
257 static void	msk_init(void *);
258 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	msk_start(struct ifnet *);
260 static void	msk_watchdog(struct ifnet *);
261 static int	msk_mediachange(struct ifnet *);
262 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
263 
264 static void	msk_tick(void *);
265 static void	msk_intr_phy(struct msk_if_softc *);
266 static void	msk_intr_gmac(struct msk_if_softc *);
267 static __inline void
268 		msk_rxput(struct msk_if_softc *);
269 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
270 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int,
271 			  struct mbuf_chain *);
272 static void	msk_txeof(struct msk_if_softc *, int);
273 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
274 static void	msk_set_rambuffer(struct msk_if_softc *);
275 static void	msk_stop(struct msk_if_softc *);
276 
277 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
278 static void	msk_txrx_dma_free(struct msk_if_softc *);
279 static int	msk_init_rx_ring(struct msk_if_softc *);
280 static void	msk_init_tx_ring(struct msk_if_softc *);
281 static __inline void
282 		msk_discard_rxbuf(struct msk_if_softc *, int);
283 static int	msk_newbuf(struct msk_if_softc *, int, int);
284 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
285 
286 #ifdef MSK_JUMBO
287 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
288 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
289 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
290 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
291 static void *msk_jalloc(struct msk_if_softc *);
292 static void msk_jfree(void *, void *);
293 #endif
294 
295 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
296 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
297 
298 static void	msk_rxfilter(struct msk_if_softc *);
299 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
300 static void	msk_set_tx_stfwd(struct msk_if_softc *);
301 
302 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
303 				  void **, bus_addr_t *, bus_dmamap_t *);
304 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
305 
306 static device_method_t mskc_methods[] = {
307 	/* Device interface */
308 	DEVMETHOD(device_probe,		mskc_probe),
309 	DEVMETHOD(device_attach,	mskc_attach),
310 	DEVMETHOD(device_detach,	mskc_detach),
311 	DEVMETHOD(device_suspend,	mskc_suspend),
312 	DEVMETHOD(device_resume,	mskc_resume),
313 	DEVMETHOD(device_shutdown,	mskc_shutdown),
314 
315 	/* bus interface */
316 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
317 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
318 
319 	{ NULL, NULL }
320 };
321 
322 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
323 static devclass_t mskc_devclass;
324 
325 static device_method_t msk_methods[] = {
326 	/* Device interface */
327 	DEVMETHOD(device_probe,		msk_probe),
328 	DEVMETHOD(device_attach,	msk_attach),
329 	DEVMETHOD(device_detach,	msk_detach),
330 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
331 
332 	/* bus interface */
333 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
334 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
335 
336 	/* MII interface */
337 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
338 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
339 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
340 
341 	{ NULL, NULL }
342 };
343 
344 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
345 static devclass_t msk_devclass;
346 
347 DECLARE_DUMMY_MODULE(if_msk);
348 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
349 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
350 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
351 
352 static int	mskc_intr_rate = 0;
353 static int	mskc_process_limit = MSK_PROC_DEFAULT;
354 
355 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
356 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
357 
358 static int
359 msk_miibus_readreg(device_t dev, int phy, int reg)
360 {
361 	struct msk_if_softc *sc_if;
362 
363 	if (phy != PHY_ADDR_MARV)
364 		return (0);
365 
366 	sc_if = device_get_softc(dev);
367 
368 	return (msk_phy_readreg(sc_if, phy, reg));
369 }
370 
371 static int
372 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
373 {
374 	struct msk_softc *sc;
375 	int i, val;
376 
377 	sc = sc_if->msk_softc;
378 
379         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
380 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
381 
382 	for (i = 0; i < MSK_TIMEOUT; i++) {
383 		DELAY(1);
384 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
385 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
386 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
387 			break;
388 		}
389 	}
390 
391 	if (i == MSK_TIMEOUT) {
392 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
393 		val = 0;
394 	}
395 
396 	return (val);
397 }
398 
399 static int
400 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
401 {
402 	struct msk_if_softc *sc_if;
403 
404 	if (phy != PHY_ADDR_MARV)
405 		return (0);
406 
407 	sc_if = device_get_softc(dev);
408 
409 	return (msk_phy_writereg(sc_if, phy, reg, val));
410 }
411 
412 static int
413 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
414 {
415 	struct msk_softc *sc;
416 	int i;
417 
418 	sc = sc_if->msk_softc;
419 
420 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
421         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
422 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
423 	for (i = 0; i < MSK_TIMEOUT; i++) {
424 		DELAY(1);
425 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
426 		    GM_SMI_CT_BUSY) == 0)
427 			break;
428 	}
429 	if (i == MSK_TIMEOUT)
430 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
431 
432 	return (0);
433 }
434 
435 static void
436 msk_miibus_statchg(device_t dev)
437 {
438 	struct msk_if_softc *sc_if;
439 	struct msk_softc *sc;
440 	struct mii_data *mii;
441 	struct ifnet *ifp;
442 	uint32_t gmac;
443 
444 	sc_if = device_get_softc(dev);
445 	sc = sc_if->msk_softc;
446 
447 	mii = device_get_softc(sc_if->msk_miibus);
448 	ifp = sc_if->msk_ifp;
449 
450 	sc_if->msk_link = 0;
451 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
452 	    (IFM_AVALID | IFM_ACTIVE)) {
453 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
454 		case IFM_10_T:
455 		case IFM_100_TX:
456 			sc_if->msk_link = 1;
457 			break;
458 		case IFM_1000_T:
459 		case IFM_1000_SX:
460 		case IFM_1000_LX:
461 		case IFM_1000_CX:
462 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
463 				sc_if->msk_link = 1;
464 			break;
465 		}
466 	}
467 
468 	if (sc_if->msk_link != 0) {
469 		/* Enable Tx FIFO Underrun. */
470 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
471 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
472 		/*
473 		 * Because mii(4) notify msk(4) that it detected link status
474 		 * change, there is no need to enable automatic
475 		 * speed/flow-control/duplex updates.
476 		 */
477 		gmac = GM_GPCR_AU_ALL_DIS;
478 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
479 		case IFM_1000_SX:
480 		case IFM_1000_T:
481 			gmac |= GM_GPCR_SPEED_1000;
482 			break;
483 		case IFM_100_TX:
484 			gmac |= GM_GPCR_SPEED_100;
485 			break;
486 		case IFM_10_T:
487 			break;
488 		}
489 
490 		if ((mii->mii_media_active & IFM_GMASK) & IFM_FDX)
491 			gmac |= GM_GPCR_DUP_FULL;
492 		else
493 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
494 		/* Disable Rx flow control. */
495 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
496 			gmac |= GM_GPCR_FC_RX_DIS;
497 		/* Disable Tx flow control. */
498 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
499 			gmac |= GM_GPCR_FC_TX_DIS;
500 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
501 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
502 		/* Read again to ensure writing. */
503 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
504 
505 		gmac = GMC_PAUSE_OFF;
506 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) &&
507 		    ((mii->mii_media_active & IFM_GMASK) & IFM_FDX))
508 			gmac = GMC_PAUSE_ON;
509 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
510 
511 		/* Enable PHY interrupt for FIFO underrun/overflow. */
512 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
513 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
514 	} else {
515 		/*
516 		 * Link state changed to down.
517 		 * Disable PHY interrupts.
518 		 */
519 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
520 		/* Disable Rx/Tx MAC. */
521 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
522 		if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
523 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
524 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
525 			/* Read again to ensure writing. */
526 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
527 		}
528 	}
529 }
530 
531 static void
532 msk_rxfilter(struct msk_if_softc *sc_if)
533 {
534 	struct msk_softc *sc;
535 	struct ifnet *ifp;
536 	struct ifmultiaddr *ifma;
537 	uint32_t mchash[2];
538 	uint32_t crc;
539 	uint16_t mode;
540 
541 	sc = sc_if->msk_softc;
542 	ifp = sc_if->msk_ifp;
543 
544 	bzero(mchash, sizeof(mchash));
545 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
546 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
547 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
548 	} else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
549 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
550 		mchash[0] = 0xffff;
551 		mchash[1] = 0xffff;
552 	} else {
553 		mode |= GM_RXCR_UCF_ENA;
554 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
555 			if (ifma->ifma_addr->sa_family != AF_LINK)
556 				continue;
557 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
558 			    ifma->ifma_addr), ETHER_ADDR_LEN);
559 			/* Just want the 6 least significant bits. */
560 			crc &= 0x3f;
561 			/* Set the corresponding bit in the hash table. */
562 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
563 		}
564 		if (mchash[0] != 0 || mchash[1] != 0)
565 			mode |= GM_RXCR_MCF_ENA;
566 	}
567 
568 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
569 	    mchash[0] & 0xffff);
570 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
571 	    (mchash[0] >> 16) & 0xffff);
572 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
573 	    mchash[1] & 0xffff);
574 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
575 	    (mchash[1] >> 16) & 0xffff);
576 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
577 }
578 
579 static void
580 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
581 {
582 	struct msk_softc *sc;
583 
584 	sc = sc_if->msk_softc;
585 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
586 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
587 		    RX_VLAN_STRIP_ON);
588 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
589 		    TX_VLAN_TAG_ON);
590 	} else {
591 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
592 		    RX_VLAN_STRIP_OFF);
593 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
594 		    TX_VLAN_TAG_OFF);
595 	}
596 }
597 
598 static int
599 msk_init_rx_ring(struct msk_if_softc *sc_if)
600 {
601 	struct msk_ring_data *rd;
602 	struct msk_rxdesc *rxd;
603 	int i, prod;
604 
605 	sc_if->msk_cdata.msk_rx_cons = 0;
606 	sc_if->msk_cdata.msk_rx_prod = 0;
607 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
608 
609 	rd = &sc_if->msk_rdata;
610 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
611 	prod = sc_if->msk_cdata.msk_rx_prod;
612 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
613 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
614 		rxd->rx_m = NULL;
615 		rxd->rx_le = &rd->msk_rx_ring[prod];
616 		if (msk_newbuf(sc_if, prod, 1) != 0)
617 			return (ENOBUFS);
618 		MSK_INC(prod, MSK_RX_RING_CNT);
619 	}
620 
621 	/* Update prefetch unit. */
622 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
623 	CSR_WRITE_2(sc_if->msk_softc,
624 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
625 	    sc_if->msk_cdata.msk_rx_prod);
626 
627 	return (0);
628 }
629 
630 #ifdef MSK_JUMBO
631 static int
632 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
633 {
634 	struct msk_ring_data *rd;
635 	struct msk_rxdesc *rxd;
636 	int i, prod;
637 
638 	MSK_IF_LOCK_ASSERT(sc_if);
639 
640 	sc_if->msk_cdata.msk_rx_cons = 0;
641 	sc_if->msk_cdata.msk_rx_prod = 0;
642 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
643 
644 	rd = &sc_if->msk_rdata;
645 	bzero(rd->msk_jumbo_rx_ring,
646 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
647 	prod = sc_if->msk_cdata.msk_rx_prod;
648 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
649 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
650 		rxd->rx_m = NULL;
651 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
652 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
653 			return (ENOBUFS);
654 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
655 	}
656 
657 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
658 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
659 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
660 
661 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
662 	CSR_WRITE_2(sc_if->msk_softc,
663 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
664 	    sc_if->msk_cdata.msk_rx_prod);
665 
666 	return (0);
667 }
668 #endif
669 
670 static void
671 msk_init_tx_ring(struct msk_if_softc *sc_if)
672 {
673 	struct msk_ring_data *rd;
674 	struct msk_txdesc *txd;
675 	int i;
676 
677 	sc_if->msk_cdata.msk_tx_prod = 0;
678 	sc_if->msk_cdata.msk_tx_cons = 0;
679 	sc_if->msk_cdata.msk_tx_cnt = 0;
680 
681 	rd = &sc_if->msk_rdata;
682 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
683 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
684 		txd = &sc_if->msk_cdata.msk_txdesc[i];
685 		txd->tx_m = NULL;
686 		txd->tx_le = &rd->msk_tx_ring[i];
687 	}
688 }
689 
690 static __inline void
691 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
692 {
693 	struct msk_rx_desc *rx_le;
694 	struct msk_rxdesc *rxd;
695 	struct mbuf *m;
696 
697 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
698 	m = rxd->rx_m;
699 	rx_le = rxd->rx_le;
700 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
701 }
702 
703 #ifdef MSK_JUMBO
704 static __inline void
705 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
706 {
707 	struct msk_rx_desc *rx_le;
708 	struct msk_rxdesc *rxd;
709 	struct mbuf *m;
710 
711 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
712 	m = rxd->rx_m;
713 	rx_le = rxd->rx_le;
714 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
715 }
716 #endif
717 
718 static int
719 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
720 {
721 	struct msk_rx_desc *rx_le;
722 	struct msk_rxdesc *rxd;
723 	struct mbuf *m;
724 	bus_dma_segment_t seg;
725 	bus_dmamap_t map;
726 	int error, nseg;
727 
728 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
729 	if (m == NULL)
730 		return (ENOBUFS);
731 
732 	m->m_len = m->m_pkthdr.len = MCLBYTES;
733 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
734 		m_adj(m, ETHER_ALIGN);
735 
736 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
737 			sc_if->msk_cdata.msk_rx_sparemap,
738 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
739 	if (error) {
740 		m_freem(m);
741 		if (init)
742 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
743 		return (error);
744 	}
745 
746 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
747 	if (rxd->rx_m != NULL) {
748 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
749 		    BUS_DMASYNC_POSTREAD);
750 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
751 	}
752 
753 	map = rxd->rx_dmamap;
754 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
755 	sc_if->msk_cdata.msk_rx_sparemap = map;
756 
757 	rxd->rx_m = m;
758 	rx_le = rxd->rx_le;
759 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
760 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
761 
762 	return (0);
763 }
764 
765 #ifdef MSK_JUMBO
766 static int
767 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
768 {
769 	struct msk_rx_desc *rx_le;
770 	struct msk_rxdesc *rxd;
771 	struct mbuf *m;
772 	bus_dma_segment_t segs[1];
773 	bus_dmamap_t map;
774 	int nsegs;
775 	void *buf;
776 
777 	MGETHDR(m, M_DONTWAIT, MT_DATA);
778 	if (m == NULL)
779 		return (ENOBUFS);
780 	buf = msk_jalloc(sc_if);
781 	if (buf == NULL) {
782 		m_freem(m);
783 		return (ENOBUFS);
784 	}
785 	/* Attach the buffer to the mbuf. */
786 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
787 	    EXT_NET_DRV);
788 	if ((m->m_flags & M_EXT) == 0) {
789 		m_freem(m);
790 		return (ENOBUFS);
791 	}
792 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
793 	m_adj(m, ETHER_ALIGN);
794 
795 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
796 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
797 	    BUS_DMA_NOWAIT) != 0) {
798 		m_freem(m);
799 		return (ENOBUFS);
800 	}
801 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802 
803 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
804 	if (rxd->rx_m != NULL) {
805 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
806 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
807 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
808 		    rxd->rx_dmamap);
809 	}
810 	map = rxd->rx_dmamap;
811 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
812 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
813 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
814 	    BUS_DMASYNC_PREREAD);
815 	rxd->rx_m = m;
816 	rx_le = rxd->rx_le;
817 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
818 	rx_le->msk_control =
819 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
820 
821 	return (0);
822 }
823 #endif
824 
825 /*
826  * Set media options.
827  */
828 static int
829 msk_mediachange(struct ifnet *ifp)
830 {
831 	struct msk_if_softc *sc_if = ifp->if_softc;
832 	struct mii_data	*mii;
833 	int error;
834 
835 	mii = device_get_softc(sc_if->msk_miibus);
836 	error = mii_mediachg(mii);
837 
838 	return (error);
839 }
840 
841 /*
842  * Report current media status.
843  */
844 static void
845 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
846 {
847 	struct msk_if_softc *sc_if = ifp->if_softc;
848 	struct mii_data	*mii;
849 
850 	mii = device_get_softc(sc_if->msk_miibus);
851 	mii_pollstat(mii);
852 
853 	ifmr->ifm_active = mii->mii_media_active;
854 	ifmr->ifm_status = mii->mii_media_status;
855 }
856 
857 static int
858 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
859 {
860 	struct msk_if_softc *sc_if;
861 	struct ifreq *ifr;
862 	struct mii_data	*mii;
863 	int error, mask;
864 
865 	sc_if = ifp->if_softc;
866 	ifr = (struct ifreq *)data;
867 	error = 0;
868 
869 	switch(command) {
870 	case SIOCSIFMTU:
871 #ifdef MSK_JUMBO
872 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
873 			error = EINVAL;
874 			break;
875 		}
876 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
877 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
878 			error = EINVAL;
879 			break;
880 		}
881 		ifp->if_mtu = ifr->ifr_mtu;
882 		if ((ifp->if_flags & IFF_RUNNING) != 0)
883 			msk_init(sc_if);
884 #else
885 		error = EOPNOTSUPP;
886 #endif
887 		break;
888 
889 	case SIOCSIFFLAGS:
890 		if (ifp->if_flags & IFF_UP) {
891 			if (ifp->if_flags & IFF_RUNNING) {
892 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
893 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
894 					msk_rxfilter(sc_if);
895 			} else {
896 				if (sc_if->msk_detach == 0)
897 					msk_init(sc_if);
898 			}
899 		} else {
900 			if (ifp->if_flags & IFF_RUNNING)
901 				msk_stop(sc_if);
902 		}
903 		sc_if->msk_if_flags = ifp->if_flags;
904 		break;
905 
906 	case SIOCADDMULTI:
907 	case SIOCDELMULTI:
908 		if (ifp->if_flags & IFF_RUNNING)
909 			msk_rxfilter(sc_if);
910 		break;
911 
912 	case SIOCGIFMEDIA:
913 	case SIOCSIFMEDIA:
914 		mii = device_get_softc(sc_if->msk_miibus);
915 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
916 		break;
917 
918 	case SIOCSIFCAP:
919 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
920 		if ((mask & IFCAP_TXCSUM) != 0) {
921 			ifp->if_capenable ^= IFCAP_TXCSUM;
922 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
923 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
924 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
925 			else
926 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
927 		}
928 #ifdef notyet
929 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
930 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
931 			msk_setvlan(sc_if, ifp);
932 		}
933 #endif
934 
935 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
936 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
937 			/*
938 			 * In Yukon EC Ultra, TSO & checksum offload is not
939 			 * supported for jumbo frame.
940 			 */
941 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
942 			ifp->if_capenable &= ~IFCAP_TXCSUM;
943 		}
944 		break;
945 
946 	default:
947 		error = ether_ioctl(ifp, command, data);
948 		break;
949 	}
950 
951 	return (error);
952 }
953 
954 static int
955 mskc_probe(device_t dev)
956 {
957 	const struct msk_product *mp;
958 	uint16_t vendor, devid;
959 
960 	vendor = pci_get_vendor(dev);
961 	devid = pci_get_device(dev);
962 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
963 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
964 			device_set_desc(dev, mp->msk_name);
965 			return (0);
966 		}
967 	}
968 	return (ENXIO);
969 }
970 
971 static int
972 mskc_setup_rambuffer(struct msk_softc *sc)
973 {
974 	int next;
975 	int i;
976 
977 	/* Get adapter SRAM size. */
978 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
979 	if (bootverbose) {
980 		device_printf(sc->msk_dev,
981 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
982 	}
983 	if (sc->msk_ramsize == 0)
984 		return (0);
985 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
986 
987 	/*
988 	 * Give receiver 2/3 of memory and round down to the multiple
989 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
990 	 * of 1024.
991 	 */
992 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
993 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
994 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
995 		sc->msk_rxqstart[i] = next;
996 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
997 		next = sc->msk_rxqend[i] + 1;
998 		sc->msk_txqstart[i] = next;
999 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
1000 		next = sc->msk_txqend[i] + 1;
1001 		if (bootverbose) {
1002 			device_printf(sc->msk_dev,
1003 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1004 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1005 			    sc->msk_rxqend[i]);
1006 			device_printf(sc->msk_dev,
1007 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1008 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1009 			    sc->msk_txqend[i]);
1010 		}
1011 	}
1012 
1013 	return (0);
1014 }
1015 
1016 static void
1017 mskc_phy_power(struct msk_softc *sc, int mode)
1018 {
1019 	uint32_t our, val;
1020 	int i;
1021 
1022 	switch (mode) {
1023 	case MSK_PHY_POWERUP:
1024 		/* Switch power to VCC (WA for VAUX problem). */
1025 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1026 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1027 		/* Disable Core Clock Division, set Clock Select to 0. */
1028 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1029 
1030 		val = 0;
1031 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1032 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1033 			/* Enable bits are inverted. */
1034 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1035 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1036 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1037 		}
1038 		/*
1039 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1040 		 */
1041 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1042 
1043 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1044 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1045 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1046 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1047 				/* Deassert Low Power for 1st PHY. */
1048 				our |= PCI_Y2_PHY1_COMA;
1049 				if (sc->msk_num_port > 1)
1050 					our |= PCI_Y2_PHY2_COMA;
1051 			}
1052 		}
1053 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1054 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1055 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1056 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1057 			val &= (PCI_FORCE_ASPM_REQUEST |
1058 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1059 			    PCI_ASPM_CLKRUN_REQUEST);
1060 			/* Set all bits to 0 except bits 15..12. */
1061 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1062 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1063 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1064 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1065 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1066 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1067 			/*
1068 			 * Disable status race, workaround for
1069 			 * Yukon EC Ultra & Yukon EX.
1070 			 */
1071 			val = CSR_READ_4(sc, B2_GP_IO);
1072 			val |= GLB_GPIO_STAT_RACE_DIS;
1073 			CSR_WRITE_4(sc, B2_GP_IO, val);
1074 			CSR_READ_4(sc, B2_GP_IO);
1075 		}
1076 		/* Release PHY from PowerDown/COMA mode. */
1077 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1078 
1079 		for (i = 0; i < sc->msk_num_port; i++) {
1080 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1081 			    GMLC_RST_SET);
1082 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1083 			    GMLC_RST_CLR);
1084 		}
1085 		break;
1086 	case MSK_PHY_POWERDOWN:
1087 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1088 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1089 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1090 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1091 			val &= ~PCI_Y2_PHY1_COMA;
1092 			if (sc->msk_num_port > 1)
1093 				val &= ~PCI_Y2_PHY2_COMA;
1094 		}
1095 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1096 
1097 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1098 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1099 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1100 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1101 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1102 			/* Enable bits are inverted. */
1103 			val = 0;
1104 		}
1105 		/*
1106 		 * Disable PCI & Core Clock, disable clock gating for
1107 		 * both Links.
1108 		 */
1109 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1110 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1111 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1112 		break;
1113 	default:
1114 		break;
1115 	}
1116 }
1117 
1118 static void
1119 mskc_reset(struct msk_softc *sc)
1120 {
1121 	bus_addr_t addr;
1122 	uint16_t status;
1123 	uint32_t val;
1124 	int i;
1125 
1126 	/* Disable ASF. */
1127 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1128 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1129 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1130 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1131 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1132 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1133 			/* Clear AHB bridge & microcontroller reset. */
1134 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1135 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1136 			/* Clear ASF microcontroller state. */
1137 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1138 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1139 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1140 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1141 		} else {
1142 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1143 		}
1144 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1145 		/*
1146 		 * Since we disabled ASF, S/W reset is required for
1147 		 * Power Management.
1148 		 */
1149 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1150 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1151 	}
1152 
1153 	/* Clear all error bits in the PCI status register. */
1154 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1155 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1156 
1157 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1158 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1159 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1160 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1161 
1162 	switch (sc->msk_bustype) {
1163 	case MSK_PEX_BUS:
1164 		/* Clear all PEX errors. */
1165 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1166 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1167 		if ((val & PEX_RX_OV) != 0) {
1168 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1169 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1170 		}
1171 		break;
1172 	case MSK_PCI_BUS:
1173 	case MSK_PCIX_BUS:
1174 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1175 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1176 		if (val == 0)
1177 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1178 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1179 			/* Set Cache Line Size opt. */
1180 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1181 			val |= PCI_CLS_OPT;
1182 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1183 		}
1184 		break;
1185 	}
1186 	/* Set PHY power state. */
1187 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1188 
1189 	/* Reset GPHY/GMAC Control */
1190 	for (i = 0; i < sc->msk_num_port; i++) {
1191 		/* GPHY Control reset. */
1192 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1193 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1194 		/* GMAC Control reset. */
1195 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1196 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1197 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1198 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1199 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1200 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1201 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1202 			    GMC_BYP_RETR_ON);
1203 		}
1204 	}
1205 
1206 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1207 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1208 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1209 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1210 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1211 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1212 	}
1213 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1214 
1215 	/* LED On. */
1216 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1217 
1218 	/* Clear TWSI IRQ. */
1219 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1220 
1221 	/* Turn off hardware timer. */
1222 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1223 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1224 
1225 	/* Turn off descriptor polling. */
1226 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1227 
1228 	/* Turn off time stamps. */
1229 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1230 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1231 
1232 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1233 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1234 	    sc->msk_hw_id == CHIP_ID_YUKON_FE) {
1235 		/* Configure timeout values. */
1236 		for (i = 0; i < sc->msk_num_port; i++) {
1237 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1238 			    RI_RST_SET);
1239 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1240 			    RI_RST_CLR);
1241 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1242 			    MSK_RI_TO_53);
1243 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1244 			    MSK_RI_TO_53);
1245 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1246 			    MSK_RI_TO_53);
1247 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1248 			    MSK_RI_TO_53);
1249 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1250 			    MSK_RI_TO_53);
1251 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1252 			    MSK_RI_TO_53);
1253 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1254 			    MSK_RI_TO_53);
1255 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1256 			    MSK_RI_TO_53);
1257 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1258 			    MSK_RI_TO_53);
1259 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1260 			    MSK_RI_TO_53);
1261 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1262 			    MSK_RI_TO_53);
1263 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1264 			    MSK_RI_TO_53);
1265 		}
1266 	}
1267 
1268 	/* Disable all interrupts. */
1269 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1270 	CSR_READ_4(sc, B0_HWE_IMSK);
1271 	CSR_WRITE_4(sc, B0_IMSK, 0);
1272 	CSR_READ_4(sc, B0_IMSK);
1273 
1274         /*
1275          * On dual port PCI-X card, there is an problem where status
1276          * can be received out of order due to split transactions.
1277          */
1278 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1279 		uint16_t pcix_cmd;
1280 
1281 		pcix_cmd = pci_read_config(sc->msk_dev,
1282 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1283 		/* Clear Max Outstanding Split Transactions. */
1284 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1285 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1286 		pci_write_config(sc->msk_dev,
1287 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1288 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1289 	}
1290 	if (sc->msk_pciecap != 0) {
1291 		/* Change Max. Read Request Size to 2048 bytes. */
1292 		if (pcie_get_max_readrq(sc->msk_dev) ==
1293 		    PCIEM_DEVCTL_MAX_READRQ_512) {
1294 			pcie_set_max_readrq(sc->msk_dev,
1295 			    PCIEM_DEVCTL_MAX_READRQ_2048);
1296 		}
1297 	}
1298 
1299 	/* Clear status list. */
1300 	bzero(sc->msk_stat_ring,
1301 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1302 	sc->msk_stat_cons = 0;
1303 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1304 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1305 	/* Set the status list base address. */
1306 	addr = sc->msk_stat_ring_paddr;
1307 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1308 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1309 	/* Set the status list last index. */
1310 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1311 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1312 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1313 		/* WA for dev. #4.3 */
1314 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1315 		/* WA for dev. #4.18 */
1316 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1317 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1318 	} else {
1319 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1320 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1321 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1322 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1323 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1324 		else
1325 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1326 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1327 	}
1328 	/*
1329 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1330 	 */
1331 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1332 
1333 	/* Enable status unit. */
1334 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1335 
1336 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1337 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1338 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1339 }
1340 
1341 static int
1342 msk_probe(device_t dev)
1343 {
1344 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1345 	char desc[100];
1346 
1347 	/*
1348 	 * Not much to do here. We always know there will be
1349 	 * at least one GMAC present, and if there are two,
1350 	 * mskc_attach() will create a second device instance
1351 	 * for us.
1352 	 */
1353 	ksnprintf(desc, sizeof(desc),
1354 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1355 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1356 	    sc->msk_hw_rev);
1357 	device_set_desc_copy(dev, desc);
1358 
1359 	return (0);
1360 }
1361 
1362 static int
1363 msk_attach(device_t dev)
1364 {
1365 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1366 	struct msk_if_softc *sc_if = device_get_softc(dev);
1367 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1368 	int i, port, error;
1369 	uint8_t eaddr[ETHER_ADDR_LEN];
1370 
1371 	port = *(int *)device_get_ivars(dev);
1372 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1373 
1374 	kfree(device_get_ivars(dev), M_DEVBUF);
1375 	device_set_ivars(dev, NULL);
1376 
1377 	callout_init(&sc_if->msk_tick_ch);
1378 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1379 
1380 	sc_if->msk_if_dev = dev;
1381 	sc_if->msk_port = port;
1382 	sc_if->msk_softc = sc;
1383 	sc_if->msk_ifp = ifp;
1384 	sc_if->msk_flags = sc->msk_pflags;
1385 	sc->msk_if[port] = sc_if;
1386 
1387 	/* Setup Tx/Rx queue register offsets. */
1388 	if (port == MSK_PORT_A) {
1389 		sc_if->msk_txq = Q_XA1;
1390 		sc_if->msk_txsq = Q_XS1;
1391 		sc_if->msk_rxq = Q_R1;
1392 	} else {
1393 		sc_if->msk_txq = Q_XA2;
1394 		sc_if->msk_txsq = Q_XS2;
1395 		sc_if->msk_rxq = Q_R2;
1396 	}
1397 
1398 	error = msk_txrx_dma_alloc(sc_if);
1399 	if (error)
1400 		goto fail;
1401 
1402 	ifp->if_softc = sc_if;
1403 	ifp->if_mtu = ETHERMTU;
1404 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1405 	ifp->if_init = msk_init;
1406 	ifp->if_ioctl = msk_ioctl;
1407 	ifp->if_start = msk_start;
1408 	ifp->if_watchdog = msk_watchdog;
1409 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1410 	ifq_set_ready(&ifp->if_snd);
1411 
1412 #ifdef notyet
1413 	/*
1414 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1415 	 * has serious bug in Rx checksum offload for all Yukon II family
1416 	 * hardware. It seems there is a workaround to make it work somtimes.
1417 	 * However, the workaround also have to check OP code sequences to
1418 	 * verify whether the OP code is correct. Sometimes it should compute
1419 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1420 	 * checksum computed by hardware. If you have to compute checksum
1421 	 * with software to verify the hardware's checksum why have hardware
1422 	 * compute the checksum? I think there is no reason to spend time to
1423 	 * make Rx checksum offload work on Yukon II hardware.
1424 	 */
1425 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1426 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1427 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1428 	ifp->if_capenable = ifp->if_capabilities;
1429 #endif
1430 
1431 	/*
1432 	 * Get station address for this interface. Note that
1433 	 * dual port cards actually come with three station
1434 	 * addresses: one for each port, plus an extra. The
1435 	 * extra one is used by the SysKonnect driver software
1436 	 * as a 'virtual' station address for when both ports
1437 	 * are operating in failover mode. Currently we don't
1438 	 * use this extra address.
1439 	 */
1440 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1441 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1442 
1443 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1444 
1445 	/*
1446 	 * Do miibus setup.
1447 	 */
1448 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1449 			      msk_mediachange, msk_mediastatus);
1450 	if (error) {
1451 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1452 		goto fail;
1453 	}
1454 
1455 	/*
1456 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1457 	 */
1458 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1459 #if 0
1460 	/*
1461 	 * Tell the upper layer(s) we support long frames.
1462 	 * Must appear after the call to ether_ifattach() because
1463 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1464 	 */
1465         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1466 #endif
1467 
1468 	return 0;
1469 fail:
1470 	msk_detach(dev);
1471 	sc->msk_if[port] = NULL;
1472 	return (error);
1473 }
1474 
1475 /*
1476  * Attach the interface. Allocate softc structures, do ifmedia
1477  * setup and ethernet/BPF attach.
1478  */
1479 static int
1480 mskc_attach(device_t dev)
1481 {
1482 	struct msk_softc *sc;
1483 	int error, *port, cpuid;
1484 
1485 	sc = device_get_softc(dev);
1486 	sc->msk_dev = dev;
1487 	lwkt_serialize_init(&sc->msk_serializer);
1488 
1489 	/*
1490 	 * Initailize sysctl variables
1491 	 */
1492 	sc->msk_process_limit = mskc_process_limit;
1493 	sc->msk_intr_rate = mskc_intr_rate;
1494 
1495 #ifndef BURN_BRIDGES
1496 	/*
1497 	 * Handle power management nonsense.
1498 	 */
1499 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1500 		uint32_t irq, bar0, bar1;
1501 
1502 		/* Save important PCI config data. */
1503 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1504 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1505 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1506 
1507 		/* Reset the power state. */
1508 		device_printf(dev, "chip is in D%d power mode "
1509 			      "-- setting to D0\n", pci_get_powerstate(dev));
1510 
1511 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1512 
1513 		/* Restore PCI config data. */
1514 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1515 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1516 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1517 	}
1518 #endif	/* BURN_BRIDGES */
1519 
1520 	/*
1521 	 * Map control/status registers.
1522 	 */
1523 	pci_enable_busmaster(dev);
1524 
1525 	/*
1526 	 * Allocate I/O resource
1527 	 */
1528 #ifdef MSK_USEIOSPACE
1529 	sc->msk_res_type = SYS_RES_IOPORT;
1530 	sc->msk_res_rid = PCIR_BAR(1);
1531 #else
1532 	sc->msk_res_type = SYS_RES_MEMORY;
1533 	sc->msk_res_rid = PCIR_BAR(0);
1534 #endif
1535 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1536 					     &sc->msk_res_rid, RF_ACTIVE);
1537 	if (sc->msk_res == NULL) {
1538 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1539 			sc->msk_res_type = SYS_RES_IOPORT;
1540 			sc->msk_res_rid = PCIR_BAR(1);
1541 		} else {
1542 			sc->msk_res_type = SYS_RES_MEMORY;
1543 			sc->msk_res_rid = PCIR_BAR(0);
1544 		}
1545 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1546 						     &sc->msk_res_rid,
1547 						     RF_ACTIVE);
1548 		if (sc->msk_res == NULL) {
1549 			device_printf(dev, "couldn't allocate %s resources\n",
1550 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1551 			return (ENXIO);
1552 		}
1553 	}
1554 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1555 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1556 
1557 	/*
1558 	 * Allocate IRQ
1559 	 */
1560 	sc->msk_irq_rid = 0;
1561 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1562 					     &sc->msk_irq_rid,
1563 					     RF_SHAREABLE | RF_ACTIVE);
1564 	if (sc->msk_irq == NULL) {
1565 		device_printf(dev, "couldn't allocate IRQ resources\n");
1566 		error = ENXIO;
1567 		goto fail;
1568 	}
1569 
1570 	/* Enable all clocks before accessing any registers. */
1571 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1572 
1573 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1574 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1575 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1576 	/* Bail out if chip is not recognized. */
1577 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1578 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1579 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1580 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1581 		    sc->msk_hw_id, sc->msk_hw_rev);
1582 		error = ENXIO;
1583 		goto fail;
1584 	}
1585 
1586 	/*
1587 	 * Create sysctl tree
1588 	 */
1589 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1590 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1591 					      SYSCTL_STATIC_CHILDREN(_hw),
1592 					      OID_AUTO,
1593 					      device_get_nameunit(dev),
1594 					      CTLFLAG_RD, 0, "");
1595 	if (sc->msk_sysctl_tree == NULL) {
1596 		device_printf(dev, "can't add sysctl node\n");
1597 		error = ENXIO;
1598 		goto fail;
1599 	}
1600 
1601 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1602 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1603 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1604 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1605 			"I", "max number of Rx events to process");
1606 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1607 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1608 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1609 			sc, 0, mskc_sysctl_intr_rate,
1610 			"I", "max number of interrupt per second");
1611 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1612 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1613 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1614 		       0, "# of avoided m_defrag on TX path");
1615 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1616 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1617 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1618 		       0, "# of leading copies on TX path");
1619 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1620 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1621 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1622 		       0, "# of trailing copies on TX path");
1623 
1624 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1625 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1626 		sc->msk_coppertype = 0;
1627 	else
1628 		sc->msk_coppertype = 1;
1629 	/* Check number of MACs. */
1630 	sc->msk_num_port = 1;
1631 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1632 	    CFG_DUAL_MAC_MSK) {
1633 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1634 			sc->msk_num_port++;
1635 	}
1636 
1637 	/* Check bus type. */
1638 	if (pci_is_pcie(sc->msk_dev) == 0) {
1639 		sc->msk_bustype = MSK_PEX_BUS;
1640 		sc->msk_pciecap = pci_get_pciecap_ptr(sc->msk_dev);
1641 	} else if (pci_is_pcix(sc->msk_dev) == 0) {
1642 		sc->msk_bustype = MSK_PCIX_BUS;
1643 		sc->msk_pcixcap = pci_get_pcixcap_ptr(sc->msk_dev);
1644 	} else {
1645 		sc->msk_bustype = MSK_PCI_BUS;
1646 	}
1647 
1648 	switch (sc->msk_hw_id) {
1649 	case CHIP_ID_YUKON_EC:
1650 	case CHIP_ID_YUKON_EC_U:
1651 		sc->msk_clock = 125;	/* 125 Mhz */
1652 		break;
1653 	case CHIP_ID_YUKON_EX:
1654 		sc->msk_clock = 125;	/* 125 Mhz */
1655 		break;
1656 	case CHIP_ID_YUKON_FE:
1657 		sc->msk_clock = 100;	/* 100 Mhz */
1658 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1659 		break;
1660 	case CHIP_ID_YUKON_FE_P:
1661 		sc->msk_clock = 50;	/* 50 Mhz */
1662 		/* DESCV2 */
1663 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1664 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1665 			/*
1666 			 * XXX
1667 			 * FE+ A0 has status LE writeback bug so msk(4)
1668 			 * does not rely on status word of received frame
1669 			 * in msk_rxeof() which in turn disables all
1670 			 * hardware assistance bits reported by the status
1671 			 * word as well as validity of the recevied frame.
1672 			 * Just pass received frames to upper stack with
1673 			 * minimal test and let upper stack handle them.
1674 			 */
1675 			sc->msk_pflags |= MSK_FLAG_NORXCHK;
1676 		}
1677 		break;
1678 	case CHIP_ID_YUKON_XL:
1679 		sc->msk_clock = 156;	/* 156 Mhz */
1680 		break;
1681 	case CHIP_ID_YUKON_SUPR:
1682 		sc->msk_clock = 125;	/* 125 MHz */
1683 		break;
1684 	case CHIP_ID_YUKON_UL_2:
1685 		sc->msk_clock = 125;	/* 125 Mhz */
1686 		break;
1687 	case CHIP_ID_YUKON_OPT:
1688 		sc->msk_clock = 125;	/* 125 MHz */
1689 		break;
1690 	default:
1691 		sc->msk_clock = 156;	/* 156 Mhz */
1692 		break;
1693 	}
1694 
1695 	error = mskc_status_dma_alloc(sc);
1696 	if (error)
1697 		goto fail;
1698 
1699 	/* Set base interrupt mask. */
1700 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1701 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1702 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1703 
1704 	/* Reset the adapter. */
1705 	mskc_reset(sc);
1706 
1707 	error = mskc_setup_rambuffer(sc);
1708 	if (error)
1709 		goto fail;
1710 
1711 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1712 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1713 		device_printf(dev, "failed to add child for PORT_A\n");
1714 		error = ENXIO;
1715 		goto fail;
1716 	}
1717 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1718 	*port = MSK_PORT_A;
1719 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1720 
1721 	if (sc->msk_num_port > 1) {
1722 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1723 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1724 			device_printf(dev, "failed to add child for PORT_B\n");
1725 			error = ENXIO;
1726 			goto fail;
1727 		}
1728 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1729 		*port = MSK_PORT_B;
1730 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1731 	}
1732 
1733 	bus_generic_attach(dev);
1734 
1735 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1736 			       mskc_intr, sc, &sc->msk_intrhand,
1737 			       &sc->msk_serializer);
1738 	if (error) {
1739 		device_printf(dev, "couldn't set up interrupt handler\n");
1740 		goto fail;
1741 	}
1742 
1743 	cpuid = rman_get_cpuid(sc->msk_irq);
1744 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1745 
1746 	if (sc->msk_if[0] != NULL)
1747 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1748 	if (sc->msk_if[1] != NULL)
1749 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1750 	return 0;
1751 fail:
1752 	mskc_detach(dev);
1753 	return (error);
1754 }
1755 
1756 /*
1757  * Shutdown hardware and free up resources. This can be called any
1758  * time after the mutex has been initialized. It is called in both
1759  * the error case in attach and the normal detach case so it needs
1760  * to be careful about only freeing resources that have actually been
1761  * allocated.
1762  */
1763 static int
1764 msk_detach(device_t dev)
1765 {
1766 	struct msk_if_softc *sc_if = device_get_softc(dev);
1767 
1768 	if (device_is_attached(dev)) {
1769 		struct msk_softc *sc = sc_if->msk_softc;
1770 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1771 
1772 		lwkt_serialize_enter(ifp->if_serializer);
1773 
1774 		if (sc->msk_intrhand != NULL) {
1775 			if (sc->msk_if[MSK_PORT_A] != NULL)
1776 				msk_stop(sc->msk_if[MSK_PORT_A]);
1777 			if (sc->msk_if[MSK_PORT_B] != NULL)
1778 				msk_stop(sc->msk_if[MSK_PORT_B]);
1779 
1780 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1781 					  sc->msk_intrhand);
1782 			sc->msk_intrhand = NULL;
1783 		}
1784 
1785 		lwkt_serialize_exit(ifp->if_serializer);
1786 
1787 		ether_ifdetach(ifp);
1788 	}
1789 
1790 	if (sc_if->msk_miibus != NULL)
1791 		device_delete_child(dev, sc_if->msk_miibus);
1792 
1793 	msk_txrx_dma_free(sc_if);
1794 	return (0);
1795 }
1796 
1797 static int
1798 mskc_detach(device_t dev)
1799 {
1800 	struct msk_softc *sc = device_get_softc(dev);
1801 	int *port, i;
1802 
1803 #ifdef INVARIANTS
1804 	if (device_is_attached(dev)) {
1805 		KASSERT(sc->msk_intrhand == NULL,
1806 			("intr is not torn down yet\n"));
1807 	}
1808 #endif
1809 
1810 	for (i = 0; i < sc->msk_num_port; ++i) {
1811 		if (sc->msk_devs[i] != NULL) {
1812 			port = device_get_ivars(sc->msk_devs[i]);
1813 			if (port != NULL) {
1814 				kfree(port, M_DEVBUF);
1815 				device_set_ivars(sc->msk_devs[i], NULL);
1816 			}
1817 			device_delete_child(dev, sc->msk_devs[i]);
1818 		}
1819 	}
1820 
1821 	/* Disable all interrupts. */
1822 	CSR_WRITE_4(sc, B0_IMSK, 0);
1823 	CSR_READ_4(sc, B0_IMSK);
1824 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1825 	CSR_READ_4(sc, B0_HWE_IMSK);
1826 
1827 	/* LED Off. */
1828 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1829 
1830 	/* Put hardware reset. */
1831 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1832 
1833 	mskc_status_dma_free(sc);
1834 
1835 	if (sc->msk_irq != NULL) {
1836 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1837 				     sc->msk_irq);
1838 	}
1839 	if (sc->msk_res != NULL) {
1840 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1841 				     sc->msk_res);
1842 	}
1843 
1844 	if (sc->msk_sysctl_tree != NULL)
1845 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1846 
1847 	return (0);
1848 }
1849 
1850 /* Create status DMA region. */
1851 static int
1852 mskc_status_dma_alloc(struct msk_softc *sc)
1853 {
1854 	bus_dmamem_t dmem;
1855 	int error;
1856 
1857 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1858 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1859 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1860 	if (error) {
1861 		device_printf(sc->msk_dev,
1862 		    "failed to create status coherent DMA memory\n");
1863 		return error;
1864 	}
1865 	sc->msk_stat_tag = dmem.dmem_tag;
1866 	sc->msk_stat_map = dmem.dmem_map;
1867 	sc->msk_stat_ring = dmem.dmem_addr;
1868 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1869 
1870 	return (0);
1871 }
1872 
1873 static void
1874 mskc_status_dma_free(struct msk_softc *sc)
1875 {
1876 	/* Destroy status block. */
1877 	if (sc->msk_stat_tag) {
1878 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1879 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1880 				sc->msk_stat_map);
1881 		bus_dma_tag_destroy(sc->msk_stat_tag);
1882 		sc->msk_stat_tag = NULL;
1883 	}
1884 }
1885 
1886 static int
1887 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1888 {
1889 	int error, i, j;
1890 #ifdef MSK_JUMBO
1891 	struct msk_rxdesc *jrxd;
1892 	struct msk_jpool_entry *entry;
1893 	uint8_t *ptr;
1894 #endif
1895 	bus_size_t rxalign;
1896 
1897 	/* Create parent DMA tag. */
1898 	/*
1899 	 * XXX
1900 	 * It seems that Yukon II supports full 64bits DMA operations. But
1901 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1902 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1903 	 * would be used in advance for each mbufs, we limits its DMA space
1904 	 * to be in range of 32bits address space. Otherwise, we should check
1905 	 * what DMA address is used and chain another descriptor for the
1906 	 * 64bits DMA operation. This also means descriptor ring size is
1907 	 * variable. Limiting DMA address to be in 32bit address space greatly
1908 	 * simplyfies descriptor handling and possibly would increase
1909 	 * performance a bit due to efficient handling of descriptors.
1910 	 * Apart from harassing checksum offloading mechanisms, it seems
1911 	 * it's really bad idea to use a seperate descriptor for 64bit
1912 	 * DMA operation to save small descriptor memory. Anyway, I've
1913 	 * never seen these exotic scheme on ethernet interface hardware.
1914 	 */
1915 	error = bus_dma_tag_create(
1916 		    NULL,			/* parent */
1917 		    1, 0,			/* alignment, boundary */
1918 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1919 		    BUS_SPACE_MAXADDR,		/* highaddr */
1920 		    NULL, NULL,			/* filter, filterarg */
1921 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1922 		    0,				/* nsegments */
1923 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1924 		    0,				/* flags */
1925 		    &sc_if->msk_cdata.msk_parent_tag);
1926 	if (error) {
1927 		device_printf(sc_if->msk_if_dev,
1928 			      "failed to create parent DMA tag\n");
1929 		return error;
1930 	}
1931 
1932 	/* Create DMA stuffs for Tx ring. */
1933 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1934 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1935 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1936 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1937 				  &sc_if->msk_cdata.msk_tx_ring_map);
1938 	if (error) {
1939 		device_printf(sc_if->msk_if_dev,
1940 			      "failed to create TX ring DMA stuffs\n");
1941 		return error;
1942 	}
1943 
1944 	/* Create DMA stuffs for Rx ring. */
1945 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1946 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1947 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1948 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1949 				  &sc_if->msk_cdata.msk_rx_ring_map);
1950 	if (error) {
1951 		device_printf(sc_if->msk_if_dev,
1952 			      "failed to create RX ring DMA stuffs\n");
1953 		return error;
1954 	}
1955 
1956 	/* Create tag for Tx buffers. */
1957 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1958 		    1, 0,			/* alignment, boundary */
1959 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1960 		    BUS_SPACE_MAXADDR,		/* highaddr */
1961 		    NULL, NULL,			/* filter, filterarg */
1962 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1963 		    MSK_MAXTXSEGS,		/* nsegments */
1964 		    MSK_MAXSGSIZE,		/* maxsegsize */
1965 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1966 		    BUS_DMA_ONEBPAGE,		/* flags */
1967 		    &sc_if->msk_cdata.msk_tx_tag);
1968 	if (error) {
1969 		device_printf(sc_if->msk_if_dev,
1970 			      "failed to create Tx DMA tag\n");
1971 		return error;
1972 	}
1973 
1974 	/* Create DMA maps for Tx buffers. */
1975 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1976 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1977 
1978 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1979 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1980 				&txd->tx_dmamap);
1981 		if (error) {
1982 			device_printf(sc_if->msk_if_dev,
1983 				      "failed to create %dth Tx dmamap\n", i);
1984 
1985 			for (j = 0; j < i; ++j) {
1986 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1987 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1988 						   txd->tx_dmamap);
1989 			}
1990 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1991 			sc_if->msk_cdata.msk_tx_tag = NULL;
1992 
1993 			return error;
1994 		}
1995 	}
1996 
1997 	/*
1998 	 * Workaround hardware hang which seems to happen when Rx buffer
1999 	 * is not aligned on multiple of FIFO word(8 bytes).
2000 	 */
2001 	if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
2002 		rxalign = MSK_RX_BUF_ALIGN;
2003 	else
2004 		rxalign = 1;
2005 
2006 	/* Create tag for Rx buffers. */
2007 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2008 		    rxalign, 0,			/* alignment, boundary */
2009 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2010 		    BUS_SPACE_MAXADDR,		/* highaddr */
2011 		    NULL, NULL,			/* filter, filterarg */
2012 		    MCLBYTES,			/* maxsize */
2013 		    1,				/* nsegments */
2014 		    MCLBYTES,			/* maxsegsize */
2015 		    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2016 		    BUS_DMA_WAITOK,		/* flags */
2017 		    &sc_if->msk_cdata.msk_rx_tag);
2018 	if (error) {
2019 		device_printf(sc_if->msk_if_dev,
2020 			      "failed to create Rx DMA tag\n");
2021 		return error;
2022 	}
2023 
2024 	/* Create DMA maps for Rx buffers. */
2025 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
2026 				  &sc_if->msk_cdata.msk_rx_sparemap);
2027 	if (error) {
2028 		device_printf(sc_if->msk_if_dev,
2029 			      "failed to create spare Rx dmamap\n");
2030 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2031 		sc_if->msk_cdata.msk_rx_tag = NULL;
2032 		return error;
2033 	}
2034 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2035 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2036 
2037 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2038 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
2039 		if (error) {
2040 			device_printf(sc_if->msk_if_dev,
2041 				      "failed to create %dth Rx dmamap\n", i);
2042 
2043 			for (j = 0; j < i; ++j) {
2044 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2045 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2046 						   rxd->rx_dmamap);
2047 			}
2048 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2049 					   sc_if->msk_cdata.msk_rx_sparemap);
2050 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2051 			sc_if->msk_cdata.msk_rx_tag = NULL;
2052 
2053 			return error;
2054 		}
2055 	}
2056 
2057 #ifdef MSK_JUMBO
2058 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2059 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2060 
2061 	/* Create tag for jumbo Rx ring. */
2062 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2063 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2064 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2065 		    BUS_SPACE_MAXADDR,		/* highaddr */
2066 		    NULL, NULL,			/* filter, filterarg */
2067 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2068 		    1,				/* nsegments */
2069 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2070 		    0,				/* flags */
2071 		    NULL, NULL,			/* lockfunc, lockarg */
2072 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2073 	if (error != 0) {
2074 		device_printf(sc_if->msk_if_dev,
2075 		    "failed to create jumbo Rx ring DMA tag\n");
2076 		goto fail;
2077 	}
2078 
2079 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2080 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2081 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2082 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2083 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2084 	if (error != 0) {
2085 		device_printf(sc_if->msk_if_dev,
2086 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2087 		goto fail;
2088 	}
2089 
2090 	ctx.msk_busaddr = 0;
2091 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2092 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2093 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2094 	    msk_dmamap_cb, &ctx, 0);
2095 	if (error != 0) {
2096 		device_printf(sc_if->msk_if_dev,
2097 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2098 		goto fail;
2099 	}
2100 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2101 
2102 	/* Create tag for jumbo buffer blocks. */
2103 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2104 		    PAGE_SIZE, 0,		/* alignment, boundary */
2105 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2106 		    BUS_SPACE_MAXADDR,		/* highaddr */
2107 		    NULL, NULL,			/* filter, filterarg */
2108 		    MSK_JMEM,			/* maxsize */
2109 		    1,				/* nsegments */
2110 		    MSK_JMEM,			/* maxsegsize */
2111 		    0,				/* flags */
2112 		    NULL, NULL,			/* lockfunc, lockarg */
2113 		    &sc_if->msk_cdata.msk_jumbo_tag);
2114 	if (error != 0) {
2115 		device_printf(sc_if->msk_if_dev,
2116 		    "failed to create jumbo Rx buffer block DMA tag\n");
2117 		goto fail;
2118 	}
2119 
2120 	/* Create tag for jumbo Rx buffers. */
2121 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2122 		    PAGE_SIZE, 0,		/* alignment, boundary */
2123 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2124 		    BUS_SPACE_MAXADDR,		/* highaddr */
2125 		    NULL, NULL,			/* filter, filterarg */
2126 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2127 		    MSK_MAXRXSEGS,		/* nsegments */
2128 		    MSK_JLEN,			/* maxsegsize */
2129 		    0,				/* flags */
2130 		    NULL, NULL,			/* lockfunc, lockarg */
2131 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2132 	if (error != 0) {
2133 		device_printf(sc_if->msk_if_dev,
2134 		    "failed to create jumbo Rx DMA tag\n");
2135 		goto fail;
2136 	}
2137 
2138 	/* Create DMA maps for jumbo Rx buffers. */
2139 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2140 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2141 		device_printf(sc_if->msk_if_dev,
2142 		    "failed to create spare jumbo Rx dmamap\n");
2143 		goto fail;
2144 	}
2145 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2146 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2147 		jrxd->rx_m = NULL;
2148 		jrxd->rx_dmamap = NULL;
2149 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2150 		    &jrxd->rx_dmamap);
2151 		if (error != 0) {
2152 			device_printf(sc_if->msk_if_dev,
2153 			    "failed to create jumbo Rx dmamap\n");
2154 			goto fail;
2155 		}
2156 	}
2157 
2158 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2159 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2160 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2161 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2162 	    &sc_if->msk_cdata.msk_jumbo_map);
2163 	if (error != 0) {
2164 		device_printf(sc_if->msk_if_dev,
2165 		    "failed to allocate DMA'able memory for jumbo buf\n");
2166 		goto fail;
2167 	}
2168 
2169 	ctx.msk_busaddr = 0;
2170 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2171 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2172 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2173 	if (error != 0) {
2174 		device_printf(sc_if->msk_if_dev,
2175 		    "failed to load DMA'able memory for jumbobuf\n");
2176 		goto fail;
2177 	}
2178 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2179 
2180 	/*
2181 	 * Now divide it up into 9K pieces and save the addresses
2182 	 * in an array.
2183 	 */
2184 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2185 	for (i = 0; i < MSK_JSLOTS; i++) {
2186 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2187 		ptr += MSK_JLEN;
2188 		entry = malloc(sizeof(struct msk_jpool_entry),
2189 		    M_DEVBUF, M_WAITOK);
2190 		if (entry == NULL) {
2191 			device_printf(sc_if->msk_if_dev,
2192 			    "no memory for jumbo buffers!\n");
2193 			error = ENOMEM;
2194 			goto fail;
2195 		}
2196 		entry->slot = i;
2197 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2198 		    jpool_entries);
2199 	}
2200 #endif
2201 	return 0;
2202 }
2203 
2204 static void
2205 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2206 {
2207 	struct msk_txdesc *txd;
2208 	struct msk_rxdesc *rxd;
2209 #ifdef MSK_JUMBO
2210 	struct msk_rxdesc *jrxd;
2211 	struct msk_jpool_entry *entry;
2212 #endif
2213 	int i;
2214 
2215 #ifdef MSK_JUMBO
2216 	MSK_JLIST_LOCK(sc_if);
2217 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2218 		device_printf(sc_if->msk_if_dev,
2219 		    "asked to free buffer that is in use!\n");
2220 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2221 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2222 		    jpool_entries);
2223 	}
2224 
2225 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2226 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2227 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2228 		free(entry, M_DEVBUF);
2229 	}
2230 	MSK_JLIST_UNLOCK(sc_if);
2231 
2232 	/* Destroy jumbo buffer block. */
2233 	if (sc_if->msk_cdata.msk_jumbo_map)
2234 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2235 		    sc_if->msk_cdata.msk_jumbo_map);
2236 
2237 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2238 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2239 		    sc_if->msk_rdata.msk_jumbo_buf,
2240 		    sc_if->msk_cdata.msk_jumbo_map);
2241 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2242 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2243 	}
2244 
2245 	/* Jumbo Rx ring. */
2246 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2247 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2248 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2249 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2250 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2251 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2252 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2253 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2254 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2255 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2256 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2257 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2258 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2259 	}
2260 
2261 	/* Jumbo Rx buffers. */
2262 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2263 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2264 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2265 			if (jrxd->rx_dmamap) {
2266 				bus_dmamap_destroy(
2267 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2268 				    jrxd->rx_dmamap);
2269 				jrxd->rx_dmamap = NULL;
2270 			}
2271 		}
2272 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2273 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2274 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2275 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2276 		}
2277 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2278 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2279 	}
2280 #endif
2281 
2282 	/* Tx ring. */
2283 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2284 			   sc_if->msk_rdata.msk_tx_ring,
2285 			   sc_if->msk_cdata.msk_tx_ring_map);
2286 
2287 	/* Rx ring. */
2288 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2289 			   sc_if->msk_rdata.msk_rx_ring,
2290 			   sc_if->msk_cdata.msk_rx_ring_map);
2291 
2292 	/* Tx buffers. */
2293 	if (sc_if->msk_cdata.msk_tx_tag) {
2294 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2295 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2296 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2297 					   txd->tx_dmamap);
2298 		}
2299 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2300 		sc_if->msk_cdata.msk_tx_tag = NULL;
2301 	}
2302 
2303 	/* Rx buffers. */
2304 	if (sc_if->msk_cdata.msk_rx_tag) {
2305 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2306 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2307 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2308 					   rxd->rx_dmamap);
2309 		}
2310 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2311 				   sc_if->msk_cdata.msk_rx_sparemap);
2312 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2313 		sc_if->msk_cdata.msk_rx_tag = NULL;
2314 	}
2315 
2316 	if (sc_if->msk_cdata.msk_parent_tag) {
2317 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2318 		sc_if->msk_cdata.msk_parent_tag = NULL;
2319 	}
2320 }
2321 
2322 #ifdef MSK_JUMBO
2323 /*
2324  * Allocate a jumbo buffer.
2325  */
2326 static void *
2327 msk_jalloc(struct msk_if_softc *sc_if)
2328 {
2329 	struct msk_jpool_entry *entry;
2330 
2331 	MSK_JLIST_LOCK(sc_if);
2332 
2333 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2334 
2335 	if (entry == NULL) {
2336 		MSK_JLIST_UNLOCK(sc_if);
2337 		return (NULL);
2338 	}
2339 
2340 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2341 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2342 
2343 	MSK_JLIST_UNLOCK(sc_if);
2344 
2345 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2346 }
2347 
2348 /*
2349  * Release a jumbo buffer.
2350  */
2351 static void
2352 msk_jfree(void *buf, void *args)
2353 {
2354 	struct msk_if_softc *sc_if;
2355 	struct msk_jpool_entry *entry;
2356 	int i;
2357 
2358 	/* Extract the softc struct pointer. */
2359 	sc_if = (struct msk_if_softc *)args;
2360 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2361 
2362 	MSK_JLIST_LOCK(sc_if);
2363 	/* Calculate the slot this buffer belongs to. */
2364 	i = ((vm_offset_t)buf
2365 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2366 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2367 	    ("%s: asked to free buffer that we don't manage!", __func__));
2368 
2369 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2370 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2371 	entry->slot = i;
2372 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2373 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2374 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2375 		wakeup(sc_if);
2376 
2377 	MSK_JLIST_UNLOCK(sc_if);
2378 }
2379 #endif
2380 
2381 static int
2382 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2383 {
2384 	struct msk_txdesc *txd, *txd_last;
2385 	struct msk_tx_desc *tx_le;
2386 	struct mbuf *m;
2387 	bus_dmamap_t map;
2388 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2389 	uint32_t control, prod, si;
2390 	uint16_t offset, tcp_offset;
2391 	int error, i, nsegs, maxsegs, defrag;
2392 
2393 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2394 		  MSK_RESERVED_TX_DESC_CNT;
2395 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2396 		("not enough spare TX desc\n"));
2397 	if (maxsegs > MSK_MAXTXSEGS)
2398 		maxsegs = MSK_MAXTXSEGS;
2399 
2400 	/*
2401 	 * Align TX buffer to 64bytes boundary.  This greately improves
2402 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2403 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2404 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2405 	 */
2406 
2407 #define MSK_TXBUF_ALIGN	64
2408 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2409 
2410 	defrag = 1;
2411 	m = *m_head;
2412 	if (m->m_len == m->m_pkthdr.len) {
2413 		int space;
2414 
2415 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2416 		if (space) {
2417 			if (M_WRITABLE(m)) {
2418 				if (M_TRAILINGSPACE(m) >= space) {
2419 					/* e.g. TCP ACKs */
2420 					bcopy(m->m_data, m->m_data + space,
2421 					      m->m_len);
2422 					m->m_data += space;
2423 					defrag = 0;
2424 					sc_if->msk_softc->msk_trailing_copied++;
2425 				} else {
2426 					space = MSK_TXBUF_ALIGN - space;
2427 					if (M_LEADINGSPACE(m) >= space) {
2428 						/* e.g. Small UDP datagrams */
2429 						bcopy(m->m_data,
2430 						      m->m_data - space,
2431 						      m->m_len);
2432 						m->m_data -= space;
2433 						defrag = 0;
2434 						sc_if->msk_softc->
2435 						msk_leading_copied++;
2436 					}
2437 				}
2438 			}
2439 		} else {
2440 			/* e.g. on forwarding path */
2441 			defrag = 0;
2442 		}
2443 	}
2444 	if (defrag) {
2445 		m = m_defrag(*m_head, MB_DONTWAIT);
2446 		if (m == NULL) {
2447 			m_freem(*m_head);
2448 			*m_head = NULL;
2449 			return ENOBUFS;
2450 		}
2451 		*m_head = m;
2452 	} else {
2453 		sc_if->msk_softc->msk_defrag_avoided++;
2454 	}
2455 
2456 #undef MSK_TXBUF_MASK
2457 #undef MSK_TXBUF_ALIGN
2458 
2459 	tcp_offset = offset = 0;
2460 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2461 		/*
2462 		 * Since mbuf has no protocol specific structure information
2463 		 * in it we have to inspect protocol information here to
2464 		 * setup TSO and checksum offload. I don't know why Marvell
2465 		 * made a such decision in chip design because other GigE
2466 		 * hardwares normally takes care of all these chores in
2467 		 * hardware. However, TSO performance of Yukon II is very
2468 		 * good such that it's worth to implement it.
2469 		 */
2470 		struct ether_header *eh;
2471 		struct ip *ip;
2472 
2473 		/* TODO check for M_WRITABLE(m) */
2474 
2475 		offset = sizeof(struct ether_header);
2476 		m = m_pullup(m, offset);
2477 		if (m == NULL) {
2478 			*m_head = NULL;
2479 			return (ENOBUFS);
2480 		}
2481 		eh = mtod(m, struct ether_header *);
2482 		/* Check if hardware VLAN insertion is off. */
2483 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2484 			offset = sizeof(struct ether_vlan_header);
2485 			m = m_pullup(m, offset);
2486 			if (m == NULL) {
2487 				*m_head = NULL;
2488 				return (ENOBUFS);
2489 			}
2490 		}
2491 		m = m_pullup(m, offset + sizeof(struct ip));
2492 		if (m == NULL) {
2493 			*m_head = NULL;
2494 			return (ENOBUFS);
2495 		}
2496 		ip = (struct ip *)(mtod(m, char *) + offset);
2497 		offset += (ip->ip_hl << 2);
2498 		tcp_offset = offset;
2499 		/*
2500 		 * It seems that Yukon II has Tx checksum offload bug for
2501 		 * small TCP packets that's less than 60 bytes in size
2502 		 * (e.g. TCP window probe packet, pure ACK packet).
2503 		 * Common work around like padding with zeros to make the
2504 		 * frame minimum ethernet frame size didn't work at all.
2505 		 * Instead of disabling checksum offload completely we
2506 		 * resort to S/W checksum routine when we encounter short
2507 		 * TCP frames.
2508 		 * Short UDP packets appear to be handled correctly by
2509 		 * Yukon II.
2510 		 */
2511 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2512 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2513 			uint16_t csum;
2514 
2515 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2516 			    (ip->ip_hl << 2), offset);
2517 			*(uint16_t *)(m->m_data + offset +
2518 			    m->m_pkthdr.csum_data) = csum;
2519 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2520 		}
2521 		*m_head = m;
2522 	}
2523 
2524 	prod = sc_if->msk_cdata.msk_tx_prod;
2525 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2526 	txd_last = txd;
2527 	map = txd->tx_dmamap;
2528 
2529 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2530 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2531 	if (error) {
2532 		m_freem(*m_head);
2533 		*m_head = NULL;
2534 		return error;
2535 	}
2536 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2537 
2538 	m = *m_head;
2539 	control = 0;
2540 	tx_le = NULL;
2541 
2542 #ifdef notyet
2543 	/* Check if we have a VLAN tag to insert. */
2544 	if ((m->m_flags & M_VLANTAG) != 0) {
2545 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2546 		tx_le->msk_addr = htole32(0);
2547 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2548 		    htons(m->m_pkthdr.ether_vtag));
2549 		sc_if->msk_cdata.msk_tx_cnt++;
2550 		MSK_INC(prod, MSK_TX_RING_CNT);
2551 		control |= INS_VLAN;
2552 	}
2553 #endif
2554 	/* Check if we have to handle checksum offload. */
2555 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2556 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2557 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2558 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2559 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2560 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2561 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2562 			control |= UDPTCP;
2563 		sc_if->msk_cdata.msk_tx_cnt++;
2564 		MSK_INC(prod, MSK_TX_RING_CNT);
2565 	}
2566 
2567 	si = prod;
2568 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2569 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2570 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2571 	    OP_PACKET);
2572 	sc_if->msk_cdata.msk_tx_cnt++;
2573 	MSK_INC(prod, MSK_TX_RING_CNT);
2574 
2575 	for (i = 1; i < nsegs; i++) {
2576 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2577 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2578 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2579 		    OP_BUFFER | HW_OWNER);
2580 		sc_if->msk_cdata.msk_tx_cnt++;
2581 		MSK_INC(prod, MSK_TX_RING_CNT);
2582 	}
2583 	/* Update producer index. */
2584 	sc_if->msk_cdata.msk_tx_prod = prod;
2585 
2586 	/* Set EOP on the last desciptor. */
2587 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2588 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2589 	tx_le->msk_control |= htole32(EOP);
2590 
2591 	/* Turn the first descriptor ownership to hardware. */
2592 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2593 	tx_le->msk_control |= htole32(HW_OWNER);
2594 
2595 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2596 	map = txd_last->tx_dmamap;
2597 	txd_last->tx_dmamap = txd->tx_dmamap;
2598 	txd->tx_dmamap = map;
2599 	txd->tx_m = m;
2600 
2601 	return (0);
2602 }
2603 
2604 static void
2605 msk_start(struct ifnet *ifp)
2606 {
2607         struct msk_if_softc *sc_if;
2608         struct mbuf *m_head;
2609 	int enq;
2610 
2611 	sc_if = ifp->if_softc;
2612 
2613 	ASSERT_SERIALIZED(ifp->if_serializer);
2614 
2615 	if (!sc_if->msk_link) {
2616 		ifq_purge(&ifp->if_snd);
2617 		return;
2618 	}
2619 
2620 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2621 		return;
2622 
2623 	enq = 0;
2624 	while (!ifq_is_empty(&ifp->if_snd)) {
2625 		if (MSK_IS_OACTIVE(sc_if)) {
2626 			ifp->if_flags |= IFF_OACTIVE;
2627 			break;
2628 		}
2629 
2630 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2631 		if (m_head == NULL)
2632 			break;
2633 
2634 		/*
2635 		 * Pack the data into the transmit ring. If we
2636 		 * don't have room, set the OACTIVE flag and wait
2637 		 * for the NIC to drain the ring.
2638 		 */
2639 		if (msk_encap(sc_if, &m_head) != 0) {
2640 			ifp->if_oerrors++;
2641 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2642 				continue;
2643 			} else {
2644 				ifp->if_flags |= IFF_OACTIVE;
2645 				break;
2646 			}
2647 		}
2648 		enq = 1;
2649 
2650 		/*
2651 		 * If there's a BPF listener, bounce a copy of this frame
2652 		 * to him.
2653 		 */
2654 		BPF_MTAP(ifp, m_head);
2655 	}
2656 
2657 	if (enq) {
2658 		/* Transmit */
2659 		CSR_WRITE_2(sc_if->msk_softc,
2660 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2661 		    sc_if->msk_cdata.msk_tx_prod);
2662 
2663 		/* Set a timeout in case the chip goes out to lunch. */
2664 		ifp->if_timer = MSK_TX_TIMEOUT;
2665 	}
2666 }
2667 
2668 static void
2669 msk_watchdog(struct ifnet *ifp)
2670 {
2671 	struct msk_if_softc *sc_if = ifp->if_softc;
2672 	uint32_t ridx;
2673 	int idx;
2674 
2675 	ASSERT_SERIALIZED(ifp->if_serializer);
2676 
2677 	if (sc_if->msk_link == 0) {
2678 		if (bootverbose)
2679 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2680 			   "(missed link)\n");
2681 		ifp->if_oerrors++;
2682 		msk_init(sc_if);
2683 		return;
2684 	}
2685 
2686 	/*
2687 	 * Reclaim first as there is a possibility of losing Tx completion
2688 	 * interrupts.
2689 	 */
2690 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2691 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2692 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2693 		msk_txeof(sc_if, idx);
2694 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2695 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2696 			    "-- recovering\n");
2697 			if (!ifq_is_empty(&ifp->if_snd))
2698 				if_devstart(ifp);
2699 			return;
2700 		}
2701 	}
2702 
2703 	if_printf(ifp, "watchdog timeout\n");
2704 	ifp->if_oerrors++;
2705 	msk_init(sc_if);
2706 	if (!ifq_is_empty(&ifp->if_snd))
2707 		if_devstart(ifp);
2708 }
2709 
2710 static int
2711 mskc_shutdown(device_t dev)
2712 {
2713 	struct msk_softc *sc = device_get_softc(dev);
2714 	int i;
2715 
2716 	lwkt_serialize_enter(&sc->msk_serializer);
2717 
2718 	for (i = 0; i < sc->msk_num_port; i++) {
2719 		if (sc->msk_if[i] != NULL)
2720 			msk_stop(sc->msk_if[i]);
2721 	}
2722 
2723 	/* Put hardware reset. */
2724 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2725 
2726 	lwkt_serialize_exit(&sc->msk_serializer);
2727 	return (0);
2728 }
2729 
2730 static int
2731 mskc_suspend(device_t dev)
2732 {
2733 	struct msk_softc *sc = device_get_softc(dev);
2734 	int i;
2735 
2736 	lwkt_serialize_enter(&sc->msk_serializer);
2737 
2738 	for (i = 0; i < sc->msk_num_port; i++) {
2739 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2740 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2741 			msk_stop(sc->msk_if[i]);
2742 	}
2743 
2744 	/* Disable all interrupts. */
2745 	CSR_WRITE_4(sc, B0_IMSK, 0);
2746 	CSR_READ_4(sc, B0_IMSK);
2747 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2748 	CSR_READ_4(sc, B0_HWE_IMSK);
2749 
2750 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2751 
2752 	/* Put hardware reset. */
2753 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2754 	sc->msk_suspended = 1;
2755 
2756 	lwkt_serialize_exit(&sc->msk_serializer);
2757 
2758 	return (0);
2759 }
2760 
2761 static int
2762 mskc_resume(device_t dev)
2763 {
2764 	struct msk_softc *sc = device_get_softc(dev);
2765 	int i;
2766 
2767 	lwkt_serialize_enter(&sc->msk_serializer);
2768 
2769 	/* Enable all clocks before accessing any registers. */
2770 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
2771 	mskc_reset(sc);
2772 	for (i = 0; i < sc->msk_num_port; i++) {
2773 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2774 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2775 			msk_init(sc->msk_if[i]);
2776 	}
2777 	sc->msk_suspended = 0;
2778 
2779 	lwkt_serialize_exit(&sc->msk_serializer);
2780 
2781 	return (0);
2782 }
2783 
2784 static void
2785 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2786 	  struct mbuf_chain *chain)
2787 {
2788 	struct mbuf *m;
2789 	struct ifnet *ifp;
2790 	struct msk_rxdesc *rxd;
2791 	int cons, rxlen;
2792 
2793 	ifp = sc_if->msk_ifp;
2794 
2795 	cons = sc_if->msk_cdata.msk_rx_cons;
2796 	do {
2797 		rxlen = status >> 16;
2798 		if ((status & GMR_FS_VLAN) != 0 &&
2799 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2800 			rxlen -= EVL_ENCAPLEN;
2801 		if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2802 			/*
2803 			 * For controllers that returns bogus status code
2804 			 * just do minimal check and let upper stack
2805 			 * handle this frame.
2806 			 */
2807 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2808 				ifp->if_ierrors++;
2809 				msk_discard_rxbuf(sc_if, cons);
2810 				break;
2811 			}
2812 		} else if (len > sc_if->msk_framesize ||
2813 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2814 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2815 			/* Don't count flow-control packet as errors. */
2816 			if ((status & GMR_FS_GOOD_FC) == 0)
2817 				ifp->if_ierrors++;
2818 			msk_discard_rxbuf(sc_if, cons);
2819 			break;
2820 		}
2821 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2822 		m = rxd->rx_m;
2823 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2824 			ifp->if_iqdrops++;
2825 			/* Reuse old buffer. */
2826 			msk_discard_rxbuf(sc_if, cons);
2827 			break;
2828 		}
2829 		m->m_pkthdr.rcvif = ifp;
2830 		m->m_pkthdr.len = m->m_len = len;
2831 		ifp->if_ipackets++;
2832 #ifdef notyet
2833 		/* Check for VLAN tagged packets. */
2834 		if ((status & GMR_FS_VLAN) != 0 &&
2835 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2836 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2837 			m->m_flags |= M_VLANTAG;
2838 		}
2839 #endif
2840 
2841 		ether_input_chain(ifp, m, NULL, chain);
2842 	} while (0);
2843 
2844 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2845 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2846 }
2847 
2848 #ifdef MSK_JUMBO
2849 static void
2850 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2851 {
2852 	struct mbuf *m;
2853 	struct ifnet *ifp;
2854 	struct msk_rxdesc *jrxd;
2855 	int cons, rxlen;
2856 
2857 	ifp = sc_if->msk_ifp;
2858 
2859 	MSK_IF_LOCK_ASSERT(sc_if);
2860 
2861 	cons = sc_if->msk_cdata.msk_rx_cons;
2862 	do {
2863 		rxlen = status >> 16;
2864 		if ((status & GMR_FS_VLAN) != 0 &&
2865 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2866 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2867 		if (len > sc_if->msk_framesize ||
2868 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2869 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2870 			/* Don't count flow-control packet as errors. */
2871 			if ((status & GMR_FS_GOOD_FC) == 0)
2872 				ifp->if_ierrors++;
2873 			msk_discard_jumbo_rxbuf(sc_if, cons);
2874 			break;
2875 		}
2876 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2877 		m = jrxd->rx_m;
2878 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2879 			ifp->if_iqdrops++;
2880 			/* Reuse old buffer. */
2881 			msk_discard_jumbo_rxbuf(sc_if, cons);
2882 			break;
2883 		}
2884 		m->m_pkthdr.rcvif = ifp;
2885 		m->m_pkthdr.len = m->m_len = len;
2886 		ifp->if_ipackets++;
2887 		/* Check for VLAN tagged packets. */
2888 		if ((status & GMR_FS_VLAN) != 0 &&
2889 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2890 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2891 			m->m_flags |= M_VLANTAG;
2892 		}
2893 		MSK_IF_UNLOCK(sc_if);
2894 		(*ifp->if_input)(ifp, m);
2895 		MSK_IF_LOCK(sc_if);
2896 	} while (0);
2897 
2898 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2899 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2900 }
2901 #endif
2902 
2903 static void
2904 msk_txeof(struct msk_if_softc *sc_if, int idx)
2905 {
2906 	struct msk_txdesc *txd;
2907 	struct msk_tx_desc *cur_tx;
2908 	struct ifnet *ifp;
2909 	uint32_t control;
2910 	int cons, prog;
2911 
2912 	ifp = sc_if->msk_ifp;
2913 
2914 	/*
2915 	 * Go through our tx ring and free mbufs for those
2916 	 * frames that have been sent.
2917 	 */
2918 	cons = sc_if->msk_cdata.msk_tx_cons;
2919 	prog = 0;
2920 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2921 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2922 			break;
2923 		prog++;
2924 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2925 		control = le32toh(cur_tx->msk_control);
2926 		sc_if->msk_cdata.msk_tx_cnt--;
2927 		if ((control & EOP) == 0)
2928 			continue;
2929 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2930 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2931 
2932 		ifp->if_opackets++;
2933 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2934 		    __func__));
2935 		m_freem(txd->tx_m);
2936 		txd->tx_m = NULL;
2937 	}
2938 
2939 	if (prog > 0) {
2940 		sc_if->msk_cdata.msk_tx_cons = cons;
2941 		if (!MSK_IS_OACTIVE(sc_if))
2942 			ifp->if_flags &= ~IFF_OACTIVE;
2943 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2944 			ifp->if_timer = 0;
2945 		/* No need to sync LEs as we didn't update LEs. */
2946 	}
2947 }
2948 
2949 static void
2950 msk_tick(void *xsc_if)
2951 {
2952 	struct msk_if_softc *sc_if = xsc_if;
2953 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2954 	struct mii_data *mii;
2955 
2956 	lwkt_serialize_enter(ifp->if_serializer);
2957 
2958 	mii = device_get_softc(sc_if->msk_miibus);
2959 
2960 	mii_tick(mii);
2961 	if (!sc_if->msk_link)
2962 		msk_miibus_statchg(sc_if->msk_if_dev);
2963 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2964 
2965 	lwkt_serialize_exit(ifp->if_serializer);
2966 }
2967 
2968 static void
2969 msk_intr_phy(struct msk_if_softc *sc_if)
2970 {
2971 	uint16_t status;
2972 
2973 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2974 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2975 	/* Handle FIFO Underrun/Overflow? */
2976 	if (status & PHY_M_IS_FIFO_ERROR) {
2977 		device_printf(sc_if->msk_if_dev,
2978 		    "PHY FIFO underrun/overflow.\n");
2979 	}
2980 }
2981 
2982 static void
2983 msk_intr_gmac(struct msk_if_softc *sc_if)
2984 {
2985 	struct msk_softc *sc;
2986 	uint8_t status;
2987 
2988 	sc = sc_if->msk_softc;
2989 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2990 
2991 	/* GMAC Rx FIFO overrun. */
2992 	if ((status & GM_IS_RX_FF_OR) != 0) {
2993 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2994 		    GMF_CLI_RX_FO);
2995 	}
2996 	/* GMAC Tx FIFO underrun. */
2997 	if ((status & GM_IS_TX_FF_UR) != 0) {
2998 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2999 		    GMF_CLI_TX_FU);
3000 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3001 		/*
3002 		 * XXX
3003 		 * In case of Tx underrun, we may need to flush/reset
3004 		 * Tx MAC but that would also require resynchronization
3005 		 * with status LEs. Reintializing status LEs would
3006 		 * affect other port in dual MAC configuration so it
3007 		 * should be avoided as possible as we can.
3008 		 * Due to lack of documentation it's all vague guess but
3009 		 * it needs more investigation.
3010 		 */
3011 	}
3012 }
3013 
3014 static void
3015 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3016 {
3017 	struct msk_softc *sc;
3018 
3019 	sc = sc_if->msk_softc;
3020 	if ((status & Y2_IS_PAR_RD1) != 0) {
3021 		device_printf(sc_if->msk_if_dev,
3022 		    "RAM buffer read parity error\n");
3023 		/* Clear IRQ. */
3024 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3025 		    RI_CLR_RD_PERR);
3026 	}
3027 	if ((status & Y2_IS_PAR_WR1) != 0) {
3028 		device_printf(sc_if->msk_if_dev,
3029 		    "RAM buffer write parity error\n");
3030 		/* Clear IRQ. */
3031 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3032 		    RI_CLR_WR_PERR);
3033 	}
3034 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3035 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3036 		/* Clear IRQ. */
3037 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3038 		    GMF_CLI_TX_PE);
3039 	}
3040 	if ((status & Y2_IS_PAR_RX1) != 0) {
3041 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3042 		/* Clear IRQ. */
3043 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3044 	}
3045 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3046 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3047 		/* Clear IRQ. */
3048 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3049 	}
3050 }
3051 
3052 static void
3053 mskc_intr_hwerr(struct msk_softc *sc)
3054 {
3055 	uint32_t status;
3056 	uint32_t tlphead[4];
3057 
3058 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3059 	/* Time Stamp timer overflow. */
3060 	if ((status & Y2_IS_TIST_OV) != 0)
3061 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3062 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3063 		/*
3064 		 * PCI Express Error occured which is not described in PEX
3065 		 * spec.
3066 		 * This error is also mapped either to Master Abort(
3067 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3068 		 * can only be cleared there.
3069                  */
3070 		device_printf(sc->msk_dev,
3071 		    "PCI Express protocol violation error\n");
3072 	}
3073 
3074 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3075 		uint16_t v16;
3076 
3077 		if ((status & Y2_IS_MST_ERR) != 0)
3078 			device_printf(sc->msk_dev,
3079 			    "unexpected IRQ Status error\n");
3080 		else
3081 			device_printf(sc->msk_dev,
3082 			    "unexpected IRQ Master error\n");
3083 		/* Reset all bits in the PCI status register. */
3084 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3085 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3086 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3087 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3088 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3089 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3090 	}
3091 
3092 	/* Check for PCI Express Uncorrectable Error. */
3093 	if ((status & Y2_IS_PCI_EXP) != 0) {
3094 		uint32_t v32;
3095 
3096 		/*
3097 		 * On PCI Express bus bridges are called root complexes (RC).
3098 		 * PCI Express errors are recognized by the root complex too,
3099 		 * which requests the system to handle the problem. After
3100 		 * error occurence it may be that no access to the adapter
3101 		 * may be performed any longer.
3102 		 */
3103 
3104 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3105 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3106 			/* Ignore unsupported request error. */
3107 			if (bootverbose) {
3108 				device_printf(sc->msk_dev,
3109 				    "Uncorrectable PCI Express error\n");
3110 			}
3111 		}
3112 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3113 			int i;
3114 
3115 			/* Get TLP header form Log Registers. */
3116 			for (i = 0; i < 4; i++)
3117 				tlphead[i] = CSR_PCI_READ_4(sc,
3118 				    PEX_HEADER_LOG + i * 4);
3119 			/* Check for vendor defined broadcast message. */
3120 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3121 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3122 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3123 				    sc->msk_intrhwemask);
3124 				CSR_READ_4(sc, B0_HWE_IMSK);
3125 			}
3126 		}
3127 		/* Clear the interrupt. */
3128 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3129 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3130 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3131 	}
3132 
3133 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3134 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3135 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3136 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3137 }
3138 
3139 static __inline void
3140 msk_rxput(struct msk_if_softc *sc_if)
3141 {
3142 	struct msk_softc *sc;
3143 
3144 	sc = sc_if->msk_softc;
3145 #ifdef MSK_JUMBO
3146 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3147 		bus_dmamap_sync(
3148 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3149 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3150 		    BUS_DMASYNC_PREWRITE);
3151 	}
3152 #endif
3153 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3154 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3155 }
3156 
3157 static int
3158 mskc_handle_events(struct msk_softc *sc)
3159 {
3160 	struct msk_if_softc *sc_if;
3161 	int rxput[2];
3162 	struct msk_stat_desc *sd;
3163 	uint32_t control, status;
3164 	int cons, idx, len, port, rxprog;
3165 	struct mbuf_chain chain[MAXCPU];
3166 
3167 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3168 	if (idx == sc->msk_stat_cons)
3169 		return (0);
3170 
3171 	ether_input_chain_init(chain);
3172 
3173 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3174 
3175 	rxprog = 0;
3176 	for (cons = sc->msk_stat_cons; cons != idx;) {
3177 		sd = &sc->msk_stat_ring[cons];
3178 		control = le32toh(sd->msk_control);
3179 		if ((control & HW_OWNER) == 0)
3180 			break;
3181 		/*
3182 		 * Marvell's FreeBSD driver updates status LE after clearing
3183 		 * HW_OWNER. However we don't have a way to sync single LE
3184 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3185 		 * an entire DMA map. So don't sync LE until we have a better
3186 		 * way to sync LEs.
3187 		 */
3188 		control &= ~HW_OWNER;
3189 		sd->msk_control = htole32(control);
3190 		status = le32toh(sd->msk_status);
3191 		len = control & STLE_LEN_MASK;
3192 		port = (control >> 16) & 0x01;
3193 		sc_if = sc->msk_if[port];
3194 		if (sc_if == NULL) {
3195 			device_printf(sc->msk_dev, "invalid port opcode "
3196 			    "0x%08x\n", control & STLE_OP_MASK);
3197 			continue;
3198 		}
3199 
3200 		switch (control & STLE_OP_MASK) {
3201 		case OP_RXVLAN:
3202 			sc_if->msk_vtag = ntohs(len);
3203 			break;
3204 		case OP_RXCHKSVLAN:
3205 			sc_if->msk_vtag = ntohs(len);
3206 			break;
3207 		case OP_RXSTAT:
3208 			if ((sc_if->msk_ifp->if_flags & IFF_RUNNING) == 0)
3209 				break;
3210 #ifdef MSK_JUMBO
3211 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3212 				msk_jumbo_rxeof(sc_if, status, len);
3213 			else
3214 #endif
3215 				msk_rxeof(sc_if, status, len, chain);
3216 			rxprog++;
3217 			/*
3218 			 * Because there is no way to sync single Rx LE
3219 			 * put the DMA sync operation off until the end of
3220 			 * event processing.
3221 			 */
3222 			rxput[port]++;
3223 			/* Update prefetch unit if we've passed water mark. */
3224 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3225 				msk_rxput(sc_if);
3226 				rxput[port] = 0;
3227 			}
3228 			break;
3229 		case OP_TXINDEXLE:
3230 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3231 				msk_txeof(sc->msk_if[MSK_PORT_A],
3232 				    status & STLE_TXA1_MSKL);
3233 			}
3234 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3235 				msk_txeof(sc->msk_if[MSK_PORT_B],
3236 				    ((status & STLE_TXA2_MSKL) >>
3237 				    STLE_TXA2_SHIFTL) |
3238 				    ((len & STLE_TXA2_MSKH) <<
3239 				    STLE_TXA2_SHIFTH));
3240 			}
3241 			break;
3242 		default:
3243 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3244 			    control & STLE_OP_MASK);
3245 			break;
3246 		}
3247 		MSK_INC(cons, MSK_STAT_RING_CNT);
3248 		if (rxprog > sc->msk_process_limit)
3249 			break;
3250 	}
3251 
3252 	if (rxprog > 0)
3253 		ether_input_dispatch(chain);
3254 
3255 	sc->msk_stat_cons = cons;
3256 	/* XXX We should sync status LEs here. See above notes. */
3257 
3258 	if (rxput[MSK_PORT_A] > 0)
3259 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3260 	if (rxput[MSK_PORT_B] > 0)
3261 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3262 
3263 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3264 }
3265 
3266 /* Legacy interrupt handler for shared interrupt. */
3267 static void
3268 mskc_intr(void *xsc)
3269 {
3270 	struct msk_softc *sc;
3271 	struct msk_if_softc *sc_if0, *sc_if1;
3272 	struct ifnet *ifp0, *ifp1;
3273 	uint32_t status;
3274 
3275 	sc = xsc;
3276 	ASSERT_SERIALIZED(&sc->msk_serializer);
3277 
3278 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3279 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3280 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3281 	    (status & sc->msk_intrmask) == 0) {
3282 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3283 		return;
3284 	}
3285 
3286 	sc_if0 = sc->msk_if[MSK_PORT_A];
3287 	sc_if1 = sc->msk_if[MSK_PORT_B];
3288 	ifp0 = ifp1 = NULL;
3289 	if (sc_if0 != NULL)
3290 		ifp0 = sc_if0->msk_ifp;
3291 	if (sc_if1 != NULL)
3292 		ifp1 = sc_if1->msk_ifp;
3293 
3294 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3295 		msk_intr_phy(sc_if0);
3296 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3297 		msk_intr_phy(sc_if1);
3298 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3299 		msk_intr_gmac(sc_if0);
3300 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3301 		msk_intr_gmac(sc_if1);
3302 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3303 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3304 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3305 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3306 		CSR_READ_4(sc, B0_IMSK);
3307 	}
3308         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3309 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3310 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3311 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3312 		CSR_READ_4(sc, B0_IMSK);
3313 	}
3314 	if ((status & Y2_IS_HW_ERR) != 0)
3315 		mskc_intr_hwerr(sc);
3316 
3317 	while (mskc_handle_events(sc) != 0)
3318 		;
3319 	if ((status & Y2_IS_STAT_BMU) != 0)
3320 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3321 
3322 	/* Reenable interrupts. */
3323 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3324 
3325 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3326 	    !ifq_is_empty(&ifp0->if_snd))
3327 		if_devstart(ifp0);
3328 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3329 	    !ifq_is_empty(&ifp1->if_snd))
3330 		if_devstart(ifp1);
3331 }
3332 
3333 static void
3334 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3335 {
3336 	struct msk_softc *sc = sc_if->msk_softc;
3337 	struct ifnet *ifp = sc_if->msk_ifp;
3338 
3339 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3340 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3341 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3342 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3343 		    TX_STFW_ENA);
3344 	} else {
3345 		if (ifp->if_mtu > ETHERMTU) {
3346 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3347 			CSR_WRITE_4(sc,
3348 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3349 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3350 			/* Disable Store & Forward mode for Tx. */
3351 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3352 			    TX_STFW_DIS);
3353 		} else {
3354 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3355 			    TX_STFW_ENA);
3356 		}
3357 	}
3358 }
3359 
3360 static void
3361 msk_init(void *xsc)
3362 {
3363 	struct msk_if_softc *sc_if = xsc;
3364 	struct msk_softc *sc = sc_if->msk_softc;
3365 	struct ifnet *ifp = sc_if->msk_ifp;
3366 	struct mii_data	 *mii;
3367 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3368 	uint16_t gmac;
3369 	uint32_t reg;
3370 	int error, i;
3371 
3372 	ASSERT_SERIALIZED(ifp->if_serializer);
3373 
3374 	mii = device_get_softc(sc_if->msk_miibus);
3375 
3376 	error = 0;
3377 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3378 	msk_stop(sc_if);
3379 
3380 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3381 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3382 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3383 		/*
3384 		 * In Yukon EC Ultra, TSO & checksum offload is not
3385 		 * supported for jumbo frame.
3386 		 */
3387 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3388 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3389 	}
3390 
3391 	/* GMAC Control reset. */
3392 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3393 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3394 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3395 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3396 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3397 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3398 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3399 		    GMC_BYP_RETR_ON);
3400 	}
3401 
3402 	/*
3403 	 * Initialize GMAC first such that speed/duplex/flow-control
3404 	 * parameters are renegotiated when interface is brought up.
3405 	 */
3406 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3407 
3408 	/* Dummy read the Interrupt Source Register. */
3409 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3410 
3411 	/* Set MIB Clear Counter Mode. */
3412 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3413 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3414 	/* Read all MIB Counters with Clear Mode set. */
3415 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3416 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3417 	/* Clear MIB Clear Counter Mode. */
3418 	gmac &= ~GM_PAR_MIB_CLR;
3419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3420 
3421 	/* Disable FCS. */
3422 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3423 
3424 	/* Setup Transmit Control Register. */
3425 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3426 
3427 	/* Setup Transmit Flow Control Register. */
3428 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3429 
3430 	/* Setup Transmit Parameter Register. */
3431 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3432 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3433 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3434 
3435 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3436 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3437 
3438 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3439 		gmac |= GM_SMOD_JUMBO_ENA;
3440 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3441 
3442 	/* Set station address. */
3443         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3444         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3445 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3446 		    eaddr[i]);
3447         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3448 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3449 		    eaddr[i]);
3450 
3451 	/* Disable interrupts for counter overflows. */
3452 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3453 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3454 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3455 
3456 	/* Configure Rx MAC FIFO. */
3457 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3458 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3459 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3460 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3461 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3462 		reg |= GMF_RX_OVER_ON;
3463 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3464 
3465 	/* Set receive filter. */
3466 	msk_rxfilter(sc_if);
3467 
3468 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3469 		/* Clear flush mask - HW bug. */
3470 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3471 	} else {
3472 		/* Flush Rx MAC FIFO on any flow control or error. */
3473 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3474 		    GMR_FS_ANY_ERR);
3475 	}
3476 
3477 	/*
3478 	 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3479 	 * due to hardware hang on receipt of pause frames.
3480 	 */
3481 	reg = RX_GMF_FL_THR_DEF + 1;
3482 	/* Another magic for Yukon FE+ - From Linux. */
3483 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3484 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3485 		reg = 0x178;
3486 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3487 
3488 
3489 	/* Configure Tx MAC FIFO. */
3490 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3491 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3492 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3493 
3494 	/* Configure hardware VLAN tag insertion/stripping. */
3495 	msk_setvlan(sc_if, ifp);
3496 
3497 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3498 		/* Set Rx Pause threshould. */
3499 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3500 		    MSK_ECU_LLPP);
3501 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3502 		    MSK_ECU_ULPP);
3503 		/* Configure store-and-forward for Tx. */
3504 		msk_set_tx_stfwd(sc_if);
3505 	}
3506 
3507 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3508 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3509 		/* Disable dynamic watermark - from Linux. */
3510 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3511 		reg &= ~0x03;
3512 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3513 	}
3514 
3515 	/*
3516 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3517 	 * arbiter as we don't use Sync Tx queue.
3518 	 */
3519 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3520 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3521 	/* Enable the RAM Interface Arbiter. */
3522 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3523 
3524 	/* Setup RAM buffer. */
3525 	msk_set_rambuffer(sc_if);
3526 
3527 	/* Disable Tx sync Queue. */
3528 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3529 
3530 	/* Setup Tx Queue Bus Memory Interface. */
3531 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3532 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3533 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3534 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3535 	switch (sc->msk_hw_id) {
3536 	case CHIP_ID_YUKON_EC_U:
3537 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3538 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3539 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3540 			    MSK_ECU_TXFF_LEV);
3541 		}
3542 		break;
3543 	case CHIP_ID_YUKON_EX:
3544 		/*
3545 		 * Yukon Extreme seems to have silicon bug for
3546 		 * automatic Tx checksum calculation capability.
3547 		 */
3548 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3549 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3550 			    F_TX_CHK_AUTO_OFF);
3551 		}
3552 		break;
3553  	}
3554 
3555 	/* Setup Rx Queue Bus Memory Interface. */
3556 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3557 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3558 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3559 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3560         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3561 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3562 		/* MAC Rx RAM Read is controlled by hardware. */
3563                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3564 	}
3565 
3566 	msk_set_prefetch(sc, sc_if->msk_txq,
3567 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3568 	msk_init_tx_ring(sc_if);
3569 
3570 	/* Disable Rx checksum offload and RSS hash. */
3571 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3572 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3573 #ifdef MSK_JUMBO
3574 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3575 		msk_set_prefetch(sc, sc_if->msk_rxq,
3576 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3577 		    MSK_JUMBO_RX_RING_CNT - 1);
3578 		error = msk_init_jumbo_rx_ring(sc_if);
3579 	} else
3580 #endif
3581 	{
3582 		msk_set_prefetch(sc, sc_if->msk_rxq,
3583 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3584 		    MSK_RX_RING_CNT - 1);
3585 		error = msk_init_rx_ring(sc_if);
3586 	}
3587 	if (error != 0) {
3588 		device_printf(sc_if->msk_if_dev,
3589 		    "initialization failed: no memory for Rx buffers\n");
3590 		msk_stop(sc_if);
3591 		return;
3592 	}
3593 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3594 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3595 		/* Disable flushing of non-ASF packets. */
3596 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3597 		    GMF_RX_MACSEC_FLUSH_OFF);
3598 	}
3599 
3600 	/* Configure interrupt handling. */
3601 	if (sc_if->msk_port == MSK_PORT_A) {
3602 		sc->msk_intrmask |= Y2_IS_PORT_A;
3603 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3604 	} else {
3605 		sc->msk_intrmask |= Y2_IS_PORT_B;
3606 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3607 	}
3608 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3609 	CSR_READ_4(sc, B0_HWE_IMSK);
3610 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3611 	CSR_READ_4(sc, B0_IMSK);
3612 
3613 	sc_if->msk_link = 0;
3614 	mii_mediachg(mii);
3615 
3616 	mskc_set_imtimer(sc);
3617 
3618 	ifp->if_flags |= IFF_RUNNING;
3619 	ifp->if_flags &= ~IFF_OACTIVE;
3620 
3621 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3622 }
3623 
3624 static void
3625 msk_set_rambuffer(struct msk_if_softc *sc_if)
3626 {
3627 	struct msk_softc *sc;
3628 	int ltpp, utpp;
3629 
3630 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3631 		return;
3632 
3633 	sc = sc_if->msk_softc;
3634 
3635 	/* Setup Rx Queue. */
3636 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3637 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3638 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3639 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3640 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3641 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3642 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3643 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3644 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3645 
3646 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3647 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3648 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3649 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3650 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3651 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3652 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3653 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3654 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3655 
3656 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3657 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3658 
3659 	/* Setup Tx Queue. */
3660 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3661 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3662 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3663 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3664 	    sc->msk_txqend[sc_if->msk_port] / 8);
3665 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3666 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3667 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3668 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3669 	/* Enable Store & Forward for Tx side. */
3670 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3671 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3672 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3673 }
3674 
3675 static void
3676 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3677     uint32_t count)
3678 {
3679 
3680 	/* Reset the prefetch unit. */
3681 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3682 	    PREF_UNIT_RST_SET);
3683 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3684 	    PREF_UNIT_RST_CLR);
3685 	/* Set LE base address. */
3686 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3687 	    MSK_ADDR_LO(addr));
3688 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3689 	    MSK_ADDR_HI(addr));
3690 	/* Set the list last index. */
3691 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3692 	    count);
3693 	/* Turn on prefetch unit. */
3694 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3695 	    PREF_UNIT_OP_ON);
3696 	/* Dummy read to ensure write. */
3697 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3698 }
3699 
3700 static void
3701 msk_stop(struct msk_if_softc *sc_if)
3702 {
3703 	struct msk_softc *sc = sc_if->msk_softc;
3704 	struct ifnet *ifp = sc_if->msk_ifp;
3705 	struct msk_txdesc *txd;
3706 	struct msk_rxdesc *rxd;
3707 #ifdef MSK_JUMBO
3708 	struct msk_rxdesc *jrxd;
3709 #endif
3710 	uint32_t val;
3711 	int i;
3712 
3713 	ASSERT_SERIALIZED(ifp->if_serializer);
3714 
3715 	callout_stop(&sc_if->msk_tick_ch);
3716 	ifp->if_timer = 0;
3717 
3718 	/* Disable interrupts. */
3719 	if (sc_if->msk_port == MSK_PORT_A) {
3720 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3721 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3722 	} else {
3723 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3724 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3725 	}
3726 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3727 	CSR_READ_4(sc, B0_HWE_IMSK);
3728 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3729 	CSR_READ_4(sc, B0_IMSK);
3730 
3731 	/* Disable Tx/Rx MAC. */
3732 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3733 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3734 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3735 	/* Read again to ensure writing. */
3736 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3737 
3738 	/* Stop Tx BMU. */
3739 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3740 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3741 	for (i = 0; i < MSK_TIMEOUT; i++) {
3742 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3743 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3744 			    BMU_STOP);
3745 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3746 		} else
3747 			break;
3748 		DELAY(1);
3749 	}
3750 	if (i == MSK_TIMEOUT)
3751 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3752 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3753 	    RB_RST_SET | RB_DIS_OP_MD);
3754 
3755 	/* Disable all GMAC interrupt. */
3756 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3757 	/* Disable PHY interrupt. */
3758 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3759 
3760 	/* Disable the RAM Interface Arbiter. */
3761 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3762 
3763 	/* Reset the PCI FIFO of the async Tx queue */
3764 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3765 	    BMU_RST_SET | BMU_FIFO_RST);
3766 
3767 	/* Reset the Tx prefetch units. */
3768 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3769 	    PREF_UNIT_RST_SET);
3770 
3771 	/* Reset the RAM Buffer async Tx queue. */
3772 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3773 
3774 	/* Reset Tx MAC FIFO. */
3775 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3776 	/* Set Pause Off. */
3777 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3778 
3779 	/*
3780 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3781 	 * reach the end of packet and since we can't make sure that we have
3782 	 * incoming data, we must reset the BMU while it is not during a DMA
3783 	 * transfer. Since it is possible that the Rx path is still active,
3784 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3785 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3786 	 * BMU is polled until any DMA in progress is ended and only then it
3787 	 * will be reset.
3788 	 */
3789 
3790 	/* Disable the RAM Buffer receive queue. */
3791 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3792 	for (i = 0; i < MSK_TIMEOUT; i++) {
3793 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3794 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3795 			break;
3796 		DELAY(1);
3797 	}
3798 	if (i == MSK_TIMEOUT)
3799 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3800 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3801 	    BMU_RST_SET | BMU_FIFO_RST);
3802 	/* Reset the Rx prefetch unit. */
3803 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3804 	    PREF_UNIT_RST_SET);
3805 	/* Reset the RAM Buffer receive queue. */
3806 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3807 	/* Reset Rx MAC FIFO. */
3808 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3809 
3810 	/* Free Rx and Tx mbufs still in the queues. */
3811 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3812 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3813 		if (rxd->rx_m != NULL) {
3814 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3815 			    rxd->rx_dmamap);
3816 			m_freem(rxd->rx_m);
3817 			rxd->rx_m = NULL;
3818 		}
3819 	}
3820 #ifdef MSK_JUMBO
3821 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3822 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3823 		if (jrxd->rx_m != NULL) {
3824 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3825 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3826 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3827 			    jrxd->rx_dmamap);
3828 			m_freem(jrxd->rx_m);
3829 			jrxd->rx_m = NULL;
3830 		}
3831 	}
3832 #endif
3833 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3834 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3835 		if (txd->tx_m != NULL) {
3836 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3837 			    txd->tx_dmamap);
3838 			m_freem(txd->tx_m);
3839 			txd->tx_m = NULL;
3840 		}
3841 	}
3842 
3843 	/*
3844 	 * Mark the interface down.
3845 	 */
3846 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3847 	sc_if->msk_link = 0;
3848 }
3849 
3850 static int
3851 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3852 {
3853 	return sysctl_int_range(oidp, arg1, arg2, req,
3854 				MSK_PROC_MIN, MSK_PROC_MAX);
3855 }
3856 
3857 static int
3858 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3859 {
3860 	struct msk_softc *sc = arg1;
3861 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3862 	int error = 0, v;
3863 
3864 	lwkt_serialize_enter(serializer);
3865 
3866 	v = sc->msk_intr_rate;
3867 	error = sysctl_handle_int(oidp, &v, 0, req);
3868 	if (error || req->newptr == NULL)
3869 		goto back;
3870 	if (v < 0) {
3871 		error = EINVAL;
3872 		goto back;
3873 	}
3874 
3875 	if (sc->msk_intr_rate != v) {
3876 		int flag = 0, i;
3877 
3878 		sc->msk_intr_rate = v;
3879 		for (i = 0; i < 2; ++i) {
3880 			if (sc->msk_if[i] != NULL) {
3881 				flag |= sc->msk_if[i]->
3882 					arpcom.ac_if.if_flags & IFF_RUNNING;
3883 			}
3884 		}
3885 		if (flag)
3886 			mskc_set_imtimer(sc);
3887 	}
3888 back:
3889 	lwkt_serialize_exit(serializer);
3890 	return error;
3891 }
3892 
3893 static int
3894 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3895 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3896 {
3897 	struct msk_if_softc *sc_if = device_get_softc(dev);
3898 	bus_dmamem_t dmem;
3899 	int error;
3900 
3901 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3902 			MSK_RING_ALIGN, 0,
3903 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3904 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3905 	if (error) {
3906 		device_printf(dev, "can't create coherent DMA memory\n");
3907 		return error;
3908 	}
3909 
3910 	*dtag = dmem.dmem_tag;
3911 	*dmap = dmem.dmem_map;
3912 	*addr = dmem.dmem_addr;
3913 	*paddr = dmem.dmem_busaddr;
3914 
3915 	return 0;
3916 }
3917 
3918 static void
3919 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3920 {
3921 	if (dtag != NULL) {
3922 		bus_dmamap_unload(dtag, dmap);
3923 		bus_dmamem_free(dtag, addr, dmap);
3924 		bus_dma_tag_destroy(dtag);
3925 	}
3926 }
3927 
3928 static void
3929 mskc_set_imtimer(struct msk_softc *sc)
3930 {
3931 	if (sc->msk_intr_rate > 0) {
3932 		/*
3933 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3934 		 *     and 78.125MHz for rest of chip types
3935 		 */
3936 		CSR_WRITE_4(sc, B2_IRQM_INI,
3937 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3938 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3939 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3940 	} else {
3941 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3942 	}
3943 }
3944