xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision bb8c85ff)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Fast Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Fast Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Fast Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Fast Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 	    "Marvell Yukon 88E8040 Fast Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 	    "Marvell Yukon 88E8040T Fast Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 	    "Marvell Yukon 88E8042 Fast Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 	    "Marvell Yukon 88E8048 Fast Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
204 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
206 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
208 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
210 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
211 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
212 	    "D-Link 550SX Gigabit Ethernet" },
213 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
214 	    "D-Link 560T Gigabit Ethernet" },
215 	{ 0, 0, NULL }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220 	"Yukon EC Ultra",
221 	"Yukon EX",
222 	"Yukon EC",
223 	"Yukon FE",
224 	"Yukon FE+",
225 	"Yukon Supreme",
226 	"Yukon Ultra 2",
227 	"Yukon Unknown",
228 	"Yukon Optima"
229 };
230 
231 static int	mskc_probe(device_t);
232 static int	mskc_attach(device_t);
233 static int	mskc_detach(device_t);
234 static int	mskc_shutdown(device_t);
235 static int	mskc_suspend(device_t);
236 static int	mskc_resume(device_t);
237 static void	mskc_intr(void *);
238 
239 static void	mskc_reset(struct msk_softc *);
240 static void	mskc_set_imtimer(struct msk_softc *);
241 static void	mskc_intr_hwerr(struct msk_softc *);
242 static int	mskc_handle_events(struct msk_softc *);
243 static void	mskc_phy_power(struct msk_softc *, int);
244 static int	mskc_setup_rambuffer(struct msk_softc *);
245 static int	mskc_status_dma_alloc(struct msk_softc *);
246 static void	mskc_status_dma_free(struct msk_softc *);
247 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
248 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
249 
250 static int	msk_probe(device_t);
251 static int	msk_attach(device_t);
252 static int	msk_detach(device_t);
253 static int	msk_miibus_readreg(device_t, int, int);
254 static int	msk_miibus_writereg(device_t, int, int, int);
255 static void	msk_miibus_statchg(device_t);
256 
257 static void	msk_init(void *);
258 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	msk_start(struct ifnet *, struct ifaltq_subque *);
260 static void	msk_watchdog(struct ifnet *);
261 static int	msk_mediachange(struct ifnet *);
262 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
263 
264 static void	msk_tick(void *);
265 static void	msk_intr_phy(struct msk_if_softc *);
266 static void	msk_intr_gmac(struct msk_if_softc *);
267 static __inline void
268 		msk_rxput(struct msk_if_softc *);
269 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
270 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int);
271 static void	msk_txeof(struct msk_if_softc *, int);
272 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
273 static void	msk_set_rambuffer(struct msk_if_softc *);
274 static void	msk_stop(struct msk_if_softc *);
275 
276 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
277 static void	msk_txrx_dma_free(struct msk_if_softc *);
278 static int	msk_init_rx_ring(struct msk_if_softc *);
279 static void	msk_init_tx_ring(struct msk_if_softc *);
280 static __inline void
281 		msk_discard_rxbuf(struct msk_if_softc *, int);
282 static int	msk_newbuf(struct msk_if_softc *, int, int);
283 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
284 
285 #ifdef MSK_JUMBO
286 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
287 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
288 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
289 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
290 static void *msk_jalloc(struct msk_if_softc *);
291 static void msk_jfree(void *, void *);
292 #endif
293 
294 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
295 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
296 
297 static void	msk_rxfilter(struct msk_if_softc *);
298 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
299 static void	msk_set_tx_stfwd(struct msk_if_softc *);
300 
301 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
302 				  void **, bus_addr_t *, bus_dmamap_t *);
303 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
304 
305 static device_method_t mskc_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		mskc_probe),
308 	DEVMETHOD(device_attach,	mskc_attach),
309 	DEVMETHOD(device_detach,	mskc_detach),
310 	DEVMETHOD(device_suspend,	mskc_suspend),
311 	DEVMETHOD(device_resume,	mskc_resume),
312 	DEVMETHOD(device_shutdown,	mskc_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	{ NULL, NULL }
319 };
320 
321 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
322 static devclass_t mskc_devclass;
323 
324 static device_method_t msk_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		msk_probe),
327 	DEVMETHOD(device_attach,	msk_attach),
328 	DEVMETHOD(device_detach,	msk_detach),
329 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
330 
331 	/* bus interface */
332 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
333 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
334 
335 	/* MII interface */
336 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
337 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
338 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
339 
340 	{ NULL, NULL }
341 };
342 
343 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
344 static devclass_t msk_devclass;
345 
346 DECLARE_DUMMY_MODULE(if_msk);
347 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
348 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
349 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
350 
351 static int	mskc_msi_enable = 0;
352 static int	mskc_intr_rate = 0;
353 static int	mskc_process_limit = MSK_PROC_DEFAULT;
354 
355 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
356 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
357 TUNABLE_INT("hw.mskc.msi.enable", &mskc_msi_enable);
358 
359 static int
360 msk_miibus_readreg(device_t dev, int phy, int reg)
361 {
362 	struct msk_if_softc *sc_if;
363 
364 	if (phy != PHY_ADDR_MARV)
365 		return (0);
366 
367 	sc_if = device_get_softc(dev);
368 
369 	return (msk_phy_readreg(sc_if, phy, reg));
370 }
371 
372 static int
373 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
374 {
375 	struct msk_softc *sc;
376 	int i, val;
377 
378 	sc = sc_if->msk_softc;
379 
380         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
381 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
382 
383 	for (i = 0; i < MSK_TIMEOUT; i++) {
384 		DELAY(1);
385 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
386 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
387 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
388 			break;
389 		}
390 	}
391 
392 	if (i == MSK_TIMEOUT) {
393 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
394 		val = 0;
395 	}
396 
397 	return (val);
398 }
399 
400 static int
401 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
402 {
403 	struct msk_if_softc *sc_if;
404 
405 	if (phy != PHY_ADDR_MARV)
406 		return (0);
407 
408 	sc_if = device_get_softc(dev);
409 
410 	return (msk_phy_writereg(sc_if, phy, reg, val));
411 }
412 
413 static int
414 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
415 {
416 	struct msk_softc *sc;
417 	int i;
418 
419 	sc = sc_if->msk_softc;
420 
421 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
422         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
423 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
424 	for (i = 0; i < MSK_TIMEOUT; i++) {
425 		DELAY(1);
426 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
427 		    GM_SMI_CT_BUSY) == 0)
428 			break;
429 	}
430 	if (i == MSK_TIMEOUT)
431 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
432 
433 	return (0);
434 }
435 
436 static void
437 msk_miibus_statchg(device_t dev)
438 {
439 	struct msk_if_softc *sc_if;
440 	struct msk_softc *sc;
441 	struct mii_data *mii;
442 	uint32_t gmac;
443 
444 	sc_if = device_get_softc(dev);
445 	sc = sc_if->msk_softc;
446 
447 	mii = device_get_softc(sc_if->msk_miibus);
448 
449 	sc_if->msk_link = 0;
450 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
451 	    (IFM_AVALID | IFM_ACTIVE)) {
452 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
453 		case IFM_10_T:
454 		case IFM_100_TX:
455 			sc_if->msk_link = 1;
456 			break;
457 		case IFM_1000_T:
458 		case IFM_1000_SX:
459 		case IFM_1000_LX:
460 		case IFM_1000_CX:
461 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
462 				sc_if->msk_link = 1;
463 			break;
464 		}
465 	}
466 
467 	if (sc_if->msk_link != 0) {
468 		/* Enable Tx FIFO Underrun. */
469 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
470 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
471 		/*
472 		 * Because mii(4) notify msk(4) that it detected link status
473 		 * change, there is no need to enable automatic
474 		 * speed/flow-control/duplex updates.
475 		 */
476 		gmac = GM_GPCR_AU_ALL_DIS;
477 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
478 		case IFM_1000_SX:
479 		case IFM_1000_T:
480 			gmac |= GM_GPCR_SPEED_1000;
481 			break;
482 		case IFM_100_TX:
483 			gmac |= GM_GPCR_SPEED_100;
484 			break;
485 		case IFM_10_T:
486 			break;
487 		}
488 
489 		if ((mii->mii_media_active & IFM_GMASK) & IFM_FDX)
490 			gmac |= GM_GPCR_DUP_FULL;
491 		else
492 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
493 		/* Disable Rx flow control. */
494 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
495 			gmac |= GM_GPCR_FC_RX_DIS;
496 		/* Disable Tx flow control. */
497 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
498 			gmac |= GM_GPCR_FC_TX_DIS;
499 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
500 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
501 		/* Read again to ensure writing. */
502 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
503 
504 		gmac = GMC_PAUSE_OFF;
505 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) &&
506 		    ((mii->mii_media_active & IFM_GMASK) & IFM_FDX))
507 			gmac = GMC_PAUSE_ON;
508 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
509 
510 		/* Enable PHY interrupt for FIFO underrun/overflow. */
511 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
512 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
513 	} else {
514 		/*
515 		 * Link state changed to down.
516 		 * Disable PHY interrupts.
517 		 */
518 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
519 		/* Disable Rx/Tx MAC. */
520 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
521 		if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
522 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
523 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
524 			/* Read again to ensure writing. */
525 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
526 		}
527 	}
528 }
529 
530 static void
531 msk_rxfilter(struct msk_if_softc *sc_if)
532 {
533 	struct msk_softc *sc;
534 	struct ifnet *ifp;
535 	struct ifmultiaddr *ifma;
536 	uint32_t mchash[2];
537 	uint32_t crc;
538 	uint16_t mode;
539 
540 	sc = sc_if->msk_softc;
541 	ifp = sc_if->msk_ifp;
542 
543 	bzero(mchash, sizeof(mchash));
544 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
545 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
546 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
547 	} else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
548 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
549 		mchash[0] = 0xffff;
550 		mchash[1] = 0xffff;
551 	} else {
552 		mode |= GM_RXCR_UCF_ENA;
553 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
554 			if (ifma->ifma_addr->sa_family != AF_LINK)
555 				continue;
556 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
557 			    ifma->ifma_addr), ETHER_ADDR_LEN);
558 			/* Just want the 6 least significant bits. */
559 			crc &= 0x3f;
560 			/* Set the corresponding bit in the hash table. */
561 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
562 		}
563 		if (mchash[0] != 0 || mchash[1] != 0)
564 			mode |= GM_RXCR_MCF_ENA;
565 	}
566 
567 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
568 	    mchash[0] & 0xffff);
569 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
570 	    (mchash[0] >> 16) & 0xffff);
571 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
572 	    mchash[1] & 0xffff);
573 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
574 	    (mchash[1] >> 16) & 0xffff);
575 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
576 }
577 
578 static void
579 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
580 {
581 	struct msk_softc *sc;
582 
583 	sc = sc_if->msk_softc;
584 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
585 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
586 		    RX_VLAN_STRIP_ON);
587 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
588 		    TX_VLAN_TAG_ON);
589 	} else {
590 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
591 		    RX_VLAN_STRIP_OFF);
592 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
593 		    TX_VLAN_TAG_OFF);
594 	}
595 }
596 
597 static int
598 msk_init_rx_ring(struct msk_if_softc *sc_if)
599 {
600 	struct msk_ring_data *rd;
601 	struct msk_rxdesc *rxd;
602 	int i, prod;
603 
604 	sc_if->msk_cdata.msk_rx_cons = 0;
605 	sc_if->msk_cdata.msk_rx_prod = 0;
606 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
607 
608 	rd = &sc_if->msk_rdata;
609 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
610 	prod = sc_if->msk_cdata.msk_rx_prod;
611 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
612 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
613 		rxd->rx_m = NULL;
614 		rxd->rx_le = &rd->msk_rx_ring[prod];
615 		if (msk_newbuf(sc_if, prod, 1) != 0)
616 			return (ENOBUFS);
617 		MSK_INC(prod, MSK_RX_RING_CNT);
618 	}
619 
620 	/* Update prefetch unit. */
621 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
622 	CSR_WRITE_2(sc_if->msk_softc,
623 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
624 	    sc_if->msk_cdata.msk_rx_prod);
625 
626 	return (0);
627 }
628 
629 #ifdef MSK_JUMBO
630 static int
631 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
632 {
633 	struct msk_ring_data *rd;
634 	struct msk_rxdesc *rxd;
635 	int i, prod;
636 
637 	MSK_IF_LOCK_ASSERT(sc_if);
638 
639 	sc_if->msk_cdata.msk_rx_cons = 0;
640 	sc_if->msk_cdata.msk_rx_prod = 0;
641 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
642 
643 	rd = &sc_if->msk_rdata;
644 	bzero(rd->msk_jumbo_rx_ring,
645 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
646 	prod = sc_if->msk_cdata.msk_rx_prod;
647 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
648 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
649 		rxd->rx_m = NULL;
650 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
651 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
652 			return (ENOBUFS);
653 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
654 	}
655 
656 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
657 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
658 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
659 
660 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
661 	CSR_WRITE_2(sc_if->msk_softc,
662 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
663 	    sc_if->msk_cdata.msk_rx_prod);
664 
665 	return (0);
666 }
667 #endif
668 
669 static void
670 msk_init_tx_ring(struct msk_if_softc *sc_if)
671 {
672 	struct msk_ring_data *rd;
673 	struct msk_txdesc *txd;
674 	int i;
675 
676 	sc_if->msk_cdata.msk_tx_prod = 0;
677 	sc_if->msk_cdata.msk_tx_cons = 0;
678 	sc_if->msk_cdata.msk_tx_cnt = 0;
679 
680 	rd = &sc_if->msk_rdata;
681 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
682 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
683 		txd = &sc_if->msk_cdata.msk_txdesc[i];
684 		txd->tx_m = NULL;
685 		txd->tx_le = &rd->msk_tx_ring[i];
686 	}
687 }
688 
689 static __inline void
690 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
691 {
692 	struct msk_rx_desc *rx_le;
693 	struct msk_rxdesc *rxd;
694 	struct mbuf *m;
695 
696 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
697 	m = rxd->rx_m;
698 	rx_le = rxd->rx_le;
699 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
700 }
701 
702 #ifdef MSK_JUMBO
703 static __inline void
704 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
705 {
706 	struct msk_rx_desc *rx_le;
707 	struct msk_rxdesc *rxd;
708 	struct mbuf *m;
709 
710 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
711 	m = rxd->rx_m;
712 	rx_le = rxd->rx_le;
713 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
714 }
715 #endif
716 
717 static int
718 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
719 {
720 	struct msk_rx_desc *rx_le;
721 	struct msk_rxdesc *rxd;
722 	struct mbuf *m;
723 	bus_dma_segment_t seg;
724 	bus_dmamap_t map;
725 	int error, nseg;
726 
727 	m = m_getcl(init ? M_WAITOK : M_NOWAIT, MT_DATA, M_PKTHDR);
728 	if (m == NULL)
729 		return (ENOBUFS);
730 
731 	m->m_len = m->m_pkthdr.len = MCLBYTES;
732 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
733 		m_adj(m, ETHER_ALIGN);
734 
735 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
736 			sc_if->msk_cdata.msk_rx_sparemap,
737 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
738 	if (error) {
739 		m_freem(m);
740 		if (init)
741 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
742 		return (error);
743 	}
744 
745 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
746 	if (rxd->rx_m != NULL) {
747 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
748 		    BUS_DMASYNC_POSTREAD);
749 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
750 	}
751 
752 	map = rxd->rx_dmamap;
753 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
754 	sc_if->msk_cdata.msk_rx_sparemap = map;
755 
756 	rxd->rx_m = m;
757 	rx_le = rxd->rx_le;
758 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
759 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
760 
761 	return (0);
762 }
763 
764 #ifdef MSK_JUMBO
765 static int
766 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
767 {
768 	struct msk_rx_desc *rx_le;
769 	struct msk_rxdesc *rxd;
770 	struct mbuf *m;
771 	bus_dma_segment_t segs[1];
772 	bus_dmamap_t map;
773 	int nsegs;
774 	void *buf;
775 
776 	MGETHDR(m, M_NOWAIT, MT_DATA);
777 	if (m == NULL)
778 		return (ENOBUFS);
779 	buf = msk_jalloc(sc_if);
780 	if (buf == NULL) {
781 		m_freem(m);
782 		return (ENOBUFS);
783 	}
784 	/* Attach the buffer to the mbuf. */
785 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, sc_if, 0, EXT_NET_DRV);
786 	if ((m->m_flags & M_EXT) == 0) {
787 		m_freem(m);
788 		return (ENOBUFS);
789 	}
790 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
791 	m_adj(m, ETHER_ALIGN);
792 
793 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
794 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
795 	    BUS_DMA_NOWAIT) != 0) {
796 		m_freem(m);
797 		return (ENOBUFS);
798 	}
799 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
800 
801 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
802 	if (rxd->rx_m != NULL) {
803 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
804 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
805 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
806 		    rxd->rx_dmamap);
807 	}
808 	map = rxd->rx_dmamap;
809 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
810 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
811 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
812 	    BUS_DMASYNC_PREREAD);
813 	rxd->rx_m = m;
814 	rx_le = rxd->rx_le;
815 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
816 	rx_le->msk_control =
817 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
818 
819 	return (0);
820 }
821 #endif
822 
823 /*
824  * Set media options.
825  */
826 static int
827 msk_mediachange(struct ifnet *ifp)
828 {
829 	struct msk_if_softc *sc_if = ifp->if_softc;
830 	struct mii_data	*mii;
831 	int error;
832 
833 	mii = device_get_softc(sc_if->msk_miibus);
834 	error = mii_mediachg(mii);
835 
836 	return (error);
837 }
838 
839 /*
840  * Report current media status.
841  */
842 static void
843 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
844 {
845 	struct msk_if_softc *sc_if = ifp->if_softc;
846 	struct mii_data	*mii;
847 
848 	mii = device_get_softc(sc_if->msk_miibus);
849 	mii_pollstat(mii);
850 
851 	ifmr->ifm_active = mii->mii_media_active;
852 	ifmr->ifm_status = mii->mii_media_status;
853 }
854 
855 static int
856 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
857 {
858 	struct msk_if_softc *sc_if;
859 	struct ifreq *ifr;
860 	struct mii_data	*mii;
861 	int error, mask;
862 
863 	sc_if = ifp->if_softc;
864 	ifr = (struct ifreq *)data;
865 	error = 0;
866 
867 	switch(command) {
868 	case SIOCSIFMTU:
869 #ifdef MSK_JUMBO
870 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
871 			error = EINVAL;
872 			break;
873 		}
874 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
875 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
876 			error = EINVAL;
877 			break;
878 		}
879 		ifp->if_mtu = ifr->ifr_mtu;
880 		if ((ifp->if_flags & IFF_RUNNING) != 0)
881 			msk_init(sc_if);
882 #else
883 		error = EOPNOTSUPP;
884 #endif
885 		break;
886 
887 	case SIOCSIFFLAGS:
888 		if (ifp->if_flags & IFF_UP) {
889 			if (ifp->if_flags & IFF_RUNNING) {
890 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
891 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
892 					msk_rxfilter(sc_if);
893 			} else {
894 				if (sc_if->msk_detach == 0)
895 					msk_init(sc_if);
896 			}
897 		} else {
898 			if (ifp->if_flags & IFF_RUNNING)
899 				msk_stop(sc_if);
900 		}
901 		sc_if->msk_if_flags = ifp->if_flags;
902 		break;
903 
904 	case SIOCADDMULTI:
905 	case SIOCDELMULTI:
906 		if (ifp->if_flags & IFF_RUNNING)
907 			msk_rxfilter(sc_if);
908 		break;
909 
910 	case SIOCGIFMEDIA:
911 	case SIOCSIFMEDIA:
912 		mii = device_get_softc(sc_if->msk_miibus);
913 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
914 		break;
915 
916 	case SIOCSIFCAP:
917 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
918 		if ((mask & IFCAP_TXCSUM) != 0) {
919 			ifp->if_capenable ^= IFCAP_TXCSUM;
920 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
921 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
922 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
923 			else
924 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
925 		}
926 #ifdef notyet
927 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
928 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
929 			msk_setvlan(sc_if, ifp);
930 		}
931 #endif
932 
933 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
934 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
935 			/*
936 			 * In Yukon EC Ultra, TSO & checksum offload is not
937 			 * supported for jumbo frame.
938 			 */
939 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
940 			ifp->if_capenable &= ~IFCAP_TXCSUM;
941 		}
942 		break;
943 
944 	default:
945 		error = ether_ioctl(ifp, command, data);
946 		break;
947 	}
948 
949 	return (error);
950 }
951 
952 static int
953 mskc_probe(device_t dev)
954 {
955 	const struct msk_product *mp;
956 	uint16_t vendor, devid;
957 
958 	vendor = pci_get_vendor(dev);
959 	devid = pci_get_device(dev);
960 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
961 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
962 			device_set_desc(dev, mp->msk_name);
963 			return (0);
964 		}
965 	}
966 	return (ENXIO);
967 }
968 
969 static int
970 mskc_setup_rambuffer(struct msk_softc *sc)
971 {
972 	int next;
973 	int i;
974 
975 	/* Get adapter SRAM size. */
976 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
977 	if (bootverbose) {
978 		device_printf(sc->msk_dev,
979 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
980 	}
981 	if (sc->msk_ramsize == 0)
982 		return (0);
983 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
984 
985 	/*
986 	 * Give receiver 2/3 of memory and round down to the multiple
987 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
988 	 * of 1024.
989 	 */
990 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
991 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
992 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
993 		sc->msk_rxqstart[i] = next;
994 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
995 		next = sc->msk_rxqend[i] + 1;
996 		sc->msk_txqstart[i] = next;
997 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
998 		next = sc->msk_txqend[i] + 1;
999 		if (bootverbose) {
1000 			device_printf(sc->msk_dev,
1001 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1002 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1003 			    sc->msk_rxqend[i]);
1004 			device_printf(sc->msk_dev,
1005 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1006 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1007 			    sc->msk_txqend[i]);
1008 		}
1009 	}
1010 
1011 	return (0);
1012 }
1013 
1014 static void
1015 mskc_phy_power(struct msk_softc *sc, int mode)
1016 {
1017 	uint32_t our, val;
1018 	int i;
1019 
1020 	switch (mode) {
1021 	case MSK_PHY_POWERUP:
1022 		/* Switch power to VCC (WA for VAUX problem). */
1023 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1024 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1025 		/* Disable Core Clock Division, set Clock Select to 0. */
1026 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1027 
1028 		val = 0;
1029 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1030 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1031 			/* Enable bits are inverted. */
1032 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1033 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1034 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1035 		}
1036 		/*
1037 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1038 		 */
1039 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1040 
1041 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1042 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1043 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1044 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1045 				/* Deassert Low Power for 1st PHY. */
1046 				our |= PCI_Y2_PHY1_COMA;
1047 				if (sc->msk_num_port > 1)
1048 					our |= PCI_Y2_PHY2_COMA;
1049 			}
1050 		}
1051 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1052 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1053 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1054 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1055 			val &= (PCI_FORCE_ASPM_REQUEST |
1056 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1057 			    PCI_ASPM_CLKRUN_REQUEST);
1058 			/* Set all bits to 0 except bits 15..12. */
1059 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1060 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1061 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1062 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1063 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1064 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1065 			/*
1066 			 * Disable status race, workaround for
1067 			 * Yukon EC Ultra & Yukon EX.
1068 			 */
1069 			val = CSR_READ_4(sc, B2_GP_IO);
1070 			val |= GLB_GPIO_STAT_RACE_DIS;
1071 			CSR_WRITE_4(sc, B2_GP_IO, val);
1072 			CSR_READ_4(sc, B2_GP_IO);
1073 		}
1074 		/* Release PHY from PowerDown/COMA mode. */
1075 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1076 
1077 		for (i = 0; i < sc->msk_num_port; i++) {
1078 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1079 			    GMLC_RST_SET);
1080 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1081 			    GMLC_RST_CLR);
1082 		}
1083 		break;
1084 	case MSK_PHY_POWERDOWN:
1085 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1086 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1087 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1088 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1089 			val &= ~PCI_Y2_PHY1_COMA;
1090 			if (sc->msk_num_port > 1)
1091 				val &= ~PCI_Y2_PHY2_COMA;
1092 		}
1093 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1094 
1095 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1096 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1097 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1098 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1099 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1100 			/* Enable bits are inverted. */
1101 			val = 0;
1102 		}
1103 		/*
1104 		 * Disable PCI & Core Clock, disable clock gating for
1105 		 * both Links.
1106 		 */
1107 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1108 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1109 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1110 		break;
1111 	default:
1112 		break;
1113 	}
1114 }
1115 
1116 static void
1117 mskc_reset(struct msk_softc *sc)
1118 {
1119 	bus_addr_t addr;
1120 	uint16_t status;
1121 	uint32_t val;
1122 	int i;
1123 
1124 	/* Disable ASF. */
1125 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1126 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1127 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1128 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1129 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1130 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1131 			/* Clear AHB bridge & microcontroller reset. */
1132 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1133 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1134 			/* Clear ASF microcontroller state. */
1135 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1136 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1137 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1138 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1139 		} else {
1140 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1141 		}
1142 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1143 		/*
1144 		 * Since we disabled ASF, S/W reset is required for
1145 		 * Power Management.
1146 		 */
1147 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1148 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1149 	}
1150 
1151 	/* Clear all error bits in the PCI status register. */
1152 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1153 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1154 
1155 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1156 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1157 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1158 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1159 
1160 	switch (sc->msk_bustype) {
1161 	case MSK_PEX_BUS:
1162 		/* Clear all PEX errors. */
1163 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1164 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1165 		if ((val & PEX_RX_OV) != 0) {
1166 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1167 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1168 		}
1169 		break;
1170 	case MSK_PCI_BUS:
1171 	case MSK_PCIX_BUS:
1172 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1173 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1174 		if (val == 0)
1175 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1176 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1177 			/* Set Cache Line Size opt. */
1178 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1179 			val |= PCI_CLS_OPT;
1180 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1181 		}
1182 		break;
1183 	}
1184 	/* Set PHY power state. */
1185 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1186 
1187 	/* Reset GPHY/GMAC Control */
1188 	for (i = 0; i < sc->msk_num_port; i++) {
1189 		/* GPHY Control reset. */
1190 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1191 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1192 		/* GMAC Control reset. */
1193 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1194 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1195 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1196 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1197 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1198 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1199 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1200 			    GMC_BYP_RETR_ON);
1201 		}
1202 	}
1203 
1204 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1205 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1206 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1207 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1208 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1209 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1210 	}
1211 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1212 
1213 	/* LED On. */
1214 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1215 
1216 	/* Clear TWSI IRQ. */
1217 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1218 
1219 	/* Turn off hardware timer. */
1220 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1221 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1222 
1223 	/* Turn off descriptor polling. */
1224 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1225 
1226 	/* Turn off time stamps. */
1227 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1228 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1229 
1230 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1231 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1232 	    sc->msk_hw_id == CHIP_ID_YUKON_FE) {
1233 		/* Configure timeout values. */
1234 		for (i = 0; i < sc->msk_num_port; i++) {
1235 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1236 			    RI_RST_SET);
1237 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1238 			    RI_RST_CLR);
1239 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1240 			    MSK_RI_TO_53);
1241 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1242 			    MSK_RI_TO_53);
1243 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1244 			    MSK_RI_TO_53);
1245 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1246 			    MSK_RI_TO_53);
1247 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1248 			    MSK_RI_TO_53);
1249 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1250 			    MSK_RI_TO_53);
1251 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1252 			    MSK_RI_TO_53);
1253 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1254 			    MSK_RI_TO_53);
1255 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1256 			    MSK_RI_TO_53);
1257 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1258 			    MSK_RI_TO_53);
1259 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1260 			    MSK_RI_TO_53);
1261 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1262 			    MSK_RI_TO_53);
1263 		}
1264 	}
1265 
1266 	/* Disable all interrupts. */
1267 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1268 	CSR_READ_4(sc, B0_HWE_IMSK);
1269 	CSR_WRITE_4(sc, B0_IMSK, 0);
1270 	CSR_READ_4(sc, B0_IMSK);
1271 
1272         /*
1273          * On dual port PCI-X card, there is an problem where status
1274          * can be received out of order due to split transactions.
1275          */
1276 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1277 		uint16_t pcix_cmd;
1278 
1279 		pcix_cmd = pci_read_config(sc->msk_dev,
1280 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1281 		/* Clear Max Outstanding Split Transactions. */
1282 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1283 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1284 		pci_write_config(sc->msk_dev,
1285 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1286 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1287 	}
1288 	if (sc->msk_pciecap != 0) {
1289 		/* Change Max. Read Request Size to 2048 bytes. */
1290 		if (pcie_get_max_readrq(sc->msk_dev) ==
1291 		    PCIEM_DEVCTL_MAX_READRQ_512) {
1292 			pcie_set_max_readrq(sc->msk_dev,
1293 			    PCIEM_DEVCTL_MAX_READRQ_2048);
1294 		}
1295 	}
1296 
1297 	/* Clear status list. */
1298 	bzero(sc->msk_stat_ring,
1299 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1300 	sc->msk_stat_cons = 0;
1301 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1302 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1303 	/* Set the status list base address. */
1304 	addr = sc->msk_stat_ring_paddr;
1305 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1306 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1307 	/* Set the status list last index. */
1308 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1309 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1310 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1311 		/* WA for dev. #4.3 */
1312 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1313 		/* WA for dev. #4.18 */
1314 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1315 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1316 	} else {
1317 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1318 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1319 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1320 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1321 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1322 		else
1323 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1324 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1325 	}
1326 	/*
1327 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1328 	 */
1329 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1330 
1331 	/* Enable status unit. */
1332 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1333 
1334 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1335 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1336 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1337 }
1338 
1339 static int
1340 msk_probe(device_t dev)
1341 {
1342 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1343 	char desc[100];
1344 
1345 	/*
1346 	 * Not much to do here. We always know there will be
1347 	 * at least one GMAC present, and if there are two,
1348 	 * mskc_attach() will create a second device instance
1349 	 * for us.
1350 	 */
1351 	ksnprintf(desc, sizeof(desc),
1352 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1353 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1354 	    sc->msk_hw_rev);
1355 	device_set_desc_copy(dev, desc);
1356 
1357 	return (0);
1358 }
1359 
1360 static int
1361 msk_attach(device_t dev)
1362 {
1363 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1364 	struct msk_if_softc *sc_if = device_get_softc(dev);
1365 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1366 	int i, port, error;
1367 	uint8_t eaddr[ETHER_ADDR_LEN];
1368 
1369 	port = *(int *)device_get_ivars(dev);
1370 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1371 
1372 	kfree(device_get_ivars(dev), M_DEVBUF);
1373 	device_set_ivars(dev, NULL);
1374 
1375 	callout_init(&sc_if->msk_tick_ch);
1376 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1377 
1378 	sc_if->msk_if_dev = dev;
1379 	sc_if->msk_port = port;
1380 	sc_if->msk_softc = sc;
1381 	sc_if->msk_ifp = ifp;
1382 	sc_if->msk_flags = sc->msk_pflags;
1383 	sc->msk_if[port] = sc_if;
1384 
1385 	/* Setup Tx/Rx queue register offsets. */
1386 	if (port == MSK_PORT_A) {
1387 		sc_if->msk_txq = Q_XA1;
1388 		sc_if->msk_txsq = Q_XS1;
1389 		sc_if->msk_rxq = Q_R1;
1390 	} else {
1391 		sc_if->msk_txq = Q_XA2;
1392 		sc_if->msk_txsq = Q_XS2;
1393 		sc_if->msk_rxq = Q_R2;
1394 	}
1395 
1396 	error = msk_txrx_dma_alloc(sc_if);
1397 	if (error)
1398 		goto fail;
1399 
1400 	ifp->if_softc = sc_if;
1401 	ifp->if_mtu = ETHERMTU;
1402 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1403 	ifp->if_init = msk_init;
1404 	ifp->if_ioctl = msk_ioctl;
1405 	ifp->if_start = msk_start;
1406 	ifp->if_watchdog = msk_watchdog;
1407 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1408 	ifq_set_ready(&ifp->if_snd);
1409 
1410 #ifdef notyet
1411 	/*
1412 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1413 	 * has serious bug in Rx checksum offload for all Yukon II family
1414 	 * hardware. It seems there is a workaround to make it work somtimes.
1415 	 * However, the workaround also have to check OP code sequences to
1416 	 * verify whether the OP code is correct. Sometimes it should compute
1417 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1418 	 * checksum computed by hardware. If you have to compute checksum
1419 	 * with software to verify the hardware's checksum why have hardware
1420 	 * compute the checksum? I think there is no reason to spend time to
1421 	 * make Rx checksum offload work on Yukon II hardware.
1422 	 */
1423 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1424 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1425 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1426 	ifp->if_capenable = ifp->if_capabilities;
1427 #endif
1428 
1429 	/*
1430 	 * Get station address for this interface. Note that
1431 	 * dual port cards actually come with three station
1432 	 * addresses: one for each port, plus an extra. The
1433 	 * extra one is used by the SysKonnect driver software
1434 	 * as a 'virtual' station address for when both ports
1435 	 * are operating in failover mode. Currently we don't
1436 	 * use this extra address.
1437 	 */
1438 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1439 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1440 
1441 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1442 
1443 	/*
1444 	 * Do miibus setup.
1445 	 */
1446 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1447 			      msk_mediachange, msk_mediastatus);
1448 	if (error) {
1449 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1450 		goto fail;
1451 	}
1452 
1453 	/*
1454 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1455 	 */
1456 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1457 #if 0
1458 	/*
1459 	 * Tell the upper layer(s) we support long frames.
1460 	 * Must appear after the call to ether_ifattach() because
1461 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1462 	 */
1463         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1464 #endif
1465 
1466 	return 0;
1467 fail:
1468 	msk_detach(dev);
1469 	sc->msk_if[port] = NULL;
1470 	return (error);
1471 }
1472 
1473 /*
1474  * Attach the interface. Allocate softc structures, do ifmedia
1475  * setup and ethernet/BPF attach.
1476  */
1477 static int
1478 mskc_attach(device_t dev)
1479 {
1480 	struct msk_softc *sc;
1481 	struct sysctl_ctx_list *ctx;
1482 	struct sysctl_oid *tree;
1483 	int error, *port, cpuid;
1484 	u_int irq_flags;
1485 
1486 	sc = device_get_softc(dev);
1487 	sc->msk_dev = dev;
1488 	lwkt_serialize_init(&sc->msk_serializer);
1489 
1490 	/*
1491 	 * Initailize sysctl variables
1492 	 */
1493 	sc->msk_process_limit = mskc_process_limit;
1494 	sc->msk_intr_rate = mskc_intr_rate;
1495 
1496 #ifndef BURN_BRIDGES
1497 	/*
1498 	 * Handle power management nonsense.
1499 	 */
1500 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1501 		uint32_t irq, bar0, bar1;
1502 
1503 		/* Save important PCI config data. */
1504 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1505 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1506 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1507 
1508 		/* Reset the power state. */
1509 		device_printf(dev, "chip is in D%d power mode "
1510 			      "-- setting to D0\n", pci_get_powerstate(dev));
1511 
1512 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1513 
1514 		/* Restore PCI config data. */
1515 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1516 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1517 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1518 	}
1519 #endif	/* BURN_BRIDGES */
1520 
1521 	/*
1522 	 * Map control/status registers.
1523 	 */
1524 	pci_enable_busmaster(dev);
1525 
1526 	/*
1527 	 * Allocate I/O resource
1528 	 */
1529 #ifdef MSK_USEIOSPACE
1530 	sc->msk_res_type = SYS_RES_IOPORT;
1531 	sc->msk_res_rid = PCIR_BAR(1);
1532 #else
1533 	sc->msk_res_type = SYS_RES_MEMORY;
1534 	sc->msk_res_rid = PCIR_BAR(0);
1535 #endif
1536 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1537 					     &sc->msk_res_rid, RF_ACTIVE);
1538 	if (sc->msk_res == NULL) {
1539 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1540 			sc->msk_res_type = SYS_RES_IOPORT;
1541 			sc->msk_res_rid = PCIR_BAR(1);
1542 		} else {
1543 			sc->msk_res_type = SYS_RES_MEMORY;
1544 			sc->msk_res_rid = PCIR_BAR(0);
1545 		}
1546 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1547 						     &sc->msk_res_rid,
1548 						     RF_ACTIVE);
1549 		if (sc->msk_res == NULL) {
1550 			device_printf(dev, "couldn't allocate %s resources\n",
1551 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1552 			return (ENXIO);
1553 		}
1554 	}
1555 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1556 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1557 
1558 	/*
1559 	 * Allocate IRQ
1560 	 */
1561 	sc->msk_irq_type = pci_alloc_1intr(dev, mskc_msi_enable,
1562 	    &sc->msk_irq_rid, &irq_flags);
1563 
1564 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->msk_irq_rid,
1565 	    irq_flags);
1566 	if (sc->msk_irq == NULL) {
1567 		device_printf(dev, "couldn't allocate IRQ resources\n");
1568 		error = ENXIO;
1569 		goto fail;
1570 	}
1571 
1572 	/* Enable all clocks before accessing any registers. */
1573 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1574 
1575 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1576 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1577 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1578 	/* Bail out if chip is not recognized. */
1579 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1580 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1581 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1582 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1583 		    sc->msk_hw_id, sc->msk_hw_rev);
1584 		error = ENXIO;
1585 		goto fail;
1586 	}
1587 
1588 	/*
1589 	 * Create sysctl tree
1590 	 */
1591 	ctx = device_get_sysctl_ctx(dev);
1592 	tree = device_get_sysctl_tree(dev);
1593 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1594 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1595 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1596 			"I", "max number of Rx events to process");
1597 	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree),
1598 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1599 			sc, 0, mskc_sysctl_intr_rate,
1600 			"I", "max number of interrupt per second");
1601 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1602 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1603 		       0, "# of avoided m_defrag on TX path");
1604 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1605 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1606 		       0, "# of leading copies on TX path");
1607 	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
1608 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1609 		       0, "# of trailing copies on TX path");
1610 
1611 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1612 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1613 		sc->msk_coppertype = 0;
1614 	else
1615 		sc->msk_coppertype = 1;
1616 	/* Check number of MACs. */
1617 	sc->msk_num_port = 1;
1618 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1619 	    CFG_DUAL_MAC_MSK) {
1620 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1621 			sc->msk_num_port++;
1622 	}
1623 
1624 	/* Check bus type. */
1625 	if (pci_is_pcie(sc->msk_dev) == 0) {
1626 		sc->msk_bustype = MSK_PEX_BUS;
1627 		sc->msk_pciecap = pci_get_pciecap_ptr(sc->msk_dev);
1628 	} else if (pci_is_pcix(sc->msk_dev) == 0) {
1629 		sc->msk_bustype = MSK_PCIX_BUS;
1630 		sc->msk_pcixcap = pci_get_pcixcap_ptr(sc->msk_dev);
1631 	} else {
1632 		sc->msk_bustype = MSK_PCI_BUS;
1633 	}
1634 
1635 	switch (sc->msk_hw_id) {
1636 	case CHIP_ID_YUKON_EC:
1637 	case CHIP_ID_YUKON_EC_U:
1638 		sc->msk_clock = 125;	/* 125 Mhz */
1639 		break;
1640 	case CHIP_ID_YUKON_EX:
1641 		sc->msk_clock = 125;	/* 125 Mhz */
1642 		break;
1643 	case CHIP_ID_YUKON_FE:
1644 		sc->msk_clock = 100;	/* 100 Mhz */
1645 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1646 		break;
1647 	case CHIP_ID_YUKON_FE_P:
1648 		sc->msk_clock = 50;	/* 50 Mhz */
1649 		/* DESCV2 */
1650 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1651 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1652 			/*
1653 			 * XXX
1654 			 * FE+ A0 has status LE writeback bug so msk(4)
1655 			 * does not rely on status word of received frame
1656 			 * in msk_rxeof() which in turn disables all
1657 			 * hardware assistance bits reported by the status
1658 			 * word as well as validity of the recevied frame.
1659 			 * Just pass received frames to upper stack with
1660 			 * minimal test and let upper stack handle them.
1661 			 */
1662 			sc->msk_pflags |= MSK_FLAG_NORXCHK;
1663 		}
1664 		break;
1665 	case CHIP_ID_YUKON_XL:
1666 		sc->msk_clock = 156;	/* 156 Mhz */
1667 		break;
1668 	case CHIP_ID_YUKON_SUPR:
1669 		sc->msk_clock = 125;	/* 125 MHz */
1670 		break;
1671 	case CHIP_ID_YUKON_UL_2:
1672 		sc->msk_clock = 125;	/* 125 Mhz */
1673 		break;
1674 	case CHIP_ID_YUKON_OPT:
1675 		sc->msk_clock = 125;	/* 125 MHz */
1676 		break;
1677 	default:
1678 		sc->msk_clock = 156;	/* 156 Mhz */
1679 		break;
1680 	}
1681 
1682 	error = mskc_status_dma_alloc(sc);
1683 	if (error)
1684 		goto fail;
1685 
1686 	/* Set base interrupt mask. */
1687 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1688 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1689 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1690 
1691 	/* Reset the adapter. */
1692 	mskc_reset(sc);
1693 
1694 	error = mskc_setup_rambuffer(sc);
1695 	if (error)
1696 		goto fail;
1697 
1698 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1699 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1700 		device_printf(dev, "failed to add child for PORT_A\n");
1701 		error = ENXIO;
1702 		goto fail;
1703 	}
1704 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1705 	*port = MSK_PORT_A;
1706 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1707 
1708 	if (sc->msk_num_port > 1) {
1709 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1710 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1711 			device_printf(dev, "failed to add child for PORT_B\n");
1712 			error = ENXIO;
1713 			goto fail;
1714 		}
1715 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1716 		*port = MSK_PORT_B;
1717 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1718 	}
1719 
1720 	bus_generic_attach(dev);
1721 
1722 	cpuid = rman_get_cpuid(sc->msk_irq);
1723 	if (sc->msk_if[0] != NULL)
1724 		ifq_set_cpuid(&sc->msk_if[0]->msk_ifp->if_snd, cpuid);
1725 	if (sc->msk_if[1] != NULL)
1726 		ifq_set_cpuid(&sc->msk_if[1]->msk_ifp->if_snd, cpuid);
1727 
1728 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1729 			       mskc_intr, sc, &sc->msk_intrhand,
1730 			       &sc->msk_serializer);
1731 	if (error) {
1732 		device_printf(dev, "couldn't set up interrupt handler\n");
1733 		goto fail;
1734 	}
1735 	return 0;
1736 fail:
1737 	mskc_detach(dev);
1738 	return (error);
1739 }
1740 
1741 /*
1742  * Shutdown hardware and free up resources. This can be called any
1743  * time after the mutex has been initialized. It is called in both
1744  * the error case in attach and the normal detach case so it needs
1745  * to be careful about only freeing resources that have actually been
1746  * allocated.
1747  */
1748 static int
1749 msk_detach(device_t dev)
1750 {
1751 	struct msk_if_softc *sc_if = device_get_softc(dev);
1752 
1753 	if (device_is_attached(dev)) {
1754 		struct msk_softc *sc = sc_if->msk_softc;
1755 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1756 
1757 		lwkt_serialize_enter(ifp->if_serializer);
1758 
1759 		if (sc->msk_intrhand != NULL) {
1760 			if (sc->msk_if[MSK_PORT_A] != NULL)
1761 				msk_stop(sc->msk_if[MSK_PORT_A]);
1762 			if (sc->msk_if[MSK_PORT_B] != NULL)
1763 				msk_stop(sc->msk_if[MSK_PORT_B]);
1764 
1765 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1766 					  sc->msk_intrhand);
1767 			sc->msk_intrhand = NULL;
1768 		}
1769 
1770 		lwkt_serialize_exit(ifp->if_serializer);
1771 
1772 		ether_ifdetach(ifp);
1773 	}
1774 
1775 	if (sc_if->msk_miibus != NULL)
1776 		device_delete_child(dev, sc_if->msk_miibus);
1777 
1778 	msk_txrx_dma_free(sc_if);
1779 	return (0);
1780 }
1781 
1782 static int
1783 mskc_detach(device_t dev)
1784 {
1785 	struct msk_softc *sc = device_get_softc(dev);
1786 	int *port, i;
1787 
1788 #ifdef INVARIANTS
1789 	if (device_is_attached(dev)) {
1790 		KASSERT(sc->msk_intrhand == NULL,
1791 			("intr is not torn down yet"));
1792 	}
1793 #endif
1794 
1795 	for (i = 0; i < sc->msk_num_port; ++i) {
1796 		if (sc->msk_devs[i] != NULL) {
1797 			port = device_get_ivars(sc->msk_devs[i]);
1798 			if (port != NULL) {
1799 				kfree(port, M_DEVBUF);
1800 				device_set_ivars(sc->msk_devs[i], NULL);
1801 			}
1802 			device_delete_child(dev, sc->msk_devs[i]);
1803 		}
1804 	}
1805 
1806 	/* Disable all interrupts. */
1807 	CSR_WRITE_4(sc, B0_IMSK, 0);
1808 	CSR_READ_4(sc, B0_IMSK);
1809 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1810 	CSR_READ_4(sc, B0_HWE_IMSK);
1811 
1812 	/* LED Off. */
1813 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1814 
1815 	/* Put hardware reset. */
1816 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1817 
1818 	mskc_status_dma_free(sc);
1819 
1820 	if (sc->msk_irq != NULL) {
1821 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1822 				     sc->msk_irq);
1823 	}
1824 	if (sc->msk_irq_type == PCI_INTR_TYPE_MSI)
1825 		pci_release_msi(dev);
1826 
1827 	if (sc->msk_res != NULL) {
1828 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1829 				     sc->msk_res);
1830 	}
1831 
1832 	return (0);
1833 }
1834 
1835 /* Create status DMA region. */
1836 static int
1837 mskc_status_dma_alloc(struct msk_softc *sc)
1838 {
1839 	bus_dmamem_t dmem;
1840 	int error;
1841 
1842 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1843 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1844 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1845 	if (error) {
1846 		device_printf(sc->msk_dev,
1847 		    "failed to create status coherent DMA memory\n");
1848 		return error;
1849 	}
1850 	sc->msk_stat_tag = dmem.dmem_tag;
1851 	sc->msk_stat_map = dmem.dmem_map;
1852 	sc->msk_stat_ring = dmem.dmem_addr;
1853 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1854 
1855 	return (0);
1856 }
1857 
1858 static void
1859 mskc_status_dma_free(struct msk_softc *sc)
1860 {
1861 	/* Destroy status block. */
1862 	if (sc->msk_stat_tag) {
1863 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1864 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1865 				sc->msk_stat_map);
1866 		bus_dma_tag_destroy(sc->msk_stat_tag);
1867 		sc->msk_stat_tag = NULL;
1868 	}
1869 }
1870 
1871 static int
1872 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1873 {
1874 	int error, i, j;
1875 #ifdef MSK_JUMBO
1876 	struct msk_rxdesc *jrxd;
1877 	struct msk_jpool_entry *entry;
1878 	uint8_t *ptr;
1879 #endif
1880 	bus_size_t rxalign;
1881 
1882 	/* Create parent DMA tag. */
1883 	/*
1884 	 * XXX
1885 	 * It seems that Yukon II supports full 64bits DMA operations. But
1886 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1887 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1888 	 * would be used in advance for each mbufs, we limits its DMA space
1889 	 * to be in range of 32bits address space. Otherwise, we should check
1890 	 * what DMA address is used and chain another descriptor for the
1891 	 * 64bits DMA operation. This also means descriptor ring size is
1892 	 * variable. Limiting DMA address to be in 32bit address space greatly
1893 	 * simplyfies descriptor handling and possibly would increase
1894 	 * performance a bit due to efficient handling of descriptors.
1895 	 * Apart from harassing checksum offloading mechanisms, it seems
1896 	 * it's really bad idea to use a seperate descriptor for 64bit
1897 	 * DMA operation to save small descriptor memory. Anyway, I've
1898 	 * never seen these exotic scheme on ethernet interface hardware.
1899 	 */
1900 	error = bus_dma_tag_create(
1901 		    NULL,			/* parent */
1902 		    1, 0,			/* alignment, boundary */
1903 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1904 		    BUS_SPACE_MAXADDR,		/* highaddr */
1905 		    NULL, NULL,			/* filter, filterarg */
1906 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1907 		    0,				/* nsegments */
1908 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1909 		    0,				/* flags */
1910 		    &sc_if->msk_cdata.msk_parent_tag);
1911 	if (error) {
1912 		device_printf(sc_if->msk_if_dev,
1913 			      "failed to create parent DMA tag\n");
1914 		return error;
1915 	}
1916 
1917 	/* Create DMA stuffs for Tx ring. */
1918 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1919 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1920 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1921 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1922 				  &sc_if->msk_cdata.msk_tx_ring_map);
1923 	if (error) {
1924 		device_printf(sc_if->msk_if_dev,
1925 			      "failed to create TX ring DMA stuffs\n");
1926 		return error;
1927 	}
1928 
1929 	/* Create DMA stuffs for Rx ring. */
1930 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1931 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1932 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1933 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1934 				  &sc_if->msk_cdata.msk_rx_ring_map);
1935 	if (error) {
1936 		device_printf(sc_if->msk_if_dev,
1937 			      "failed to create RX ring DMA stuffs\n");
1938 		return error;
1939 	}
1940 
1941 	/* Create tag for Tx buffers. */
1942 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1943 		    1, 0,			/* alignment, boundary */
1944 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1945 		    BUS_SPACE_MAXADDR,		/* highaddr */
1946 		    NULL, NULL,			/* filter, filterarg */
1947 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1948 		    MSK_MAXTXSEGS,		/* nsegments */
1949 		    MSK_MAXSGSIZE,		/* maxsegsize */
1950 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1951 		    BUS_DMA_ONEBPAGE,		/* flags */
1952 		    &sc_if->msk_cdata.msk_tx_tag);
1953 	if (error) {
1954 		device_printf(sc_if->msk_if_dev,
1955 			      "failed to create Tx DMA tag\n");
1956 		return error;
1957 	}
1958 
1959 	/* Create DMA maps for Tx buffers. */
1960 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1961 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1962 
1963 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1964 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1965 				&txd->tx_dmamap);
1966 		if (error) {
1967 			device_printf(sc_if->msk_if_dev,
1968 				      "failed to create %dth Tx dmamap\n", i);
1969 
1970 			for (j = 0; j < i; ++j) {
1971 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1972 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1973 						   txd->tx_dmamap);
1974 			}
1975 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1976 			sc_if->msk_cdata.msk_tx_tag = NULL;
1977 
1978 			return error;
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * Workaround hardware hang which seems to happen when Rx buffer
1984 	 * is not aligned on multiple of FIFO word(8 bytes).
1985 	 */
1986 	if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
1987 		rxalign = MSK_RX_BUF_ALIGN;
1988 	else
1989 		rxalign = 1;
1990 
1991 	/* Create tag for Rx buffers. */
1992 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1993 		    rxalign, 0,			/* alignment, boundary */
1994 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1995 		    BUS_SPACE_MAXADDR,		/* highaddr */
1996 		    NULL, NULL,			/* filter, filterarg */
1997 		    MCLBYTES,			/* maxsize */
1998 		    1,				/* nsegments */
1999 		    MCLBYTES,			/* maxsegsize */
2000 		    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2001 		    BUS_DMA_WAITOK,		/* flags */
2002 		    &sc_if->msk_cdata.msk_rx_tag);
2003 	if (error) {
2004 		device_printf(sc_if->msk_if_dev,
2005 			      "failed to create Rx DMA tag\n");
2006 		return error;
2007 	}
2008 
2009 	/* Create DMA maps for Rx buffers. */
2010 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
2011 				  &sc_if->msk_cdata.msk_rx_sparemap);
2012 	if (error) {
2013 		device_printf(sc_if->msk_if_dev,
2014 			      "failed to create spare Rx dmamap\n");
2015 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2016 		sc_if->msk_cdata.msk_rx_tag = NULL;
2017 		return error;
2018 	}
2019 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2020 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2021 
2022 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2023 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
2024 		if (error) {
2025 			device_printf(sc_if->msk_if_dev,
2026 				      "failed to create %dth Rx dmamap\n", i);
2027 
2028 			for (j = 0; j < i; ++j) {
2029 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2030 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2031 						   rxd->rx_dmamap);
2032 			}
2033 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2034 					   sc_if->msk_cdata.msk_rx_sparemap);
2035 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2036 			sc_if->msk_cdata.msk_rx_tag = NULL;
2037 
2038 			return error;
2039 		}
2040 	}
2041 
2042 #ifdef MSK_JUMBO
2043 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2044 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2045 
2046 	/* Create tag for jumbo Rx ring. */
2047 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2048 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2049 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2050 		    BUS_SPACE_MAXADDR,		/* highaddr */
2051 		    NULL, NULL,			/* filter, filterarg */
2052 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2053 		    1,				/* nsegments */
2054 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2055 		    0,				/* flags */
2056 		    NULL, NULL,			/* lockfunc, lockarg */
2057 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2058 	if (error != 0) {
2059 		device_printf(sc_if->msk_if_dev,
2060 		    "failed to create jumbo Rx ring DMA tag\n");
2061 		goto fail;
2062 	}
2063 
2064 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2065 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2066 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2067 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2068 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2069 	if (error != 0) {
2070 		device_printf(sc_if->msk_if_dev,
2071 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2072 		goto fail;
2073 	}
2074 
2075 	ctx.msk_busaddr = 0;
2076 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2077 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2078 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2079 	    msk_dmamap_cb, &ctx, 0);
2080 	if (error != 0) {
2081 		device_printf(sc_if->msk_if_dev,
2082 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2083 		goto fail;
2084 	}
2085 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2086 
2087 	/* Create tag for jumbo buffer blocks. */
2088 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2089 		    PAGE_SIZE, 0,		/* alignment, boundary */
2090 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2091 		    BUS_SPACE_MAXADDR,		/* highaddr */
2092 		    NULL, NULL,			/* filter, filterarg */
2093 		    MSK_JMEM,			/* maxsize */
2094 		    1,				/* nsegments */
2095 		    MSK_JMEM,			/* maxsegsize */
2096 		    0,				/* flags */
2097 		    NULL, NULL,			/* lockfunc, lockarg */
2098 		    &sc_if->msk_cdata.msk_jumbo_tag);
2099 	if (error != 0) {
2100 		device_printf(sc_if->msk_if_dev,
2101 		    "failed to create jumbo Rx buffer block DMA tag\n");
2102 		goto fail;
2103 	}
2104 
2105 	/* Create tag for jumbo Rx buffers. */
2106 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2107 		    PAGE_SIZE, 0,		/* alignment, boundary */
2108 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2109 		    BUS_SPACE_MAXADDR,		/* highaddr */
2110 		    NULL, NULL,			/* filter, filterarg */
2111 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2112 		    MSK_MAXRXSEGS,		/* nsegments */
2113 		    MSK_JLEN,			/* maxsegsize */
2114 		    0,				/* flags */
2115 		    NULL, NULL,			/* lockfunc, lockarg */
2116 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2117 	if (error != 0) {
2118 		device_printf(sc_if->msk_if_dev,
2119 		    "failed to create jumbo Rx DMA tag\n");
2120 		goto fail;
2121 	}
2122 
2123 	/* Create DMA maps for jumbo Rx buffers. */
2124 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2125 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2126 		device_printf(sc_if->msk_if_dev,
2127 		    "failed to create spare jumbo Rx dmamap\n");
2128 		goto fail;
2129 	}
2130 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2131 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2132 		jrxd->rx_m = NULL;
2133 		jrxd->rx_dmamap = NULL;
2134 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2135 		    &jrxd->rx_dmamap);
2136 		if (error != 0) {
2137 			device_printf(sc_if->msk_if_dev,
2138 			    "failed to create jumbo Rx dmamap\n");
2139 			goto fail;
2140 		}
2141 	}
2142 
2143 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2144 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2145 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2146 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2147 	    &sc_if->msk_cdata.msk_jumbo_map);
2148 	if (error != 0) {
2149 		device_printf(sc_if->msk_if_dev,
2150 		    "failed to allocate DMA'able memory for jumbo buf\n");
2151 		goto fail;
2152 	}
2153 
2154 	ctx.msk_busaddr = 0;
2155 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2156 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2157 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2158 	if (error != 0) {
2159 		device_printf(sc_if->msk_if_dev,
2160 		    "failed to load DMA'able memory for jumbobuf\n");
2161 		goto fail;
2162 	}
2163 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2164 
2165 	/*
2166 	 * Now divide it up into 9K pieces and save the addresses
2167 	 * in an array.
2168 	 */
2169 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2170 	for (i = 0; i < MSK_JSLOTS; i++) {
2171 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2172 		ptr += MSK_JLEN;
2173 		entry = malloc(sizeof(struct msk_jpool_entry),
2174 		    M_DEVBUF, M_WAITOK);
2175 		if (entry == NULL) {
2176 			device_printf(sc_if->msk_if_dev,
2177 			    "no memory for jumbo buffers!\n");
2178 			error = ENOMEM;
2179 			goto fail;
2180 		}
2181 		entry->slot = i;
2182 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2183 		    jpool_entries);
2184 	}
2185 #endif
2186 	return 0;
2187 }
2188 
2189 static void
2190 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2191 {
2192 	struct msk_txdesc *txd;
2193 	struct msk_rxdesc *rxd;
2194 #ifdef MSK_JUMBO
2195 	struct msk_rxdesc *jrxd;
2196 	struct msk_jpool_entry *entry;
2197 #endif
2198 	int i;
2199 
2200 #ifdef MSK_JUMBO
2201 	MSK_JLIST_LOCK(sc_if);
2202 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2203 		device_printf(sc_if->msk_if_dev,
2204 		    "asked to free buffer that is in use!\n");
2205 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2206 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2207 		    jpool_entries);
2208 	}
2209 
2210 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2211 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2212 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2213 		free(entry, M_DEVBUF);
2214 	}
2215 	MSK_JLIST_UNLOCK(sc_if);
2216 
2217 	/* Destroy jumbo buffer block. */
2218 	if (sc_if->msk_cdata.msk_jumbo_map)
2219 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2220 		    sc_if->msk_cdata.msk_jumbo_map);
2221 
2222 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2223 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2224 		    sc_if->msk_rdata.msk_jumbo_buf,
2225 		    sc_if->msk_cdata.msk_jumbo_map);
2226 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2227 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2228 	}
2229 
2230 	/* Jumbo Rx ring. */
2231 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2232 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2233 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2234 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2235 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2236 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2237 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2238 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2239 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2240 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2241 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2242 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2243 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2244 	}
2245 
2246 	/* Jumbo Rx buffers. */
2247 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2248 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2249 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2250 			if (jrxd->rx_dmamap) {
2251 				bus_dmamap_destroy(
2252 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2253 				    jrxd->rx_dmamap);
2254 				jrxd->rx_dmamap = NULL;
2255 			}
2256 		}
2257 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2258 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2259 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2260 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2261 		}
2262 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2263 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2264 	}
2265 #endif
2266 
2267 	/* Tx ring. */
2268 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2269 			   sc_if->msk_rdata.msk_tx_ring,
2270 			   sc_if->msk_cdata.msk_tx_ring_map);
2271 
2272 	/* Rx ring. */
2273 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2274 			   sc_if->msk_rdata.msk_rx_ring,
2275 			   sc_if->msk_cdata.msk_rx_ring_map);
2276 
2277 	/* Tx buffers. */
2278 	if (sc_if->msk_cdata.msk_tx_tag) {
2279 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2280 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2281 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2282 					   txd->tx_dmamap);
2283 		}
2284 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2285 		sc_if->msk_cdata.msk_tx_tag = NULL;
2286 	}
2287 
2288 	/* Rx buffers. */
2289 	if (sc_if->msk_cdata.msk_rx_tag) {
2290 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2291 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2292 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2293 					   rxd->rx_dmamap);
2294 		}
2295 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2296 				   sc_if->msk_cdata.msk_rx_sparemap);
2297 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2298 		sc_if->msk_cdata.msk_rx_tag = NULL;
2299 	}
2300 
2301 	if (sc_if->msk_cdata.msk_parent_tag) {
2302 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2303 		sc_if->msk_cdata.msk_parent_tag = NULL;
2304 	}
2305 }
2306 
2307 #ifdef MSK_JUMBO
2308 /*
2309  * Allocate a jumbo buffer.
2310  */
2311 static void *
2312 msk_jalloc(struct msk_if_softc *sc_if)
2313 {
2314 	struct msk_jpool_entry *entry;
2315 
2316 	MSK_JLIST_LOCK(sc_if);
2317 
2318 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2319 
2320 	if (entry == NULL) {
2321 		MSK_JLIST_UNLOCK(sc_if);
2322 		return (NULL);
2323 	}
2324 
2325 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2326 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2327 
2328 	MSK_JLIST_UNLOCK(sc_if);
2329 
2330 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2331 }
2332 
2333 /*
2334  * Release a jumbo buffer.
2335  */
2336 static void
2337 msk_jfree(void *buf, void *args)
2338 {
2339 	struct msk_if_softc *sc_if;
2340 	struct msk_jpool_entry *entry;
2341 	int i;
2342 
2343 	/* Extract the softc struct pointer. */
2344 	sc_if = (struct msk_if_softc *)args;
2345 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2346 
2347 	MSK_JLIST_LOCK(sc_if);
2348 	/* Calculate the slot this buffer belongs to. */
2349 	i = ((vm_offset_t)buf
2350 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2351 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2352 	    ("%s: asked to free buffer that we don't manage!", __func__));
2353 
2354 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2355 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2356 	entry->slot = i;
2357 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2358 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2359 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2360 		wakeup(sc_if);
2361 
2362 	MSK_JLIST_UNLOCK(sc_if);
2363 }
2364 #endif
2365 
2366 static int
2367 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2368 {
2369 	struct msk_txdesc *txd, *txd_last;
2370 	struct msk_tx_desc *tx_le;
2371 	struct mbuf *m;
2372 	bus_dmamap_t map;
2373 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2374 	uint32_t control, prod, si;
2375 	uint16_t offset, tcp_offset;
2376 	int error, i, nsegs, maxsegs, defrag;
2377 
2378 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2379 		  MSK_RESERVED_TX_DESC_CNT;
2380 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2381 		("not enough spare TX desc"));
2382 	if (maxsegs > MSK_MAXTXSEGS)
2383 		maxsegs = MSK_MAXTXSEGS;
2384 
2385 	/*
2386 	 * Align TX buffer to 64bytes boundary.  This greately improves
2387 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2388 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2389 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2390 	 */
2391 
2392 #define MSK_TXBUF_ALIGN	64
2393 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2394 
2395 	defrag = 1;
2396 	m = *m_head;
2397 	if (m->m_len == m->m_pkthdr.len) {
2398 		int space;
2399 
2400 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2401 		if (space) {
2402 			if (M_WRITABLE(m)) {
2403 				if (M_TRAILINGSPACE(m) >= space) {
2404 					/* e.g. TCP ACKs */
2405 					bcopy(m->m_data, m->m_data + space,
2406 					      m->m_len);
2407 					m->m_data += space;
2408 					defrag = 0;
2409 					sc_if->msk_softc->msk_trailing_copied++;
2410 				} else {
2411 					space = MSK_TXBUF_ALIGN - space;
2412 					if (M_LEADINGSPACE(m) >= space) {
2413 						/* e.g. Small UDP datagrams */
2414 						bcopy(m->m_data,
2415 						      m->m_data - space,
2416 						      m->m_len);
2417 						m->m_data -= space;
2418 						defrag = 0;
2419 						sc_if->msk_softc->
2420 						msk_leading_copied++;
2421 					}
2422 				}
2423 			}
2424 		} else {
2425 			/* e.g. on forwarding path */
2426 			defrag = 0;
2427 		}
2428 	}
2429 	if (defrag) {
2430 		m = m_defrag(*m_head, M_NOWAIT);
2431 		if (m == NULL) {
2432 			m_freem(*m_head);
2433 			*m_head = NULL;
2434 			return ENOBUFS;
2435 		}
2436 		*m_head = m;
2437 	} else {
2438 		sc_if->msk_softc->msk_defrag_avoided++;
2439 	}
2440 
2441 #undef MSK_TXBUF_MASK
2442 #undef MSK_TXBUF_ALIGN
2443 
2444 	tcp_offset = offset = 0;
2445 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2446 		/*
2447 		 * Since mbuf has no protocol specific structure information
2448 		 * in it we have to inspect protocol information here to
2449 		 * setup TSO and checksum offload. I don't know why Marvell
2450 		 * made a such decision in chip design because other GigE
2451 		 * hardwares normally takes care of all these chores in
2452 		 * hardware. However, TSO performance of Yukon II is very
2453 		 * good such that it's worth to implement it.
2454 		 */
2455 		struct ether_header *eh;
2456 		struct ip *ip;
2457 
2458 		/* TODO check for M_WRITABLE(m) */
2459 
2460 		offset = sizeof(struct ether_header);
2461 		m = m_pullup(m, offset);
2462 		if (m == NULL) {
2463 			*m_head = NULL;
2464 			return (ENOBUFS);
2465 		}
2466 		eh = mtod(m, struct ether_header *);
2467 		/* Check if hardware VLAN insertion is off. */
2468 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2469 			offset = sizeof(struct ether_vlan_header);
2470 			m = m_pullup(m, offset);
2471 			if (m == NULL) {
2472 				*m_head = NULL;
2473 				return (ENOBUFS);
2474 			}
2475 		}
2476 		m = m_pullup(m, offset + sizeof(struct ip));
2477 		if (m == NULL) {
2478 			*m_head = NULL;
2479 			return (ENOBUFS);
2480 		}
2481 		ip = (struct ip *)(mtod(m, char *) + offset);
2482 		offset += (ip->ip_hl << 2);
2483 		tcp_offset = offset;
2484 		/*
2485 		 * It seems that Yukon II has Tx checksum offload bug for
2486 		 * small TCP packets that's less than 60 bytes in size
2487 		 * (e.g. TCP window probe packet, pure ACK packet).
2488 		 * Common work around like padding with zeros to make the
2489 		 * frame minimum ethernet frame size didn't work at all.
2490 		 * Instead of disabling checksum offload completely we
2491 		 * resort to S/W checksum routine when we encounter short
2492 		 * TCP frames.
2493 		 * Short UDP packets appear to be handled correctly by
2494 		 * Yukon II.
2495 		 */
2496 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2497 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2498 			uint16_t csum;
2499 
2500 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2501 			    (ip->ip_hl << 2), offset);
2502 			*(uint16_t *)(m->m_data + offset +
2503 			    m->m_pkthdr.csum_data) = csum;
2504 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2505 		}
2506 		*m_head = m;
2507 	}
2508 
2509 	prod = sc_if->msk_cdata.msk_tx_prod;
2510 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2511 	txd_last = txd;
2512 	map = txd->tx_dmamap;
2513 
2514 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2515 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2516 	if (error) {
2517 		m_freem(*m_head);
2518 		*m_head = NULL;
2519 		return error;
2520 	}
2521 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2522 
2523 	m = *m_head;
2524 	control = 0;
2525 	tx_le = NULL;
2526 
2527 #ifdef notyet
2528 	/* Check if we have a VLAN tag to insert. */
2529 	if ((m->m_flags & M_VLANTAG) != 0) {
2530 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2531 		tx_le->msk_addr = htole32(0);
2532 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2533 		    htons(m->m_pkthdr.ether_vtag));
2534 		sc_if->msk_cdata.msk_tx_cnt++;
2535 		MSK_INC(prod, MSK_TX_RING_CNT);
2536 		control |= INS_VLAN;
2537 	}
2538 #endif
2539 	/* Check if we have to handle checksum offload. */
2540 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2541 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2542 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2543 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2544 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2545 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2546 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2547 			control |= UDPTCP;
2548 		sc_if->msk_cdata.msk_tx_cnt++;
2549 		MSK_INC(prod, MSK_TX_RING_CNT);
2550 	}
2551 
2552 	si = prod;
2553 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2554 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2555 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2556 	    OP_PACKET);
2557 	sc_if->msk_cdata.msk_tx_cnt++;
2558 	MSK_INC(prod, MSK_TX_RING_CNT);
2559 
2560 	for (i = 1; i < nsegs; i++) {
2561 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2562 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2563 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2564 		    OP_BUFFER | HW_OWNER);
2565 		sc_if->msk_cdata.msk_tx_cnt++;
2566 		MSK_INC(prod, MSK_TX_RING_CNT);
2567 	}
2568 	/* Update producer index. */
2569 	sc_if->msk_cdata.msk_tx_prod = prod;
2570 
2571 	/* Set EOP on the last desciptor. */
2572 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2573 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2574 	tx_le->msk_control |= htole32(EOP);
2575 
2576 	/* Turn the first descriptor ownership to hardware. */
2577 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2578 	tx_le->msk_control |= htole32(HW_OWNER);
2579 
2580 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2581 	map = txd_last->tx_dmamap;
2582 	txd_last->tx_dmamap = txd->tx_dmamap;
2583 	txd->tx_dmamap = map;
2584 	txd->tx_m = m;
2585 
2586 	return (0);
2587 }
2588 
2589 static void
2590 msk_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2591 {
2592         struct msk_if_softc *sc_if;
2593         struct mbuf *m_head;
2594 	int enq;
2595 
2596 	sc_if = ifp->if_softc;
2597 
2598 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2599 	ASSERT_SERIALIZED(ifp->if_serializer);
2600 
2601 	if (!sc_if->msk_link) {
2602 		ifq_purge(&ifp->if_snd);
2603 		return;
2604 	}
2605 
2606 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2607 		return;
2608 
2609 	enq = 0;
2610 	while (!ifq_is_empty(&ifp->if_snd)) {
2611 		if (MSK_IS_OACTIVE(sc_if)) {
2612 			ifq_set_oactive(&ifp->if_snd);
2613 			break;
2614 		}
2615 
2616 		m_head = ifq_dequeue(&ifp->if_snd);
2617 		if (m_head == NULL)
2618 			break;
2619 
2620 		/*
2621 		 * Pack the data into the transmit ring. If we
2622 		 * don't have room, set the OACTIVE flag and wait
2623 		 * for the NIC to drain the ring.
2624 		 */
2625 		if (msk_encap(sc_if, &m_head) != 0) {
2626 			IFNET_STAT_INC(ifp, oerrors, 1);
2627 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2628 				continue;
2629 			} else {
2630 				ifq_set_oactive(&ifp->if_snd);
2631 				break;
2632 			}
2633 		}
2634 		enq = 1;
2635 
2636 		/*
2637 		 * If there's a BPF listener, bounce a copy of this frame
2638 		 * to him.
2639 		 */
2640 		BPF_MTAP(ifp, m_head);
2641 	}
2642 
2643 	if (enq) {
2644 		/* Transmit */
2645 		CSR_WRITE_2(sc_if->msk_softc,
2646 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2647 		    sc_if->msk_cdata.msk_tx_prod);
2648 
2649 		/* Set a timeout in case the chip goes out to lunch. */
2650 		ifp->if_timer = MSK_TX_TIMEOUT;
2651 	}
2652 }
2653 
2654 static void
2655 msk_watchdog(struct ifnet *ifp)
2656 {
2657 	struct msk_if_softc *sc_if = ifp->if_softc;
2658 	uint32_t ridx;
2659 	int idx;
2660 
2661 	ASSERT_SERIALIZED(ifp->if_serializer);
2662 
2663 	if (sc_if->msk_link == 0) {
2664 		if (bootverbose)
2665 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2666 			   "(missed link)\n");
2667 		IFNET_STAT_INC(ifp, oerrors, 1);
2668 		msk_init(sc_if);
2669 		return;
2670 	}
2671 
2672 	/*
2673 	 * Reclaim first as there is a possibility of losing Tx completion
2674 	 * interrupts.
2675 	 */
2676 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2677 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2678 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2679 		msk_txeof(sc_if, idx);
2680 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2681 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2682 			    "-- recovering\n");
2683 			if (!ifq_is_empty(&ifp->if_snd))
2684 				if_devstart(ifp);
2685 			return;
2686 		}
2687 	}
2688 
2689 	if_printf(ifp, "watchdog timeout\n");
2690 	IFNET_STAT_INC(ifp, oerrors, 1);
2691 	msk_init(sc_if);
2692 	if (!ifq_is_empty(&ifp->if_snd))
2693 		if_devstart(ifp);
2694 }
2695 
2696 static int
2697 mskc_shutdown(device_t dev)
2698 {
2699 	struct msk_softc *sc = device_get_softc(dev);
2700 	int i;
2701 
2702 	lwkt_serialize_enter(&sc->msk_serializer);
2703 
2704 	for (i = 0; i < sc->msk_num_port; i++) {
2705 		if (sc->msk_if[i] != NULL)
2706 			msk_stop(sc->msk_if[i]);
2707 	}
2708 
2709 	/* Put hardware reset. */
2710 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2711 
2712 	lwkt_serialize_exit(&sc->msk_serializer);
2713 	return (0);
2714 }
2715 
2716 static int
2717 mskc_suspend(device_t dev)
2718 {
2719 	struct msk_softc *sc = device_get_softc(dev);
2720 	int i;
2721 
2722 	lwkt_serialize_enter(&sc->msk_serializer);
2723 
2724 	for (i = 0; i < sc->msk_num_port; i++) {
2725 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2726 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2727 			msk_stop(sc->msk_if[i]);
2728 	}
2729 
2730 	/* Disable all interrupts. */
2731 	CSR_WRITE_4(sc, B0_IMSK, 0);
2732 	CSR_READ_4(sc, B0_IMSK);
2733 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2734 	CSR_READ_4(sc, B0_HWE_IMSK);
2735 
2736 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2737 
2738 	/* Put hardware reset. */
2739 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2740 	sc->msk_suspended = 1;
2741 
2742 	lwkt_serialize_exit(&sc->msk_serializer);
2743 
2744 	return (0);
2745 }
2746 
2747 static int
2748 mskc_resume(device_t dev)
2749 {
2750 	struct msk_softc *sc = device_get_softc(dev);
2751 	int i;
2752 
2753 	lwkt_serialize_enter(&sc->msk_serializer);
2754 
2755 	/* Enable all clocks before accessing any registers. */
2756 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
2757 	mskc_reset(sc);
2758 	for (i = 0; i < sc->msk_num_port; i++) {
2759 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2760 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2761 			msk_init(sc->msk_if[i]);
2762 	}
2763 	sc->msk_suspended = 0;
2764 
2765 	lwkt_serialize_exit(&sc->msk_serializer);
2766 
2767 	return (0);
2768 }
2769 
2770 static void
2771 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2772 {
2773 	struct mbuf *m;
2774 	struct ifnet *ifp;
2775 	struct msk_rxdesc *rxd;
2776 	int cons, rxlen;
2777 
2778 	ifp = sc_if->msk_ifp;
2779 
2780 	cons = sc_if->msk_cdata.msk_rx_cons;
2781 	do {
2782 		rxlen = status >> 16;
2783 		if ((status & GMR_FS_VLAN) != 0 &&
2784 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2785 			rxlen -= EVL_ENCAPLEN;
2786 		if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2787 			/*
2788 			 * For controllers that returns bogus status code
2789 			 * just do minimal check and let upper stack
2790 			 * handle this frame.
2791 			 */
2792 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2793 				IFNET_STAT_INC(ifp, ierrors, 1);
2794 				msk_discard_rxbuf(sc_if, cons);
2795 				break;
2796 			}
2797 		} else if (len > sc_if->msk_framesize ||
2798 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2799 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2800 			/* Don't count flow-control packet as errors. */
2801 			if ((status & GMR_FS_GOOD_FC) == 0)
2802 				IFNET_STAT_INC(ifp, ierrors, 1);
2803 			msk_discard_rxbuf(sc_if, cons);
2804 			break;
2805 		}
2806 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2807 		m = rxd->rx_m;
2808 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2809 			IFNET_STAT_INC(ifp, iqdrops, 1);
2810 			/* Reuse old buffer. */
2811 			msk_discard_rxbuf(sc_if, cons);
2812 			break;
2813 		}
2814 		m->m_pkthdr.rcvif = ifp;
2815 		m->m_pkthdr.len = m->m_len = len;
2816 		IFNET_STAT_INC(ifp, ipackets, 1);
2817 #ifdef notyet
2818 		/* Check for VLAN tagged packets. */
2819 		if ((status & GMR_FS_VLAN) != 0 &&
2820 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2821 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2822 			m->m_flags |= M_VLANTAG;
2823 		}
2824 #endif
2825 
2826 		ifp->if_input(ifp, m, NULL, -1);
2827 	} while (0);
2828 
2829 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2830 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2831 }
2832 
2833 #ifdef MSK_JUMBO
2834 static void
2835 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2836 {
2837 	struct mbuf *m;
2838 	struct ifnet *ifp;
2839 	struct msk_rxdesc *jrxd;
2840 	int cons, rxlen;
2841 
2842 	ifp = sc_if->msk_ifp;
2843 
2844 	MSK_IF_LOCK_ASSERT(sc_if);
2845 
2846 	cons = sc_if->msk_cdata.msk_rx_cons;
2847 	do {
2848 		rxlen = status >> 16;
2849 		if ((status & GMR_FS_VLAN) != 0 &&
2850 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2851 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2852 		if (len > sc_if->msk_framesize ||
2853 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2854 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2855 			/* Don't count flow-control packet as errors. */
2856 			if ((status & GMR_FS_GOOD_FC) == 0)
2857 				ifp->if_ierrors++;
2858 			msk_discard_jumbo_rxbuf(sc_if, cons);
2859 			break;
2860 		}
2861 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2862 		m = jrxd->rx_m;
2863 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2864 			ifp->if_iqdrops++;
2865 			/* Reuse old buffer. */
2866 			msk_discard_jumbo_rxbuf(sc_if, cons);
2867 			break;
2868 		}
2869 		m->m_pkthdr.rcvif = ifp;
2870 		m->m_pkthdr.len = m->m_len = len;
2871 		ifp->if_ipackets++;
2872 		/* Check for VLAN tagged packets. */
2873 		if ((status & GMR_FS_VLAN) != 0 &&
2874 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2875 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2876 			m->m_flags |= M_VLANTAG;
2877 		}
2878 		MSK_IF_UNLOCK(sc_if);
2879 		ifp->if_input(ifp, m, NULL, -1);
2880 		MSK_IF_LOCK(sc_if);
2881 	} while (0);
2882 
2883 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2884 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2885 }
2886 #endif
2887 
2888 static void
2889 msk_txeof(struct msk_if_softc *sc_if, int idx)
2890 {
2891 	struct msk_txdesc *txd;
2892 	struct msk_tx_desc *cur_tx;
2893 	struct ifnet *ifp;
2894 	uint32_t control;
2895 	int cons, prog;
2896 
2897 	ifp = sc_if->msk_ifp;
2898 
2899 	/*
2900 	 * Go through our tx ring and free mbufs for those
2901 	 * frames that have been sent.
2902 	 */
2903 	cons = sc_if->msk_cdata.msk_tx_cons;
2904 	prog = 0;
2905 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2906 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2907 			break;
2908 		prog++;
2909 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2910 		control = le32toh(cur_tx->msk_control);
2911 		sc_if->msk_cdata.msk_tx_cnt--;
2912 		if ((control & EOP) == 0)
2913 			continue;
2914 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2915 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2916 
2917 		IFNET_STAT_INC(ifp, opackets, 1);
2918 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2919 		    __func__));
2920 		m_freem(txd->tx_m);
2921 		txd->tx_m = NULL;
2922 	}
2923 
2924 	if (prog > 0) {
2925 		sc_if->msk_cdata.msk_tx_cons = cons;
2926 		if (!MSK_IS_OACTIVE(sc_if))
2927 			ifq_clr_oactive(&ifp->if_snd);
2928 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2929 			ifp->if_timer = 0;
2930 		/* No need to sync LEs as we didn't update LEs. */
2931 	}
2932 }
2933 
2934 static void
2935 msk_tick(void *xsc_if)
2936 {
2937 	struct msk_if_softc *sc_if = xsc_if;
2938 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2939 	struct mii_data *mii;
2940 
2941 	lwkt_serialize_enter(ifp->if_serializer);
2942 
2943 	mii = device_get_softc(sc_if->msk_miibus);
2944 
2945 	mii_tick(mii);
2946 	if (!sc_if->msk_link)
2947 		msk_miibus_statchg(sc_if->msk_if_dev);
2948 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2949 
2950 	lwkt_serialize_exit(ifp->if_serializer);
2951 }
2952 
2953 static void
2954 msk_intr_phy(struct msk_if_softc *sc_if)
2955 {
2956 	uint16_t status;
2957 
2958 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2959 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2960 	/* Handle FIFO Underrun/Overflow? */
2961 	if (status & PHY_M_IS_FIFO_ERROR) {
2962 		device_printf(sc_if->msk_if_dev,
2963 		    "PHY FIFO underrun/overflow.\n");
2964 	}
2965 }
2966 
2967 static void
2968 msk_intr_gmac(struct msk_if_softc *sc_if)
2969 {
2970 	struct msk_softc *sc;
2971 	uint8_t status;
2972 
2973 	sc = sc_if->msk_softc;
2974 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2975 
2976 	/* GMAC Rx FIFO overrun. */
2977 	if ((status & GM_IS_RX_FF_OR) != 0) {
2978 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2979 		    GMF_CLI_RX_FO);
2980 	}
2981 	/* GMAC Tx FIFO underrun. */
2982 	if ((status & GM_IS_TX_FF_UR) != 0) {
2983 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2984 		    GMF_CLI_TX_FU);
2985 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2986 		/*
2987 		 * XXX
2988 		 * In case of Tx underrun, we may need to flush/reset
2989 		 * Tx MAC but that would also require resynchronization
2990 		 * with status LEs. Reintializing status LEs would
2991 		 * affect other port in dual MAC configuration so it
2992 		 * should be avoided as possible as we can.
2993 		 * Due to lack of documentation it's all vague guess but
2994 		 * it needs more investigation.
2995 		 */
2996 	}
2997 }
2998 
2999 static void
3000 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3001 {
3002 	struct msk_softc *sc;
3003 
3004 	sc = sc_if->msk_softc;
3005 	if ((status & Y2_IS_PAR_RD1) != 0) {
3006 		device_printf(sc_if->msk_if_dev,
3007 		    "RAM buffer read parity error\n");
3008 		/* Clear IRQ. */
3009 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3010 		    RI_CLR_RD_PERR);
3011 	}
3012 	if ((status & Y2_IS_PAR_WR1) != 0) {
3013 		device_printf(sc_if->msk_if_dev,
3014 		    "RAM buffer write parity error\n");
3015 		/* Clear IRQ. */
3016 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3017 		    RI_CLR_WR_PERR);
3018 	}
3019 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3020 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3021 		/* Clear IRQ. */
3022 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3023 		    GMF_CLI_TX_PE);
3024 	}
3025 	if ((status & Y2_IS_PAR_RX1) != 0) {
3026 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3027 		/* Clear IRQ. */
3028 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3029 	}
3030 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3031 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3032 		/* Clear IRQ. */
3033 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3034 	}
3035 }
3036 
3037 static void
3038 mskc_intr_hwerr(struct msk_softc *sc)
3039 {
3040 	uint32_t status;
3041 	uint32_t tlphead[4];
3042 
3043 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3044 	/* Time Stamp timer overflow. */
3045 	if ((status & Y2_IS_TIST_OV) != 0)
3046 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3047 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3048 		/*
3049 		 * PCI Express Error occured which is not described in PEX
3050 		 * spec.
3051 		 * This error is also mapped either to Master Abort(
3052 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3053 		 * can only be cleared there.
3054                  */
3055 		device_printf(sc->msk_dev,
3056 		    "PCI Express protocol violation error\n");
3057 	}
3058 
3059 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3060 		uint16_t v16;
3061 
3062 		if ((status & Y2_IS_MST_ERR) != 0)
3063 			device_printf(sc->msk_dev,
3064 			    "unexpected IRQ Status error\n");
3065 		else
3066 			device_printf(sc->msk_dev,
3067 			    "unexpected IRQ Master error\n");
3068 		/* Reset all bits in the PCI status register. */
3069 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3070 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3071 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3072 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3073 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3074 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3075 	}
3076 
3077 	/* Check for PCI Express Uncorrectable Error. */
3078 	if ((status & Y2_IS_PCI_EXP) != 0) {
3079 		uint32_t v32;
3080 
3081 		/*
3082 		 * On PCI Express bus bridges are called root complexes (RC).
3083 		 * PCI Express errors are recognized by the root complex too,
3084 		 * which requests the system to handle the problem. After
3085 		 * error occurence it may be that no access to the adapter
3086 		 * may be performed any longer.
3087 		 */
3088 
3089 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3090 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3091 			/* Ignore unsupported request error. */
3092 			if (bootverbose) {
3093 				device_printf(sc->msk_dev,
3094 				    "Uncorrectable PCI Express error\n");
3095 			}
3096 		}
3097 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3098 			int i;
3099 
3100 			/* Get TLP header form Log Registers. */
3101 			for (i = 0; i < 4; i++)
3102 				tlphead[i] = CSR_PCI_READ_4(sc,
3103 				    PEX_HEADER_LOG + i * 4);
3104 			/* Check for vendor defined broadcast message. */
3105 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3106 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3107 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3108 				    sc->msk_intrhwemask);
3109 				CSR_READ_4(sc, B0_HWE_IMSK);
3110 			}
3111 		}
3112 		/* Clear the interrupt. */
3113 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3114 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3115 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3116 	}
3117 
3118 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3119 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3120 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3121 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3122 }
3123 
3124 static __inline void
3125 msk_rxput(struct msk_if_softc *sc_if)
3126 {
3127 	struct msk_softc *sc;
3128 
3129 	sc = sc_if->msk_softc;
3130 #ifdef MSK_JUMBO
3131 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3132 		bus_dmamap_sync(
3133 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3134 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3135 		    BUS_DMASYNC_PREWRITE);
3136 	}
3137 #endif
3138 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3139 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3140 }
3141 
3142 static int
3143 mskc_handle_events(struct msk_softc *sc)
3144 {
3145 	struct msk_if_softc *sc_if;
3146 	int rxput[2];
3147 	struct msk_stat_desc *sd;
3148 	uint32_t control, status;
3149 	int cons, idx, len, port, rxprog;
3150 
3151 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3152 	if (idx == sc->msk_stat_cons)
3153 		return (0);
3154 
3155 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3156 
3157 	rxprog = 0;
3158 	for (cons = sc->msk_stat_cons; cons != idx;) {
3159 		sd = &sc->msk_stat_ring[cons];
3160 		control = le32toh(sd->msk_control);
3161 		if ((control & HW_OWNER) == 0)
3162 			break;
3163 		/*
3164 		 * Marvell's FreeBSD driver updates status LE after clearing
3165 		 * HW_OWNER. However we don't have a way to sync single LE
3166 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3167 		 * an entire DMA map. So don't sync LE until we have a better
3168 		 * way to sync LEs.
3169 		 */
3170 		control &= ~HW_OWNER;
3171 		sd->msk_control = htole32(control);
3172 		status = le32toh(sd->msk_status);
3173 		len = control & STLE_LEN_MASK;
3174 		port = (control >> 16) & 0x01;
3175 		sc_if = sc->msk_if[port];
3176 		if (sc_if == NULL) {
3177 			device_printf(sc->msk_dev, "invalid port opcode "
3178 			    "0x%08x\n", control & STLE_OP_MASK);
3179 			continue;
3180 		}
3181 
3182 		switch (control & STLE_OP_MASK) {
3183 		case OP_RXVLAN:
3184 			sc_if->msk_vtag = ntohs(len);
3185 			break;
3186 		case OP_RXCHKSVLAN:
3187 			sc_if->msk_vtag = ntohs(len);
3188 			break;
3189 		case OP_RXSTAT:
3190 			if ((sc_if->msk_ifp->if_flags & IFF_RUNNING) == 0)
3191 				break;
3192 #ifdef MSK_JUMBO
3193 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3194 				msk_jumbo_rxeof(sc_if, status, len);
3195 			else
3196 #endif
3197 				msk_rxeof(sc_if, status, len);
3198 			rxprog++;
3199 			/*
3200 			 * Because there is no way to sync single Rx LE
3201 			 * put the DMA sync operation off until the end of
3202 			 * event processing.
3203 			 */
3204 			rxput[port]++;
3205 			/* Update prefetch unit if we've passed water mark. */
3206 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3207 				msk_rxput(sc_if);
3208 				rxput[port] = 0;
3209 			}
3210 			break;
3211 		case OP_TXINDEXLE:
3212 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3213 				msk_txeof(sc->msk_if[MSK_PORT_A],
3214 				    status & STLE_TXA1_MSKL);
3215 			}
3216 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3217 				msk_txeof(sc->msk_if[MSK_PORT_B],
3218 				    ((status & STLE_TXA2_MSKL) >>
3219 				    STLE_TXA2_SHIFTL) |
3220 				    ((len & STLE_TXA2_MSKH) <<
3221 				    STLE_TXA2_SHIFTH));
3222 			}
3223 			break;
3224 		default:
3225 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3226 			    control & STLE_OP_MASK);
3227 			break;
3228 		}
3229 		MSK_INC(cons, MSK_STAT_RING_CNT);
3230 		if (rxprog > sc->msk_process_limit)
3231 			break;
3232 	}
3233 
3234 	sc->msk_stat_cons = cons;
3235 	/* XXX We should sync status LEs here. See above notes. */
3236 
3237 	if (rxput[MSK_PORT_A] > 0)
3238 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3239 	if (rxput[MSK_PORT_B] > 0)
3240 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3241 
3242 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3243 }
3244 
3245 /* Legacy interrupt handler for shared interrupt. */
3246 static void
3247 mskc_intr(void *xsc)
3248 {
3249 	struct msk_softc *sc;
3250 	struct msk_if_softc *sc_if0, *sc_if1;
3251 	struct ifnet *ifp0, *ifp1;
3252 	uint32_t status;
3253 
3254 	sc = xsc;
3255 	ASSERT_SERIALIZED(&sc->msk_serializer);
3256 
3257 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3258 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3259 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3260 	    (status & sc->msk_intrmask) == 0) {
3261 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3262 		return;
3263 	}
3264 
3265 	sc_if0 = sc->msk_if[MSK_PORT_A];
3266 	sc_if1 = sc->msk_if[MSK_PORT_B];
3267 	ifp0 = ifp1 = NULL;
3268 	if (sc_if0 != NULL)
3269 		ifp0 = sc_if0->msk_ifp;
3270 	if (sc_if1 != NULL)
3271 		ifp1 = sc_if1->msk_ifp;
3272 
3273 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3274 		msk_intr_phy(sc_if0);
3275 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3276 		msk_intr_phy(sc_if1);
3277 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3278 		msk_intr_gmac(sc_if0);
3279 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3280 		msk_intr_gmac(sc_if1);
3281 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3282 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3283 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3284 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3285 		CSR_READ_4(sc, B0_IMSK);
3286 	}
3287         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3288 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3289 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3290 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3291 		CSR_READ_4(sc, B0_IMSK);
3292 	}
3293 	if ((status & Y2_IS_HW_ERR) != 0)
3294 		mskc_intr_hwerr(sc);
3295 
3296 	while (mskc_handle_events(sc) != 0)
3297 		;
3298 	if ((status & Y2_IS_STAT_BMU) != 0)
3299 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3300 
3301 	/* Reenable interrupts. */
3302 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3303 
3304 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3305 	    !ifq_is_empty(&ifp0->if_snd))
3306 		if_devstart(ifp0);
3307 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3308 	    !ifq_is_empty(&ifp1->if_snd))
3309 		if_devstart(ifp1);
3310 }
3311 
3312 static void
3313 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3314 {
3315 	struct msk_softc *sc = sc_if->msk_softc;
3316 	struct ifnet *ifp = sc_if->msk_ifp;
3317 
3318 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3319 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3320 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3321 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3322 		    TX_STFW_ENA);
3323 	} else {
3324 		if (ifp->if_mtu > ETHERMTU) {
3325 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3326 			CSR_WRITE_4(sc,
3327 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3328 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3329 			/* Disable Store & Forward mode for Tx. */
3330 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3331 			    TX_STFW_DIS);
3332 		} else {
3333 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3334 			    TX_STFW_ENA);
3335 		}
3336 	}
3337 }
3338 
3339 static void
3340 msk_init(void *xsc)
3341 {
3342 	struct msk_if_softc *sc_if = xsc;
3343 	struct msk_softc *sc = sc_if->msk_softc;
3344 	struct ifnet *ifp = sc_if->msk_ifp;
3345 	struct mii_data	 *mii;
3346 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3347 	uint16_t gmac;
3348 	uint32_t reg;
3349 	int error, i;
3350 
3351 	ASSERT_SERIALIZED(ifp->if_serializer);
3352 
3353 	mii = device_get_softc(sc_if->msk_miibus);
3354 
3355 	error = 0;
3356 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3357 	msk_stop(sc_if);
3358 
3359 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3360 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3361 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3362 		/*
3363 		 * In Yukon EC Ultra, TSO & checksum offload is not
3364 		 * supported for jumbo frame.
3365 		 */
3366 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3367 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3368 	}
3369 
3370 	/* GMAC Control reset. */
3371 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3372 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3373 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3374 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3375 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3376 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3377 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3378 		    GMC_BYP_RETR_ON);
3379 	}
3380 
3381 	/*
3382 	 * Initialize GMAC first such that speed/duplex/flow-control
3383 	 * parameters are renegotiated when interface is brought up.
3384 	 */
3385 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3386 
3387 	/* Dummy read the Interrupt Source Register. */
3388 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3389 
3390 	/* Set MIB Clear Counter Mode. */
3391 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3392 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3393 	/* Read all MIB Counters with Clear Mode set. */
3394 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3395 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3396 	/* Clear MIB Clear Counter Mode. */
3397 	gmac &= ~GM_PAR_MIB_CLR;
3398 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3399 
3400 	/* Disable FCS. */
3401 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3402 
3403 	/* Setup Transmit Control Register. */
3404 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3405 
3406 	/* Setup Transmit Flow Control Register. */
3407 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3408 
3409 	/* Setup Transmit Parameter Register. */
3410 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3411 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3412 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3413 
3414 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3415 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3416 
3417 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3418 		gmac |= GM_SMOD_JUMBO_ENA;
3419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3420 
3421 	/* Set station address. */
3422         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3423         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3424 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3425 		    eaddr[i]);
3426         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3427 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3428 		    eaddr[i]);
3429 
3430 	/* Disable interrupts for counter overflows. */
3431 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3432 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3433 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3434 
3435 	/* Configure Rx MAC FIFO. */
3436 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3437 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3438 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3439 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3440 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3441 		reg |= GMF_RX_OVER_ON;
3442 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3443 
3444 	/* Set receive filter. */
3445 	msk_rxfilter(sc_if);
3446 
3447 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3448 		/* Clear flush mask - HW bug. */
3449 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3450 	} else {
3451 		/* Flush Rx MAC FIFO on any flow control or error. */
3452 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3453 		    GMR_FS_ANY_ERR);
3454 	}
3455 
3456 	/*
3457 	 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3458 	 * due to hardware hang on receipt of pause frames.
3459 	 */
3460 	reg = RX_GMF_FL_THR_DEF + 1;
3461 	/* Another magic for Yukon FE+ - From Linux. */
3462 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3463 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3464 		reg = 0x178;
3465 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3466 
3467 
3468 	/* Configure Tx MAC FIFO. */
3469 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3470 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3471 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3472 
3473 	/* Configure hardware VLAN tag insertion/stripping. */
3474 	msk_setvlan(sc_if, ifp);
3475 
3476 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3477 		/* Set Rx Pause threshould. */
3478 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3479 		    MSK_ECU_LLPP);
3480 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3481 		    MSK_ECU_ULPP);
3482 		/* Configure store-and-forward for Tx. */
3483 		msk_set_tx_stfwd(sc_if);
3484 	}
3485 
3486 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3487 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3488 		/* Disable dynamic watermark - from Linux. */
3489 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3490 		reg &= ~0x03;
3491 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3492 	}
3493 
3494 	/*
3495 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3496 	 * arbiter as we don't use Sync Tx queue.
3497 	 */
3498 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3499 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3500 	/* Enable the RAM Interface Arbiter. */
3501 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3502 
3503 	/* Setup RAM buffer. */
3504 	msk_set_rambuffer(sc_if);
3505 
3506 	/* Disable Tx sync Queue. */
3507 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3508 
3509 	/* Setup Tx Queue Bus Memory Interface. */
3510 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3511 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3512 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3513 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3514 	switch (sc->msk_hw_id) {
3515 	case CHIP_ID_YUKON_EC_U:
3516 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3517 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3518 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3519 			    MSK_ECU_TXFF_LEV);
3520 		}
3521 		break;
3522 	case CHIP_ID_YUKON_EX:
3523 		/*
3524 		 * Yukon Extreme seems to have silicon bug for
3525 		 * automatic Tx checksum calculation capability.
3526 		 */
3527 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3528 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3529 			    F_TX_CHK_AUTO_OFF);
3530 		}
3531 		break;
3532  	}
3533 
3534 	/* Setup Rx Queue Bus Memory Interface. */
3535 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3536 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3537 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3538 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3539         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3540 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3541 		/* MAC Rx RAM Read is controlled by hardware. */
3542                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3543 	}
3544 
3545 	msk_set_prefetch(sc, sc_if->msk_txq,
3546 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3547 	msk_init_tx_ring(sc_if);
3548 
3549 	/* Disable Rx checksum offload and RSS hash. */
3550 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3551 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3552 #ifdef MSK_JUMBO
3553 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3554 		msk_set_prefetch(sc, sc_if->msk_rxq,
3555 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3556 		    MSK_JUMBO_RX_RING_CNT - 1);
3557 		error = msk_init_jumbo_rx_ring(sc_if);
3558 	} else
3559 #endif
3560 	{
3561 		msk_set_prefetch(sc, sc_if->msk_rxq,
3562 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3563 		    MSK_RX_RING_CNT - 1);
3564 		error = msk_init_rx_ring(sc_if);
3565 	}
3566 	if (error != 0) {
3567 		device_printf(sc_if->msk_if_dev,
3568 		    "initialization failed: no memory for Rx buffers\n");
3569 		msk_stop(sc_if);
3570 		return;
3571 	}
3572 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3573 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3574 		/* Disable flushing of non-ASF packets. */
3575 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3576 		    GMF_RX_MACSEC_FLUSH_OFF);
3577 	}
3578 
3579 	/* Configure interrupt handling. */
3580 	if (sc_if->msk_port == MSK_PORT_A) {
3581 		sc->msk_intrmask |= Y2_IS_PORT_A;
3582 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3583 	} else {
3584 		sc->msk_intrmask |= Y2_IS_PORT_B;
3585 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3586 	}
3587 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3588 	CSR_READ_4(sc, B0_HWE_IMSK);
3589 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3590 	CSR_READ_4(sc, B0_IMSK);
3591 
3592 	sc_if->msk_link = 0;
3593 	mii_mediachg(mii);
3594 
3595 	mskc_set_imtimer(sc);
3596 
3597 	ifp->if_flags |= IFF_RUNNING;
3598 	ifq_clr_oactive(&ifp->if_snd);
3599 
3600 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3601 }
3602 
3603 static void
3604 msk_set_rambuffer(struct msk_if_softc *sc_if)
3605 {
3606 	struct msk_softc *sc;
3607 	int ltpp, utpp;
3608 
3609 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3610 		return;
3611 
3612 	sc = sc_if->msk_softc;
3613 
3614 	/* Setup Rx Queue. */
3615 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3616 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3617 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3618 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3619 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3620 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3621 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3622 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3623 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3624 
3625 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3626 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3627 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3628 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3629 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3630 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3631 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3632 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3633 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3634 
3635 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3636 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3637 
3638 	/* Setup Tx Queue. */
3639 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3640 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3641 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3642 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3643 	    sc->msk_txqend[sc_if->msk_port] / 8);
3644 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3645 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3646 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3647 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3648 	/* Enable Store & Forward for Tx side. */
3649 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3650 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3651 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3652 }
3653 
3654 static void
3655 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3656     uint32_t count)
3657 {
3658 
3659 	/* Reset the prefetch unit. */
3660 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3661 	    PREF_UNIT_RST_SET);
3662 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3663 	    PREF_UNIT_RST_CLR);
3664 	/* Set LE base address. */
3665 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3666 	    MSK_ADDR_LO(addr));
3667 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3668 	    MSK_ADDR_HI(addr));
3669 	/* Set the list last index. */
3670 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3671 	    count);
3672 	/* Turn on prefetch unit. */
3673 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3674 	    PREF_UNIT_OP_ON);
3675 	/* Dummy read to ensure write. */
3676 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3677 }
3678 
3679 static void
3680 msk_stop(struct msk_if_softc *sc_if)
3681 {
3682 	struct msk_softc *sc = sc_if->msk_softc;
3683 	struct ifnet *ifp = sc_if->msk_ifp;
3684 	struct msk_txdesc *txd;
3685 	struct msk_rxdesc *rxd;
3686 #ifdef MSK_JUMBO
3687 	struct msk_rxdesc *jrxd;
3688 #endif
3689 	uint32_t val;
3690 	int i;
3691 
3692 	ASSERT_SERIALIZED(ifp->if_serializer);
3693 
3694 	callout_stop(&sc_if->msk_tick_ch);
3695 	ifp->if_timer = 0;
3696 
3697 	/* Disable interrupts. */
3698 	if (sc_if->msk_port == MSK_PORT_A) {
3699 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3700 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3701 	} else {
3702 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3703 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3704 	}
3705 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3706 	CSR_READ_4(sc, B0_HWE_IMSK);
3707 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3708 	CSR_READ_4(sc, B0_IMSK);
3709 
3710 	/* Disable Tx/Rx MAC. */
3711 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3712 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3713 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3714 	/* Read again to ensure writing. */
3715 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3716 
3717 	/* Stop Tx BMU. */
3718 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3719 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3720 	for (i = 0; i < MSK_TIMEOUT; i++) {
3721 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3722 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3723 			    BMU_STOP);
3724 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3725 		} else
3726 			break;
3727 		DELAY(1);
3728 	}
3729 	if (i == MSK_TIMEOUT)
3730 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3731 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3732 	    RB_RST_SET | RB_DIS_OP_MD);
3733 
3734 	/* Disable all GMAC interrupt. */
3735 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3736 	/* Disable PHY interrupt. */
3737 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3738 
3739 	/* Disable the RAM Interface Arbiter. */
3740 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3741 
3742 	/* Reset the PCI FIFO of the async Tx queue */
3743 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3744 	    BMU_RST_SET | BMU_FIFO_RST);
3745 
3746 	/* Reset the Tx prefetch units. */
3747 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3748 	    PREF_UNIT_RST_SET);
3749 
3750 	/* Reset the RAM Buffer async Tx queue. */
3751 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3752 
3753 	/* Reset Tx MAC FIFO. */
3754 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3755 	/* Set Pause Off. */
3756 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3757 
3758 	/*
3759 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3760 	 * reach the end of packet and since we can't make sure that we have
3761 	 * incoming data, we must reset the BMU while it is not during a DMA
3762 	 * transfer. Since it is possible that the Rx path is still active,
3763 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3764 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3765 	 * BMU is polled until any DMA in progress is ended and only then it
3766 	 * will be reset.
3767 	 */
3768 
3769 	/* Disable the RAM Buffer receive queue. */
3770 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3771 	for (i = 0; i < MSK_TIMEOUT; i++) {
3772 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3773 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3774 			break;
3775 		DELAY(1);
3776 	}
3777 	if (i == MSK_TIMEOUT)
3778 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3779 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3780 	    BMU_RST_SET | BMU_FIFO_RST);
3781 	/* Reset the Rx prefetch unit. */
3782 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3783 	    PREF_UNIT_RST_SET);
3784 	/* Reset the RAM Buffer receive queue. */
3785 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3786 	/* Reset Rx MAC FIFO. */
3787 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3788 
3789 	/* Free Rx and Tx mbufs still in the queues. */
3790 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3791 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3792 		if (rxd->rx_m != NULL) {
3793 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3794 			    rxd->rx_dmamap);
3795 			m_freem(rxd->rx_m);
3796 			rxd->rx_m = NULL;
3797 		}
3798 	}
3799 #ifdef MSK_JUMBO
3800 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3801 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3802 		if (jrxd->rx_m != NULL) {
3803 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3804 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3805 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3806 			    jrxd->rx_dmamap);
3807 			m_freem(jrxd->rx_m);
3808 			jrxd->rx_m = NULL;
3809 		}
3810 	}
3811 #endif
3812 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3813 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3814 		if (txd->tx_m != NULL) {
3815 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3816 			    txd->tx_dmamap);
3817 			m_freem(txd->tx_m);
3818 			txd->tx_m = NULL;
3819 		}
3820 	}
3821 
3822 	/*
3823 	 * Mark the interface down.
3824 	 */
3825 	ifp->if_flags &= ~IFF_RUNNING;
3826 	ifq_clr_oactive(&ifp->if_snd);
3827 	sc_if->msk_link = 0;
3828 }
3829 
3830 static int
3831 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3832 {
3833 	return sysctl_int_range(oidp, arg1, arg2, req,
3834 				MSK_PROC_MIN, MSK_PROC_MAX);
3835 }
3836 
3837 static int
3838 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3839 {
3840 	struct msk_softc *sc = arg1;
3841 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3842 	int error = 0, v;
3843 
3844 	lwkt_serialize_enter(serializer);
3845 
3846 	v = sc->msk_intr_rate;
3847 	error = sysctl_handle_int(oidp, &v, 0, req);
3848 	if (error || req->newptr == NULL)
3849 		goto back;
3850 	if (v < 0) {
3851 		error = EINVAL;
3852 		goto back;
3853 	}
3854 
3855 	if (sc->msk_intr_rate != v) {
3856 		int flag = 0, i;
3857 
3858 		sc->msk_intr_rate = v;
3859 		for (i = 0; i < 2; ++i) {
3860 			if (sc->msk_if[i] != NULL) {
3861 				flag |= sc->msk_if[i]->
3862 					arpcom.ac_if.if_flags & IFF_RUNNING;
3863 			}
3864 		}
3865 		if (flag)
3866 			mskc_set_imtimer(sc);
3867 	}
3868 back:
3869 	lwkt_serialize_exit(serializer);
3870 	return error;
3871 }
3872 
3873 static int
3874 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3875 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3876 {
3877 	struct msk_if_softc *sc_if = device_get_softc(dev);
3878 	bus_dmamem_t dmem;
3879 	int error;
3880 
3881 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3882 			MSK_RING_ALIGN, 0,
3883 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3884 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3885 	if (error) {
3886 		device_printf(dev, "can't create coherent DMA memory\n");
3887 		return error;
3888 	}
3889 
3890 	*dtag = dmem.dmem_tag;
3891 	*dmap = dmem.dmem_map;
3892 	*addr = dmem.dmem_addr;
3893 	*paddr = dmem.dmem_busaddr;
3894 
3895 	return 0;
3896 }
3897 
3898 static void
3899 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3900 {
3901 	if (dtag != NULL) {
3902 		bus_dmamap_unload(dtag, dmap);
3903 		bus_dmamem_free(dtag, addr, dmap);
3904 		bus_dma_tag_destroy(dtag);
3905 	}
3906 }
3907 
3908 static void
3909 mskc_set_imtimer(struct msk_softc *sc)
3910 {
3911 	if (sc->msk_intr_rate > 0) {
3912 		/*
3913 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3914 		 *     and 78.125MHz for rest of chip types
3915 		 */
3916 		CSR_WRITE_4(sc, B2_IRQM_INI,
3917 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3918 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3919 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3920 	} else {
3921 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3922 	}
3923 }
3924