xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision bc3d4063)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 /* $DragonFly: src/sys/dev/netif/msk/if_msk.c,v 1.7 2008/08/03 11:00:32 sephe Exp $ */
97 
98 /*
99  * Device driver for the Marvell Yukon II Ethernet controller.
100  * Due to lack of documentation, this driver is based on the code from
101  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
102  */
103 #include "opt_ethernet.h"
104 
105 #include <sys/param.h>
106 #include <sys/endian.h>
107 #include <sys/kernel.h>
108 #include <sys/bus.h>
109 #include <sys/in_cksum.h>
110 #include <sys/interrupt.h>
111 #include <sys/malloc.h>
112 #include <sys/proc.h>
113 #include <sys/rman.h>
114 #include <sys/serialize.h>
115 #include <sys/socket.h>
116 #include <sys/sockio.h>
117 #include <sys/sysctl.h>
118 
119 #include <net/ethernet.h>
120 #include <net/if.h>
121 #include <net/bpf.h>
122 #include <net/if_arp.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/ifq_var.h>
126 #include <net/vlan/if_vlan_var.h>
127 
128 #include <netinet/ip.h>
129 #include <netinet/ip_var.h>
130 
131 #include <dev/netif/mii_layer/miivar.h>
132 
133 #include <bus/pci/pcireg.h>
134 #include <bus/pci/pcivar.h>
135 
136 #include "if_mskreg.h"
137 
138 /* "device miibus" required.  See GENERIC if you get errors here. */
139 #include "miibus_if.h"
140 
141 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
142 
143 /*
144  * Devices supported by this driver.
145  */
146 static const struct msk_product {
147 	uint16_t	msk_vendorid;
148 	uint16_t	msk_deviceid;
149 	const char	*msk_name;
150 } msk_products[] = {
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
152 	    "SK-9Sxx Gigabit Ethernet" },
153 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
154 	    "SK-9Exx Gigabit Ethernet"},
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
156 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
158 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
160 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
162 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
164 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
166 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
168 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
170 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
172 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
174 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
176 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
178 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
180 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
182 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
184 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
186 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
188 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
190 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
191 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
192 	    "D-Link 550SX Gigabit Ethernet" },
193 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
194 	    "D-Link 560T Gigabit Ethernet" },
195 	{ 0, 0, NULL }
196 };
197 
198 static const char *model_name[] = {
199 	"Yukon XL",
200         "Yukon EC Ultra",
201         "Yukon Unknown",
202         "Yukon EC",
203         "Yukon FE"
204 };
205 
206 static int	mskc_probe(device_t);
207 static int	mskc_attach(device_t);
208 static int	mskc_detach(device_t);
209 static int	mskc_shutdown(device_t);
210 static int	mskc_suspend(device_t);
211 static int	mskc_resume(device_t);
212 static void	mskc_intr(void *);
213 
214 static void	mskc_reset(struct msk_softc *);
215 static void	mskc_set_imtimer(struct msk_softc *);
216 static void	mskc_intr_hwerr(struct msk_softc *);
217 static int	mskc_handle_events(struct msk_softc *);
218 static void	mskc_phy_power(struct msk_softc *, int);
219 static int	mskc_setup_rambuffer(struct msk_softc *);
220 static int	mskc_status_dma_alloc(struct msk_softc *);
221 static void	mskc_status_dma_free(struct msk_softc *);
222 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
223 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
224 
225 static int	msk_probe(device_t);
226 static int	msk_attach(device_t);
227 static int	msk_detach(device_t);
228 static int	msk_miibus_readreg(device_t, int, int);
229 static int	msk_miibus_writereg(device_t, int, int, int);
230 static void	msk_miibus_statchg(device_t);
231 
232 static void	msk_init(void *);
233 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
234 static void	msk_start(struct ifnet *);
235 static void	msk_watchdog(struct ifnet *);
236 static int	msk_mediachange(struct ifnet *);
237 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
238 
239 static void	msk_tick(void *);
240 static void	msk_intr_phy(struct msk_if_softc *);
241 static void	msk_intr_gmac(struct msk_if_softc *);
242 static __inline void
243 		msk_rxput(struct msk_if_softc *);
244 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
245 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int,
246 			  struct mbuf_chain *);
247 static void	msk_txeof(struct msk_if_softc *, int);
248 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
249 static void	msk_set_rambuffer(struct msk_if_softc *);
250 static void	msk_stop(struct msk_if_softc *);
251 
252 static void	msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
253 static void	msk_dmamap_mbuf_cb(void *, bus_dma_segment_t *, int,
254 				   bus_size_t, int);
255 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
256 static void	msk_txrx_dma_free(struct msk_if_softc *);
257 static int	msk_init_rx_ring(struct msk_if_softc *);
258 static void	msk_init_tx_ring(struct msk_if_softc *);
259 static __inline void
260 		msk_discard_rxbuf(struct msk_if_softc *, int);
261 static int	msk_newbuf(struct msk_if_softc *, int);
262 static struct mbuf *
263 		msk_defrag(struct mbuf *, int, int);
264 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
265 
266 #ifdef MSK_JUMBO
267 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
268 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
269 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
270 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
271 static void *msk_jalloc(struct msk_if_softc *);
272 static void msk_jfree(void *, void *);
273 #endif
274 
275 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
276 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
277 
278 static void	msk_setmulti(struct msk_if_softc *);
279 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
280 static void	msk_setpromisc(struct msk_if_softc *);
281 
282 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
283 				  void **, bus_addr_t *, bus_dmamap_t *);
284 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
285 
286 static device_method_t mskc_methods[] = {
287 	/* Device interface */
288 	DEVMETHOD(device_probe,		mskc_probe),
289 	DEVMETHOD(device_attach,	mskc_attach),
290 	DEVMETHOD(device_detach,	mskc_detach),
291 	DEVMETHOD(device_suspend,	mskc_suspend),
292 	DEVMETHOD(device_resume,	mskc_resume),
293 	DEVMETHOD(device_shutdown,	mskc_shutdown),
294 
295 	/* bus interface */
296 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
297 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
298 
299 	{ NULL, NULL }
300 };
301 
302 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
303 static devclass_t mskc_devclass;
304 
305 static device_method_t msk_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		msk_probe),
308 	DEVMETHOD(device_attach,	msk_attach),
309 	DEVMETHOD(device_detach,	msk_detach),
310 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
311 
312 	/* bus interface */
313 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
314 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
315 
316 	/* MII interface */
317 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
318 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
319 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
320 
321 	{ NULL, NULL }
322 };
323 
324 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
325 static devclass_t msk_devclass;
326 
327 DECLARE_DUMMY_MODULE(if_msk);
328 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, 0, 0);
329 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, 0, 0);
330 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
331 
332 static int	mskc_intr_rate = 0;
333 static int	mskc_process_limit = MSK_PROC_DEFAULT;
334 
335 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
336 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
337 
338 static int
339 msk_miibus_readreg(device_t dev, int phy, int reg)
340 {
341 	struct msk_if_softc *sc_if;
342 
343 	if (phy != PHY_ADDR_MARV)
344 		return (0);
345 
346 	sc_if = device_get_softc(dev);
347 
348 	return (msk_phy_readreg(sc_if, phy, reg));
349 }
350 
351 static int
352 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
353 {
354 	struct msk_softc *sc;
355 	int i, val;
356 
357 	sc = sc_if->msk_softc;
358 
359         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
360 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
361 
362 	for (i = 0; i < MSK_TIMEOUT; i++) {
363 		DELAY(1);
364 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
365 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
366 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
367 			break;
368 		}
369 	}
370 
371 	if (i == MSK_TIMEOUT) {
372 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
373 		val = 0;
374 	}
375 
376 	return (val);
377 }
378 
379 static int
380 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
381 {
382 	struct msk_if_softc *sc_if;
383 
384 	if (phy != PHY_ADDR_MARV)
385 		return (0);
386 
387 	sc_if = device_get_softc(dev);
388 
389 	return (msk_phy_writereg(sc_if, phy, reg, val));
390 }
391 
392 static int
393 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
394 {
395 	struct msk_softc *sc;
396 	int i;
397 
398 	sc = sc_if->msk_softc;
399 
400 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
401         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
402 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
403 	for (i = 0; i < MSK_TIMEOUT; i++) {
404 		DELAY(1);
405 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
406 		    GM_SMI_CT_BUSY) == 0)
407 			break;
408 	}
409 	if (i == MSK_TIMEOUT)
410 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
411 
412 	return (0);
413 }
414 
415 static void
416 msk_miibus_statchg(device_t dev)
417 {
418 	struct msk_if_softc *sc_if;
419 	struct msk_softc *sc;
420 	struct mii_data *mii;
421 	struct ifnet *ifp;
422 	uint32_t gmac;
423 
424 	sc_if = device_get_softc(dev);
425 	sc = sc_if->msk_softc;
426 
427 	mii = device_get_softc(sc_if->msk_miibus);
428 	ifp = sc_if->msk_ifp;
429 
430 	if (mii->mii_media_status & IFM_ACTIVE) {
431 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
432 			sc_if->msk_link = 1;
433 	} else
434 		sc_if->msk_link = 0;
435 
436 	if (sc_if->msk_link != 0) {
437 		/* Enable Tx FIFO Underrun. */
438 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
439 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
440 		/*
441 		 * Because mii(4) notify msk(4) that it detected link status
442 		 * change, there is no need to enable automatic
443 		 * speed/flow-control/duplex updates.
444 		 */
445 		gmac = GM_GPCR_AU_ALL_DIS;
446 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
447 		case IFM_1000_SX:
448 		case IFM_1000_T:
449 			gmac |= GM_GPCR_SPEED_1000;
450 			break;
451 		case IFM_100_TX:
452 			gmac |= GM_GPCR_SPEED_100;
453 			break;
454 		case IFM_10_T:
455 			break;
456 		}
457 
458 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
459 			gmac |= GM_GPCR_DUP_FULL;
460 		/* Disable Rx flow control. */
461 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
462 			gmac |= GM_GPCR_FC_RX_DIS;
463 		/* Disable Tx flow control. */
464 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
465 			gmac |= GM_GPCR_FC_TX_DIS;
466 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
467 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
468 		/* Read again to ensure writing. */
469 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
470 
471 		gmac = GMC_PAUSE_ON;
472 		if (((mii->mii_media_active & IFM_GMASK) &
473 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
474 			gmac = GMC_PAUSE_OFF;
475 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
476 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
477 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
478 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
479 			gmac = GMC_PAUSE_OFF;
480 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
481 
482 		/* Enable PHY interrupt for FIFO underrun/overflow. */
483 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
484 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
485 	} else {
486 		/*
487 		 * Link state changed to down.
488 		 * Disable PHY interrupts.
489 		 */
490 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
491 		/* Disable Rx/Tx MAC. */
492 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
493 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
494 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
495 		/* Read again to ensure writing. */
496 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
497 	}
498 }
499 
500 static void
501 msk_setmulti(struct msk_if_softc *sc_if)
502 {
503 	struct msk_softc *sc;
504 	struct ifnet *ifp;
505 	struct ifmultiaddr *ifma;
506 	uint32_t mchash[2];
507 	uint32_t crc;
508 	uint16_t mode;
509 
510 	sc = sc_if->msk_softc;
511 	ifp = sc_if->msk_ifp;
512 
513 	bzero(mchash, sizeof(mchash));
514 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
515 	mode |= GM_RXCR_UCF_ENA;
516 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
517 		if ((ifp->if_flags & IFF_PROMISC) != 0)
518 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
519 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
520 			mchash[0] = 0xffff;
521 			mchash[1] = 0xffff;
522 		}
523 	} else {
524 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
525 			if (ifma->ifma_addr->sa_family != AF_LINK)
526 				continue;
527 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
528 			    ifma->ifma_addr), ETHER_ADDR_LEN);
529 			/* Just want the 6 least significant bits. */
530 			crc &= 0x3f;
531 			/* Set the corresponding bit in the hash table. */
532 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
533 		}
534 		mode |= GM_RXCR_MCF_ENA;
535 	}
536 
537 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
538 	    mchash[0] & 0xffff);
539 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
540 	    (mchash[0] >> 16) & 0xffff);
541 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
542 	    mchash[1] & 0xffff);
543 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
544 	    (mchash[1] >> 16) & 0xffff);
545 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
546 }
547 
548 static void
549 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
550 {
551 	struct msk_softc *sc;
552 
553 	sc = sc_if->msk_softc;
554 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
555 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
556 		    RX_VLAN_STRIP_ON);
557 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
558 		    TX_VLAN_TAG_ON);
559 	} else {
560 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
561 		    RX_VLAN_STRIP_OFF);
562 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
563 		    TX_VLAN_TAG_OFF);
564 	}
565 }
566 
567 static void
568 msk_setpromisc(struct msk_if_softc *sc_if)
569 {
570 	struct msk_softc *sc;
571 	struct ifnet *ifp;
572 	uint16_t mode;
573 
574 	sc = sc_if->msk_softc;
575 	ifp = sc_if->msk_ifp;
576 
577 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
578 	if (ifp->if_flags & IFF_PROMISC)
579 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
580 	else
581 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
582 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
583 }
584 
585 static int
586 msk_init_rx_ring(struct msk_if_softc *sc_if)
587 {
588 	struct msk_ring_data *rd;
589 	struct msk_rxdesc *rxd;
590 	int i, prod;
591 
592 	sc_if->msk_cdata.msk_rx_cons = 0;
593 	sc_if->msk_cdata.msk_rx_prod = 0;
594 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
595 
596 	rd = &sc_if->msk_rdata;
597 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
598 	prod = sc_if->msk_cdata.msk_rx_prod;
599 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
600 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
601 		rxd->rx_m = NULL;
602 		rxd->rx_le = &rd->msk_rx_ring[prod];
603 		if (msk_newbuf(sc_if, prod) != 0)
604 			return (ENOBUFS);
605 		MSK_INC(prod, MSK_RX_RING_CNT);
606 	}
607 
608 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
609 	    sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREWRITE);
610 
611 	/* Update prefetch unit. */
612 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
613 	CSR_WRITE_2(sc_if->msk_softc,
614 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
615 	    sc_if->msk_cdata.msk_rx_prod);
616 
617 	return (0);
618 }
619 
620 #ifdef MSK_JUMBO
621 static int
622 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
623 {
624 	struct msk_ring_data *rd;
625 	struct msk_rxdesc *rxd;
626 	int i, prod;
627 
628 	MSK_IF_LOCK_ASSERT(sc_if);
629 
630 	sc_if->msk_cdata.msk_rx_cons = 0;
631 	sc_if->msk_cdata.msk_rx_prod = 0;
632 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
633 
634 	rd = &sc_if->msk_rdata;
635 	bzero(rd->msk_jumbo_rx_ring,
636 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
637 	prod = sc_if->msk_cdata.msk_rx_prod;
638 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
639 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
640 		rxd->rx_m = NULL;
641 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
642 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
643 			return (ENOBUFS);
644 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
645 	}
646 
647 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
648 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
649 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
650 
651 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
652 	CSR_WRITE_2(sc_if->msk_softc,
653 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
654 	    sc_if->msk_cdata.msk_rx_prod);
655 
656 	return (0);
657 }
658 #endif
659 
660 static void
661 msk_init_tx_ring(struct msk_if_softc *sc_if)
662 {
663 	struct msk_ring_data *rd;
664 	struct msk_txdesc *txd;
665 	int i;
666 
667 	sc_if->msk_cdata.msk_tx_prod = 0;
668 	sc_if->msk_cdata.msk_tx_cons = 0;
669 	sc_if->msk_cdata.msk_tx_cnt = 0;
670 
671 	rd = &sc_if->msk_rdata;
672 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
673 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
674 		txd = &sc_if->msk_cdata.msk_txdesc[i];
675 		txd->tx_m = NULL;
676 		txd->tx_le = &rd->msk_tx_ring[i];
677 	}
678 
679 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
680 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
681 }
682 
683 static __inline void
684 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
685 {
686 	struct msk_rx_desc *rx_le;
687 	struct msk_rxdesc *rxd;
688 	struct mbuf *m;
689 
690 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
691 	m = rxd->rx_m;
692 	rx_le = rxd->rx_le;
693 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
694 }
695 
696 #ifdef MSK_JUMBO
697 static __inline void
698 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
699 {
700 	struct msk_rx_desc *rx_le;
701 	struct msk_rxdesc *rxd;
702 	struct mbuf *m;
703 
704 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
705 	m = rxd->rx_m;
706 	rx_le = rxd->rx_le;
707 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
708 }
709 #endif
710 
711 static int
712 msk_newbuf(struct msk_if_softc *sc_if, int idx)
713 {
714 	struct msk_rx_desc *rx_le;
715 	struct msk_rxdesc *rxd;
716 	struct mbuf *m;
717 	struct msk_dmamap_arg ctx;
718 	bus_dma_segment_t seg;
719 	bus_dmamap_t map;
720 
721 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
722 	if (m == NULL)
723 		return (ENOBUFS);
724 
725 	m->m_len = m->m_pkthdr.len = MCLBYTES;
726 	m_adj(m, ETHER_ALIGN);
727 
728 	bzero(&ctx, sizeof(ctx));
729 	ctx.nseg = 1;
730 	ctx.segs = &seg;
731 	if (bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_rx_tag,
732 	    sc_if->msk_cdata.msk_rx_sparemap, m, msk_dmamap_mbuf_cb, &ctx,
733 	    BUS_DMA_NOWAIT) != 0) {
734 		m_freem(m);
735 		return (ENOBUFS);
736 	}
737 	KASSERT(ctx.nseg == 1,
738 		("%s: %d segments returned!", __func__, ctx.nseg));
739 
740 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
741 	if (rxd->rx_m != NULL) {
742 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
743 		    BUS_DMASYNC_POSTREAD);
744 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
745 	}
746 	map = rxd->rx_dmamap;
747 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
748 	sc_if->msk_cdata.msk_rx_sparemap = map;
749 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
750 	    BUS_DMASYNC_PREREAD);
751 	rxd->rx_m = m;
752 	rx_le = rxd->rx_le;
753 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
754 	rx_le->msk_control =
755 	    htole32(seg.ds_len | OP_PACKET | HW_OWNER);
756 
757 	return (0);
758 }
759 
760 #ifdef MSK_JUMBO
761 static int
762 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
763 {
764 	struct msk_rx_desc *rx_le;
765 	struct msk_rxdesc *rxd;
766 	struct mbuf *m;
767 	bus_dma_segment_t segs[1];
768 	bus_dmamap_t map;
769 	int nsegs;
770 	void *buf;
771 
772 	MGETHDR(m, M_DONTWAIT, MT_DATA);
773 	if (m == NULL)
774 		return (ENOBUFS);
775 	buf = msk_jalloc(sc_if);
776 	if (buf == NULL) {
777 		m_freem(m);
778 		return (ENOBUFS);
779 	}
780 	/* Attach the buffer to the mbuf. */
781 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
782 	    EXT_NET_DRV);
783 	if ((m->m_flags & M_EXT) == 0) {
784 		m_freem(m);
785 		return (ENOBUFS);
786 	}
787 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
788 	m_adj(m, ETHER_ALIGN);
789 
790 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
791 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
792 	    BUS_DMA_NOWAIT) != 0) {
793 		m_freem(m);
794 		return (ENOBUFS);
795 	}
796 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
797 
798 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
799 	if (rxd->rx_m != NULL) {
800 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
801 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
802 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
803 		    rxd->rx_dmamap);
804 	}
805 	map = rxd->rx_dmamap;
806 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
807 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
808 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
809 	    BUS_DMASYNC_PREREAD);
810 	rxd->rx_m = m;
811 	rx_le = rxd->rx_le;
812 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
813 	rx_le->msk_control =
814 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
815 
816 	return (0);
817 }
818 #endif
819 
820 /*
821  * Set media options.
822  */
823 static int
824 msk_mediachange(struct ifnet *ifp)
825 {
826 	struct msk_if_softc *sc_if = ifp->if_softc;
827 	struct mii_data	*mii;
828 
829 	mii = device_get_softc(sc_if->msk_miibus);
830 	mii_mediachg(mii);
831 
832 	return (0);
833 }
834 
835 /*
836  * Report current media status.
837  */
838 static void
839 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
840 {
841 	struct msk_if_softc *sc_if = ifp->if_softc;
842 	struct mii_data	*mii;
843 
844 	mii = device_get_softc(sc_if->msk_miibus);
845 	mii_pollstat(mii);
846 
847 	ifmr->ifm_active = mii->mii_media_active;
848 	ifmr->ifm_status = mii->mii_media_status;
849 }
850 
851 static int
852 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
853 {
854 	struct msk_if_softc *sc_if;
855 	struct ifreq *ifr;
856 	struct mii_data	*mii;
857 	int error, mask;
858 
859 	sc_if = ifp->if_softc;
860 	ifr = (struct ifreq *)data;
861 	error = 0;
862 
863 	switch(command) {
864 	case SIOCSIFMTU:
865 #ifdef MSK_JUMBO
866 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
867 			error = EINVAL;
868 			break;
869 		}
870 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
871 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
872 			error = EINVAL;
873 			break;
874 		}
875 		ifp->if_mtu = ifr->ifr_mtu;
876 		if ((ifp->if_flags & IFF_RUNNING) != 0)
877 			msk_init(sc_if);
878 #else
879 		error = EOPNOTSUPP;
880 #endif
881 		break;
882 
883 	case SIOCSIFFLAGS:
884 		if (ifp->if_flags & IFF_UP) {
885 			if (ifp->if_flags & IFF_RUNNING) {
886 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
887 				    & IFF_PROMISC) != 0) {
888 					msk_setpromisc(sc_if);
889 					msk_setmulti(sc_if);
890 				}
891 			} else {
892 				if (sc_if->msk_detach == 0)
893 					msk_init(sc_if);
894 			}
895 		} else {
896 			if (ifp->if_flags & IFF_RUNNING)
897 				msk_stop(sc_if);
898 		}
899 		sc_if->msk_if_flags = ifp->if_flags;
900 		break;
901 
902 	case SIOCADDMULTI:
903 	case SIOCDELMULTI:
904 		if (ifp->if_flags & IFF_RUNNING)
905 			msk_setmulti(sc_if);
906 		break;
907 
908 	case SIOCGIFMEDIA:
909 	case SIOCSIFMEDIA:
910 		mii = device_get_softc(sc_if->msk_miibus);
911 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
912 		break;
913 
914 	case SIOCSIFCAP:
915 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
916 		if ((mask & IFCAP_TXCSUM) != 0) {
917 			ifp->if_capenable ^= IFCAP_TXCSUM;
918 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
919 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
920 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
921 			else
922 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
923 		}
924 #ifdef notyet
925 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
926 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
927 			msk_setvlan(sc_if, ifp);
928 		}
929 #endif
930 
931 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
932 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
933 			/*
934 			 * In Yukon EC Ultra, TSO & checksum offload is not
935 			 * supported for jumbo frame.
936 			 */
937 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
938 			ifp->if_capenable &= ~IFCAP_TXCSUM;
939 		}
940 		break;
941 
942 	default:
943 		error = ether_ioctl(ifp, command, data);
944 		break;
945 	}
946 
947 	return (error);
948 }
949 
950 static int
951 mskc_probe(device_t dev)
952 {
953 	const struct msk_product *mp;
954 	uint16_t vendor, devid;
955 
956 	vendor = pci_get_vendor(dev);
957 	devid = pci_get_device(dev);
958 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
959 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
960 			device_set_desc(dev, mp->msk_name);
961 			return (0);
962 		}
963 	}
964 	return (ENXIO);
965 }
966 
967 static int
968 mskc_setup_rambuffer(struct msk_softc *sc)
969 {
970 	int next;
971 	int i;
972 	uint8_t val;
973 
974 	/* Get adapter SRAM size. */
975 	val = CSR_READ_1(sc, B2_E_0);
976 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
977 	if (bootverbose) {
978 		device_printf(sc->msk_dev,
979 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
980 	}
981 	/*
982 	 * Give receiver 2/3 of memory and round down to the multiple
983 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
984 	 * of 1024.
985 	 */
986 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
987 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
988 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
989 		sc->msk_rxqstart[i] = next;
990 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
991 		next = sc->msk_rxqend[i] + 1;
992 		sc->msk_txqstart[i] = next;
993 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
994 		next = sc->msk_txqend[i] + 1;
995 		if (bootverbose) {
996 			device_printf(sc->msk_dev,
997 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
998 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
999 			    sc->msk_rxqend[i]);
1000 			device_printf(sc->msk_dev,
1001 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1002 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1003 			    sc->msk_txqend[i]);
1004 		}
1005 	}
1006 
1007 	return (0);
1008 }
1009 
1010 static void
1011 mskc_phy_power(struct msk_softc *sc, int mode)
1012 {
1013 	uint32_t val;
1014 	int i;
1015 
1016 	switch (mode) {
1017 	case MSK_PHY_POWERUP:
1018 		/* Switch power to VCC (WA for VAUX problem). */
1019 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1020 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1021 		/* Disable Core Clock Division, set Clock Select to 0. */
1022 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1023 
1024 		val = 0;
1025 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1026 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1027 			/* Enable bits are inverted. */
1028 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1029 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1030 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1031 		}
1032 		/*
1033 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1034 		 */
1035 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1036 
1037 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1038 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1039 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1040 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1041 			/* Deassert Low Power for 1st PHY. */
1042 			val |= PCI_Y2_PHY1_COMA;
1043 			if (sc->msk_num_port > 1)
1044 				val |= PCI_Y2_PHY2_COMA;
1045 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1046 			uint32_t our;
1047 
1048 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1049 
1050 			/* Enable all clocks. */
1051 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1052 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1053 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1054 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1055 			/* Set all bits to 0 except bits 15..12. */
1056 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1057 			/* Set to default value. */
1058 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1059 		}
1060 		/* Release PHY from PowerDown/COMA mode. */
1061 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1062 		for (i = 0; i < sc->msk_num_port; i++) {
1063 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1064 			    GMLC_RST_SET);
1065 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1066 			    GMLC_RST_CLR);
1067 		}
1068 		break;
1069 	case MSK_PHY_POWERDOWN:
1070 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1071 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1072 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1073 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1074 			val &= ~PCI_Y2_PHY1_COMA;
1075 			if (sc->msk_num_port > 1)
1076 				val &= ~PCI_Y2_PHY2_COMA;
1077 		}
1078 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1079 
1080 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1081 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1082 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1083 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1084 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1085 			/* Enable bits are inverted. */
1086 			val = 0;
1087 		}
1088 		/*
1089 		 * Disable PCI & Core Clock, disable clock gating for
1090 		 * both Links.
1091 		 */
1092 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1093 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1094 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1095 		break;
1096 	default:
1097 		break;
1098 	}
1099 }
1100 
1101 static void
1102 mskc_reset(struct msk_softc *sc)
1103 {
1104 	bus_addr_t addr;
1105 	uint16_t status;
1106 	uint32_t val;
1107 	int i;
1108 
1109 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1110 
1111 	/* Disable ASF. */
1112 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1113 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1114 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1115 	}
1116 	/*
1117 	 * Since we disabled ASF, S/W reset is required for Power Management.
1118 	 */
1119 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1120 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1121 
1122 	/* Clear all error bits in the PCI status register. */
1123 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1124 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1125 
1126 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1127 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1128 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1129 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1130 
1131 	switch (sc->msk_bustype) {
1132 	case MSK_PEX_BUS:
1133 		/* Clear all PEX errors. */
1134 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1135 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1136 		if ((val & PEX_RX_OV) != 0) {
1137 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1138 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1139 		}
1140 		break;
1141 	case MSK_PCI_BUS:
1142 	case MSK_PCIX_BUS:
1143 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1144 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1145 		if (val == 0)
1146 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1147 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1148 			/* Set Cache Line Size opt. */
1149 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1150 			val |= PCI_CLS_OPT;
1151 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1152 		}
1153 		break;
1154 	}
1155 	/* Set PHY power state. */
1156 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1157 
1158 	/* Reset GPHY/GMAC Control */
1159 	for (i = 0; i < sc->msk_num_port; i++) {
1160 		/* GPHY Control reset. */
1161 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1162 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1163 		/* GMAC Control reset. */
1164 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1165 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1166 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1167 	}
1168 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1169 
1170 	/* LED On. */
1171 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1172 
1173 	/* Clear TWSI IRQ. */
1174 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1175 
1176 	/* Turn off hardware timer. */
1177 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1178 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1179 
1180 	/* Turn off descriptor polling. */
1181 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1182 
1183 	/* Turn off time stamps. */
1184 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1185 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1186 
1187 	/* Configure timeout values. */
1188 	for (i = 0; i < sc->msk_num_port; i++) {
1189 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1190 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1191 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1192 		    MSK_RI_TO_53);
1193 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1194 		    MSK_RI_TO_53);
1195 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1196 		    MSK_RI_TO_53);
1197 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1198 		    MSK_RI_TO_53);
1199 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1200 		    MSK_RI_TO_53);
1201 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1202 		    MSK_RI_TO_53);
1203 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1204 		    MSK_RI_TO_53);
1205 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1206 		    MSK_RI_TO_53);
1207 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1208 		    MSK_RI_TO_53);
1209 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1210 		    MSK_RI_TO_53);
1211 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1212 		    MSK_RI_TO_53);
1213 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1214 		    MSK_RI_TO_53);
1215 	}
1216 
1217 	/* Disable all interrupts. */
1218 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1219 	CSR_READ_4(sc, B0_HWE_IMSK);
1220 	CSR_WRITE_4(sc, B0_IMSK, 0);
1221 	CSR_READ_4(sc, B0_IMSK);
1222 
1223         /*
1224          * On dual port PCI-X card, there is an problem where status
1225          * can be received out of order due to split transactions.
1226          */
1227 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1228 		uint16_t pcix_cmd;
1229 		uint8_t pcix;
1230 
1231 		pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1232 
1233 		pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1234 		/* Clear Max Outstanding Split Transactions. */
1235 		pcix_cmd &= ~0x70;
1236 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1237 		pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1238 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1239         }
1240 	if (sc->msk_bustype == MSK_PEX_BUS) {
1241 		uint16_t v, width;
1242 
1243 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1244 		/* Change Max. Read Request Size to 4096 bytes. */
1245 		v &= ~PEX_DC_MAX_RRS_MSK;
1246 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1247 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1248 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1249 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1250 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1251 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1252 		if (v != width) {
1253 			device_printf(sc->msk_dev,
1254 			    "negotiated width of link(x%d) != "
1255 			    "max. width of link(x%d)\n", width, v);
1256 		}
1257 	}
1258 
1259 	/* Clear status list. */
1260 	bzero(sc->msk_stat_ring,
1261 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1262 	sc->msk_stat_cons = 0;
1263 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1264 			BUS_DMASYNC_PREWRITE);
1265 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1266 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1267 	/* Set the status list base address. */
1268 	addr = sc->msk_stat_ring_paddr;
1269 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1270 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1271 	/* Set the status list last index. */
1272 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1273 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1274 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1275 		/* WA for dev. #4.3 */
1276 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1277 		/* WA for dev. #4.18 */
1278 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1279 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1280 	} else {
1281 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1282 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1283 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1284 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1285 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1286 		else
1287 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1288 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1289 	}
1290 	/*
1291 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1292 	 */
1293 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1294 
1295 	/* Enable status unit. */
1296 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1297 
1298 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1299 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1300 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1301 }
1302 
1303 static int
1304 msk_probe(device_t dev)
1305 {
1306 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1307 	char desc[100];
1308 
1309 	/*
1310 	 * Not much to do here. We always know there will be
1311 	 * at least one GMAC present, and if there are two,
1312 	 * mskc_attach() will create a second device instance
1313 	 * for us.
1314 	 */
1315 	ksnprintf(desc, sizeof(desc),
1316 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1317 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1318 	    sc->msk_hw_rev);
1319 	device_set_desc_copy(dev, desc);
1320 
1321 	return (0);
1322 }
1323 
1324 static int
1325 msk_attach(device_t dev)
1326 {
1327 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1328 	struct msk_if_softc *sc_if = device_get_softc(dev);
1329 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1330 	int i, port, error;
1331 	uint8_t eaddr[ETHER_ADDR_LEN];
1332 
1333 	port = *(int *)device_get_ivars(dev);
1334 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1335 
1336 	kfree(device_get_ivars(dev), M_DEVBUF);
1337 	device_set_ivars(dev, NULL);
1338 
1339 	callout_init(&sc_if->msk_tick_ch);
1340 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1341 
1342 	sc_if->msk_if_dev = dev;
1343 	sc_if->msk_port = port;
1344 	sc_if->msk_softc = sc;
1345 	sc_if->msk_ifp = ifp;
1346 	sc->msk_if[port] = sc_if;
1347 
1348 	/* Setup Tx/Rx queue register offsets. */
1349 	if (port == MSK_PORT_A) {
1350 		sc_if->msk_txq = Q_XA1;
1351 		sc_if->msk_txsq = Q_XS1;
1352 		sc_if->msk_rxq = Q_R1;
1353 	} else {
1354 		sc_if->msk_txq = Q_XA2;
1355 		sc_if->msk_txsq = Q_XS2;
1356 		sc_if->msk_rxq = Q_R2;
1357 	}
1358 
1359 	error = msk_txrx_dma_alloc(sc_if);
1360 	if (error)
1361 		goto fail;
1362 
1363 	ifp->if_softc = sc_if;
1364 	ifp->if_mtu = ETHERMTU;
1365 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1366 	ifp->if_init = msk_init;
1367 	ifp->if_ioctl = msk_ioctl;
1368 	ifp->if_start = msk_start;
1369 	ifp->if_watchdog = msk_watchdog;
1370 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1371 	ifq_set_ready(&ifp->if_snd);
1372 
1373 #ifdef notyet
1374 	/*
1375 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1376 	 * has serious bug in Rx checksum offload for all Yukon II family
1377 	 * hardware. It seems there is a workaround to make it work somtimes.
1378 	 * However, the workaround also have to check OP code sequences to
1379 	 * verify whether the OP code is correct. Sometimes it should compute
1380 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1381 	 * checksum computed by hardware. If you have to compute checksum
1382 	 * with software to verify the hardware's checksum why have hardware
1383 	 * compute the checksum? I think there is no reason to spend time to
1384 	 * make Rx checksum offload work on Yukon II hardware.
1385 	 */
1386 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1387 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1388 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1389 	ifp->if_capenable = ifp->if_capabilities;
1390 #endif
1391 
1392 	/*
1393 	 * Get station address for this interface. Note that
1394 	 * dual port cards actually come with three station
1395 	 * addresses: one for each port, plus an extra. The
1396 	 * extra one is used by the SysKonnect driver software
1397 	 * as a 'virtual' station address for when both ports
1398 	 * are operating in failover mode. Currently we don't
1399 	 * use this extra address.
1400 	 */
1401 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1402 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1403 
1404 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1405 
1406 	/*
1407 	 * Do miibus setup.
1408 	 */
1409 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1410 			      msk_mediachange, msk_mediastatus);
1411 	if (error) {
1412 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1413 		goto fail;
1414 	}
1415 
1416 	/*
1417 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1418 	 */
1419 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1420 #if 0
1421 	/*
1422 	 * Tell the upper layer(s) we support long frames.
1423 	 * Must appear after the call to ether_ifattach() because
1424 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1425 	 */
1426         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1427 #endif
1428 
1429 	return 0;
1430 fail:
1431 	msk_detach(dev);
1432 	sc->msk_if[port] = NULL;
1433 	return (error);
1434 }
1435 
1436 /*
1437  * Attach the interface. Allocate softc structures, do ifmedia
1438  * setup and ethernet/BPF attach.
1439  */
1440 static int
1441 mskc_attach(device_t dev)
1442 {
1443 	struct msk_softc *sc;
1444 	int error, *port, cpuid;
1445 
1446 	sc = device_get_softc(dev);
1447 	sc->msk_dev = dev;
1448 	lwkt_serialize_init(&sc->msk_serializer);
1449 
1450 	/*
1451 	 * Initailize sysctl variables
1452 	 */
1453 	sc->msk_process_limit = mskc_process_limit;
1454 	sc->msk_intr_rate = mskc_intr_rate;
1455 
1456 #ifndef BURN_BRIDGES
1457 	/*
1458 	 * Handle power management nonsense.
1459 	 */
1460 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1461 		uint32_t irq, bar0, bar1;
1462 
1463 		/* Save important PCI config data. */
1464 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1465 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1466 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1467 
1468 		/* Reset the power state. */
1469 		device_printf(dev, "chip is in D%d power mode "
1470 			      "-- setting to D0\n", pci_get_powerstate(dev));
1471 
1472 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1473 
1474 		/* Restore PCI config data. */
1475 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1476 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1477 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1478 	}
1479 #endif	/* BURN_BRIDGES */
1480 
1481 	/*
1482 	 * Map control/status registers.
1483 	 */
1484 	pci_enable_busmaster(dev);
1485 
1486 	/*
1487 	 * Allocate I/O resource
1488 	 */
1489 #ifdef MSK_USEIOSPACE
1490 	sc->msk_res_type = SYS_RES_IOPORT;
1491 	sc->msk_res_rid = PCIR_BAR(1);
1492 #else
1493 	sc->msk_res_type = SYS_RES_MEMORY;
1494 	sc->msk_res_rid = PCIR_BAR(0);
1495 #endif
1496 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1497 					     &sc->msk_res_rid, RF_ACTIVE);
1498 	if (sc->msk_res == NULL) {
1499 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1500 			sc->msk_res_type = SYS_RES_IOPORT;
1501 			sc->msk_res_rid = PCIR_BAR(1);
1502 		} else {
1503 			sc->msk_res_type = SYS_RES_MEMORY;
1504 			sc->msk_res_rid = PCIR_BAR(0);
1505 		}
1506 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1507 						     &sc->msk_res_rid,
1508 						     RF_ACTIVE);
1509 		if (sc->msk_res == NULL) {
1510 			device_printf(dev, "couldn't allocate %s resources\n",
1511 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1512 			return (ENXIO);
1513 		}
1514 	}
1515 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1516 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1517 
1518 	/*
1519 	 * Allocate IRQ
1520 	 */
1521 	sc->msk_irq_rid = 0;
1522 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1523 					     &sc->msk_irq_rid,
1524 					     RF_SHAREABLE | RF_ACTIVE);
1525 	if (sc->msk_irq == NULL) {
1526 		device_printf(dev, "couldn't allocate IRQ resources\n");
1527 		error = ENXIO;
1528 		goto fail;
1529 	}
1530 
1531 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1532 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1533 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1534 	/* Bail out if chip is not recognized. */
1535 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1536 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1537 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1538 		    sc->msk_hw_id, sc->msk_hw_rev);
1539 		error = ENXIO;
1540 		goto fail;
1541 	}
1542 
1543 	/*
1544 	 * Create sysctl tree
1545 	 */
1546 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1547 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1548 					      SYSCTL_STATIC_CHILDREN(_hw),
1549 					      OID_AUTO,
1550 					      device_get_nameunit(dev),
1551 					      CTLFLAG_RD, 0, "");
1552 	if (sc->msk_sysctl_tree == NULL) {
1553 		device_printf(dev, "can't add sysctl node\n");
1554 		error = ENXIO;
1555 		goto fail;
1556 	}
1557 
1558 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1559 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1560 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1561 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1562 			"I", "max number of Rx events to process");
1563 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1564 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1565 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1566 			sc, 0, mskc_sysctl_intr_rate,
1567 			"I", "max number of interrupt per second");
1568 
1569 	/* Soft reset. */
1570 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1571 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1572 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1573 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1574 		sc->msk_coppertype = 0;
1575 	else
1576 		sc->msk_coppertype = 1;
1577 	/* Check number of MACs. */
1578 	sc->msk_num_port = 1;
1579 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1580 	    CFG_DUAL_MAC_MSK) {
1581 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1582 			sc->msk_num_port++;
1583 	}
1584 
1585 	/* Check bus type. */
1586 	if (pci_is_pcie(sc->msk_dev) == 0)
1587 		sc->msk_bustype = MSK_PEX_BUS;
1588 	else if (pci_is_pcix(sc->msk_dev) == 0)
1589 		sc->msk_bustype = MSK_PCIX_BUS;
1590 	else
1591 		sc->msk_bustype = MSK_PCI_BUS;
1592 
1593 	switch (sc->msk_hw_id) {
1594 	case CHIP_ID_YUKON_EC:
1595 	case CHIP_ID_YUKON_EC_U:
1596 		sc->msk_clock = 125;	/* 125 Mhz */
1597 		break;
1598 	case CHIP_ID_YUKON_FE:
1599 		sc->msk_clock = 100;	/* 100 Mhz */
1600 		break;
1601 	case CHIP_ID_YUKON_XL:
1602 		sc->msk_clock = 156;	/* 156 Mhz */
1603 		break;
1604 	default:
1605 		sc->msk_clock = 156;	/* 156 Mhz */
1606 		break;
1607 	}
1608 
1609 	error = mskc_status_dma_alloc(sc);
1610 	if (error)
1611 		goto fail;
1612 
1613 	/* Set base interrupt mask. */
1614 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1615 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1616 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1617 
1618 	/* Reset the adapter. */
1619 	mskc_reset(sc);
1620 
1621 	error = mskc_setup_rambuffer(sc);
1622 	if (error)
1623 		goto fail;
1624 
1625 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1626 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1627 		device_printf(dev, "failed to add child for PORT_A\n");
1628 		error = ENXIO;
1629 		goto fail;
1630 	}
1631 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1632 	*port = MSK_PORT_A;
1633 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1634 
1635 	if (sc->msk_num_port > 1) {
1636 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1637 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1638 			device_printf(dev, "failed to add child for PORT_B\n");
1639 			error = ENXIO;
1640 			goto fail;
1641 		}
1642 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1643 		*port = MSK_PORT_B;
1644 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1645 	}
1646 
1647 	bus_generic_attach(dev);
1648 
1649 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1650 			       mskc_intr, sc, &sc->msk_intrhand,
1651 			       &sc->msk_serializer);
1652 	if (error) {
1653 		device_printf(dev, "couldn't set up interrupt handler\n");
1654 		goto fail;
1655 	}
1656 
1657 	cpuid = ithread_cpuid(rman_get_start(sc->msk_irq));
1658 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1659 
1660 	if (sc->msk_if[0] != NULL)
1661 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1662 	if (sc->msk_if[1] != NULL)
1663 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1664 	return 0;
1665 fail:
1666 	mskc_detach(dev);
1667 	return (error);
1668 }
1669 
1670 /*
1671  * Shutdown hardware and free up resources. This can be called any
1672  * time after the mutex has been initialized. It is called in both
1673  * the error case in attach and the normal detach case so it needs
1674  * to be careful about only freeing resources that have actually been
1675  * allocated.
1676  */
1677 static int
1678 msk_detach(device_t dev)
1679 {
1680 	struct msk_if_softc *sc_if = device_get_softc(dev);
1681 
1682 	if (device_is_attached(dev)) {
1683 		struct msk_softc *sc = sc_if->msk_softc;
1684 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1685 
1686 		lwkt_serialize_enter(ifp->if_serializer);
1687 
1688 		if (sc->msk_intrhand != NULL) {
1689 			if (sc->msk_if[MSK_PORT_A] != NULL)
1690 				msk_stop(sc->msk_if[MSK_PORT_A]);
1691 			if (sc->msk_if[MSK_PORT_B] != NULL)
1692 				msk_stop(sc->msk_if[MSK_PORT_B]);
1693 
1694 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1695 					  sc->msk_intrhand);
1696 			sc->msk_intrhand = NULL;
1697 		}
1698 
1699 		lwkt_serialize_exit(ifp->if_serializer);
1700 
1701 		ether_ifdetach(ifp);
1702 	}
1703 
1704 	if (sc_if->msk_miibus != NULL)
1705 		device_delete_child(dev, sc_if->msk_miibus);
1706 
1707 	msk_txrx_dma_free(sc_if);
1708 	return (0);
1709 }
1710 
1711 static int
1712 mskc_detach(device_t dev)
1713 {
1714 	struct msk_softc *sc = device_get_softc(dev);
1715 	int *port, i;
1716 
1717 #ifdef INVARIANTS
1718 	if (device_is_attached(dev)) {
1719 		KASSERT(sc->msk_intrhand == NULL,
1720 			("intr is not torn down yet\n"));
1721 	}
1722 #endif
1723 
1724 	for (i = 0; i < sc->msk_num_port; ++i) {
1725 		if (sc->msk_devs[i] != NULL) {
1726 			port = device_get_ivars(sc->msk_devs[i]);
1727 			if (port != NULL) {
1728 				kfree(port, M_DEVBUF);
1729 				device_set_ivars(sc->msk_devs[i], NULL);
1730 			}
1731 			device_delete_child(dev, sc->msk_devs[i]);
1732 		}
1733 	}
1734 
1735 	/* Disable all interrupts. */
1736 	CSR_WRITE_4(sc, B0_IMSK, 0);
1737 	CSR_READ_4(sc, B0_IMSK);
1738 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1739 	CSR_READ_4(sc, B0_HWE_IMSK);
1740 
1741 	/* LED Off. */
1742 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1743 
1744 	/* Put hardware reset. */
1745 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1746 
1747 	mskc_status_dma_free(sc);
1748 
1749 	if (sc->msk_irq != NULL) {
1750 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1751 				     sc->msk_irq);
1752 	}
1753 	if (sc->msk_res != NULL) {
1754 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1755 				     sc->msk_res);
1756 	}
1757 
1758 	if (sc->msk_sysctl_tree != NULL)
1759 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1760 
1761 	return (0);
1762 }
1763 
1764 static void
1765 msk_dmamap_mbuf_cb(void *arg, bus_dma_segment_t *segs, int nseg,
1766 		   bus_size_t mapsz __unused, int error)
1767 {
1768 	struct msk_dmamap_arg *ctx = arg;
1769 	int i;
1770 
1771 	if (error)
1772 		return;
1773 
1774 	if (ctx->nseg < nseg) {
1775 		ctx->nseg = 0;
1776 		return;
1777 	}
1778 
1779 	ctx->nseg = nseg;
1780 	for (i = 0; i < ctx->nseg; ++i)
1781 		ctx->segs[i] = segs[i];
1782 }
1783 
1784 static void
1785 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1786 {
1787 	struct msk_dmamap_arg *ctx = arg;
1788 	int i;
1789 
1790 	if (error)
1791 		return;
1792 
1793 	KKASSERT(nseg <= ctx->nseg);
1794 
1795 	ctx->nseg = nseg;
1796 	for (i = 0; i < ctx->nseg; ++i)
1797 		ctx->segs[i] = segs[i];
1798 }
1799 
1800 /* Create status DMA region. */
1801 static int
1802 mskc_status_dma_alloc(struct msk_softc *sc)
1803 {
1804 	struct msk_dmamap_arg ctx;
1805 	bus_dma_segment_t seg;
1806 	int error;
1807 
1808 	error = bus_dma_tag_create(
1809 		    NULL,			/* XXX parent */
1810 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1811 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1812 		    BUS_SPACE_MAXADDR,		/* highaddr */
1813 		    NULL, NULL,			/* filter, filterarg */
1814 		    MSK_STAT_RING_SZ,		/* maxsize */
1815 		    1,				/* nsegments */
1816 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1817 		    0,				/* flags */
1818 		    &sc->msk_stat_tag);
1819 	if (error) {
1820 		device_printf(sc->msk_dev,
1821 		    "failed to create status DMA tag\n");
1822 		return (error);
1823 	}
1824 
1825 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1826 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1827 				 (void **)&sc->msk_stat_ring,
1828 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1829 				 &sc->msk_stat_map);
1830 	if (error) {
1831 		device_printf(sc->msk_dev,
1832 		    "failed to allocate DMA'able memory for status ring\n");
1833 		bus_dma_tag_destroy(sc->msk_stat_tag);
1834 		sc->msk_stat_tag = NULL;
1835 		return (error);
1836 	}
1837 
1838 	bzero(&ctx, sizeof(ctx));
1839 	ctx.nseg = 1;
1840 	ctx.segs = &seg;
1841 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
1842 				sc->msk_stat_ring, MSK_STAT_RING_SZ,
1843 				msk_dmamap_cb, &ctx, 0);
1844 	if (error) {
1845 		device_printf(sc->msk_dev,
1846 		    "failed to load DMA'able memory for status ring\n");
1847 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1848 				sc->msk_stat_map);
1849 		bus_dma_tag_destroy(sc->msk_stat_tag);
1850 		sc->msk_stat_tag = NULL;
1851 		return (error);
1852 	}
1853 	sc->msk_stat_ring_paddr = seg.ds_addr;
1854 
1855 	return (0);
1856 }
1857 
1858 static void
1859 mskc_status_dma_free(struct msk_softc *sc)
1860 {
1861 	/* Destroy status block. */
1862 	if (sc->msk_stat_tag) {
1863 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1864 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1865 				sc->msk_stat_map);
1866 		bus_dma_tag_destroy(sc->msk_stat_tag);
1867 		sc->msk_stat_tag = NULL;
1868 	}
1869 }
1870 
1871 static int
1872 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1873 {
1874 	int error, i, j;
1875 #ifdef MSK_JUMBO
1876 	struct msk_rxdesc *jrxd;
1877 	struct msk_jpool_entry *entry;
1878 	uint8_t *ptr;
1879 #endif
1880 
1881 	/* Create parent DMA tag. */
1882 	/*
1883 	 * XXX
1884 	 * It seems that Yukon II supports full 64bits DMA operations. But
1885 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1886 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1887 	 * would be used in advance for each mbufs, we limits its DMA space
1888 	 * to be in range of 32bits address space. Otherwise, we should check
1889 	 * what DMA address is used and chain another descriptor for the
1890 	 * 64bits DMA operation. This also means descriptor ring size is
1891 	 * variable. Limiting DMA address to be in 32bit address space greatly
1892 	 * simplyfies descriptor handling and possibly would increase
1893 	 * performance a bit due to efficient handling of descriptors.
1894 	 * Apart from harassing checksum offloading mechanisms, it seems
1895 	 * it's really bad idea to use a seperate descriptor for 64bit
1896 	 * DMA operation to save small descriptor memory. Anyway, I've
1897 	 * never seen these exotic scheme on ethernet interface hardware.
1898 	 */
1899 	error = bus_dma_tag_create(
1900 		    NULL,			/* parent */
1901 		    1, 0,			/* alignment, boundary */
1902 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1903 		    BUS_SPACE_MAXADDR,		/* highaddr */
1904 		    NULL, NULL,			/* filter, filterarg */
1905 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1906 		    0,				/* nsegments */
1907 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1908 		    0,				/* flags */
1909 		    &sc_if->msk_cdata.msk_parent_tag);
1910 	if (error) {
1911 		device_printf(sc_if->msk_if_dev,
1912 			      "failed to create parent DMA tag\n");
1913 		return error;
1914 	}
1915 
1916 	/* Create DMA stuffs for Tx ring. */
1917 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1918 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1919 				  (void **)&sc_if->msk_rdata.msk_tx_ring,
1920 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1921 				  &sc_if->msk_cdata.msk_tx_ring_map);
1922 	if (error) {
1923 		device_printf(sc_if->msk_if_dev,
1924 			      "failed to create TX ring DMA stuffs\n");
1925 		return error;
1926 	}
1927 
1928 	/* Create DMA stuffs for Rx ring. */
1929 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1930 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1931 				  (void **)&sc_if->msk_rdata.msk_rx_ring,
1932 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1933 				  &sc_if->msk_cdata.msk_rx_ring_map);
1934 	if (error) {
1935 		device_printf(sc_if->msk_if_dev,
1936 			      "failed to create RX ring DMA stuffs\n");
1937 		return error;
1938 	}
1939 
1940 	/* Create tag for Tx buffers. */
1941 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1942 		    1, 0,			/* alignment, boundary */
1943 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1944 		    BUS_SPACE_MAXADDR,		/* highaddr */
1945 		    NULL, NULL,			/* filter, filterarg */
1946 		    MSK_TSO_MAXSIZE,		/* maxsize */
1947 		    MSK_MAXTXSEGS,		/* nsegments */
1948 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
1949 		    0,				/* flags */
1950 		    &sc_if->msk_cdata.msk_tx_tag);
1951 	if (error) {
1952 		device_printf(sc_if->msk_if_dev,
1953 			      "failed to create Tx DMA tag\n");
1954 		return error;
1955 	}
1956 
1957 	/* Create DMA maps for Tx buffers. */
1958 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1959 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1960 
1961 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
1962 		    &txd->tx_dmamap);
1963 		if (error) {
1964 			device_printf(sc_if->msk_if_dev,
1965 				      "failed to create %dth Tx dmamap\n", i);
1966 
1967 			for (j = 0; j < i; ++j) {
1968 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1969 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1970 						   txd->tx_dmamap);
1971 			}
1972 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1973 			sc_if->msk_cdata.msk_tx_tag = NULL;
1974 
1975 			return error;
1976 		}
1977 	}
1978 
1979 	/* Create tag for Rx buffers. */
1980 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1981 		    1, 0,			/* alignment, boundary */
1982 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1983 		    BUS_SPACE_MAXADDR,		/* highaddr */
1984 		    NULL, NULL,			/* filter, filterarg */
1985 		    MCLBYTES,			/* maxsize */
1986 		    1,				/* nsegments */
1987 		    MCLBYTES,			/* maxsegsize */
1988 		    0,				/* flags */
1989 		    &sc_if->msk_cdata.msk_rx_tag);
1990 	if (error) {
1991 		device_printf(sc_if->msk_if_dev,
1992 			      "failed to create Rx DMA tag\n");
1993 		return error;
1994 	}
1995 
1996 	/* Create DMA maps for Rx buffers. */
1997 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
1998 				  &sc_if->msk_cdata.msk_rx_sparemap);
1999 	if (error) {
2000 		device_printf(sc_if->msk_if_dev,
2001 			      "failed to create spare Rx dmamap\n");
2002 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2003 		sc_if->msk_cdata.msk_rx_tag = NULL;
2004 		return error;
2005 	}
2006 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2007 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2008 
2009 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2010 					  &rxd->rx_dmamap);
2011 		if (error) {
2012 			device_printf(sc_if->msk_if_dev,
2013 				      "failed to create %dth Rx dmamap\n", i);
2014 
2015 			for (j = 0; j < i; ++j) {
2016 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2017 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2018 						   rxd->rx_dmamap);
2019 			}
2020 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2021 			sc_if->msk_cdata.msk_rx_tag = NULL;
2022 
2023 			return error;
2024 		}
2025 	}
2026 
2027 #ifdef MSK_JUMBO
2028 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2029 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2030 
2031 	/* Create tag for jumbo Rx ring. */
2032 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2033 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2034 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2035 		    BUS_SPACE_MAXADDR,		/* highaddr */
2036 		    NULL, NULL,			/* filter, filterarg */
2037 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2038 		    1,				/* nsegments */
2039 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2040 		    0,				/* flags */
2041 		    NULL, NULL,			/* lockfunc, lockarg */
2042 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2043 	if (error != 0) {
2044 		device_printf(sc_if->msk_if_dev,
2045 		    "failed to create jumbo Rx ring DMA tag\n");
2046 		goto fail;
2047 	}
2048 
2049 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2050 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2051 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2052 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2053 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2054 	if (error != 0) {
2055 		device_printf(sc_if->msk_if_dev,
2056 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2057 		goto fail;
2058 	}
2059 
2060 	ctx.msk_busaddr = 0;
2061 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2062 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2063 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2064 	    msk_dmamap_cb, &ctx, 0);
2065 	if (error != 0) {
2066 		device_printf(sc_if->msk_if_dev,
2067 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2068 		goto fail;
2069 	}
2070 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2071 
2072 	/* Create tag for jumbo buffer blocks. */
2073 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2074 		    PAGE_SIZE, 0,		/* alignment, boundary */
2075 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2076 		    BUS_SPACE_MAXADDR,		/* highaddr */
2077 		    NULL, NULL,			/* filter, filterarg */
2078 		    MSK_JMEM,			/* maxsize */
2079 		    1,				/* nsegments */
2080 		    MSK_JMEM,			/* maxsegsize */
2081 		    0,				/* flags */
2082 		    NULL, NULL,			/* lockfunc, lockarg */
2083 		    &sc_if->msk_cdata.msk_jumbo_tag);
2084 	if (error != 0) {
2085 		device_printf(sc_if->msk_if_dev,
2086 		    "failed to create jumbo Rx buffer block DMA tag\n");
2087 		goto fail;
2088 	}
2089 
2090 	/* Create tag for jumbo Rx buffers. */
2091 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2092 		    PAGE_SIZE, 0,		/* alignment, boundary */
2093 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2094 		    BUS_SPACE_MAXADDR,		/* highaddr */
2095 		    NULL, NULL,			/* filter, filterarg */
2096 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2097 		    MSK_MAXRXSEGS,		/* nsegments */
2098 		    MSK_JLEN,			/* maxsegsize */
2099 		    0,				/* flags */
2100 		    NULL, NULL,			/* lockfunc, lockarg */
2101 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2102 	if (error != 0) {
2103 		device_printf(sc_if->msk_if_dev,
2104 		    "failed to create jumbo Rx DMA tag\n");
2105 		goto fail;
2106 	}
2107 
2108 	/* Create DMA maps for jumbo Rx buffers. */
2109 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2110 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2111 		device_printf(sc_if->msk_if_dev,
2112 		    "failed to create spare jumbo Rx dmamap\n");
2113 		goto fail;
2114 	}
2115 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2116 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2117 		jrxd->rx_m = NULL;
2118 		jrxd->rx_dmamap = NULL;
2119 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2120 		    &jrxd->rx_dmamap);
2121 		if (error != 0) {
2122 			device_printf(sc_if->msk_if_dev,
2123 			    "failed to create jumbo Rx dmamap\n");
2124 			goto fail;
2125 		}
2126 	}
2127 
2128 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2129 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2130 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2131 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2132 	    &sc_if->msk_cdata.msk_jumbo_map);
2133 	if (error != 0) {
2134 		device_printf(sc_if->msk_if_dev,
2135 		    "failed to allocate DMA'able memory for jumbo buf\n");
2136 		goto fail;
2137 	}
2138 
2139 	ctx.msk_busaddr = 0;
2140 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2141 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2142 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2143 	if (error != 0) {
2144 		device_printf(sc_if->msk_if_dev,
2145 		    "failed to load DMA'able memory for jumbobuf\n");
2146 		goto fail;
2147 	}
2148 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2149 
2150 	/*
2151 	 * Now divide it up into 9K pieces and save the addresses
2152 	 * in an array.
2153 	 */
2154 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2155 	for (i = 0; i < MSK_JSLOTS; i++) {
2156 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2157 		ptr += MSK_JLEN;
2158 		entry = malloc(sizeof(struct msk_jpool_entry),
2159 		    M_DEVBUF, M_WAITOK);
2160 		if (entry == NULL) {
2161 			device_printf(sc_if->msk_if_dev,
2162 			    "no memory for jumbo buffers!\n");
2163 			error = ENOMEM;
2164 			goto fail;
2165 		}
2166 		entry->slot = i;
2167 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2168 		    jpool_entries);
2169 	}
2170 #endif
2171 	return 0;
2172 }
2173 
2174 static void
2175 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2176 {
2177 	struct msk_txdesc *txd;
2178 	struct msk_rxdesc *rxd;
2179 #ifdef MSK_JUMBO
2180 	struct msk_rxdesc *jrxd;
2181 	struct msk_jpool_entry *entry;
2182 #endif
2183 	int i;
2184 
2185 #ifdef MSK_JUMBO
2186 	MSK_JLIST_LOCK(sc_if);
2187 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2188 		device_printf(sc_if->msk_if_dev,
2189 		    "asked to free buffer that is in use!\n");
2190 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2191 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2192 		    jpool_entries);
2193 	}
2194 
2195 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2196 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2197 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2198 		free(entry, M_DEVBUF);
2199 	}
2200 	MSK_JLIST_UNLOCK(sc_if);
2201 
2202 	/* Destroy jumbo buffer block. */
2203 	if (sc_if->msk_cdata.msk_jumbo_map)
2204 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2205 		    sc_if->msk_cdata.msk_jumbo_map);
2206 
2207 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2208 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2209 		    sc_if->msk_rdata.msk_jumbo_buf,
2210 		    sc_if->msk_cdata.msk_jumbo_map);
2211 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2212 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2213 	}
2214 
2215 	/* Jumbo Rx ring. */
2216 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2217 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2218 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2219 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2220 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2221 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2222 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2223 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2224 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2225 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2226 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2227 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2228 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2229 	}
2230 
2231 	/* Jumbo Rx buffers. */
2232 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2233 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2234 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2235 			if (jrxd->rx_dmamap) {
2236 				bus_dmamap_destroy(
2237 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2238 				    jrxd->rx_dmamap);
2239 				jrxd->rx_dmamap = NULL;
2240 			}
2241 		}
2242 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2243 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2244 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2245 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2246 		}
2247 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2248 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2249 	}
2250 #endif
2251 
2252 	/* Tx ring. */
2253 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2254 			   sc_if->msk_rdata.msk_tx_ring,
2255 			   sc_if->msk_cdata.msk_tx_ring_map);
2256 
2257 	/* Rx ring. */
2258 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2259 			   sc_if->msk_rdata.msk_rx_ring,
2260 			   sc_if->msk_cdata.msk_rx_ring_map);
2261 
2262 	/* Tx buffers. */
2263 	if (sc_if->msk_cdata.msk_tx_tag) {
2264 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2265 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2266 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2267 					   txd->tx_dmamap);
2268 		}
2269 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2270 		sc_if->msk_cdata.msk_tx_tag = NULL;
2271 	}
2272 
2273 	/* Rx buffers. */
2274 	if (sc_if->msk_cdata.msk_rx_tag) {
2275 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2276 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2277 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2278 					   rxd->rx_dmamap);
2279 		}
2280 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2281 				   sc_if->msk_cdata.msk_rx_sparemap);
2282 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2283 		sc_if->msk_cdata.msk_rx_tag = NULL;
2284 	}
2285 
2286 	if (sc_if->msk_cdata.msk_parent_tag) {
2287 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2288 		sc_if->msk_cdata.msk_parent_tag = NULL;
2289 	}
2290 }
2291 
2292 #ifdef MSK_JUMBO
2293 /*
2294  * Allocate a jumbo buffer.
2295  */
2296 static void *
2297 msk_jalloc(struct msk_if_softc *sc_if)
2298 {
2299 	struct msk_jpool_entry *entry;
2300 
2301 	MSK_JLIST_LOCK(sc_if);
2302 
2303 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2304 
2305 	if (entry == NULL) {
2306 		MSK_JLIST_UNLOCK(sc_if);
2307 		return (NULL);
2308 	}
2309 
2310 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2311 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2312 
2313 	MSK_JLIST_UNLOCK(sc_if);
2314 
2315 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2316 }
2317 
2318 /*
2319  * Release a jumbo buffer.
2320  */
2321 static void
2322 msk_jfree(void *buf, void *args)
2323 {
2324 	struct msk_if_softc *sc_if;
2325 	struct msk_jpool_entry *entry;
2326 	int i;
2327 
2328 	/* Extract the softc struct pointer. */
2329 	sc_if = (struct msk_if_softc *)args;
2330 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2331 
2332 	MSK_JLIST_LOCK(sc_if);
2333 	/* Calculate the slot this buffer belongs to. */
2334 	i = ((vm_offset_t)buf
2335 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2336 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2337 	    ("%s: asked to free buffer that we don't manage!", __func__));
2338 
2339 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2340 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2341 	entry->slot = i;
2342 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2343 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2344 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2345 		wakeup(sc_if);
2346 
2347 	MSK_JLIST_UNLOCK(sc_if);
2348 }
2349 #endif
2350 
2351 /*
2352  * It's copy of ath_defrag(ath(4)).
2353  *
2354  * Defragment an mbuf chain, returning at most maxfrags separate
2355  * mbufs+clusters.  If this is not possible NULL is returned and
2356  * the original mbuf chain is left in it's present (potentially
2357  * modified) state.  We use two techniques: collapsing consecutive
2358  * mbufs and replacing consecutive mbufs by a cluster.
2359  */
2360 static struct mbuf *
2361 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2362 {
2363 	struct mbuf *m, *n, *n2, **prev;
2364 	u_int curfrags;
2365 
2366 	/*
2367 	 * Calculate the current number of frags.
2368 	 */
2369 	curfrags = 0;
2370 	for (m = m0; m != NULL; m = m->m_next)
2371 		curfrags++;
2372 	/*
2373 	 * First, try to collapse mbufs.  Note that we always collapse
2374 	 * towards the front so we don't need to deal with moving the
2375 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2376 	 * less data than the following.
2377 	 */
2378 	m = m0;
2379 again:
2380 	for (;;) {
2381 		n = m->m_next;
2382 		if (n == NULL)
2383 			break;
2384 		if (n->m_len < M_TRAILINGSPACE(m)) {
2385 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2386 				n->m_len);
2387 			m->m_len += n->m_len;
2388 			m->m_next = n->m_next;
2389 			m_free(n);
2390 			if (--curfrags <= maxfrags)
2391 				return (m0);
2392 		} else
2393 			m = n;
2394 	}
2395 	KASSERT(maxfrags > 1,
2396 		("maxfrags %u, but normal collapse failed", maxfrags));
2397 	/*
2398 	 * Collapse consecutive mbufs to a cluster.
2399 	 */
2400 	prev = &m0->m_next;		/* NB: not the first mbuf */
2401 	while ((n = *prev) != NULL) {
2402 		if ((n2 = n->m_next) != NULL &&
2403 		    n->m_len + n2->m_len < MCLBYTES) {
2404 			m = m_getcl(how, MT_DATA, 0);
2405 			if (m == NULL)
2406 				goto bad;
2407 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2408 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2409 				n2->m_len);
2410 			m->m_len = n->m_len + n2->m_len;
2411 			m->m_next = n2->m_next;
2412 			*prev = m;
2413 			m_free(n);
2414 			m_free(n2);
2415 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2416 				return m0;
2417 			/*
2418 			 * Still not there, try the normal collapse
2419 			 * again before we allocate another cluster.
2420 			 */
2421 			goto again;
2422 		}
2423 		prev = &n->m_next;
2424 	}
2425 	/*
2426 	 * No place where we can collapse to a cluster; punt.
2427 	 * This can occur if, for example, you request 2 frags
2428 	 * but the packet requires that both be clusters (we
2429 	 * never reallocate the first mbuf to avoid moving the
2430 	 * packet header).
2431 	 */
2432 bad:
2433 	return (NULL);
2434 }
2435 
2436 static int
2437 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2438 {
2439 	struct msk_txdesc *txd, *txd_last;
2440 	struct msk_tx_desc *tx_le;
2441 	struct mbuf *m;
2442 	bus_dmamap_t map;
2443 	struct msk_dmamap_arg ctx;
2444 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2445 	uint32_t control, prod, si;
2446 	uint16_t offset, tcp_offset;
2447 	int error, i;
2448 
2449 	tcp_offset = offset = 0;
2450 	m = *m_head;
2451 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2452 		/*
2453 		 * Since mbuf has no protocol specific structure information
2454 		 * in it we have to inspect protocol information here to
2455 		 * setup TSO and checksum offload. I don't know why Marvell
2456 		 * made a such decision in chip design because other GigE
2457 		 * hardwares normally takes care of all these chores in
2458 		 * hardware. However, TSO performance of Yukon II is very
2459 		 * good such that it's worth to implement it.
2460 		 */
2461 		struct ether_header *eh;
2462 		struct ip *ip;
2463 
2464 		/* TODO check for M_WRITABLE(m) */
2465 
2466 		offset = sizeof(struct ether_header);
2467 		m = m_pullup(m, offset);
2468 		if (m == NULL) {
2469 			*m_head = NULL;
2470 			return (ENOBUFS);
2471 		}
2472 		eh = mtod(m, struct ether_header *);
2473 		/* Check if hardware VLAN insertion is off. */
2474 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2475 			offset = sizeof(struct ether_vlan_header);
2476 			m = m_pullup(m, offset);
2477 			if (m == NULL) {
2478 				*m_head = NULL;
2479 				return (ENOBUFS);
2480 			}
2481 		}
2482 		m = m_pullup(m, offset + sizeof(struct ip));
2483 		if (m == NULL) {
2484 			*m_head = NULL;
2485 			return (ENOBUFS);
2486 		}
2487 		ip = (struct ip *)(mtod(m, char *) + offset);
2488 		offset += (ip->ip_hl << 2);
2489 		tcp_offset = offset;
2490 		/*
2491 		 * It seems that Yukon II has Tx checksum offload bug for
2492 		 * small TCP packets that's less than 60 bytes in size
2493 		 * (e.g. TCP window probe packet, pure ACK packet).
2494 		 * Common work around like padding with zeros to make the
2495 		 * frame minimum ethernet frame size didn't work at all.
2496 		 * Instead of disabling checksum offload completely we
2497 		 * resort to S/W checksum routine when we encounter short
2498 		 * TCP frames.
2499 		 * Short UDP packets appear to be handled correctly by
2500 		 * Yukon II.
2501 		 */
2502 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2503 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2504 			uint16_t csum;
2505 
2506 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2507 			    (ip->ip_hl << 2), offset);
2508 			*(uint16_t *)(m->m_data + offset +
2509 			    m->m_pkthdr.csum_data) = csum;
2510 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2511 		}
2512 		*m_head = m;
2513 	}
2514 
2515 	prod = sc_if->msk_cdata.msk_tx_prod;
2516 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2517 	txd_last = txd;
2518 	map = txd->tx_dmamap;
2519 	bzero(&ctx, sizeof(ctx));
2520 	ctx.nseg = MSK_MAXTXSEGS;
2521 	ctx.segs = txsegs;
2522 	error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag, map,
2523 	    *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2524 	if (error == 0 && ctx.nseg == 0) {
2525 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2526 		error = EFBIG;
2527 	}
2528 	if (error == EFBIG) {
2529 		m = msk_defrag(*m_head, MB_DONTWAIT, MSK_MAXTXSEGS);
2530 		if (m == NULL) {
2531 			m_freem(*m_head);
2532 			*m_head = NULL;
2533 			return (ENOBUFS);
2534 		}
2535 		*m_head = m;
2536 
2537 		bzero(&ctx, sizeof(ctx));
2538 		ctx.nseg = MSK_MAXTXSEGS;
2539 		ctx.segs = txsegs;
2540 		error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag,
2541 		    map, *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2542 		if (error == 0 && ctx.nseg == 0) {
2543 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2544 			error = EFBIG;
2545 		}
2546 		if (error != 0) {
2547 			m_freem(*m_head);
2548 			*m_head = NULL;
2549 			return (error);
2550 		}
2551 	} else if (error != 0) {
2552 		return (error);
2553 	}
2554 
2555 	/* Check number of available descriptors. */
2556 	if (sc_if->msk_cdata.msk_tx_cnt + ctx.nseg >=
2557 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2558 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2559 		return (ENOBUFS);
2560 	}
2561 
2562 	control = 0;
2563 	tx_le = NULL;
2564 
2565 #ifdef notyet
2566 	/* Check if we have a VLAN tag to insert. */
2567 	if ((m->m_flags & M_VLANTAG) != 0) {
2568 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2569 		tx_le->msk_addr = htole32(0);
2570 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2571 		    htons(m->m_pkthdr.ether_vtag));
2572 		sc_if->msk_cdata.msk_tx_cnt++;
2573 		MSK_INC(prod, MSK_TX_RING_CNT);
2574 		control |= INS_VLAN;
2575 	}
2576 #endif
2577 	/* Check if we have to handle checksum offload. */
2578 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2579 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2580 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2581 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2582 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2583 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2584 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2585 			control |= UDPTCP;
2586 		sc_if->msk_cdata.msk_tx_cnt++;
2587 		MSK_INC(prod, MSK_TX_RING_CNT);
2588 	}
2589 
2590 	si = prod;
2591 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2592 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2593 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2594 	    OP_PACKET);
2595 	sc_if->msk_cdata.msk_tx_cnt++;
2596 	MSK_INC(prod, MSK_TX_RING_CNT);
2597 
2598 	for (i = 1; i < ctx.nseg; i++) {
2599 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2600 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2601 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2602 		    OP_BUFFER | HW_OWNER);
2603 		sc_if->msk_cdata.msk_tx_cnt++;
2604 		MSK_INC(prod, MSK_TX_RING_CNT);
2605 	}
2606 	/* Update producer index. */
2607 	sc_if->msk_cdata.msk_tx_prod = prod;
2608 
2609 	/* Set EOP on the last desciptor. */
2610 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2611 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2612 	tx_le->msk_control |= htole32(EOP);
2613 
2614 	/* Turn the first descriptor ownership to hardware. */
2615 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2616 	tx_le->msk_control |= htole32(HW_OWNER);
2617 
2618 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2619 	map = txd_last->tx_dmamap;
2620 	txd_last->tx_dmamap = txd->tx_dmamap;
2621 	txd->tx_dmamap = map;
2622 	txd->tx_m = m;
2623 
2624 	/* Sync descriptors. */
2625 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2626 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2627 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
2628 
2629 	return (0);
2630 }
2631 
2632 static void
2633 msk_start(struct ifnet *ifp)
2634 {
2635         struct msk_if_softc *sc_if;
2636         struct mbuf *m_head;
2637 	int enq;
2638 
2639 	sc_if = ifp->if_softc;
2640 
2641 	ASSERT_SERIALIZED(ifp->if_serializer);
2642 
2643 	if (!sc_if->msk_link) {
2644 		ifq_purge(&ifp->if_snd);
2645 		return;
2646 	}
2647 
2648 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2649 		return;
2650 
2651 	for (enq = 0; !ifq_is_empty(&ifp->if_snd) &&
2652 	    sc_if->msk_cdata.msk_tx_cnt <
2653 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2654 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2655 		if (m_head == NULL)
2656 			break;
2657 
2658 		/*
2659 		 * Pack the data into the transmit ring. If we
2660 		 * don't have room, set the OACTIVE flag and wait
2661 		 * for the NIC to drain the ring.
2662 		 */
2663 		if (msk_encap(sc_if, &m_head) != 0) {
2664 			if (m_head == NULL)
2665 				break;
2666 			m_freem(m_head);
2667 			ifp->if_flags |= IFF_OACTIVE;
2668 			break;
2669 		}
2670 
2671 		enq++;
2672 		/*
2673 		 * If there's a BPF listener, bounce a copy of this frame
2674 		 * to him.
2675 		 */
2676 		BPF_MTAP(ifp, m_head);
2677 	}
2678 
2679 	if (enq > 0) {
2680 		/* Transmit */
2681 		CSR_WRITE_2(sc_if->msk_softc,
2682 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2683 		    sc_if->msk_cdata.msk_tx_prod);
2684 
2685 		/* Set a timeout in case the chip goes out to lunch. */
2686 		ifp->if_timer = MSK_TX_TIMEOUT;
2687 	}
2688 }
2689 
2690 static void
2691 msk_watchdog(struct ifnet *ifp)
2692 {
2693 	struct msk_if_softc *sc_if = ifp->if_softc;
2694 	uint32_t ridx;
2695 	int idx;
2696 
2697 	ASSERT_SERIALIZED(ifp->if_serializer);
2698 
2699 	if (sc_if->msk_link == 0) {
2700 		if (bootverbose)
2701 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2702 			   "(missed link)\n");
2703 		ifp->if_oerrors++;
2704 		msk_init(sc_if);
2705 		return;
2706 	}
2707 
2708 	/*
2709 	 * Reclaim first as there is a possibility of losing Tx completion
2710 	 * interrupts.
2711 	 */
2712 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2713 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2714 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2715 		msk_txeof(sc_if, idx);
2716 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2717 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2718 			    "-- recovering\n");
2719 			if (!ifq_is_empty(&ifp->if_snd))
2720 				if_devstart(ifp);
2721 			return;
2722 		}
2723 	}
2724 
2725 	if_printf(ifp, "watchdog timeout\n");
2726 	ifp->if_oerrors++;
2727 	msk_init(sc_if);
2728 	if (!ifq_is_empty(&ifp->if_snd))
2729 		if_devstart(ifp);
2730 }
2731 
2732 static int
2733 mskc_shutdown(device_t dev)
2734 {
2735 	struct msk_softc *sc = device_get_softc(dev);
2736 	int i;
2737 
2738 	lwkt_serialize_enter(&sc->msk_serializer);
2739 
2740 	for (i = 0; i < sc->msk_num_port; i++) {
2741 		if (sc->msk_if[i] != NULL)
2742 			msk_stop(sc->msk_if[i]);
2743 	}
2744 
2745 	/* Disable all interrupts. */
2746 	CSR_WRITE_4(sc, B0_IMSK, 0);
2747 	CSR_READ_4(sc, B0_IMSK);
2748 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2749 	CSR_READ_4(sc, B0_HWE_IMSK);
2750 
2751 	/* Put hardware reset. */
2752 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2753 
2754 	lwkt_serialize_exit(&sc->msk_serializer);
2755 	return (0);
2756 }
2757 
2758 static int
2759 mskc_suspend(device_t dev)
2760 {
2761 	struct msk_softc *sc = device_get_softc(dev);
2762 	int i;
2763 
2764 	lwkt_serialize_enter(&sc->msk_serializer);
2765 
2766 	for (i = 0; i < sc->msk_num_port; i++) {
2767 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2768 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2769 			msk_stop(sc->msk_if[i]);
2770 	}
2771 
2772 	/* Disable all interrupts. */
2773 	CSR_WRITE_4(sc, B0_IMSK, 0);
2774 	CSR_READ_4(sc, B0_IMSK);
2775 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2776 	CSR_READ_4(sc, B0_HWE_IMSK);
2777 
2778 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2779 
2780 	/* Put hardware reset. */
2781 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2782 	sc->msk_suspended = 1;
2783 
2784 	lwkt_serialize_exit(&sc->msk_serializer);
2785 
2786 	return (0);
2787 }
2788 
2789 static int
2790 mskc_resume(device_t dev)
2791 {
2792 	struct msk_softc *sc = device_get_softc(dev);
2793 	int i;
2794 
2795 	lwkt_serialize_enter(&sc->msk_serializer);
2796 
2797 	mskc_reset(sc);
2798 	for (i = 0; i < sc->msk_num_port; i++) {
2799 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2800 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2801 			msk_init(sc->msk_if[i]);
2802 	}
2803 	sc->msk_suspended = 0;
2804 
2805 	lwkt_serialize_exit(&sc->msk_serializer);
2806 
2807 	return (0);
2808 }
2809 
2810 static void
2811 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2812 	  struct mbuf_chain *chain)
2813 {
2814 	struct mbuf *m;
2815 	struct ifnet *ifp;
2816 	struct msk_rxdesc *rxd;
2817 	int cons, rxlen;
2818 
2819 	ifp = sc_if->msk_ifp;
2820 
2821 	cons = sc_if->msk_cdata.msk_rx_cons;
2822 	do {
2823 		rxlen = status >> 16;
2824 		if ((status & GMR_FS_VLAN) != 0 &&
2825 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2826 			rxlen -= EVL_ENCAPLEN;
2827 		if (len > sc_if->msk_framesize ||
2828 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2829 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2830 			/* Don't count flow-control packet as errors. */
2831 			if ((status & GMR_FS_GOOD_FC) == 0)
2832 				ifp->if_ierrors++;
2833 			msk_discard_rxbuf(sc_if, cons);
2834 			break;
2835 		}
2836 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2837 		m = rxd->rx_m;
2838 		if (msk_newbuf(sc_if, cons) != 0) {
2839 			ifp->if_iqdrops++;
2840 			/* Reuse old buffer. */
2841 			msk_discard_rxbuf(sc_if, cons);
2842 			break;
2843 		}
2844 		m->m_pkthdr.rcvif = ifp;
2845 		m->m_pkthdr.len = m->m_len = len;
2846 		ifp->if_ipackets++;
2847 #ifdef notyet
2848 		/* Check for VLAN tagged packets. */
2849 		if ((status & GMR_FS_VLAN) != 0 &&
2850 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2851 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2852 			m->m_flags |= M_VLANTAG;
2853 		}
2854 #endif
2855 
2856 #ifdef ETHER_INPUT_CHAIN
2857 		ether_input_chain2(ifp, m, chain);
2858 #else
2859 		ifp->if_input(ifp, m);
2860 #endif
2861 	} while (0);
2862 
2863 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2864 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2865 }
2866 
2867 #ifdef MSK_JUMBO
2868 static void
2869 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2870 {
2871 	struct mbuf *m;
2872 	struct ifnet *ifp;
2873 	struct msk_rxdesc *jrxd;
2874 	int cons, rxlen;
2875 
2876 	ifp = sc_if->msk_ifp;
2877 
2878 	MSK_IF_LOCK_ASSERT(sc_if);
2879 
2880 	cons = sc_if->msk_cdata.msk_rx_cons;
2881 	do {
2882 		rxlen = status >> 16;
2883 		if ((status & GMR_FS_VLAN) != 0 &&
2884 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2885 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2886 		if (len > sc_if->msk_framesize ||
2887 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2888 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2889 			/* Don't count flow-control packet as errors. */
2890 			if ((status & GMR_FS_GOOD_FC) == 0)
2891 				ifp->if_ierrors++;
2892 			msk_discard_jumbo_rxbuf(sc_if, cons);
2893 			break;
2894 		}
2895 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2896 		m = jrxd->rx_m;
2897 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2898 			ifp->if_iqdrops++;
2899 			/* Reuse old buffer. */
2900 			msk_discard_jumbo_rxbuf(sc_if, cons);
2901 			break;
2902 		}
2903 		m->m_pkthdr.rcvif = ifp;
2904 		m->m_pkthdr.len = m->m_len = len;
2905 		ifp->if_ipackets++;
2906 		/* Check for VLAN tagged packets. */
2907 		if ((status & GMR_FS_VLAN) != 0 &&
2908 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2909 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2910 			m->m_flags |= M_VLANTAG;
2911 		}
2912 		MSK_IF_UNLOCK(sc_if);
2913 		(*ifp->if_input)(ifp, m);
2914 		MSK_IF_LOCK(sc_if);
2915 	} while (0);
2916 
2917 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2918 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2919 }
2920 #endif
2921 
2922 static void
2923 msk_txeof(struct msk_if_softc *sc_if, int idx)
2924 {
2925 	struct msk_txdesc *txd;
2926 	struct msk_tx_desc *cur_tx;
2927 	struct ifnet *ifp;
2928 	uint32_t control;
2929 	int cons, prog;
2930 
2931 	ifp = sc_if->msk_ifp;
2932 
2933 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2934 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2935 
2936 	/*
2937 	 * Go through our tx ring and free mbufs for those
2938 	 * frames that have been sent.
2939 	 */
2940 	cons = sc_if->msk_cdata.msk_tx_cons;
2941 	prog = 0;
2942 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2943 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2944 			break;
2945 		prog++;
2946 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2947 		control = le32toh(cur_tx->msk_control);
2948 		sc_if->msk_cdata.msk_tx_cnt--;
2949 		ifp->if_flags &= ~IFF_OACTIVE;
2950 		if ((control & EOP) == 0)
2951 			continue;
2952 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2953 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
2954 		    BUS_DMASYNC_POSTWRITE);
2955 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2956 
2957 		ifp->if_opackets++;
2958 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2959 		    __func__));
2960 		m_freem(txd->tx_m);
2961 		txd->tx_m = NULL;
2962 	}
2963 
2964 	if (prog > 0) {
2965 		sc_if->msk_cdata.msk_tx_cons = cons;
2966 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2967 			ifp->if_timer = 0;
2968 		/* No need to sync LEs as we didn't update LEs. */
2969 	}
2970 }
2971 
2972 static void
2973 msk_tick(void *xsc_if)
2974 {
2975 	struct msk_if_softc *sc_if = xsc_if;
2976 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2977 	struct mii_data *mii;
2978 
2979 	lwkt_serialize_enter(ifp->if_serializer);
2980 
2981 	mii = device_get_softc(sc_if->msk_miibus);
2982 
2983 	mii_tick(mii);
2984 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2985 
2986 	lwkt_serialize_exit(ifp->if_serializer);
2987 }
2988 
2989 static void
2990 msk_intr_phy(struct msk_if_softc *sc_if)
2991 {
2992 	uint16_t status;
2993 
2994 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2995 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2996 	/* Handle FIFO Underrun/Overflow? */
2997 	if (status & PHY_M_IS_FIFO_ERROR) {
2998 		device_printf(sc_if->msk_if_dev,
2999 		    "PHY FIFO underrun/overflow.\n");
3000 	}
3001 }
3002 
3003 static void
3004 msk_intr_gmac(struct msk_if_softc *sc_if)
3005 {
3006 	struct msk_softc *sc;
3007 	uint8_t status;
3008 
3009 	sc = sc_if->msk_softc;
3010 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3011 
3012 	/* GMAC Rx FIFO overrun. */
3013 	if ((status & GM_IS_RX_FF_OR) != 0) {
3014 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3015 		    GMF_CLI_RX_FO);
3016 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3017 	}
3018 	/* GMAC Tx FIFO underrun. */
3019 	if ((status & GM_IS_TX_FF_UR) != 0) {
3020 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3021 		    GMF_CLI_TX_FU);
3022 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3023 		/*
3024 		 * XXX
3025 		 * In case of Tx underrun, we may need to flush/reset
3026 		 * Tx MAC but that would also require resynchronization
3027 		 * with status LEs. Reintializing status LEs would
3028 		 * affect other port in dual MAC configuration so it
3029 		 * should be avoided as possible as we can.
3030 		 * Due to lack of documentation it's all vague guess but
3031 		 * it needs more investigation.
3032 		 */
3033 	}
3034 }
3035 
3036 static void
3037 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3038 {
3039 	struct msk_softc *sc;
3040 
3041 	sc = sc_if->msk_softc;
3042 	if ((status & Y2_IS_PAR_RD1) != 0) {
3043 		device_printf(sc_if->msk_if_dev,
3044 		    "RAM buffer read parity error\n");
3045 		/* Clear IRQ. */
3046 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3047 		    RI_CLR_RD_PERR);
3048 	}
3049 	if ((status & Y2_IS_PAR_WR1) != 0) {
3050 		device_printf(sc_if->msk_if_dev,
3051 		    "RAM buffer write parity error\n");
3052 		/* Clear IRQ. */
3053 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3054 		    RI_CLR_WR_PERR);
3055 	}
3056 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3057 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3058 		/* Clear IRQ. */
3059 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3060 		    GMF_CLI_TX_PE);
3061 	}
3062 	if ((status & Y2_IS_PAR_RX1) != 0) {
3063 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3064 		/* Clear IRQ. */
3065 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3066 	}
3067 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3068 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3069 		/* Clear IRQ. */
3070 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3071 	}
3072 }
3073 
3074 static void
3075 mskc_intr_hwerr(struct msk_softc *sc)
3076 {
3077 	uint32_t status;
3078 	uint32_t tlphead[4];
3079 
3080 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3081 	/* Time Stamp timer overflow. */
3082 	if ((status & Y2_IS_TIST_OV) != 0)
3083 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3084 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3085 		/*
3086 		 * PCI Express Error occured which is not described in PEX
3087 		 * spec.
3088 		 * This error is also mapped either to Master Abort(
3089 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3090 		 * can only be cleared there.
3091                  */
3092 		device_printf(sc->msk_dev,
3093 		    "PCI Express protocol violation error\n");
3094 	}
3095 
3096 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3097 		uint16_t v16;
3098 
3099 		if ((status & Y2_IS_MST_ERR) != 0)
3100 			device_printf(sc->msk_dev,
3101 			    "unexpected IRQ Status error\n");
3102 		else
3103 			device_printf(sc->msk_dev,
3104 			    "unexpected IRQ Master error\n");
3105 		/* Reset all bits in the PCI status register. */
3106 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3107 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3108 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3109 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3110 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3111 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3112 	}
3113 
3114 	/* Check for PCI Express Uncorrectable Error. */
3115 	if ((status & Y2_IS_PCI_EXP) != 0) {
3116 		uint32_t v32;
3117 
3118 		/*
3119 		 * On PCI Express bus bridges are called root complexes (RC).
3120 		 * PCI Express errors are recognized by the root complex too,
3121 		 * which requests the system to handle the problem. After
3122 		 * error occurence it may be that no access to the adapter
3123 		 * may be performed any longer.
3124 		 */
3125 
3126 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3127 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3128 			/* Ignore unsupported request error. */
3129 			if (bootverbose) {
3130 				device_printf(sc->msk_dev,
3131 				    "Uncorrectable PCI Express error\n");
3132 			}
3133 		}
3134 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3135 			int i;
3136 
3137 			/* Get TLP header form Log Registers. */
3138 			for (i = 0; i < 4; i++)
3139 				tlphead[i] = CSR_PCI_READ_4(sc,
3140 				    PEX_HEADER_LOG + i * 4);
3141 			/* Check for vendor defined broadcast message. */
3142 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3143 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3144 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3145 				    sc->msk_intrhwemask);
3146 				CSR_READ_4(sc, B0_HWE_IMSK);
3147 			}
3148 		}
3149 		/* Clear the interrupt. */
3150 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3151 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3152 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3153 	}
3154 
3155 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3156 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3157 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3158 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3159 }
3160 
3161 static __inline void
3162 msk_rxput(struct msk_if_softc *sc_if)
3163 {
3164 	struct msk_softc *sc;
3165 
3166 	sc = sc_if->msk_softc;
3167 #ifdef MSK_JUMBO
3168 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3169 		bus_dmamap_sync(
3170 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3171 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3172 		    BUS_DMASYNC_PREWRITE);
3173 	} else
3174 #endif
3175 	{
3176 		bus_dmamap_sync(
3177 		    sc_if->msk_cdata.msk_rx_ring_tag,
3178 		    sc_if->msk_cdata.msk_rx_ring_map,
3179 		    BUS_DMASYNC_PREWRITE);
3180 	}
3181 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3182 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3183 }
3184 
3185 static int
3186 mskc_handle_events(struct msk_softc *sc)
3187 {
3188 	struct msk_if_softc *sc_if;
3189 	int rxput[2];
3190 	struct msk_stat_desc *sd;
3191 	uint32_t control, status;
3192 	int cons, idx, len, port, rxprog;
3193 #ifdef ETHER_INPUT_CHAIN
3194 	struct mbuf_chain chain0[MAXCPU];
3195 #endif
3196 	struct mbuf_chain *chain;
3197 
3198 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3199 	if (idx == sc->msk_stat_cons)
3200 		return (0);
3201 
3202 #ifdef ETHER_INPUT_CHAIN
3203 	chain = chain0;
3204 	ether_input_chain_init(chain);
3205 #else
3206 	chain = NULL;
3207 #endif
3208 
3209 	/* Sync status LEs. */
3210 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3211 			BUS_DMASYNC_POSTREAD);
3212 	/* XXX Sync Rx LEs here. */
3213 
3214 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3215 
3216 	rxprog = 0;
3217 	for (cons = sc->msk_stat_cons; cons != idx;) {
3218 		sd = &sc->msk_stat_ring[cons];
3219 		control = le32toh(sd->msk_control);
3220 		if ((control & HW_OWNER) == 0)
3221 			break;
3222 		/*
3223 		 * Marvell's FreeBSD driver updates status LE after clearing
3224 		 * HW_OWNER. However we don't have a way to sync single LE
3225 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3226 		 * an entire DMA map. So don't sync LE until we have a better
3227 		 * way to sync LEs.
3228 		 */
3229 		control &= ~HW_OWNER;
3230 		sd->msk_control = htole32(control);
3231 		status = le32toh(sd->msk_status);
3232 		len = control & STLE_LEN_MASK;
3233 		port = (control >> 16) & 0x01;
3234 		sc_if = sc->msk_if[port];
3235 		if (sc_if == NULL) {
3236 			device_printf(sc->msk_dev, "invalid port opcode "
3237 			    "0x%08x\n", control & STLE_OP_MASK);
3238 			continue;
3239 		}
3240 
3241 		switch (control & STLE_OP_MASK) {
3242 		case OP_RXVLAN:
3243 			sc_if->msk_vtag = ntohs(len);
3244 			break;
3245 		case OP_RXCHKSVLAN:
3246 			sc_if->msk_vtag = ntohs(len);
3247 			break;
3248 		case OP_RXSTAT:
3249 #ifdef MSK_JUMBO
3250 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3251 				msk_jumbo_rxeof(sc_if, status, len);
3252 			else
3253 #endif
3254 				msk_rxeof(sc_if, status, len, chain);
3255 			rxprog++;
3256 			/*
3257 			 * Because there is no way to sync single Rx LE
3258 			 * put the DMA sync operation off until the end of
3259 			 * event processing.
3260 			 */
3261 			rxput[port]++;
3262 			/* Update prefetch unit if we've passed water mark. */
3263 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3264 				msk_rxput(sc_if);
3265 				rxput[port] = 0;
3266 			}
3267 			break;
3268 		case OP_TXINDEXLE:
3269 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3270 				msk_txeof(sc->msk_if[MSK_PORT_A],
3271 				    status & STLE_TXA1_MSKL);
3272 			}
3273 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3274 				msk_txeof(sc->msk_if[MSK_PORT_B],
3275 				    ((status & STLE_TXA2_MSKL) >>
3276 				    STLE_TXA2_SHIFTL) |
3277 				    ((len & STLE_TXA2_MSKH) <<
3278 				    STLE_TXA2_SHIFTH));
3279 			}
3280 			break;
3281 		default:
3282 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3283 			    control & STLE_OP_MASK);
3284 			break;
3285 		}
3286 		MSK_INC(cons, MSK_STAT_RING_CNT);
3287 		if (rxprog > sc->msk_process_limit)
3288 			break;
3289 	}
3290 
3291 #ifdef ETHER_INPUT_CHAIN
3292 	if (rxprog > 0)
3293 		ether_input_dispatch(chain);
3294 #endif
3295 
3296 	sc->msk_stat_cons = cons;
3297 	/* XXX We should sync status LEs here. See above notes. */
3298 
3299 	if (rxput[MSK_PORT_A] > 0)
3300 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3301 	if (rxput[MSK_PORT_B] > 0)
3302 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3303 
3304 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3305 }
3306 
3307 /* Legacy interrupt handler for shared interrupt. */
3308 static void
3309 mskc_intr(void *xsc)
3310 {
3311 	struct msk_softc *sc;
3312 	struct msk_if_softc *sc_if0, *sc_if1;
3313 	struct ifnet *ifp0, *ifp1;
3314 	uint32_t status;
3315 
3316 	sc = xsc;
3317 	ASSERT_SERIALIZED(&sc->msk_serializer);
3318 
3319 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3320 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3321 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3322 	    (status & sc->msk_intrmask) == 0) {
3323 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3324 		return;
3325 	}
3326 
3327 	sc_if0 = sc->msk_if[MSK_PORT_A];
3328 	sc_if1 = sc->msk_if[MSK_PORT_B];
3329 	ifp0 = ifp1 = NULL;
3330 	if (sc_if0 != NULL)
3331 		ifp0 = sc_if0->msk_ifp;
3332 	if (sc_if1 != NULL)
3333 		ifp1 = sc_if1->msk_ifp;
3334 
3335 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3336 		msk_intr_phy(sc_if0);
3337 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3338 		msk_intr_phy(sc_if1);
3339 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3340 		msk_intr_gmac(sc_if0);
3341 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3342 		msk_intr_gmac(sc_if1);
3343 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3344 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3345 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3346 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3347 		CSR_READ_4(sc, B0_IMSK);
3348 	}
3349         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3350 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3351 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3352 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3353 		CSR_READ_4(sc, B0_IMSK);
3354 	}
3355 	if ((status & Y2_IS_HW_ERR) != 0)
3356 		mskc_intr_hwerr(sc);
3357 
3358 	while (mskc_handle_events(sc) != 0)
3359 		;
3360 	if ((status & Y2_IS_STAT_BMU) != 0)
3361 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3362 
3363 	/* Reenable interrupts. */
3364 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3365 
3366 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3367 	    !ifq_is_empty(&ifp0->if_snd))
3368 		if_devstart(ifp0);
3369 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3370 	    !ifq_is_empty(&ifp1->if_snd))
3371 		if_devstart(ifp1);
3372 }
3373 
3374 static void
3375 msk_init(void *xsc)
3376 {
3377 	struct msk_if_softc *sc_if = xsc;
3378 	struct msk_softc *sc = sc_if->msk_softc;
3379 	struct ifnet *ifp = sc_if->msk_ifp;
3380 	struct mii_data	 *mii;
3381 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3382 	uint16_t gmac;
3383 	int error, i;
3384 
3385 	ASSERT_SERIALIZED(ifp->if_serializer);
3386 
3387 	mii = device_get_softc(sc_if->msk_miibus);
3388 
3389 	error = 0;
3390 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3391 	msk_stop(sc_if);
3392 
3393 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3394 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3395 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3396 		/*
3397 		 * In Yukon EC Ultra, TSO & checksum offload is not
3398 		 * supported for jumbo frame.
3399 		 */
3400 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3401 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3402 	}
3403 
3404 	/*
3405 	 * Initialize GMAC first.
3406 	 * Without this initialization, Rx MAC did not work as expected
3407 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3408 	 * or duplicated frame delivery which in turn showed very poor
3409 	 * Rx performance.(I had to write a packet analysis code that
3410 	 * could be embeded in driver to diagnose this issue.)
3411 	 * I've spent almost 2 months to fix this issue. If I have had
3412 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3413 	 */
3414 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3415 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3416 
3417 	/* Dummy read the Interrupt Source Register. */
3418 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3419 
3420 	/* Set MIB Clear Counter Mode. */
3421 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3422 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3423 	/* Read all MIB Counters with Clear Mode set. */
3424 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3425 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3426 	/* Clear MIB Clear Counter Mode. */
3427 	gmac &= ~GM_PAR_MIB_CLR;
3428 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3429 
3430 	/* Disable FCS. */
3431 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3432 
3433 	/* Setup Transmit Control Register. */
3434 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3435 
3436 	/* Setup Transmit Flow Control Register. */
3437 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3438 
3439 	/* Setup Transmit Parameter Register. */
3440 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3441 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3442 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3443 
3444 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3445 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3446 
3447 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3448 		gmac |= GM_SMOD_JUMBO_ENA;
3449 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3450 
3451 	/* Set station address. */
3452         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3453         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3454 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3455 		    eaddr[i]);
3456         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3457 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3458 		    eaddr[i]);
3459 
3460 	/* Disable interrupts for counter overflows. */
3461 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3462 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3463 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3464 
3465 	/* Configure Rx MAC FIFO. */
3466 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3467 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3468 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3469 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3470 
3471 	/* Set promiscuous mode. */
3472 	msk_setpromisc(sc_if);
3473 
3474 	/* Set multicast filter. */
3475 	msk_setmulti(sc_if);
3476 
3477 	/* Flush Rx MAC FIFO on any flow control or error. */
3478 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3479 	    GMR_FS_ANY_ERR);
3480 
3481 	/* Set Rx FIFO flush threshold to 64 bytes. */
3482 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3483 	    RX_GMF_FL_THR_DEF);
3484 
3485 	/* Configure Tx MAC FIFO. */
3486 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3487 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3488 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3489 
3490 	/* Configure hardware VLAN tag insertion/stripping. */
3491 	msk_setvlan(sc_if, ifp);
3492 
3493 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3494 		/* Set Rx Pause threshould. */
3495 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3496 		    MSK_ECU_LLPP);
3497 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3498 		    MSK_ECU_ULPP);
3499 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3500 			/*
3501 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3502 			 */
3503 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3504 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3505 			/* Disable Store & Forward mode for Tx. */
3506 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3507 			    TX_JUMBO_ENA | TX_STFW_DIS);
3508 		} else {
3509 			/* Enable Store & Forward mode for Tx. */
3510 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3511 			    TX_JUMBO_DIS | TX_STFW_ENA);
3512 		}
3513 	}
3514 
3515 	/*
3516 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3517 	 * arbiter as we don't use Sync Tx queue.
3518 	 */
3519 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3520 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3521 	/* Enable the RAM Interface Arbiter. */
3522 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3523 
3524 	/* Setup RAM buffer. */
3525 	msk_set_rambuffer(sc_if);
3526 
3527 	/* Disable Tx sync Queue. */
3528 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3529 
3530 	/* Setup Tx Queue Bus Memory Interface. */
3531 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3532 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3533 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3534 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3535 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3536 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3537 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3538 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3539 	}
3540 
3541 	/* Setup Rx Queue Bus Memory Interface. */
3542 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3543 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3544 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3545 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3546         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3547 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3548 		/* MAC Rx RAM Read is controlled by hardware. */
3549                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3550 	}
3551 
3552 	msk_set_prefetch(sc, sc_if->msk_txq,
3553 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3554 	msk_init_tx_ring(sc_if);
3555 
3556 	/* Disable Rx checksum offload and RSS hash. */
3557 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3558 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3559 #ifdef MSK_JUMBO
3560 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3561 		msk_set_prefetch(sc, sc_if->msk_rxq,
3562 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3563 		    MSK_JUMBO_RX_RING_CNT - 1);
3564 		error = msk_init_jumbo_rx_ring(sc_if);
3565 	} else
3566 #endif
3567 	{
3568 		msk_set_prefetch(sc, sc_if->msk_rxq,
3569 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3570 		    MSK_RX_RING_CNT - 1);
3571 		error = msk_init_rx_ring(sc_if);
3572 	}
3573 	if (error != 0) {
3574 		device_printf(sc_if->msk_if_dev,
3575 		    "initialization failed: no memory for Rx buffers\n");
3576 		msk_stop(sc_if);
3577 		return;
3578 	}
3579 
3580 	/* Configure interrupt handling. */
3581 	if (sc_if->msk_port == MSK_PORT_A) {
3582 		sc->msk_intrmask |= Y2_IS_PORT_A;
3583 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3584 	} else {
3585 		sc->msk_intrmask |= Y2_IS_PORT_B;
3586 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3587 	}
3588 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3589 	CSR_READ_4(sc, B0_HWE_IMSK);
3590 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3591 	CSR_READ_4(sc, B0_IMSK);
3592 
3593 	sc_if->msk_link = 0;
3594 	mii_mediachg(mii);
3595 
3596 	mskc_set_imtimer(sc);
3597 
3598 	ifp->if_flags |= IFF_RUNNING;
3599 	ifp->if_flags &= ~IFF_OACTIVE;
3600 
3601 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3602 }
3603 
3604 static void
3605 msk_set_rambuffer(struct msk_if_softc *sc_if)
3606 {
3607 	struct msk_softc *sc;
3608 	int ltpp, utpp;
3609 
3610 	sc = sc_if->msk_softc;
3611 
3612 	/* Setup Rx Queue. */
3613 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3614 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3615 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3616 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3617 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3618 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3619 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3620 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3621 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3622 
3623 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3624 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3625 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3626 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3627 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3628 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3629 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3630 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3631 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3632 
3633 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3634 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3635 
3636 	/* Setup Tx Queue. */
3637 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3638 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3639 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3640 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3641 	    sc->msk_txqend[sc_if->msk_port] / 8);
3642 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3643 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3644 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3645 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3646 	/* Enable Store & Forward for Tx side. */
3647 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3648 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3649 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3650 }
3651 
3652 static void
3653 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3654     uint32_t count)
3655 {
3656 
3657 	/* Reset the prefetch unit. */
3658 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3659 	    PREF_UNIT_RST_SET);
3660 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3661 	    PREF_UNIT_RST_CLR);
3662 	/* Set LE base address. */
3663 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3664 	    MSK_ADDR_LO(addr));
3665 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3666 	    MSK_ADDR_HI(addr));
3667 	/* Set the list last index. */
3668 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3669 	    count);
3670 	/* Turn on prefetch unit. */
3671 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3672 	    PREF_UNIT_OP_ON);
3673 	/* Dummy read to ensure write. */
3674 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3675 }
3676 
3677 static void
3678 msk_stop(struct msk_if_softc *sc_if)
3679 {
3680 	struct msk_softc *sc = sc_if->msk_softc;
3681 	struct ifnet *ifp = sc_if->msk_ifp;
3682 	struct msk_txdesc *txd;
3683 	struct msk_rxdesc *rxd;
3684 #ifdef MSK_JUMBO
3685 	struct msk_rxdesc *jrxd;
3686 #endif
3687 	uint32_t val;
3688 	int i;
3689 
3690 	ASSERT_SERIALIZED(ifp->if_serializer);
3691 
3692 	callout_stop(&sc_if->msk_tick_ch);
3693 	ifp->if_timer = 0;
3694 
3695 	/* Disable interrupts. */
3696 	if (sc_if->msk_port == MSK_PORT_A) {
3697 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3698 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3699 	} else {
3700 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3701 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3702 	}
3703 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3704 	CSR_READ_4(sc, B0_HWE_IMSK);
3705 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3706 	CSR_READ_4(sc, B0_IMSK);
3707 
3708 	/* Disable Tx/Rx MAC. */
3709 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3710 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3711 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3712 	/* Read again to ensure writing. */
3713 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3714 
3715 	/* Stop Tx BMU. */
3716 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3717 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3718 	for (i = 0; i < MSK_TIMEOUT; i++) {
3719 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3720 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3721 			    BMU_STOP);
3722 			CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3723 		} else
3724 			break;
3725 		DELAY(1);
3726 	}
3727 	if (i == MSK_TIMEOUT)
3728 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3729 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3730 	    RB_RST_SET | RB_DIS_OP_MD);
3731 
3732 	/* Disable all GMAC interrupt. */
3733 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3734 	/* Disable PHY interrupt. */
3735 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3736 
3737 	/* Disable the RAM Interface Arbiter. */
3738 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3739 
3740 	/* Reset the PCI FIFO of the async Tx queue */
3741 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3742 	    BMU_RST_SET | BMU_FIFO_RST);
3743 
3744 	/* Reset the Tx prefetch units. */
3745 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3746 	    PREF_UNIT_RST_SET);
3747 
3748 	/* Reset the RAM Buffer async Tx queue. */
3749 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3750 
3751 	/* Reset Tx MAC FIFO. */
3752 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3753 	/* Set Pause Off. */
3754 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3755 
3756 	/*
3757 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3758 	 * reach the end of packet and since we can't make sure that we have
3759 	 * incoming data, we must reset the BMU while it is not during a DMA
3760 	 * transfer. Since it is possible that the Rx path is still active,
3761 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3762 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3763 	 * BMU is polled until any DMA in progress is ended and only then it
3764 	 * will be reset.
3765 	 */
3766 
3767 	/* Disable the RAM Buffer receive queue. */
3768 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3769 	for (i = 0; i < MSK_TIMEOUT; i++) {
3770 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3771 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3772 			break;
3773 		DELAY(1);
3774 	}
3775 	if (i == MSK_TIMEOUT)
3776 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3777 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3778 	    BMU_RST_SET | BMU_FIFO_RST);
3779 	/* Reset the Rx prefetch unit. */
3780 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3781 	    PREF_UNIT_RST_SET);
3782 	/* Reset the RAM Buffer receive queue. */
3783 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3784 	/* Reset Rx MAC FIFO. */
3785 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3786 
3787 	/* Free Rx and Tx mbufs still in the queues. */
3788 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3789 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3790 		if (rxd->rx_m != NULL) {
3791 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3792 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3793 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3794 			    rxd->rx_dmamap);
3795 			m_freem(rxd->rx_m);
3796 			rxd->rx_m = NULL;
3797 		}
3798 	}
3799 #ifdef MSK_JUMBO
3800 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3801 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3802 		if (jrxd->rx_m != NULL) {
3803 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3804 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3805 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3806 			    jrxd->rx_dmamap);
3807 			m_freem(jrxd->rx_m);
3808 			jrxd->rx_m = NULL;
3809 		}
3810 	}
3811 #endif
3812 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3813 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3814 		if (txd->tx_m != NULL) {
3815 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3816 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3817 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3818 			    txd->tx_dmamap);
3819 			m_freem(txd->tx_m);
3820 			txd->tx_m = NULL;
3821 		}
3822 	}
3823 
3824 	/*
3825 	 * Mark the interface down.
3826 	 */
3827 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3828 	sc_if->msk_link = 0;
3829 }
3830 
3831 static int
3832 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3833 {
3834 	return sysctl_int_range(oidp, arg1, arg2, req,
3835 				MSK_PROC_MIN, MSK_PROC_MAX);
3836 }
3837 
3838 static int
3839 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3840 {
3841 	struct msk_softc *sc = arg1;
3842 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3843 	int error = 0, v;
3844 
3845 	lwkt_serialize_enter(serializer);
3846 
3847 	v = sc->msk_intr_rate;
3848 	error = sysctl_handle_int(oidp, &v, 0, req);
3849 	if (error || req->newptr == NULL)
3850 		goto back;
3851 	if (v < 0) {
3852 		error = EINVAL;
3853 		goto back;
3854 	}
3855 
3856 	if (sc->msk_intr_rate != v) {
3857 		int flag = 0, i;
3858 
3859 		sc->msk_intr_rate = v;
3860 		for (i = 0; i < 2; ++i) {
3861 			if (sc->msk_if[i] != NULL) {
3862 				flag |= sc->msk_if[i]->
3863 					arpcom.ac_if.if_flags & IFF_RUNNING;
3864 			}
3865 		}
3866 		if (flag)
3867 			mskc_set_imtimer(sc);
3868 	}
3869 back:
3870 	lwkt_serialize_exit(serializer);
3871 	return error;
3872 }
3873 
3874 static int
3875 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3876 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3877 {
3878 	struct msk_if_softc *sc_if = device_get_softc(dev);
3879 	struct msk_dmamap_arg ctx;
3880 	bus_dma_segment_t seg;
3881 	int error;
3882 
3883 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,
3884 				   MSK_RING_ALIGN, 0,
3885 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3886 				   NULL, NULL,
3887 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
3888 				   0, dtag);
3889 	if (error) {
3890 		device_printf(dev, "can't create DMA tag\n");
3891 		return error;
3892 	}
3893 
3894 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3895 				 dmap);
3896 	if (error) {
3897 		device_printf(dev, "can't allocate DMA mem\n");
3898 		bus_dma_tag_destroy(*dtag);
3899 		*dtag = NULL;
3900 		return error;
3901 	}
3902 
3903 	bzero(&ctx, sizeof(ctx));
3904 	ctx.nseg = 1;
3905 	ctx.segs = &seg;
3906 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
3907 				msk_dmamap_cb, &ctx, BUS_DMA_WAITOK);
3908 	if (error) {
3909 		device_printf(dev, "can't load DMA mem\n");
3910 		bus_dmamem_free(*dtag, *addr, *dmap);
3911 		bus_dma_tag_destroy(*dtag);
3912 		*dtag = NULL;
3913 		return error;
3914 	}
3915 	*paddr = seg.ds_addr;
3916 	return 0;
3917 }
3918 
3919 static void
3920 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3921 {
3922 	if (dtag != NULL) {
3923 		bus_dmamap_unload(dtag, dmap);
3924 		bus_dmamem_free(dtag, addr, dmap);
3925 		bus_dma_tag_destroy(dtag);
3926 	}
3927 }
3928 
3929 static void
3930 mskc_set_imtimer(struct msk_softc *sc)
3931 {
3932 	if (sc->msk_intr_rate > 0) {
3933 		/*
3934 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3935 		 *     and 78.125MHz for rest of chip types
3936 		 */
3937 		CSR_WRITE_4(sc, B2_IRQM_INI,
3938 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3939 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3940 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3941 	} else {
3942 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3943 	}
3944 }
3945