xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision ce0e08e2)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 /* $DragonFly: src/sys/dev/netif/msk/if_msk.c,v 1.10 2008/11/23 04:28:27 sephe Exp $ */
97 
98 /*
99  * Device driver for the Marvell Yukon II Ethernet controller.
100  * Due to lack of documentation, this driver is based on the code from
101  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
102  */
103 
104 #include <sys/param.h>
105 #include <sys/endian.h>
106 #include <sys/kernel.h>
107 #include <sys/bus.h>
108 #include <sys/in_cksum.h>
109 #include <sys/interrupt.h>
110 #include <sys/malloc.h>
111 #include <sys/proc.h>
112 #include <sys/rman.h>
113 #include <sys/serialize.h>
114 #include <sys/socket.h>
115 #include <sys/sockio.h>
116 #include <sys/sysctl.h>
117 
118 #include <net/ethernet.h>
119 #include <net/if.h>
120 #include <net/bpf.h>
121 #include <net/if_arp.h>
122 #include <net/if_dl.h>
123 #include <net/if_media.h>
124 #include <net/ifq_var.h>
125 #include <net/vlan/if_vlan_var.h>
126 
127 #include <netinet/ip.h>
128 #include <netinet/ip_var.h>
129 
130 #include <dev/netif/mii_layer/miivar.h>
131 
132 #include <bus/pci/pcireg.h>
133 #include <bus/pci/pcivar.h>
134 
135 #include "if_mskreg.h"
136 
137 /* "device miibus" required.  See GENERIC if you get errors here. */
138 #include "miibus_if.h"
139 
140 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
141 
142 /*
143  * Devices supported by this driver.
144  */
145 static const struct msk_product {
146 	uint16_t	msk_vendorid;
147 	uint16_t	msk_deviceid;
148 	const char	*msk_name;
149 } msk_products[] = {
150 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
151 	    "SK-9Sxx Gigabit Ethernet" },
152 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
153 	    "SK-9Exx Gigabit Ethernet"},
154 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
155 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
156 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
157 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
158 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
159 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
160 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
161 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
162 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
163 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
164 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
165 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
166 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
167 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
168 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
169 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
170 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
171 	    "Marvell Yukon 88E8035 Gigabit Ethernet" },
172 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
173 	    "Marvell Yukon 88E8036 Gigabit Ethernet" },
174 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
175 	    "Marvell Yukon 88E8038 Gigabit Ethernet" },
176 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
177 	    "Marvell Yukon 88E8039 Gigabit Ethernet" },
178 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
179 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
180 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
181 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
182 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
183 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
184 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
185 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
186 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
187 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
188 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
189 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
190 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
191 	    "D-Link 550SX Gigabit Ethernet" },
192 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
193 	    "D-Link 560T Gigabit Ethernet" },
194 	{ 0, 0, NULL }
195 };
196 
197 static const char *model_name[] = {
198 	"Yukon XL",
199         "Yukon EC Ultra",
200         "Yukon Unknown",
201         "Yukon EC",
202         "Yukon FE"
203 };
204 
205 static int	mskc_probe(device_t);
206 static int	mskc_attach(device_t);
207 static int	mskc_detach(device_t);
208 static int	mskc_shutdown(device_t);
209 static int	mskc_suspend(device_t);
210 static int	mskc_resume(device_t);
211 static void	mskc_intr(void *);
212 
213 static void	mskc_reset(struct msk_softc *);
214 static void	mskc_set_imtimer(struct msk_softc *);
215 static void	mskc_intr_hwerr(struct msk_softc *);
216 static int	mskc_handle_events(struct msk_softc *);
217 static void	mskc_phy_power(struct msk_softc *, int);
218 static int	mskc_setup_rambuffer(struct msk_softc *);
219 static int	mskc_status_dma_alloc(struct msk_softc *);
220 static void	mskc_status_dma_free(struct msk_softc *);
221 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
222 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
223 
224 static int	msk_probe(device_t);
225 static int	msk_attach(device_t);
226 static int	msk_detach(device_t);
227 static int	msk_miibus_readreg(device_t, int, int);
228 static int	msk_miibus_writereg(device_t, int, int, int);
229 static void	msk_miibus_statchg(device_t);
230 
231 static void	msk_init(void *);
232 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
233 static void	msk_start(struct ifnet *);
234 static void	msk_watchdog(struct ifnet *);
235 static int	msk_mediachange(struct ifnet *);
236 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
237 
238 static void	msk_tick(void *);
239 static void	msk_intr_phy(struct msk_if_softc *);
240 static void	msk_intr_gmac(struct msk_if_softc *);
241 static __inline void
242 		msk_rxput(struct msk_if_softc *);
243 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
244 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int,
245 			  struct mbuf_chain *);
246 static void	msk_txeof(struct msk_if_softc *, int);
247 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
248 static void	msk_set_rambuffer(struct msk_if_softc *);
249 static void	msk_stop(struct msk_if_softc *);
250 
251 static void	msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
252 static void	msk_dmamap_mbuf_cb(void *, bus_dma_segment_t *, int,
253 				   bus_size_t, int);
254 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
255 static void	msk_txrx_dma_free(struct msk_if_softc *);
256 static int	msk_init_rx_ring(struct msk_if_softc *);
257 static void	msk_init_tx_ring(struct msk_if_softc *);
258 static __inline void
259 		msk_discard_rxbuf(struct msk_if_softc *, int);
260 static int	msk_newbuf(struct msk_if_softc *, int);
261 static struct mbuf *
262 		msk_defrag(struct mbuf *, int, int);
263 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
264 
265 #ifdef MSK_JUMBO
266 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
267 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
268 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
269 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
270 static void *msk_jalloc(struct msk_if_softc *);
271 static void msk_jfree(void *, void *);
272 #endif
273 
274 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
275 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
276 
277 static void	msk_setmulti(struct msk_if_softc *);
278 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
279 static void	msk_setpromisc(struct msk_if_softc *);
280 
281 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
282 				  void **, bus_addr_t *, bus_dmamap_t *);
283 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
284 
285 static device_method_t mskc_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		mskc_probe),
288 	DEVMETHOD(device_attach,	mskc_attach),
289 	DEVMETHOD(device_detach,	mskc_detach),
290 	DEVMETHOD(device_suspend,	mskc_suspend),
291 	DEVMETHOD(device_resume,	mskc_resume),
292 	DEVMETHOD(device_shutdown,	mskc_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	{ NULL, NULL }
299 };
300 
301 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
302 static devclass_t mskc_devclass;
303 
304 static device_method_t msk_methods[] = {
305 	/* Device interface */
306 	DEVMETHOD(device_probe,		msk_probe),
307 	DEVMETHOD(device_attach,	msk_attach),
308 	DEVMETHOD(device_detach,	msk_detach),
309 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
310 
311 	/* bus interface */
312 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
313 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
314 
315 	/* MII interface */
316 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
317 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
318 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
319 
320 	{ NULL, NULL }
321 };
322 
323 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
324 static devclass_t msk_devclass;
325 
326 DECLARE_DUMMY_MODULE(if_msk);
327 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, 0, 0);
328 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, 0, 0);
329 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
330 
331 static int	mskc_intr_rate = 0;
332 static int	mskc_process_limit = MSK_PROC_DEFAULT;
333 
334 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
335 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
336 
337 static int
338 msk_miibus_readreg(device_t dev, int phy, int reg)
339 {
340 	struct msk_if_softc *sc_if;
341 
342 	if (phy != PHY_ADDR_MARV)
343 		return (0);
344 
345 	sc_if = device_get_softc(dev);
346 
347 	return (msk_phy_readreg(sc_if, phy, reg));
348 }
349 
350 static int
351 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
352 {
353 	struct msk_softc *sc;
354 	int i, val;
355 
356 	sc = sc_if->msk_softc;
357 
358         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
359 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
360 
361 	for (i = 0; i < MSK_TIMEOUT; i++) {
362 		DELAY(1);
363 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
364 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
365 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
366 			break;
367 		}
368 	}
369 
370 	if (i == MSK_TIMEOUT) {
371 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
372 		val = 0;
373 	}
374 
375 	return (val);
376 }
377 
378 static int
379 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
380 {
381 	struct msk_if_softc *sc_if;
382 
383 	if (phy != PHY_ADDR_MARV)
384 		return (0);
385 
386 	sc_if = device_get_softc(dev);
387 
388 	return (msk_phy_writereg(sc_if, phy, reg, val));
389 }
390 
391 static int
392 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
393 {
394 	struct msk_softc *sc;
395 	int i;
396 
397 	sc = sc_if->msk_softc;
398 
399 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
400         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
401 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
402 	for (i = 0; i < MSK_TIMEOUT; i++) {
403 		DELAY(1);
404 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
405 		    GM_SMI_CT_BUSY) == 0)
406 			break;
407 	}
408 	if (i == MSK_TIMEOUT)
409 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
410 
411 	return (0);
412 }
413 
414 static void
415 msk_miibus_statchg(device_t dev)
416 {
417 	struct msk_if_softc *sc_if;
418 	struct msk_softc *sc;
419 	struct mii_data *mii;
420 	struct ifnet *ifp;
421 	uint32_t gmac;
422 
423 	sc_if = device_get_softc(dev);
424 	sc = sc_if->msk_softc;
425 
426 	mii = device_get_softc(sc_if->msk_miibus);
427 	ifp = sc_if->msk_ifp;
428 
429 	if (mii->mii_media_status & IFM_ACTIVE) {
430 		if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
431 			sc_if->msk_link = 1;
432 	} else
433 		sc_if->msk_link = 0;
434 
435 	if (sc_if->msk_link != 0) {
436 		/* Enable Tx FIFO Underrun. */
437 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
438 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
439 		/*
440 		 * Because mii(4) notify msk(4) that it detected link status
441 		 * change, there is no need to enable automatic
442 		 * speed/flow-control/duplex updates.
443 		 */
444 		gmac = GM_GPCR_AU_ALL_DIS;
445 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
446 		case IFM_1000_SX:
447 		case IFM_1000_T:
448 			gmac |= GM_GPCR_SPEED_1000;
449 			break;
450 		case IFM_100_TX:
451 			gmac |= GM_GPCR_SPEED_100;
452 			break;
453 		case IFM_10_T:
454 			break;
455 		}
456 
457 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
458 			gmac |= GM_GPCR_DUP_FULL;
459 		/* Disable Rx flow control. */
460 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
461 			gmac |= GM_GPCR_FC_RX_DIS;
462 		/* Disable Tx flow control. */
463 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
464 			gmac |= GM_GPCR_FC_TX_DIS;
465 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
466 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
467 		/* Read again to ensure writing. */
468 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
469 
470 		gmac = GMC_PAUSE_ON;
471 		if (((mii->mii_media_active & IFM_GMASK) &
472 		    (IFM_FLAG0 | IFM_FLAG1)) == 0)
473 			gmac = GMC_PAUSE_OFF;
474 		/* Diable pause for 10/100 Mbps in half-duplex mode. */
475 		if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
476 		    (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
477 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
478 			gmac = GMC_PAUSE_OFF;
479 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
480 
481 		/* Enable PHY interrupt for FIFO underrun/overflow. */
482 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
483 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
484 	} else {
485 		/*
486 		 * Link state changed to down.
487 		 * Disable PHY interrupts.
488 		 */
489 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
490 		/* Disable Rx/Tx MAC. */
491 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
492 		gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
493 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
494 		/* Read again to ensure writing. */
495 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
496 	}
497 }
498 
499 static void
500 msk_setmulti(struct msk_if_softc *sc_if)
501 {
502 	struct msk_softc *sc;
503 	struct ifnet *ifp;
504 	struct ifmultiaddr *ifma;
505 	uint32_t mchash[2];
506 	uint32_t crc;
507 	uint16_t mode;
508 
509 	sc = sc_if->msk_softc;
510 	ifp = sc_if->msk_ifp;
511 
512 	bzero(mchash, sizeof(mchash));
513 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
514 	mode |= GM_RXCR_UCF_ENA;
515 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
516 		if ((ifp->if_flags & IFF_PROMISC) != 0)
517 			mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
518 		else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
519 			mchash[0] = 0xffff;
520 			mchash[1] = 0xffff;
521 		}
522 	} else {
523 		LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
524 			if (ifma->ifma_addr->sa_family != AF_LINK)
525 				continue;
526 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
527 			    ifma->ifma_addr), ETHER_ADDR_LEN);
528 			/* Just want the 6 least significant bits. */
529 			crc &= 0x3f;
530 			/* Set the corresponding bit in the hash table. */
531 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
532 		}
533 		mode |= GM_RXCR_MCF_ENA;
534 	}
535 
536 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
537 	    mchash[0] & 0xffff);
538 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
539 	    (mchash[0] >> 16) & 0xffff);
540 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
541 	    mchash[1] & 0xffff);
542 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
543 	    (mchash[1] >> 16) & 0xffff);
544 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
545 }
546 
547 static void
548 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
549 {
550 	struct msk_softc *sc;
551 
552 	sc = sc_if->msk_softc;
553 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
554 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
555 		    RX_VLAN_STRIP_ON);
556 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
557 		    TX_VLAN_TAG_ON);
558 	} else {
559 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
560 		    RX_VLAN_STRIP_OFF);
561 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
562 		    TX_VLAN_TAG_OFF);
563 	}
564 }
565 
566 static void
567 msk_setpromisc(struct msk_if_softc *sc_if)
568 {
569 	struct msk_softc *sc;
570 	struct ifnet *ifp;
571 	uint16_t mode;
572 
573 	sc = sc_if->msk_softc;
574 	ifp = sc_if->msk_ifp;
575 
576 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
577 	if (ifp->if_flags & IFF_PROMISC)
578 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
579 	else
580 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
581 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
582 }
583 
584 static int
585 msk_init_rx_ring(struct msk_if_softc *sc_if)
586 {
587 	struct msk_ring_data *rd;
588 	struct msk_rxdesc *rxd;
589 	int i, prod;
590 
591 	sc_if->msk_cdata.msk_rx_cons = 0;
592 	sc_if->msk_cdata.msk_rx_prod = 0;
593 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
594 
595 	rd = &sc_if->msk_rdata;
596 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
597 	prod = sc_if->msk_cdata.msk_rx_prod;
598 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
599 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
600 		rxd->rx_m = NULL;
601 		rxd->rx_le = &rd->msk_rx_ring[prod];
602 		if (msk_newbuf(sc_if, prod) != 0)
603 			return (ENOBUFS);
604 		MSK_INC(prod, MSK_RX_RING_CNT);
605 	}
606 
607 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
608 	    sc_if->msk_cdata.msk_rx_ring_map, BUS_DMASYNC_PREWRITE);
609 
610 	/* Update prefetch unit. */
611 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
612 	CSR_WRITE_2(sc_if->msk_softc,
613 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
614 	    sc_if->msk_cdata.msk_rx_prod);
615 
616 	return (0);
617 }
618 
619 #ifdef MSK_JUMBO
620 static int
621 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
622 {
623 	struct msk_ring_data *rd;
624 	struct msk_rxdesc *rxd;
625 	int i, prod;
626 
627 	MSK_IF_LOCK_ASSERT(sc_if);
628 
629 	sc_if->msk_cdata.msk_rx_cons = 0;
630 	sc_if->msk_cdata.msk_rx_prod = 0;
631 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
632 
633 	rd = &sc_if->msk_rdata;
634 	bzero(rd->msk_jumbo_rx_ring,
635 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
636 	prod = sc_if->msk_cdata.msk_rx_prod;
637 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
638 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
639 		rxd->rx_m = NULL;
640 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
641 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
642 			return (ENOBUFS);
643 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
644 	}
645 
646 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
647 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
648 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
649 
650 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
651 	CSR_WRITE_2(sc_if->msk_softc,
652 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
653 	    sc_if->msk_cdata.msk_rx_prod);
654 
655 	return (0);
656 }
657 #endif
658 
659 static void
660 msk_init_tx_ring(struct msk_if_softc *sc_if)
661 {
662 	struct msk_ring_data *rd;
663 	struct msk_txdesc *txd;
664 	int i;
665 
666 	sc_if->msk_cdata.msk_tx_prod = 0;
667 	sc_if->msk_cdata.msk_tx_cons = 0;
668 	sc_if->msk_cdata.msk_tx_cnt = 0;
669 
670 	rd = &sc_if->msk_rdata;
671 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
672 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
673 		txd = &sc_if->msk_cdata.msk_txdesc[i];
674 		txd->tx_m = NULL;
675 		txd->tx_le = &rd->msk_tx_ring[i];
676 	}
677 
678 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
679 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
680 }
681 
682 static __inline void
683 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
684 {
685 	struct msk_rx_desc *rx_le;
686 	struct msk_rxdesc *rxd;
687 	struct mbuf *m;
688 
689 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
690 	m = rxd->rx_m;
691 	rx_le = rxd->rx_le;
692 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
693 }
694 
695 #ifdef MSK_JUMBO
696 static __inline void
697 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
698 {
699 	struct msk_rx_desc *rx_le;
700 	struct msk_rxdesc *rxd;
701 	struct mbuf *m;
702 
703 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
704 	m = rxd->rx_m;
705 	rx_le = rxd->rx_le;
706 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
707 }
708 #endif
709 
710 static int
711 msk_newbuf(struct msk_if_softc *sc_if, int idx)
712 {
713 	struct msk_rx_desc *rx_le;
714 	struct msk_rxdesc *rxd;
715 	struct mbuf *m;
716 	struct msk_dmamap_arg ctx;
717 	bus_dma_segment_t seg;
718 	bus_dmamap_t map;
719 
720 	m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
721 	if (m == NULL)
722 		return (ENOBUFS);
723 
724 	m->m_len = m->m_pkthdr.len = MCLBYTES;
725 	m_adj(m, ETHER_ALIGN);
726 
727 	bzero(&ctx, sizeof(ctx));
728 	ctx.nseg = 1;
729 	ctx.segs = &seg;
730 	if (bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_rx_tag,
731 	    sc_if->msk_cdata.msk_rx_sparemap, m, msk_dmamap_mbuf_cb, &ctx,
732 	    BUS_DMA_NOWAIT) != 0) {
733 		m_freem(m);
734 		return (ENOBUFS);
735 	}
736 	KASSERT(ctx.nseg == 1,
737 		("%s: %d segments returned!", __func__, ctx.nseg));
738 
739 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
740 	if (rxd->rx_m != NULL) {
741 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
742 		    BUS_DMASYNC_POSTREAD);
743 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
744 	}
745 	map = rxd->rx_dmamap;
746 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
747 	sc_if->msk_cdata.msk_rx_sparemap = map;
748 	bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
749 	    BUS_DMASYNC_PREREAD);
750 	rxd->rx_m = m;
751 	rx_le = rxd->rx_le;
752 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
753 	rx_le->msk_control =
754 	    htole32(seg.ds_len | OP_PACKET | HW_OWNER);
755 
756 	return (0);
757 }
758 
759 #ifdef MSK_JUMBO
760 static int
761 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
762 {
763 	struct msk_rx_desc *rx_le;
764 	struct msk_rxdesc *rxd;
765 	struct mbuf *m;
766 	bus_dma_segment_t segs[1];
767 	bus_dmamap_t map;
768 	int nsegs;
769 	void *buf;
770 
771 	MGETHDR(m, M_DONTWAIT, MT_DATA);
772 	if (m == NULL)
773 		return (ENOBUFS);
774 	buf = msk_jalloc(sc_if);
775 	if (buf == NULL) {
776 		m_freem(m);
777 		return (ENOBUFS);
778 	}
779 	/* Attach the buffer to the mbuf. */
780 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
781 	    EXT_NET_DRV);
782 	if ((m->m_flags & M_EXT) == 0) {
783 		m_freem(m);
784 		return (ENOBUFS);
785 	}
786 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
787 	m_adj(m, ETHER_ALIGN);
788 
789 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
790 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
791 	    BUS_DMA_NOWAIT) != 0) {
792 		m_freem(m);
793 		return (ENOBUFS);
794 	}
795 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
796 
797 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
798 	if (rxd->rx_m != NULL) {
799 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
800 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
801 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
802 		    rxd->rx_dmamap);
803 	}
804 	map = rxd->rx_dmamap;
805 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
806 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
807 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
808 	    BUS_DMASYNC_PREREAD);
809 	rxd->rx_m = m;
810 	rx_le = rxd->rx_le;
811 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
812 	rx_le->msk_control =
813 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
814 
815 	return (0);
816 }
817 #endif
818 
819 /*
820  * Set media options.
821  */
822 static int
823 msk_mediachange(struct ifnet *ifp)
824 {
825 	struct msk_if_softc *sc_if = ifp->if_softc;
826 	struct mii_data	*mii;
827 
828 	mii = device_get_softc(sc_if->msk_miibus);
829 	mii_mediachg(mii);
830 
831 	return (0);
832 }
833 
834 /*
835  * Report current media status.
836  */
837 static void
838 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
839 {
840 	struct msk_if_softc *sc_if = ifp->if_softc;
841 	struct mii_data	*mii;
842 
843 	mii = device_get_softc(sc_if->msk_miibus);
844 	mii_pollstat(mii);
845 
846 	ifmr->ifm_active = mii->mii_media_active;
847 	ifmr->ifm_status = mii->mii_media_status;
848 }
849 
850 static int
851 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
852 {
853 	struct msk_if_softc *sc_if;
854 	struct ifreq *ifr;
855 	struct mii_data	*mii;
856 	int error, mask;
857 
858 	sc_if = ifp->if_softc;
859 	ifr = (struct ifreq *)data;
860 	error = 0;
861 
862 	switch(command) {
863 	case SIOCSIFMTU:
864 #ifdef MSK_JUMBO
865 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
866 			error = EINVAL;
867 			break;
868 		}
869 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
870 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
871 			error = EINVAL;
872 			break;
873 		}
874 		ifp->if_mtu = ifr->ifr_mtu;
875 		if ((ifp->if_flags & IFF_RUNNING) != 0)
876 			msk_init(sc_if);
877 #else
878 		error = EOPNOTSUPP;
879 #endif
880 		break;
881 
882 	case SIOCSIFFLAGS:
883 		if (ifp->if_flags & IFF_UP) {
884 			if (ifp->if_flags & IFF_RUNNING) {
885 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
886 				    & IFF_PROMISC) != 0) {
887 					msk_setpromisc(sc_if);
888 					msk_setmulti(sc_if);
889 				}
890 			} else {
891 				if (sc_if->msk_detach == 0)
892 					msk_init(sc_if);
893 			}
894 		} else {
895 			if (ifp->if_flags & IFF_RUNNING)
896 				msk_stop(sc_if);
897 		}
898 		sc_if->msk_if_flags = ifp->if_flags;
899 		break;
900 
901 	case SIOCADDMULTI:
902 	case SIOCDELMULTI:
903 		if (ifp->if_flags & IFF_RUNNING)
904 			msk_setmulti(sc_if);
905 		break;
906 
907 	case SIOCGIFMEDIA:
908 	case SIOCSIFMEDIA:
909 		mii = device_get_softc(sc_if->msk_miibus);
910 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
911 		break;
912 
913 	case SIOCSIFCAP:
914 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
915 		if ((mask & IFCAP_TXCSUM) != 0) {
916 			ifp->if_capenable ^= IFCAP_TXCSUM;
917 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
918 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
919 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
920 			else
921 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
922 		}
923 #ifdef notyet
924 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
925 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
926 			msk_setvlan(sc_if, ifp);
927 		}
928 #endif
929 
930 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
931 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
932 			/*
933 			 * In Yukon EC Ultra, TSO & checksum offload is not
934 			 * supported for jumbo frame.
935 			 */
936 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
937 			ifp->if_capenable &= ~IFCAP_TXCSUM;
938 		}
939 		break;
940 
941 	default:
942 		error = ether_ioctl(ifp, command, data);
943 		break;
944 	}
945 
946 	return (error);
947 }
948 
949 static int
950 mskc_probe(device_t dev)
951 {
952 	const struct msk_product *mp;
953 	uint16_t vendor, devid;
954 
955 	vendor = pci_get_vendor(dev);
956 	devid = pci_get_device(dev);
957 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
958 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
959 			device_set_desc(dev, mp->msk_name);
960 			return (0);
961 		}
962 	}
963 	return (ENXIO);
964 }
965 
966 static int
967 mskc_setup_rambuffer(struct msk_softc *sc)
968 {
969 	int next;
970 	int i;
971 	uint8_t val;
972 
973 	/* Get adapter SRAM size. */
974 	val = CSR_READ_1(sc, B2_E_0);
975 	sc->msk_ramsize = (val == 0) ? 128 : val * 4;
976 	if (bootverbose) {
977 		device_printf(sc->msk_dev,
978 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
979 	}
980 	/*
981 	 * Give receiver 2/3 of memory and round down to the multiple
982 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
983 	 * of 1024.
984 	 */
985 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
986 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
987 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
988 		sc->msk_rxqstart[i] = next;
989 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
990 		next = sc->msk_rxqend[i] + 1;
991 		sc->msk_txqstart[i] = next;
992 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
993 		next = sc->msk_txqend[i] + 1;
994 		if (bootverbose) {
995 			device_printf(sc->msk_dev,
996 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
997 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
998 			    sc->msk_rxqend[i]);
999 			device_printf(sc->msk_dev,
1000 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1001 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1002 			    sc->msk_txqend[i]);
1003 		}
1004 	}
1005 
1006 	return (0);
1007 }
1008 
1009 static void
1010 mskc_phy_power(struct msk_softc *sc, int mode)
1011 {
1012 	uint32_t val;
1013 	int i;
1014 
1015 	switch (mode) {
1016 	case MSK_PHY_POWERUP:
1017 		/* Switch power to VCC (WA for VAUX problem). */
1018 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1019 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1020 		/* Disable Core Clock Division, set Clock Select to 0. */
1021 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1022 
1023 		val = 0;
1024 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1025 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1026 			/* Enable bits are inverted. */
1027 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1028 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1029 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1030 		}
1031 		/*
1032 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1033 		 */
1034 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1035 
1036 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1037 		val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1038 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1039 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1040 			/* Deassert Low Power for 1st PHY. */
1041 			val |= PCI_Y2_PHY1_COMA;
1042 			if (sc->msk_num_port > 1)
1043 				val |= PCI_Y2_PHY2_COMA;
1044 		} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
1045 			uint32_t our;
1046 
1047 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1048 
1049 			/* Enable all clocks. */
1050 			pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
1051 			our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
1052 			our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
1053 			    PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
1054 			/* Set all bits to 0 except bits 15..12. */
1055 			pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
1056 			/* Set to default value. */
1057 			pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
1058 		}
1059 		/* Release PHY from PowerDown/COMA mode. */
1060 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1061 		for (i = 0; i < sc->msk_num_port; i++) {
1062 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1063 			    GMLC_RST_SET);
1064 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1065 			    GMLC_RST_CLR);
1066 		}
1067 		break;
1068 	case MSK_PHY_POWERDOWN:
1069 		val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1070 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1071 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1072 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1073 			val &= ~PCI_Y2_PHY1_COMA;
1074 			if (sc->msk_num_port > 1)
1075 				val &= ~PCI_Y2_PHY2_COMA;
1076 		}
1077 		pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1078 
1079 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1080 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1081 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1082 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1083 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1084 			/* Enable bits are inverted. */
1085 			val = 0;
1086 		}
1087 		/*
1088 		 * Disable PCI & Core Clock, disable clock gating for
1089 		 * both Links.
1090 		 */
1091 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1092 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1093 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1094 		break;
1095 	default:
1096 		break;
1097 	}
1098 }
1099 
1100 static void
1101 mskc_reset(struct msk_softc *sc)
1102 {
1103 	bus_addr_t addr;
1104 	uint16_t status;
1105 	uint32_t val;
1106 	int i;
1107 
1108 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1109 
1110 	/* Disable ASF. */
1111 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
1112 		CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1113 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1114 	}
1115 	/*
1116 	 * Since we disabled ASF, S/W reset is required for Power Management.
1117 	 */
1118 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1119 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1120 
1121 	/* Clear all error bits in the PCI status register. */
1122 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1123 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1124 
1125 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1126 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1127 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1128 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1129 
1130 	switch (sc->msk_bustype) {
1131 	case MSK_PEX_BUS:
1132 		/* Clear all PEX errors. */
1133 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1134 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1135 		if ((val & PEX_RX_OV) != 0) {
1136 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1137 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1138 		}
1139 		break;
1140 	case MSK_PCI_BUS:
1141 	case MSK_PCIX_BUS:
1142 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1143 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1144 		if (val == 0)
1145 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1146 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1147 			/* Set Cache Line Size opt. */
1148 			val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
1149 			val |= PCI_CLS_OPT;
1150 			pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
1151 		}
1152 		break;
1153 	}
1154 	/* Set PHY power state. */
1155 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1156 
1157 	/* Reset GPHY/GMAC Control */
1158 	for (i = 0; i < sc->msk_num_port; i++) {
1159 		/* GPHY Control reset. */
1160 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1161 		CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1162 		/* GMAC Control reset. */
1163 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1164 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1165 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1166 	}
1167 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1168 
1169 	/* LED On. */
1170 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1171 
1172 	/* Clear TWSI IRQ. */
1173 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1174 
1175 	/* Turn off hardware timer. */
1176 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1177 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1178 
1179 	/* Turn off descriptor polling. */
1180 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1181 
1182 	/* Turn off time stamps. */
1183 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1184 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1185 
1186 	/* Configure timeout values. */
1187 	for (i = 0; i < sc->msk_num_port; i++) {
1188 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
1189 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
1190 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1191 		    MSK_RI_TO_53);
1192 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1193 		    MSK_RI_TO_53);
1194 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1195 		    MSK_RI_TO_53);
1196 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1197 		    MSK_RI_TO_53);
1198 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1199 		    MSK_RI_TO_53);
1200 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1201 		    MSK_RI_TO_53);
1202 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1203 		    MSK_RI_TO_53);
1204 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1205 		    MSK_RI_TO_53);
1206 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1207 		    MSK_RI_TO_53);
1208 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1209 		    MSK_RI_TO_53);
1210 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1211 		    MSK_RI_TO_53);
1212 		CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1213 		    MSK_RI_TO_53);
1214 	}
1215 
1216 	/* Disable all interrupts. */
1217 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1218 	CSR_READ_4(sc, B0_HWE_IMSK);
1219 	CSR_WRITE_4(sc, B0_IMSK, 0);
1220 	CSR_READ_4(sc, B0_IMSK);
1221 
1222         /*
1223          * On dual port PCI-X card, there is an problem where status
1224          * can be received out of order due to split transactions.
1225          */
1226 	if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
1227 		uint16_t pcix_cmd;
1228 		uint8_t pcix;
1229 
1230 		pcix = pci_get_pcixcap_ptr(sc->msk_dev);
1231 
1232 		pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
1233 		/* Clear Max Outstanding Split Transactions. */
1234 		pcix_cmd &= ~0x70;
1235 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1236 		pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
1237 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1238         }
1239 	if (sc->msk_bustype == MSK_PEX_BUS) {
1240 		uint16_t v, width;
1241 
1242 		v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
1243 		/* Change Max. Read Request Size to 4096 bytes. */
1244 		v &= ~PEX_DC_MAX_RRS_MSK;
1245 		v |= PEX_DC_MAX_RD_RQ_SIZE(5);
1246 		pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
1247 		width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
1248 		width = (width & PEX_LS_LINK_WI_MSK) >> 4;
1249 		v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
1250 		v = (v & PEX_LS_LINK_WI_MSK) >> 4;
1251 		if (v != width) {
1252 			device_printf(sc->msk_dev,
1253 			    "negotiated width of link(x%d) != "
1254 			    "max. width of link(x%d)\n", width, v);
1255 		}
1256 	}
1257 
1258 	/* Clear status list. */
1259 	bzero(sc->msk_stat_ring,
1260 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1261 	sc->msk_stat_cons = 0;
1262 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
1263 			BUS_DMASYNC_PREWRITE);
1264 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1265 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1266 	/* Set the status list base address. */
1267 	addr = sc->msk_stat_ring_paddr;
1268 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1269 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1270 	/* Set the status list last index. */
1271 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1272 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1273 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1274 		/* WA for dev. #4.3 */
1275 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1276 		/* WA for dev. #4.18 */
1277 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1278 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1279 	} else {
1280 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1281 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1282 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1283 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1284 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1285 		else
1286 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1287 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1288 	}
1289 	/*
1290 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1291 	 */
1292 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1293 
1294 	/* Enable status unit. */
1295 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1296 
1297 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1298 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1299 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1300 }
1301 
1302 static int
1303 msk_probe(device_t dev)
1304 {
1305 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1306 	char desc[100];
1307 
1308 	/*
1309 	 * Not much to do here. We always know there will be
1310 	 * at least one GMAC present, and if there are two,
1311 	 * mskc_attach() will create a second device instance
1312 	 * for us.
1313 	 */
1314 	ksnprintf(desc, sizeof(desc),
1315 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1316 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1317 	    sc->msk_hw_rev);
1318 	device_set_desc_copy(dev, desc);
1319 
1320 	return (0);
1321 }
1322 
1323 static int
1324 msk_attach(device_t dev)
1325 {
1326 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1327 	struct msk_if_softc *sc_if = device_get_softc(dev);
1328 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1329 	int i, port, error;
1330 	uint8_t eaddr[ETHER_ADDR_LEN];
1331 
1332 	port = *(int *)device_get_ivars(dev);
1333 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1334 
1335 	kfree(device_get_ivars(dev), M_DEVBUF);
1336 	device_set_ivars(dev, NULL);
1337 
1338 	callout_init(&sc_if->msk_tick_ch);
1339 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1340 
1341 	sc_if->msk_if_dev = dev;
1342 	sc_if->msk_port = port;
1343 	sc_if->msk_softc = sc;
1344 	sc_if->msk_ifp = ifp;
1345 	sc->msk_if[port] = sc_if;
1346 
1347 	/* Setup Tx/Rx queue register offsets. */
1348 	if (port == MSK_PORT_A) {
1349 		sc_if->msk_txq = Q_XA1;
1350 		sc_if->msk_txsq = Q_XS1;
1351 		sc_if->msk_rxq = Q_R1;
1352 	} else {
1353 		sc_if->msk_txq = Q_XA2;
1354 		sc_if->msk_txsq = Q_XS2;
1355 		sc_if->msk_rxq = Q_R2;
1356 	}
1357 
1358 	error = msk_txrx_dma_alloc(sc_if);
1359 	if (error)
1360 		goto fail;
1361 
1362 	ifp->if_softc = sc_if;
1363 	ifp->if_mtu = ETHERMTU;
1364 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1365 	ifp->if_init = msk_init;
1366 	ifp->if_ioctl = msk_ioctl;
1367 	ifp->if_start = msk_start;
1368 	ifp->if_watchdog = msk_watchdog;
1369 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1370 	ifq_set_ready(&ifp->if_snd);
1371 
1372 #ifdef notyet
1373 	/*
1374 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1375 	 * has serious bug in Rx checksum offload for all Yukon II family
1376 	 * hardware. It seems there is a workaround to make it work somtimes.
1377 	 * However, the workaround also have to check OP code sequences to
1378 	 * verify whether the OP code is correct. Sometimes it should compute
1379 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1380 	 * checksum computed by hardware. If you have to compute checksum
1381 	 * with software to verify the hardware's checksum why have hardware
1382 	 * compute the checksum? I think there is no reason to spend time to
1383 	 * make Rx checksum offload work on Yukon II hardware.
1384 	 */
1385 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1386 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1387 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1388 	ifp->if_capenable = ifp->if_capabilities;
1389 #endif
1390 
1391 	/*
1392 	 * Get station address for this interface. Note that
1393 	 * dual port cards actually come with three station
1394 	 * addresses: one for each port, plus an extra. The
1395 	 * extra one is used by the SysKonnect driver software
1396 	 * as a 'virtual' station address for when both ports
1397 	 * are operating in failover mode. Currently we don't
1398 	 * use this extra address.
1399 	 */
1400 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1401 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1402 
1403 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1404 
1405 	/*
1406 	 * Do miibus setup.
1407 	 */
1408 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1409 			      msk_mediachange, msk_mediastatus);
1410 	if (error) {
1411 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1412 		goto fail;
1413 	}
1414 
1415 	/*
1416 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1417 	 */
1418 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1419 #if 0
1420 	/*
1421 	 * Tell the upper layer(s) we support long frames.
1422 	 * Must appear after the call to ether_ifattach() because
1423 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1424 	 */
1425         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1426 #endif
1427 
1428 	return 0;
1429 fail:
1430 	msk_detach(dev);
1431 	sc->msk_if[port] = NULL;
1432 	return (error);
1433 }
1434 
1435 /*
1436  * Attach the interface. Allocate softc structures, do ifmedia
1437  * setup and ethernet/BPF attach.
1438  */
1439 static int
1440 mskc_attach(device_t dev)
1441 {
1442 	struct msk_softc *sc;
1443 	int error, *port, cpuid;
1444 
1445 	sc = device_get_softc(dev);
1446 	sc->msk_dev = dev;
1447 	lwkt_serialize_init(&sc->msk_serializer);
1448 
1449 	/*
1450 	 * Initailize sysctl variables
1451 	 */
1452 	sc->msk_process_limit = mskc_process_limit;
1453 	sc->msk_intr_rate = mskc_intr_rate;
1454 
1455 #ifndef BURN_BRIDGES
1456 	/*
1457 	 * Handle power management nonsense.
1458 	 */
1459 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1460 		uint32_t irq, bar0, bar1;
1461 
1462 		/* Save important PCI config data. */
1463 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1464 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1465 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1466 
1467 		/* Reset the power state. */
1468 		device_printf(dev, "chip is in D%d power mode "
1469 			      "-- setting to D0\n", pci_get_powerstate(dev));
1470 
1471 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1472 
1473 		/* Restore PCI config data. */
1474 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1475 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1476 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1477 	}
1478 #endif	/* BURN_BRIDGES */
1479 
1480 	/*
1481 	 * Map control/status registers.
1482 	 */
1483 	pci_enable_busmaster(dev);
1484 
1485 	/*
1486 	 * Allocate I/O resource
1487 	 */
1488 #ifdef MSK_USEIOSPACE
1489 	sc->msk_res_type = SYS_RES_IOPORT;
1490 	sc->msk_res_rid = PCIR_BAR(1);
1491 #else
1492 	sc->msk_res_type = SYS_RES_MEMORY;
1493 	sc->msk_res_rid = PCIR_BAR(0);
1494 #endif
1495 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1496 					     &sc->msk_res_rid, RF_ACTIVE);
1497 	if (sc->msk_res == NULL) {
1498 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1499 			sc->msk_res_type = SYS_RES_IOPORT;
1500 			sc->msk_res_rid = PCIR_BAR(1);
1501 		} else {
1502 			sc->msk_res_type = SYS_RES_MEMORY;
1503 			sc->msk_res_rid = PCIR_BAR(0);
1504 		}
1505 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1506 						     &sc->msk_res_rid,
1507 						     RF_ACTIVE);
1508 		if (sc->msk_res == NULL) {
1509 			device_printf(dev, "couldn't allocate %s resources\n",
1510 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1511 			return (ENXIO);
1512 		}
1513 	}
1514 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1515 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1516 
1517 	/*
1518 	 * Allocate IRQ
1519 	 */
1520 	sc->msk_irq_rid = 0;
1521 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1522 					     &sc->msk_irq_rid,
1523 					     RF_SHAREABLE | RF_ACTIVE);
1524 	if (sc->msk_irq == NULL) {
1525 		device_printf(dev, "couldn't allocate IRQ resources\n");
1526 		error = ENXIO;
1527 		goto fail;
1528 	}
1529 
1530 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1531 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1532 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1533 	/* Bail out if chip is not recognized. */
1534 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1535 	    sc->msk_hw_id > CHIP_ID_YUKON_FE) {
1536 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1537 		    sc->msk_hw_id, sc->msk_hw_rev);
1538 		error = ENXIO;
1539 		goto fail;
1540 	}
1541 
1542 	/*
1543 	 * Create sysctl tree
1544 	 */
1545 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1546 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1547 					      SYSCTL_STATIC_CHILDREN(_hw),
1548 					      OID_AUTO,
1549 					      device_get_nameunit(dev),
1550 					      CTLFLAG_RD, 0, "");
1551 	if (sc->msk_sysctl_tree == NULL) {
1552 		device_printf(dev, "can't add sysctl node\n");
1553 		error = ENXIO;
1554 		goto fail;
1555 	}
1556 
1557 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1558 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1559 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1560 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1561 			"I", "max number of Rx events to process");
1562 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1563 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1564 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1565 			sc, 0, mskc_sysctl_intr_rate,
1566 			"I", "max number of interrupt per second");
1567 
1568 	/* Soft reset. */
1569 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1570 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1571 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1572 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1573 		sc->msk_coppertype = 0;
1574 	else
1575 		sc->msk_coppertype = 1;
1576 	/* Check number of MACs. */
1577 	sc->msk_num_port = 1;
1578 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1579 	    CFG_DUAL_MAC_MSK) {
1580 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1581 			sc->msk_num_port++;
1582 	}
1583 
1584 	/* Check bus type. */
1585 	if (pci_is_pcie(sc->msk_dev) == 0)
1586 		sc->msk_bustype = MSK_PEX_BUS;
1587 	else if (pci_is_pcix(sc->msk_dev) == 0)
1588 		sc->msk_bustype = MSK_PCIX_BUS;
1589 	else
1590 		sc->msk_bustype = MSK_PCI_BUS;
1591 
1592 	switch (sc->msk_hw_id) {
1593 	case CHIP_ID_YUKON_EC:
1594 	case CHIP_ID_YUKON_EC_U:
1595 		sc->msk_clock = 125;	/* 125 Mhz */
1596 		break;
1597 	case CHIP_ID_YUKON_FE:
1598 		sc->msk_clock = 100;	/* 100 Mhz */
1599 		break;
1600 	case CHIP_ID_YUKON_XL:
1601 		sc->msk_clock = 156;	/* 156 Mhz */
1602 		break;
1603 	default:
1604 		sc->msk_clock = 156;	/* 156 Mhz */
1605 		break;
1606 	}
1607 
1608 	error = mskc_status_dma_alloc(sc);
1609 	if (error)
1610 		goto fail;
1611 
1612 	/* Set base interrupt mask. */
1613 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1614 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1615 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1616 
1617 	/* Reset the adapter. */
1618 	mskc_reset(sc);
1619 
1620 	error = mskc_setup_rambuffer(sc);
1621 	if (error)
1622 		goto fail;
1623 
1624 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1625 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1626 		device_printf(dev, "failed to add child for PORT_A\n");
1627 		error = ENXIO;
1628 		goto fail;
1629 	}
1630 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1631 	*port = MSK_PORT_A;
1632 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1633 
1634 	if (sc->msk_num_port > 1) {
1635 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1636 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1637 			device_printf(dev, "failed to add child for PORT_B\n");
1638 			error = ENXIO;
1639 			goto fail;
1640 		}
1641 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1642 		*port = MSK_PORT_B;
1643 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1644 	}
1645 
1646 	bus_generic_attach(dev);
1647 
1648 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1649 			       mskc_intr, sc, &sc->msk_intrhand,
1650 			       &sc->msk_serializer);
1651 	if (error) {
1652 		device_printf(dev, "couldn't set up interrupt handler\n");
1653 		goto fail;
1654 	}
1655 
1656 	cpuid = ithread_cpuid(rman_get_start(sc->msk_irq));
1657 	KKASSERT(cpuid >= 0 && cpuid < ncpus);
1658 
1659 	if (sc->msk_if[0] != NULL)
1660 		sc->msk_if[0]->msk_ifp->if_cpuid = cpuid;
1661 	if (sc->msk_if[1] != NULL)
1662 		sc->msk_if[1]->msk_ifp->if_cpuid = cpuid;
1663 	return 0;
1664 fail:
1665 	mskc_detach(dev);
1666 	return (error);
1667 }
1668 
1669 /*
1670  * Shutdown hardware and free up resources. This can be called any
1671  * time after the mutex has been initialized. It is called in both
1672  * the error case in attach and the normal detach case so it needs
1673  * to be careful about only freeing resources that have actually been
1674  * allocated.
1675  */
1676 static int
1677 msk_detach(device_t dev)
1678 {
1679 	struct msk_if_softc *sc_if = device_get_softc(dev);
1680 
1681 	if (device_is_attached(dev)) {
1682 		struct msk_softc *sc = sc_if->msk_softc;
1683 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1684 
1685 		lwkt_serialize_enter(ifp->if_serializer);
1686 
1687 		if (sc->msk_intrhand != NULL) {
1688 			if (sc->msk_if[MSK_PORT_A] != NULL)
1689 				msk_stop(sc->msk_if[MSK_PORT_A]);
1690 			if (sc->msk_if[MSK_PORT_B] != NULL)
1691 				msk_stop(sc->msk_if[MSK_PORT_B]);
1692 
1693 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1694 					  sc->msk_intrhand);
1695 			sc->msk_intrhand = NULL;
1696 		}
1697 
1698 		lwkt_serialize_exit(ifp->if_serializer);
1699 
1700 		ether_ifdetach(ifp);
1701 	}
1702 
1703 	if (sc_if->msk_miibus != NULL)
1704 		device_delete_child(dev, sc_if->msk_miibus);
1705 
1706 	msk_txrx_dma_free(sc_if);
1707 	return (0);
1708 }
1709 
1710 static int
1711 mskc_detach(device_t dev)
1712 {
1713 	struct msk_softc *sc = device_get_softc(dev);
1714 	int *port, i;
1715 
1716 #ifdef INVARIANTS
1717 	if (device_is_attached(dev)) {
1718 		KASSERT(sc->msk_intrhand == NULL,
1719 			("intr is not torn down yet\n"));
1720 	}
1721 #endif
1722 
1723 	for (i = 0; i < sc->msk_num_port; ++i) {
1724 		if (sc->msk_devs[i] != NULL) {
1725 			port = device_get_ivars(sc->msk_devs[i]);
1726 			if (port != NULL) {
1727 				kfree(port, M_DEVBUF);
1728 				device_set_ivars(sc->msk_devs[i], NULL);
1729 			}
1730 			device_delete_child(dev, sc->msk_devs[i]);
1731 		}
1732 	}
1733 
1734 	/* Disable all interrupts. */
1735 	CSR_WRITE_4(sc, B0_IMSK, 0);
1736 	CSR_READ_4(sc, B0_IMSK);
1737 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1738 	CSR_READ_4(sc, B0_HWE_IMSK);
1739 
1740 	/* LED Off. */
1741 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1742 
1743 	/* Put hardware reset. */
1744 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1745 
1746 	mskc_status_dma_free(sc);
1747 
1748 	if (sc->msk_irq != NULL) {
1749 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1750 				     sc->msk_irq);
1751 	}
1752 	if (sc->msk_res != NULL) {
1753 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1754 				     sc->msk_res);
1755 	}
1756 
1757 	if (sc->msk_sysctl_tree != NULL)
1758 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1759 
1760 	return (0);
1761 }
1762 
1763 static void
1764 msk_dmamap_mbuf_cb(void *arg, bus_dma_segment_t *segs, int nseg,
1765 		   bus_size_t mapsz __unused, int error)
1766 {
1767 	struct msk_dmamap_arg *ctx = arg;
1768 	int i;
1769 
1770 	if (error)
1771 		return;
1772 
1773 	if (ctx->nseg < nseg) {
1774 		ctx->nseg = 0;
1775 		return;
1776 	}
1777 
1778 	ctx->nseg = nseg;
1779 	for (i = 0; i < ctx->nseg; ++i)
1780 		ctx->segs[i] = segs[i];
1781 }
1782 
1783 static void
1784 msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1785 {
1786 	struct msk_dmamap_arg *ctx = arg;
1787 	int i;
1788 
1789 	if (error)
1790 		return;
1791 
1792 	KKASSERT(nseg <= ctx->nseg);
1793 
1794 	ctx->nseg = nseg;
1795 	for (i = 0; i < ctx->nseg; ++i)
1796 		ctx->segs[i] = segs[i];
1797 }
1798 
1799 /* Create status DMA region. */
1800 static int
1801 mskc_status_dma_alloc(struct msk_softc *sc)
1802 {
1803 	struct msk_dmamap_arg ctx;
1804 	bus_dma_segment_t seg;
1805 	int error;
1806 
1807 	error = bus_dma_tag_create(
1808 		    NULL,			/* XXX parent */
1809 		    MSK_STAT_ALIGN, 0,		/* alignment, boundary */
1810 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1811 		    BUS_SPACE_MAXADDR,		/* highaddr */
1812 		    NULL, NULL,			/* filter, filterarg */
1813 		    MSK_STAT_RING_SZ,		/* maxsize */
1814 		    1,				/* nsegments */
1815 		    MSK_STAT_RING_SZ,		/* maxsegsize */
1816 		    0,				/* flags */
1817 		    &sc->msk_stat_tag);
1818 	if (error) {
1819 		device_printf(sc->msk_dev,
1820 		    "failed to create status DMA tag\n");
1821 		return (error);
1822 	}
1823 
1824 	/* Allocate DMA'able memory and load the DMA map for status ring. */
1825 	error = bus_dmamem_alloc(sc->msk_stat_tag,
1826 				 (void **)&sc->msk_stat_ring,
1827 				 BUS_DMA_WAITOK | BUS_DMA_ZERO,
1828 				 &sc->msk_stat_map);
1829 	if (error) {
1830 		device_printf(sc->msk_dev,
1831 		    "failed to allocate DMA'able memory for status ring\n");
1832 		bus_dma_tag_destroy(sc->msk_stat_tag);
1833 		sc->msk_stat_tag = NULL;
1834 		return (error);
1835 	}
1836 
1837 	bzero(&ctx, sizeof(ctx));
1838 	ctx.nseg = 1;
1839 	ctx.segs = &seg;
1840 	error = bus_dmamap_load(sc->msk_stat_tag, sc->msk_stat_map,
1841 				sc->msk_stat_ring, MSK_STAT_RING_SZ,
1842 				msk_dmamap_cb, &ctx, 0);
1843 	if (error) {
1844 		device_printf(sc->msk_dev,
1845 		    "failed to load DMA'able memory for status ring\n");
1846 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1847 				sc->msk_stat_map);
1848 		bus_dma_tag_destroy(sc->msk_stat_tag);
1849 		sc->msk_stat_tag = NULL;
1850 		return (error);
1851 	}
1852 	sc->msk_stat_ring_paddr = seg.ds_addr;
1853 
1854 	return (0);
1855 }
1856 
1857 static void
1858 mskc_status_dma_free(struct msk_softc *sc)
1859 {
1860 	/* Destroy status block. */
1861 	if (sc->msk_stat_tag) {
1862 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1863 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1864 				sc->msk_stat_map);
1865 		bus_dma_tag_destroy(sc->msk_stat_tag);
1866 		sc->msk_stat_tag = NULL;
1867 	}
1868 }
1869 
1870 static int
1871 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1872 {
1873 	int error, i, j;
1874 #ifdef MSK_JUMBO
1875 	struct msk_rxdesc *jrxd;
1876 	struct msk_jpool_entry *entry;
1877 	uint8_t *ptr;
1878 #endif
1879 
1880 	/* Create parent DMA tag. */
1881 	/*
1882 	 * XXX
1883 	 * It seems that Yukon II supports full 64bits DMA operations. But
1884 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1885 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1886 	 * would be used in advance for each mbufs, we limits its DMA space
1887 	 * to be in range of 32bits address space. Otherwise, we should check
1888 	 * what DMA address is used and chain another descriptor for the
1889 	 * 64bits DMA operation. This also means descriptor ring size is
1890 	 * variable. Limiting DMA address to be in 32bit address space greatly
1891 	 * simplyfies descriptor handling and possibly would increase
1892 	 * performance a bit due to efficient handling of descriptors.
1893 	 * Apart from harassing checksum offloading mechanisms, it seems
1894 	 * it's really bad idea to use a seperate descriptor for 64bit
1895 	 * DMA operation to save small descriptor memory. Anyway, I've
1896 	 * never seen these exotic scheme on ethernet interface hardware.
1897 	 */
1898 	error = bus_dma_tag_create(
1899 		    NULL,			/* parent */
1900 		    1, 0,			/* alignment, boundary */
1901 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1902 		    BUS_SPACE_MAXADDR,		/* highaddr */
1903 		    NULL, NULL,			/* filter, filterarg */
1904 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1905 		    0,				/* nsegments */
1906 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1907 		    0,				/* flags */
1908 		    &sc_if->msk_cdata.msk_parent_tag);
1909 	if (error) {
1910 		device_printf(sc_if->msk_if_dev,
1911 			      "failed to create parent DMA tag\n");
1912 		return error;
1913 	}
1914 
1915 	/* Create DMA stuffs for Tx ring. */
1916 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1917 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1918 				  (void **)&sc_if->msk_rdata.msk_tx_ring,
1919 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1920 				  &sc_if->msk_cdata.msk_tx_ring_map);
1921 	if (error) {
1922 		device_printf(sc_if->msk_if_dev,
1923 			      "failed to create TX ring DMA stuffs\n");
1924 		return error;
1925 	}
1926 
1927 	/* Create DMA stuffs for Rx ring. */
1928 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1929 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1930 				  (void **)&sc_if->msk_rdata.msk_rx_ring,
1931 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1932 				  &sc_if->msk_cdata.msk_rx_ring_map);
1933 	if (error) {
1934 		device_printf(sc_if->msk_if_dev,
1935 			      "failed to create RX ring DMA stuffs\n");
1936 		return error;
1937 	}
1938 
1939 	/* Create tag for Tx buffers. */
1940 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1941 		    1, 0,			/* alignment, boundary */
1942 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1943 		    BUS_SPACE_MAXADDR,		/* highaddr */
1944 		    NULL, NULL,			/* filter, filterarg */
1945 		    MSK_TSO_MAXSIZE,		/* maxsize */
1946 		    MSK_MAXTXSEGS,		/* nsegments */
1947 		    MSK_TSO_MAXSGSIZE,		/* maxsegsize */
1948 		    0,				/* flags */
1949 		    &sc_if->msk_cdata.msk_tx_tag);
1950 	if (error) {
1951 		device_printf(sc_if->msk_if_dev,
1952 			      "failed to create Tx DMA tag\n");
1953 		return error;
1954 	}
1955 
1956 	/* Create DMA maps for Tx buffers. */
1957 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1958 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1959 
1960 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
1961 		    &txd->tx_dmamap);
1962 		if (error) {
1963 			device_printf(sc_if->msk_if_dev,
1964 				      "failed to create %dth Tx dmamap\n", i);
1965 
1966 			for (j = 0; j < i; ++j) {
1967 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1968 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1969 						   txd->tx_dmamap);
1970 			}
1971 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1972 			sc_if->msk_cdata.msk_tx_tag = NULL;
1973 
1974 			return error;
1975 		}
1976 	}
1977 
1978 	/* Create tag for Rx buffers. */
1979 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1980 		    1, 0,			/* alignment, boundary */
1981 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1982 		    BUS_SPACE_MAXADDR,		/* highaddr */
1983 		    NULL, NULL,			/* filter, filterarg */
1984 		    MCLBYTES,			/* maxsize */
1985 		    1,				/* nsegments */
1986 		    MCLBYTES,			/* maxsegsize */
1987 		    0,				/* flags */
1988 		    &sc_if->msk_cdata.msk_rx_tag);
1989 	if (error) {
1990 		device_printf(sc_if->msk_if_dev,
1991 			      "failed to create Rx DMA tag\n");
1992 		return error;
1993 	}
1994 
1995 	/* Create DMA maps for Rx buffers. */
1996 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
1997 				  &sc_if->msk_cdata.msk_rx_sparemap);
1998 	if (error) {
1999 		device_printf(sc_if->msk_if_dev,
2000 			      "failed to create spare Rx dmamap\n");
2001 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2002 		sc_if->msk_cdata.msk_rx_tag = NULL;
2003 		return error;
2004 	}
2005 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2006 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2007 
2008 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
2009 					  &rxd->rx_dmamap);
2010 		if (error) {
2011 			device_printf(sc_if->msk_if_dev,
2012 				      "failed to create %dth Rx dmamap\n", i);
2013 
2014 			for (j = 0; j < i; ++j) {
2015 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2016 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2017 						   rxd->rx_dmamap);
2018 			}
2019 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2020 			sc_if->msk_cdata.msk_rx_tag = NULL;
2021 
2022 			return error;
2023 		}
2024 	}
2025 
2026 #ifdef MSK_JUMBO
2027 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2028 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2029 
2030 	/* Create tag for jumbo Rx ring. */
2031 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2032 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2033 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2034 		    BUS_SPACE_MAXADDR,		/* highaddr */
2035 		    NULL, NULL,			/* filter, filterarg */
2036 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2037 		    1,				/* nsegments */
2038 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2039 		    0,				/* flags */
2040 		    NULL, NULL,			/* lockfunc, lockarg */
2041 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2042 	if (error != 0) {
2043 		device_printf(sc_if->msk_if_dev,
2044 		    "failed to create jumbo Rx ring DMA tag\n");
2045 		goto fail;
2046 	}
2047 
2048 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2049 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2050 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2051 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2052 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2053 	if (error != 0) {
2054 		device_printf(sc_if->msk_if_dev,
2055 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2056 		goto fail;
2057 	}
2058 
2059 	ctx.msk_busaddr = 0;
2060 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2061 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2062 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2063 	    msk_dmamap_cb, &ctx, 0);
2064 	if (error != 0) {
2065 		device_printf(sc_if->msk_if_dev,
2066 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2067 		goto fail;
2068 	}
2069 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2070 
2071 	/* Create tag for jumbo buffer blocks. */
2072 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2073 		    PAGE_SIZE, 0,		/* alignment, boundary */
2074 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2075 		    BUS_SPACE_MAXADDR,		/* highaddr */
2076 		    NULL, NULL,			/* filter, filterarg */
2077 		    MSK_JMEM,			/* maxsize */
2078 		    1,				/* nsegments */
2079 		    MSK_JMEM,			/* maxsegsize */
2080 		    0,				/* flags */
2081 		    NULL, NULL,			/* lockfunc, lockarg */
2082 		    &sc_if->msk_cdata.msk_jumbo_tag);
2083 	if (error != 0) {
2084 		device_printf(sc_if->msk_if_dev,
2085 		    "failed to create jumbo Rx buffer block DMA tag\n");
2086 		goto fail;
2087 	}
2088 
2089 	/* Create tag for jumbo Rx buffers. */
2090 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2091 		    PAGE_SIZE, 0,		/* alignment, boundary */
2092 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2093 		    BUS_SPACE_MAXADDR,		/* highaddr */
2094 		    NULL, NULL,			/* filter, filterarg */
2095 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2096 		    MSK_MAXRXSEGS,		/* nsegments */
2097 		    MSK_JLEN,			/* maxsegsize */
2098 		    0,				/* flags */
2099 		    NULL, NULL,			/* lockfunc, lockarg */
2100 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2101 	if (error != 0) {
2102 		device_printf(sc_if->msk_if_dev,
2103 		    "failed to create jumbo Rx DMA tag\n");
2104 		goto fail;
2105 	}
2106 
2107 	/* Create DMA maps for jumbo Rx buffers. */
2108 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2109 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2110 		device_printf(sc_if->msk_if_dev,
2111 		    "failed to create spare jumbo Rx dmamap\n");
2112 		goto fail;
2113 	}
2114 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2115 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2116 		jrxd->rx_m = NULL;
2117 		jrxd->rx_dmamap = NULL;
2118 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2119 		    &jrxd->rx_dmamap);
2120 		if (error != 0) {
2121 			device_printf(sc_if->msk_if_dev,
2122 			    "failed to create jumbo Rx dmamap\n");
2123 			goto fail;
2124 		}
2125 	}
2126 
2127 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2128 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2129 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2130 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2131 	    &sc_if->msk_cdata.msk_jumbo_map);
2132 	if (error != 0) {
2133 		device_printf(sc_if->msk_if_dev,
2134 		    "failed to allocate DMA'able memory for jumbo buf\n");
2135 		goto fail;
2136 	}
2137 
2138 	ctx.msk_busaddr = 0;
2139 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2140 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2141 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2142 	if (error != 0) {
2143 		device_printf(sc_if->msk_if_dev,
2144 		    "failed to load DMA'able memory for jumbobuf\n");
2145 		goto fail;
2146 	}
2147 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2148 
2149 	/*
2150 	 * Now divide it up into 9K pieces and save the addresses
2151 	 * in an array.
2152 	 */
2153 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2154 	for (i = 0; i < MSK_JSLOTS; i++) {
2155 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2156 		ptr += MSK_JLEN;
2157 		entry = malloc(sizeof(struct msk_jpool_entry),
2158 		    M_DEVBUF, M_WAITOK);
2159 		if (entry == NULL) {
2160 			device_printf(sc_if->msk_if_dev,
2161 			    "no memory for jumbo buffers!\n");
2162 			error = ENOMEM;
2163 			goto fail;
2164 		}
2165 		entry->slot = i;
2166 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2167 		    jpool_entries);
2168 	}
2169 #endif
2170 	return 0;
2171 }
2172 
2173 static void
2174 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2175 {
2176 	struct msk_txdesc *txd;
2177 	struct msk_rxdesc *rxd;
2178 #ifdef MSK_JUMBO
2179 	struct msk_rxdesc *jrxd;
2180 	struct msk_jpool_entry *entry;
2181 #endif
2182 	int i;
2183 
2184 #ifdef MSK_JUMBO
2185 	MSK_JLIST_LOCK(sc_if);
2186 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2187 		device_printf(sc_if->msk_if_dev,
2188 		    "asked to free buffer that is in use!\n");
2189 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2190 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2191 		    jpool_entries);
2192 	}
2193 
2194 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2195 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2196 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2197 		free(entry, M_DEVBUF);
2198 	}
2199 	MSK_JLIST_UNLOCK(sc_if);
2200 
2201 	/* Destroy jumbo buffer block. */
2202 	if (sc_if->msk_cdata.msk_jumbo_map)
2203 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2204 		    sc_if->msk_cdata.msk_jumbo_map);
2205 
2206 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2207 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2208 		    sc_if->msk_rdata.msk_jumbo_buf,
2209 		    sc_if->msk_cdata.msk_jumbo_map);
2210 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2211 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2212 	}
2213 
2214 	/* Jumbo Rx ring. */
2215 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2216 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2217 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2218 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2219 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2220 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2221 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2222 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2223 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2224 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2225 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2226 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2227 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2228 	}
2229 
2230 	/* Jumbo Rx buffers. */
2231 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2232 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2233 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2234 			if (jrxd->rx_dmamap) {
2235 				bus_dmamap_destroy(
2236 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2237 				    jrxd->rx_dmamap);
2238 				jrxd->rx_dmamap = NULL;
2239 			}
2240 		}
2241 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2242 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2243 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2244 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2245 		}
2246 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2247 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2248 	}
2249 #endif
2250 
2251 	/* Tx ring. */
2252 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2253 			   sc_if->msk_rdata.msk_tx_ring,
2254 			   sc_if->msk_cdata.msk_tx_ring_map);
2255 
2256 	/* Rx ring. */
2257 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2258 			   sc_if->msk_rdata.msk_rx_ring,
2259 			   sc_if->msk_cdata.msk_rx_ring_map);
2260 
2261 	/* Tx buffers. */
2262 	if (sc_if->msk_cdata.msk_tx_tag) {
2263 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2264 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2265 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2266 					   txd->tx_dmamap);
2267 		}
2268 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2269 		sc_if->msk_cdata.msk_tx_tag = NULL;
2270 	}
2271 
2272 	/* Rx buffers. */
2273 	if (sc_if->msk_cdata.msk_rx_tag) {
2274 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2275 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2276 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2277 					   rxd->rx_dmamap);
2278 		}
2279 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2280 				   sc_if->msk_cdata.msk_rx_sparemap);
2281 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2282 		sc_if->msk_cdata.msk_rx_tag = NULL;
2283 	}
2284 
2285 	if (sc_if->msk_cdata.msk_parent_tag) {
2286 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2287 		sc_if->msk_cdata.msk_parent_tag = NULL;
2288 	}
2289 }
2290 
2291 #ifdef MSK_JUMBO
2292 /*
2293  * Allocate a jumbo buffer.
2294  */
2295 static void *
2296 msk_jalloc(struct msk_if_softc *sc_if)
2297 {
2298 	struct msk_jpool_entry *entry;
2299 
2300 	MSK_JLIST_LOCK(sc_if);
2301 
2302 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2303 
2304 	if (entry == NULL) {
2305 		MSK_JLIST_UNLOCK(sc_if);
2306 		return (NULL);
2307 	}
2308 
2309 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2310 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2311 
2312 	MSK_JLIST_UNLOCK(sc_if);
2313 
2314 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2315 }
2316 
2317 /*
2318  * Release a jumbo buffer.
2319  */
2320 static void
2321 msk_jfree(void *buf, void *args)
2322 {
2323 	struct msk_if_softc *sc_if;
2324 	struct msk_jpool_entry *entry;
2325 	int i;
2326 
2327 	/* Extract the softc struct pointer. */
2328 	sc_if = (struct msk_if_softc *)args;
2329 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2330 
2331 	MSK_JLIST_LOCK(sc_if);
2332 	/* Calculate the slot this buffer belongs to. */
2333 	i = ((vm_offset_t)buf
2334 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2335 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2336 	    ("%s: asked to free buffer that we don't manage!", __func__));
2337 
2338 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2339 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2340 	entry->slot = i;
2341 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2342 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2343 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2344 		wakeup(sc_if);
2345 
2346 	MSK_JLIST_UNLOCK(sc_if);
2347 }
2348 #endif
2349 
2350 /*
2351  * It's copy of ath_defrag(ath(4)).
2352  *
2353  * Defragment an mbuf chain, returning at most maxfrags separate
2354  * mbufs+clusters.  If this is not possible NULL is returned and
2355  * the original mbuf chain is left in it's present (potentially
2356  * modified) state.  We use two techniques: collapsing consecutive
2357  * mbufs and replacing consecutive mbufs by a cluster.
2358  */
2359 static struct mbuf *
2360 msk_defrag(struct mbuf *m0, int how, int maxfrags)
2361 {
2362 	struct mbuf *m, *n, *n2, **prev;
2363 	u_int curfrags;
2364 
2365 	/*
2366 	 * Calculate the current number of frags.
2367 	 */
2368 	curfrags = 0;
2369 	for (m = m0; m != NULL; m = m->m_next)
2370 		curfrags++;
2371 	/*
2372 	 * First, try to collapse mbufs.  Note that we always collapse
2373 	 * towards the front so we don't need to deal with moving the
2374 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2375 	 * less data than the following.
2376 	 */
2377 	m = m0;
2378 again:
2379 	for (;;) {
2380 		n = m->m_next;
2381 		if (n == NULL)
2382 			break;
2383 		if (n->m_len < M_TRAILINGSPACE(m)) {
2384 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2385 				n->m_len);
2386 			m->m_len += n->m_len;
2387 			m->m_next = n->m_next;
2388 			m_free(n);
2389 			if (--curfrags <= maxfrags)
2390 				return (m0);
2391 		} else
2392 			m = n;
2393 	}
2394 	KASSERT(maxfrags > 1,
2395 		("maxfrags %u, but normal collapse failed", maxfrags));
2396 	/*
2397 	 * Collapse consecutive mbufs to a cluster.
2398 	 */
2399 	prev = &m0->m_next;		/* NB: not the first mbuf */
2400 	while ((n = *prev) != NULL) {
2401 		if ((n2 = n->m_next) != NULL &&
2402 		    n->m_len + n2->m_len < MCLBYTES) {
2403 			m = m_getcl(how, MT_DATA, 0);
2404 			if (m == NULL)
2405 				goto bad;
2406 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2407 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2408 				n2->m_len);
2409 			m->m_len = n->m_len + n2->m_len;
2410 			m->m_next = n2->m_next;
2411 			*prev = m;
2412 			m_free(n);
2413 			m_free(n2);
2414 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2415 				return m0;
2416 			/*
2417 			 * Still not there, try the normal collapse
2418 			 * again before we allocate another cluster.
2419 			 */
2420 			goto again;
2421 		}
2422 		prev = &n->m_next;
2423 	}
2424 	/*
2425 	 * No place where we can collapse to a cluster; punt.
2426 	 * This can occur if, for example, you request 2 frags
2427 	 * but the packet requires that both be clusters (we
2428 	 * never reallocate the first mbuf to avoid moving the
2429 	 * packet header).
2430 	 */
2431 bad:
2432 	return (NULL);
2433 }
2434 
2435 static int
2436 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2437 {
2438 	struct msk_txdesc *txd, *txd_last;
2439 	struct msk_tx_desc *tx_le;
2440 	struct mbuf *m;
2441 	bus_dmamap_t map;
2442 	struct msk_dmamap_arg ctx;
2443 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2444 	uint32_t control, prod, si;
2445 	uint16_t offset, tcp_offset;
2446 	int error, i;
2447 
2448 	tcp_offset = offset = 0;
2449 	m = *m_head;
2450 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2451 		/*
2452 		 * Since mbuf has no protocol specific structure information
2453 		 * in it we have to inspect protocol information here to
2454 		 * setup TSO and checksum offload. I don't know why Marvell
2455 		 * made a such decision in chip design because other GigE
2456 		 * hardwares normally takes care of all these chores in
2457 		 * hardware. However, TSO performance of Yukon II is very
2458 		 * good such that it's worth to implement it.
2459 		 */
2460 		struct ether_header *eh;
2461 		struct ip *ip;
2462 
2463 		/* TODO check for M_WRITABLE(m) */
2464 
2465 		offset = sizeof(struct ether_header);
2466 		m = m_pullup(m, offset);
2467 		if (m == NULL) {
2468 			*m_head = NULL;
2469 			return (ENOBUFS);
2470 		}
2471 		eh = mtod(m, struct ether_header *);
2472 		/* Check if hardware VLAN insertion is off. */
2473 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2474 			offset = sizeof(struct ether_vlan_header);
2475 			m = m_pullup(m, offset);
2476 			if (m == NULL) {
2477 				*m_head = NULL;
2478 				return (ENOBUFS);
2479 			}
2480 		}
2481 		m = m_pullup(m, offset + sizeof(struct ip));
2482 		if (m == NULL) {
2483 			*m_head = NULL;
2484 			return (ENOBUFS);
2485 		}
2486 		ip = (struct ip *)(mtod(m, char *) + offset);
2487 		offset += (ip->ip_hl << 2);
2488 		tcp_offset = offset;
2489 		/*
2490 		 * It seems that Yukon II has Tx checksum offload bug for
2491 		 * small TCP packets that's less than 60 bytes in size
2492 		 * (e.g. TCP window probe packet, pure ACK packet).
2493 		 * Common work around like padding with zeros to make the
2494 		 * frame minimum ethernet frame size didn't work at all.
2495 		 * Instead of disabling checksum offload completely we
2496 		 * resort to S/W checksum routine when we encounter short
2497 		 * TCP frames.
2498 		 * Short UDP packets appear to be handled correctly by
2499 		 * Yukon II.
2500 		 */
2501 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2502 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2503 			uint16_t csum;
2504 
2505 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2506 			    (ip->ip_hl << 2), offset);
2507 			*(uint16_t *)(m->m_data + offset +
2508 			    m->m_pkthdr.csum_data) = csum;
2509 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2510 		}
2511 		*m_head = m;
2512 	}
2513 
2514 	prod = sc_if->msk_cdata.msk_tx_prod;
2515 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2516 	txd_last = txd;
2517 	map = txd->tx_dmamap;
2518 	bzero(&ctx, sizeof(ctx));
2519 	ctx.nseg = MSK_MAXTXSEGS;
2520 	ctx.segs = txsegs;
2521 	error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag, map,
2522 	    *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2523 	if (error == 0 && ctx.nseg == 0) {
2524 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2525 		error = EFBIG;
2526 	}
2527 	if (error == EFBIG) {
2528 		m = msk_defrag(*m_head, MB_DONTWAIT, MSK_MAXTXSEGS);
2529 		if (m == NULL) {
2530 			m_freem(*m_head);
2531 			*m_head = NULL;
2532 			return (ENOBUFS);
2533 		}
2534 		*m_head = m;
2535 
2536 		bzero(&ctx, sizeof(ctx));
2537 		ctx.nseg = MSK_MAXTXSEGS;
2538 		ctx.segs = txsegs;
2539 		error = bus_dmamap_load_mbuf(sc_if->msk_cdata.msk_tx_tag,
2540 		    map, *m_head, msk_dmamap_mbuf_cb, &ctx, BUS_DMA_NOWAIT);
2541 		if (error == 0 && ctx.nseg == 0) {
2542 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2543 			error = EFBIG;
2544 		}
2545 		if (error != 0) {
2546 			m_freem(*m_head);
2547 			*m_head = NULL;
2548 			return (error);
2549 		}
2550 	} else if (error != 0) {
2551 		return (error);
2552 	}
2553 
2554 	/* Check number of available descriptors. */
2555 	if (sc_if->msk_cdata.msk_tx_cnt + ctx.nseg >=
2556 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
2557 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
2558 		return (ENOBUFS);
2559 	}
2560 
2561 	control = 0;
2562 	tx_le = NULL;
2563 
2564 #ifdef notyet
2565 	/* Check if we have a VLAN tag to insert. */
2566 	if ((m->m_flags & M_VLANTAG) != 0) {
2567 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2568 		tx_le->msk_addr = htole32(0);
2569 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2570 		    htons(m->m_pkthdr.ether_vtag));
2571 		sc_if->msk_cdata.msk_tx_cnt++;
2572 		MSK_INC(prod, MSK_TX_RING_CNT);
2573 		control |= INS_VLAN;
2574 	}
2575 #endif
2576 	/* Check if we have to handle checksum offload. */
2577 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2578 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2579 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2580 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2581 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2582 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2583 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2584 			control |= UDPTCP;
2585 		sc_if->msk_cdata.msk_tx_cnt++;
2586 		MSK_INC(prod, MSK_TX_RING_CNT);
2587 	}
2588 
2589 	si = prod;
2590 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2591 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2592 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2593 	    OP_PACKET);
2594 	sc_if->msk_cdata.msk_tx_cnt++;
2595 	MSK_INC(prod, MSK_TX_RING_CNT);
2596 
2597 	for (i = 1; i < ctx.nseg; i++) {
2598 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2599 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2600 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2601 		    OP_BUFFER | HW_OWNER);
2602 		sc_if->msk_cdata.msk_tx_cnt++;
2603 		MSK_INC(prod, MSK_TX_RING_CNT);
2604 	}
2605 	/* Update producer index. */
2606 	sc_if->msk_cdata.msk_tx_prod = prod;
2607 
2608 	/* Set EOP on the last desciptor. */
2609 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2610 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2611 	tx_le->msk_control |= htole32(EOP);
2612 
2613 	/* Turn the first descriptor ownership to hardware. */
2614 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2615 	tx_le->msk_control |= htole32(HW_OWNER);
2616 
2617 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2618 	map = txd_last->tx_dmamap;
2619 	txd_last->tx_dmamap = txd->tx_dmamap;
2620 	txd->tx_dmamap = map;
2621 	txd->tx_m = m;
2622 
2623 	/* Sync descriptors. */
2624 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2625 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2626 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_PREWRITE);
2627 
2628 	return (0);
2629 }
2630 
2631 static void
2632 msk_start(struct ifnet *ifp)
2633 {
2634         struct msk_if_softc *sc_if;
2635         struct mbuf *m_head;
2636 	int enq;
2637 
2638 	sc_if = ifp->if_softc;
2639 
2640 	ASSERT_SERIALIZED(ifp->if_serializer);
2641 
2642 	if (!sc_if->msk_link) {
2643 		ifq_purge(&ifp->if_snd);
2644 		return;
2645 	}
2646 
2647 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2648 		return;
2649 
2650 	for (enq = 0; !ifq_is_empty(&ifp->if_snd) &&
2651 	    sc_if->msk_cdata.msk_tx_cnt <
2652 	    (MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
2653 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2654 		if (m_head == NULL)
2655 			break;
2656 
2657 		/*
2658 		 * Pack the data into the transmit ring. If we
2659 		 * don't have room, set the OACTIVE flag and wait
2660 		 * for the NIC to drain the ring.
2661 		 */
2662 		if (msk_encap(sc_if, &m_head) != 0) {
2663 			if (m_head == NULL)
2664 				break;
2665 			m_freem(m_head);
2666 			ifp->if_flags |= IFF_OACTIVE;
2667 			break;
2668 		}
2669 
2670 		enq++;
2671 		/*
2672 		 * If there's a BPF listener, bounce a copy of this frame
2673 		 * to him.
2674 		 */
2675 		BPF_MTAP(ifp, m_head);
2676 	}
2677 
2678 	if (enq > 0) {
2679 		/* Transmit */
2680 		CSR_WRITE_2(sc_if->msk_softc,
2681 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2682 		    sc_if->msk_cdata.msk_tx_prod);
2683 
2684 		/* Set a timeout in case the chip goes out to lunch. */
2685 		ifp->if_timer = MSK_TX_TIMEOUT;
2686 	}
2687 }
2688 
2689 static void
2690 msk_watchdog(struct ifnet *ifp)
2691 {
2692 	struct msk_if_softc *sc_if = ifp->if_softc;
2693 	uint32_t ridx;
2694 	int idx;
2695 
2696 	ASSERT_SERIALIZED(ifp->if_serializer);
2697 
2698 	if (sc_if->msk_link == 0) {
2699 		if (bootverbose)
2700 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2701 			   "(missed link)\n");
2702 		ifp->if_oerrors++;
2703 		msk_init(sc_if);
2704 		return;
2705 	}
2706 
2707 	/*
2708 	 * Reclaim first as there is a possibility of losing Tx completion
2709 	 * interrupts.
2710 	 */
2711 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2712 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2713 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2714 		msk_txeof(sc_if, idx);
2715 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2716 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2717 			    "-- recovering\n");
2718 			if (!ifq_is_empty(&ifp->if_snd))
2719 				if_devstart(ifp);
2720 			return;
2721 		}
2722 	}
2723 
2724 	if_printf(ifp, "watchdog timeout\n");
2725 	ifp->if_oerrors++;
2726 	msk_init(sc_if);
2727 	if (!ifq_is_empty(&ifp->if_snd))
2728 		if_devstart(ifp);
2729 }
2730 
2731 static int
2732 mskc_shutdown(device_t dev)
2733 {
2734 	struct msk_softc *sc = device_get_softc(dev);
2735 	int i;
2736 
2737 	lwkt_serialize_enter(&sc->msk_serializer);
2738 
2739 	for (i = 0; i < sc->msk_num_port; i++) {
2740 		if (sc->msk_if[i] != NULL)
2741 			msk_stop(sc->msk_if[i]);
2742 	}
2743 
2744 	/* Disable all interrupts. */
2745 	CSR_WRITE_4(sc, B0_IMSK, 0);
2746 	CSR_READ_4(sc, B0_IMSK);
2747 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2748 	CSR_READ_4(sc, B0_HWE_IMSK);
2749 
2750 	/* Put hardware reset. */
2751 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2752 
2753 	lwkt_serialize_exit(&sc->msk_serializer);
2754 	return (0);
2755 }
2756 
2757 static int
2758 mskc_suspend(device_t dev)
2759 {
2760 	struct msk_softc *sc = device_get_softc(dev);
2761 	int i;
2762 
2763 	lwkt_serialize_enter(&sc->msk_serializer);
2764 
2765 	for (i = 0; i < sc->msk_num_port; i++) {
2766 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2767 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2768 			msk_stop(sc->msk_if[i]);
2769 	}
2770 
2771 	/* Disable all interrupts. */
2772 	CSR_WRITE_4(sc, B0_IMSK, 0);
2773 	CSR_READ_4(sc, B0_IMSK);
2774 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2775 	CSR_READ_4(sc, B0_HWE_IMSK);
2776 
2777 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2778 
2779 	/* Put hardware reset. */
2780 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2781 	sc->msk_suspended = 1;
2782 
2783 	lwkt_serialize_exit(&sc->msk_serializer);
2784 
2785 	return (0);
2786 }
2787 
2788 static int
2789 mskc_resume(device_t dev)
2790 {
2791 	struct msk_softc *sc = device_get_softc(dev);
2792 	int i;
2793 
2794 	lwkt_serialize_enter(&sc->msk_serializer);
2795 
2796 	mskc_reset(sc);
2797 	for (i = 0; i < sc->msk_num_port; i++) {
2798 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2799 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2800 			msk_init(sc->msk_if[i]);
2801 	}
2802 	sc->msk_suspended = 0;
2803 
2804 	lwkt_serialize_exit(&sc->msk_serializer);
2805 
2806 	return (0);
2807 }
2808 
2809 static void
2810 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len,
2811 	  struct mbuf_chain *chain)
2812 {
2813 	struct mbuf *m;
2814 	struct ifnet *ifp;
2815 	struct msk_rxdesc *rxd;
2816 	int cons, rxlen;
2817 
2818 	ifp = sc_if->msk_ifp;
2819 
2820 	cons = sc_if->msk_cdata.msk_rx_cons;
2821 	do {
2822 		rxlen = status >> 16;
2823 		if ((status & GMR_FS_VLAN) != 0 &&
2824 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2825 			rxlen -= EVL_ENCAPLEN;
2826 		if (len > sc_if->msk_framesize ||
2827 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2828 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2829 			/* Don't count flow-control packet as errors. */
2830 			if ((status & GMR_FS_GOOD_FC) == 0)
2831 				ifp->if_ierrors++;
2832 			msk_discard_rxbuf(sc_if, cons);
2833 			break;
2834 		}
2835 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2836 		m = rxd->rx_m;
2837 		if (msk_newbuf(sc_if, cons) != 0) {
2838 			ifp->if_iqdrops++;
2839 			/* Reuse old buffer. */
2840 			msk_discard_rxbuf(sc_if, cons);
2841 			break;
2842 		}
2843 		m->m_pkthdr.rcvif = ifp;
2844 		m->m_pkthdr.len = m->m_len = len;
2845 		ifp->if_ipackets++;
2846 #ifdef notyet
2847 		/* Check for VLAN tagged packets. */
2848 		if ((status & GMR_FS_VLAN) != 0 &&
2849 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2850 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2851 			m->m_flags |= M_VLANTAG;
2852 		}
2853 #endif
2854 
2855 		ether_input_chain(ifp, m, chain);
2856 	} while (0);
2857 
2858 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2859 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2860 }
2861 
2862 #ifdef MSK_JUMBO
2863 static void
2864 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2865 {
2866 	struct mbuf *m;
2867 	struct ifnet *ifp;
2868 	struct msk_rxdesc *jrxd;
2869 	int cons, rxlen;
2870 
2871 	ifp = sc_if->msk_ifp;
2872 
2873 	MSK_IF_LOCK_ASSERT(sc_if);
2874 
2875 	cons = sc_if->msk_cdata.msk_rx_cons;
2876 	do {
2877 		rxlen = status >> 16;
2878 		if ((status & GMR_FS_VLAN) != 0 &&
2879 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2880 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2881 		if (len > sc_if->msk_framesize ||
2882 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2883 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2884 			/* Don't count flow-control packet as errors. */
2885 			if ((status & GMR_FS_GOOD_FC) == 0)
2886 				ifp->if_ierrors++;
2887 			msk_discard_jumbo_rxbuf(sc_if, cons);
2888 			break;
2889 		}
2890 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2891 		m = jrxd->rx_m;
2892 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2893 			ifp->if_iqdrops++;
2894 			/* Reuse old buffer. */
2895 			msk_discard_jumbo_rxbuf(sc_if, cons);
2896 			break;
2897 		}
2898 		m->m_pkthdr.rcvif = ifp;
2899 		m->m_pkthdr.len = m->m_len = len;
2900 		ifp->if_ipackets++;
2901 		/* Check for VLAN tagged packets. */
2902 		if ((status & GMR_FS_VLAN) != 0 &&
2903 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2904 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2905 			m->m_flags |= M_VLANTAG;
2906 		}
2907 		MSK_IF_UNLOCK(sc_if);
2908 		(*ifp->if_input)(ifp, m);
2909 		MSK_IF_LOCK(sc_if);
2910 	} while (0);
2911 
2912 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2913 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2914 }
2915 #endif
2916 
2917 static void
2918 msk_txeof(struct msk_if_softc *sc_if, int idx)
2919 {
2920 	struct msk_txdesc *txd;
2921 	struct msk_tx_desc *cur_tx;
2922 	struct ifnet *ifp;
2923 	uint32_t control;
2924 	int cons, prog;
2925 
2926 	ifp = sc_if->msk_ifp;
2927 
2928 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
2929 	    sc_if->msk_cdata.msk_tx_ring_map, BUS_DMASYNC_POSTREAD);
2930 
2931 	/*
2932 	 * Go through our tx ring and free mbufs for those
2933 	 * frames that have been sent.
2934 	 */
2935 	cons = sc_if->msk_cdata.msk_tx_cons;
2936 	prog = 0;
2937 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2938 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2939 			break;
2940 		prog++;
2941 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2942 		control = le32toh(cur_tx->msk_control);
2943 		sc_if->msk_cdata.msk_tx_cnt--;
2944 		ifp->if_flags &= ~IFF_OACTIVE;
2945 		if ((control & EOP) == 0)
2946 			continue;
2947 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2948 		bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
2949 		    BUS_DMASYNC_POSTWRITE);
2950 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2951 
2952 		ifp->if_opackets++;
2953 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2954 		    __func__));
2955 		m_freem(txd->tx_m);
2956 		txd->tx_m = NULL;
2957 	}
2958 
2959 	if (prog > 0) {
2960 		sc_if->msk_cdata.msk_tx_cons = cons;
2961 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2962 			ifp->if_timer = 0;
2963 		/* No need to sync LEs as we didn't update LEs. */
2964 	}
2965 }
2966 
2967 static void
2968 msk_tick(void *xsc_if)
2969 {
2970 	struct msk_if_softc *sc_if = xsc_if;
2971 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2972 	struct mii_data *mii;
2973 
2974 	lwkt_serialize_enter(ifp->if_serializer);
2975 
2976 	mii = device_get_softc(sc_if->msk_miibus);
2977 
2978 	mii_tick(mii);
2979 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2980 
2981 	lwkt_serialize_exit(ifp->if_serializer);
2982 }
2983 
2984 static void
2985 msk_intr_phy(struct msk_if_softc *sc_if)
2986 {
2987 	uint16_t status;
2988 
2989 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2990 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2991 	/* Handle FIFO Underrun/Overflow? */
2992 	if (status & PHY_M_IS_FIFO_ERROR) {
2993 		device_printf(sc_if->msk_if_dev,
2994 		    "PHY FIFO underrun/overflow.\n");
2995 	}
2996 }
2997 
2998 static void
2999 msk_intr_gmac(struct msk_if_softc *sc_if)
3000 {
3001 	struct msk_softc *sc;
3002 	uint8_t status;
3003 
3004 	sc = sc_if->msk_softc;
3005 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3006 
3007 	/* GMAC Rx FIFO overrun. */
3008 	if ((status & GM_IS_RX_FF_OR) != 0) {
3009 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3010 		    GMF_CLI_RX_FO);
3011 		device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
3012 	}
3013 	/* GMAC Tx FIFO underrun. */
3014 	if ((status & GM_IS_TX_FF_UR) != 0) {
3015 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3016 		    GMF_CLI_TX_FU);
3017 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
3018 		/*
3019 		 * XXX
3020 		 * In case of Tx underrun, we may need to flush/reset
3021 		 * Tx MAC but that would also require resynchronization
3022 		 * with status LEs. Reintializing status LEs would
3023 		 * affect other port in dual MAC configuration so it
3024 		 * should be avoided as possible as we can.
3025 		 * Due to lack of documentation it's all vague guess but
3026 		 * it needs more investigation.
3027 		 */
3028 	}
3029 }
3030 
3031 static void
3032 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3033 {
3034 	struct msk_softc *sc;
3035 
3036 	sc = sc_if->msk_softc;
3037 	if ((status & Y2_IS_PAR_RD1) != 0) {
3038 		device_printf(sc_if->msk_if_dev,
3039 		    "RAM buffer read parity error\n");
3040 		/* Clear IRQ. */
3041 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3042 		    RI_CLR_RD_PERR);
3043 	}
3044 	if ((status & Y2_IS_PAR_WR1) != 0) {
3045 		device_printf(sc_if->msk_if_dev,
3046 		    "RAM buffer write parity error\n");
3047 		/* Clear IRQ. */
3048 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3049 		    RI_CLR_WR_PERR);
3050 	}
3051 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3052 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3053 		/* Clear IRQ. */
3054 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3055 		    GMF_CLI_TX_PE);
3056 	}
3057 	if ((status & Y2_IS_PAR_RX1) != 0) {
3058 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3059 		/* Clear IRQ. */
3060 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3061 	}
3062 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3063 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3064 		/* Clear IRQ. */
3065 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3066 	}
3067 }
3068 
3069 static void
3070 mskc_intr_hwerr(struct msk_softc *sc)
3071 {
3072 	uint32_t status;
3073 	uint32_t tlphead[4];
3074 
3075 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3076 	/* Time Stamp timer overflow. */
3077 	if ((status & Y2_IS_TIST_OV) != 0)
3078 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3079 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3080 		/*
3081 		 * PCI Express Error occured which is not described in PEX
3082 		 * spec.
3083 		 * This error is also mapped either to Master Abort(
3084 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3085 		 * can only be cleared there.
3086                  */
3087 		device_printf(sc->msk_dev,
3088 		    "PCI Express protocol violation error\n");
3089 	}
3090 
3091 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3092 		uint16_t v16;
3093 
3094 		if ((status & Y2_IS_MST_ERR) != 0)
3095 			device_printf(sc->msk_dev,
3096 			    "unexpected IRQ Status error\n");
3097 		else
3098 			device_printf(sc->msk_dev,
3099 			    "unexpected IRQ Master error\n");
3100 		/* Reset all bits in the PCI status register. */
3101 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3102 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3103 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3104 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3105 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3106 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3107 	}
3108 
3109 	/* Check for PCI Express Uncorrectable Error. */
3110 	if ((status & Y2_IS_PCI_EXP) != 0) {
3111 		uint32_t v32;
3112 
3113 		/*
3114 		 * On PCI Express bus bridges are called root complexes (RC).
3115 		 * PCI Express errors are recognized by the root complex too,
3116 		 * which requests the system to handle the problem. After
3117 		 * error occurence it may be that no access to the adapter
3118 		 * may be performed any longer.
3119 		 */
3120 
3121 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3122 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3123 			/* Ignore unsupported request error. */
3124 			if (bootverbose) {
3125 				device_printf(sc->msk_dev,
3126 				    "Uncorrectable PCI Express error\n");
3127 			}
3128 		}
3129 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3130 			int i;
3131 
3132 			/* Get TLP header form Log Registers. */
3133 			for (i = 0; i < 4; i++)
3134 				tlphead[i] = CSR_PCI_READ_4(sc,
3135 				    PEX_HEADER_LOG + i * 4);
3136 			/* Check for vendor defined broadcast message. */
3137 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3138 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3139 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3140 				    sc->msk_intrhwemask);
3141 				CSR_READ_4(sc, B0_HWE_IMSK);
3142 			}
3143 		}
3144 		/* Clear the interrupt. */
3145 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3146 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3147 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3148 	}
3149 
3150 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3151 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3152 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3153 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3154 }
3155 
3156 static __inline void
3157 msk_rxput(struct msk_if_softc *sc_if)
3158 {
3159 	struct msk_softc *sc;
3160 
3161 	sc = sc_if->msk_softc;
3162 #ifdef MSK_JUMBO
3163 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3164 		bus_dmamap_sync(
3165 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3166 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3167 		    BUS_DMASYNC_PREWRITE);
3168 	} else
3169 #endif
3170 	{
3171 		bus_dmamap_sync(
3172 		    sc_if->msk_cdata.msk_rx_ring_tag,
3173 		    sc_if->msk_cdata.msk_rx_ring_map,
3174 		    BUS_DMASYNC_PREWRITE);
3175 	}
3176 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3177 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3178 }
3179 
3180 static int
3181 mskc_handle_events(struct msk_softc *sc)
3182 {
3183 	struct msk_if_softc *sc_if;
3184 	int rxput[2];
3185 	struct msk_stat_desc *sd;
3186 	uint32_t control, status;
3187 	int cons, idx, len, port, rxprog;
3188 	struct mbuf_chain chain[MAXCPU];
3189 
3190 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3191 	if (idx == sc->msk_stat_cons)
3192 		return (0);
3193 
3194 	ether_input_chain_init(chain);
3195 
3196 	/* Sync status LEs. */
3197 	bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
3198 			BUS_DMASYNC_POSTREAD);
3199 	/* XXX Sync Rx LEs here. */
3200 
3201 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3202 
3203 	rxprog = 0;
3204 	for (cons = sc->msk_stat_cons; cons != idx;) {
3205 		sd = &sc->msk_stat_ring[cons];
3206 		control = le32toh(sd->msk_control);
3207 		if ((control & HW_OWNER) == 0)
3208 			break;
3209 		/*
3210 		 * Marvell's FreeBSD driver updates status LE after clearing
3211 		 * HW_OWNER. However we don't have a way to sync single LE
3212 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3213 		 * an entire DMA map. So don't sync LE until we have a better
3214 		 * way to sync LEs.
3215 		 */
3216 		control &= ~HW_OWNER;
3217 		sd->msk_control = htole32(control);
3218 		status = le32toh(sd->msk_status);
3219 		len = control & STLE_LEN_MASK;
3220 		port = (control >> 16) & 0x01;
3221 		sc_if = sc->msk_if[port];
3222 		if (sc_if == NULL) {
3223 			device_printf(sc->msk_dev, "invalid port opcode "
3224 			    "0x%08x\n", control & STLE_OP_MASK);
3225 			continue;
3226 		}
3227 
3228 		switch (control & STLE_OP_MASK) {
3229 		case OP_RXVLAN:
3230 			sc_if->msk_vtag = ntohs(len);
3231 			break;
3232 		case OP_RXCHKSVLAN:
3233 			sc_if->msk_vtag = ntohs(len);
3234 			break;
3235 		case OP_RXSTAT:
3236 #ifdef MSK_JUMBO
3237 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3238 				msk_jumbo_rxeof(sc_if, status, len);
3239 			else
3240 #endif
3241 				msk_rxeof(sc_if, status, len, chain);
3242 			rxprog++;
3243 			/*
3244 			 * Because there is no way to sync single Rx LE
3245 			 * put the DMA sync operation off until the end of
3246 			 * event processing.
3247 			 */
3248 			rxput[port]++;
3249 			/* Update prefetch unit if we've passed water mark. */
3250 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3251 				msk_rxput(sc_if);
3252 				rxput[port] = 0;
3253 			}
3254 			break;
3255 		case OP_TXINDEXLE:
3256 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3257 				msk_txeof(sc->msk_if[MSK_PORT_A],
3258 				    status & STLE_TXA1_MSKL);
3259 			}
3260 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3261 				msk_txeof(sc->msk_if[MSK_PORT_B],
3262 				    ((status & STLE_TXA2_MSKL) >>
3263 				    STLE_TXA2_SHIFTL) |
3264 				    ((len & STLE_TXA2_MSKH) <<
3265 				    STLE_TXA2_SHIFTH));
3266 			}
3267 			break;
3268 		default:
3269 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3270 			    control & STLE_OP_MASK);
3271 			break;
3272 		}
3273 		MSK_INC(cons, MSK_STAT_RING_CNT);
3274 		if (rxprog > sc->msk_process_limit)
3275 			break;
3276 	}
3277 
3278 	if (rxprog > 0)
3279 		ether_input_dispatch(chain);
3280 
3281 	sc->msk_stat_cons = cons;
3282 	/* XXX We should sync status LEs here. See above notes. */
3283 
3284 	if (rxput[MSK_PORT_A] > 0)
3285 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3286 	if (rxput[MSK_PORT_B] > 0)
3287 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3288 
3289 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3290 }
3291 
3292 /* Legacy interrupt handler for shared interrupt. */
3293 static void
3294 mskc_intr(void *xsc)
3295 {
3296 	struct msk_softc *sc;
3297 	struct msk_if_softc *sc_if0, *sc_if1;
3298 	struct ifnet *ifp0, *ifp1;
3299 	uint32_t status;
3300 
3301 	sc = xsc;
3302 	ASSERT_SERIALIZED(&sc->msk_serializer);
3303 
3304 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3305 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3306 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3307 	    (status & sc->msk_intrmask) == 0) {
3308 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3309 		return;
3310 	}
3311 
3312 	sc_if0 = sc->msk_if[MSK_PORT_A];
3313 	sc_if1 = sc->msk_if[MSK_PORT_B];
3314 	ifp0 = ifp1 = NULL;
3315 	if (sc_if0 != NULL)
3316 		ifp0 = sc_if0->msk_ifp;
3317 	if (sc_if1 != NULL)
3318 		ifp1 = sc_if1->msk_ifp;
3319 
3320 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3321 		msk_intr_phy(sc_if0);
3322 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3323 		msk_intr_phy(sc_if1);
3324 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3325 		msk_intr_gmac(sc_if0);
3326 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3327 		msk_intr_gmac(sc_if1);
3328 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3329 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3330 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3331 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3332 		CSR_READ_4(sc, B0_IMSK);
3333 	}
3334         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3335 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3336 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3337 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3338 		CSR_READ_4(sc, B0_IMSK);
3339 	}
3340 	if ((status & Y2_IS_HW_ERR) != 0)
3341 		mskc_intr_hwerr(sc);
3342 
3343 	while (mskc_handle_events(sc) != 0)
3344 		;
3345 	if ((status & Y2_IS_STAT_BMU) != 0)
3346 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3347 
3348 	/* Reenable interrupts. */
3349 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3350 
3351 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3352 	    !ifq_is_empty(&ifp0->if_snd))
3353 		if_devstart(ifp0);
3354 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3355 	    !ifq_is_empty(&ifp1->if_snd))
3356 		if_devstart(ifp1);
3357 }
3358 
3359 static void
3360 msk_init(void *xsc)
3361 {
3362 	struct msk_if_softc *sc_if = xsc;
3363 	struct msk_softc *sc = sc_if->msk_softc;
3364 	struct ifnet *ifp = sc_if->msk_ifp;
3365 	struct mii_data	 *mii;
3366 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3367 	uint16_t gmac;
3368 	int error, i;
3369 
3370 	ASSERT_SERIALIZED(ifp->if_serializer);
3371 
3372 	mii = device_get_softc(sc_if->msk_miibus);
3373 
3374 	error = 0;
3375 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3376 	msk_stop(sc_if);
3377 
3378 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3379 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3380 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3381 		/*
3382 		 * In Yukon EC Ultra, TSO & checksum offload is not
3383 		 * supported for jumbo frame.
3384 		 */
3385 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3386 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3387 	}
3388 
3389 	/*
3390 	 * Initialize GMAC first.
3391 	 * Without this initialization, Rx MAC did not work as expected
3392 	 * and Rx MAC garbled status LEs and it resulted in out-of-order
3393 	 * or duplicated frame delivery which in turn showed very poor
3394 	 * Rx performance.(I had to write a packet analysis code that
3395 	 * could be embeded in driver to diagnose this issue.)
3396 	 * I've spent almost 2 months to fix this issue. If I have had
3397 	 * datasheet for Yukon II I wouldn't have encountered this. :-(
3398 	 */
3399 	gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
3400 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
3401 
3402 	/* Dummy read the Interrupt Source Register. */
3403 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3404 
3405 	/* Set MIB Clear Counter Mode. */
3406 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3407 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3408 	/* Read all MIB Counters with Clear Mode set. */
3409 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3410 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3411 	/* Clear MIB Clear Counter Mode. */
3412 	gmac &= ~GM_PAR_MIB_CLR;
3413 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3414 
3415 	/* Disable FCS. */
3416 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3417 
3418 	/* Setup Transmit Control Register. */
3419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3420 
3421 	/* Setup Transmit Flow Control Register. */
3422 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3423 
3424 	/* Setup Transmit Parameter Register. */
3425 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3426 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3427 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3428 
3429 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3430 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3431 
3432 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3433 		gmac |= GM_SMOD_JUMBO_ENA;
3434 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3435 
3436 	/* Set station address. */
3437         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3438         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3439 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3440 		    eaddr[i]);
3441         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3442 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3443 		    eaddr[i]);
3444 
3445 	/* Disable interrupts for counter overflows. */
3446 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3447 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3448 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3449 
3450 	/* Configure Rx MAC FIFO. */
3451 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3452 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3453 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3454 	    GMF_OPER_ON | GMF_RX_F_FL_ON);
3455 
3456 	/* Set promiscuous mode. */
3457 	msk_setpromisc(sc_if);
3458 
3459 	/* Set multicast filter. */
3460 	msk_setmulti(sc_if);
3461 
3462 	/* Flush Rx MAC FIFO on any flow control or error. */
3463 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3464 	    GMR_FS_ANY_ERR);
3465 
3466 	/* Set Rx FIFO flush threshold to 64 bytes. */
3467 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
3468 	    RX_GMF_FL_THR_DEF);
3469 
3470 	/* Configure Tx MAC FIFO. */
3471 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3472 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3473 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3474 
3475 	/* Configure hardware VLAN tag insertion/stripping. */
3476 	msk_setvlan(sc_if, ifp);
3477 
3478 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3479 		/* Set Rx Pause threshould. */
3480 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3481 		    MSK_ECU_LLPP);
3482 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3483 		    MSK_ECU_ULPP);
3484 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
3485 			/*
3486 			 * Set Tx GMAC FIFO Almost Empty Threshold.
3487 			 */
3488 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3489 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3490 			/* Disable Store & Forward mode for Tx. */
3491 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3492 			    TX_JUMBO_ENA | TX_STFW_DIS);
3493 		} else {
3494 			/* Enable Store & Forward mode for Tx. */
3495 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3496 			    TX_JUMBO_DIS | TX_STFW_ENA);
3497 		}
3498 	}
3499 
3500 	/*
3501 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3502 	 * arbiter as we don't use Sync Tx queue.
3503 	 */
3504 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3505 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3506 	/* Enable the RAM Interface Arbiter. */
3507 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3508 
3509 	/* Setup RAM buffer. */
3510 	msk_set_rambuffer(sc_if);
3511 
3512 	/* Disable Tx sync Queue. */
3513 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3514 
3515 	/* Setup Tx Queue Bus Memory Interface. */
3516 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3517 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3518 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3519 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3520 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3521 	    sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3522 		/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3523 		CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
3524 	}
3525 
3526 	/* Setup Rx Queue Bus Memory Interface. */
3527 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3528 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3529 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3530 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3531         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3532 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3533 		/* MAC Rx RAM Read is controlled by hardware. */
3534                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3535 	}
3536 
3537 	msk_set_prefetch(sc, sc_if->msk_txq,
3538 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3539 	msk_init_tx_ring(sc_if);
3540 
3541 	/* Disable Rx checksum offload and RSS hash. */
3542 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3543 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3544 #ifdef MSK_JUMBO
3545 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3546 		msk_set_prefetch(sc, sc_if->msk_rxq,
3547 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3548 		    MSK_JUMBO_RX_RING_CNT - 1);
3549 		error = msk_init_jumbo_rx_ring(sc_if);
3550 	} else
3551 #endif
3552 	{
3553 		msk_set_prefetch(sc, sc_if->msk_rxq,
3554 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3555 		    MSK_RX_RING_CNT - 1);
3556 		error = msk_init_rx_ring(sc_if);
3557 	}
3558 	if (error != 0) {
3559 		device_printf(sc_if->msk_if_dev,
3560 		    "initialization failed: no memory for Rx buffers\n");
3561 		msk_stop(sc_if);
3562 		return;
3563 	}
3564 
3565 	/* Configure interrupt handling. */
3566 	if (sc_if->msk_port == MSK_PORT_A) {
3567 		sc->msk_intrmask |= Y2_IS_PORT_A;
3568 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3569 	} else {
3570 		sc->msk_intrmask |= Y2_IS_PORT_B;
3571 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3572 	}
3573 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3574 	CSR_READ_4(sc, B0_HWE_IMSK);
3575 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3576 	CSR_READ_4(sc, B0_IMSK);
3577 
3578 	sc_if->msk_link = 0;
3579 	mii_mediachg(mii);
3580 
3581 	mskc_set_imtimer(sc);
3582 
3583 	ifp->if_flags |= IFF_RUNNING;
3584 	ifp->if_flags &= ~IFF_OACTIVE;
3585 
3586 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3587 }
3588 
3589 static void
3590 msk_set_rambuffer(struct msk_if_softc *sc_if)
3591 {
3592 	struct msk_softc *sc;
3593 	int ltpp, utpp;
3594 
3595 	sc = sc_if->msk_softc;
3596 
3597 	/* Setup Rx Queue. */
3598 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3599 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3600 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3601 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3602 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3603 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3604 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3605 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3606 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3607 
3608 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3609 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3610 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3611 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3612 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3613 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3614 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3615 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3616 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3617 
3618 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3619 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3620 
3621 	/* Setup Tx Queue. */
3622 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3623 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3624 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3625 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3626 	    sc->msk_txqend[sc_if->msk_port] / 8);
3627 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3628 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3629 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3630 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3631 	/* Enable Store & Forward for Tx side. */
3632 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3633 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3634 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3635 }
3636 
3637 static void
3638 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3639     uint32_t count)
3640 {
3641 
3642 	/* Reset the prefetch unit. */
3643 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3644 	    PREF_UNIT_RST_SET);
3645 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3646 	    PREF_UNIT_RST_CLR);
3647 	/* Set LE base address. */
3648 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3649 	    MSK_ADDR_LO(addr));
3650 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3651 	    MSK_ADDR_HI(addr));
3652 	/* Set the list last index. */
3653 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3654 	    count);
3655 	/* Turn on prefetch unit. */
3656 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3657 	    PREF_UNIT_OP_ON);
3658 	/* Dummy read to ensure write. */
3659 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3660 }
3661 
3662 static void
3663 msk_stop(struct msk_if_softc *sc_if)
3664 {
3665 	struct msk_softc *sc = sc_if->msk_softc;
3666 	struct ifnet *ifp = sc_if->msk_ifp;
3667 	struct msk_txdesc *txd;
3668 	struct msk_rxdesc *rxd;
3669 #ifdef MSK_JUMBO
3670 	struct msk_rxdesc *jrxd;
3671 #endif
3672 	uint32_t val;
3673 	int i;
3674 
3675 	ASSERT_SERIALIZED(ifp->if_serializer);
3676 
3677 	callout_stop(&sc_if->msk_tick_ch);
3678 	ifp->if_timer = 0;
3679 
3680 	/* Disable interrupts. */
3681 	if (sc_if->msk_port == MSK_PORT_A) {
3682 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3683 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3684 	} else {
3685 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3686 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3687 	}
3688 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3689 	CSR_READ_4(sc, B0_HWE_IMSK);
3690 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3691 	CSR_READ_4(sc, B0_IMSK);
3692 
3693 	/* Disable Tx/Rx MAC. */
3694 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3695 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3696 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3697 	/* Read again to ensure writing. */
3698 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3699 
3700 	/* Stop Tx BMU. */
3701 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3702 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3703 	for (i = 0; i < MSK_TIMEOUT; i++) {
3704 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3705 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3706 			    BMU_STOP);
3707 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3708 		} else
3709 			break;
3710 		DELAY(1);
3711 	}
3712 	if (i == MSK_TIMEOUT)
3713 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3714 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3715 	    RB_RST_SET | RB_DIS_OP_MD);
3716 
3717 	/* Disable all GMAC interrupt. */
3718 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3719 	/* Disable PHY interrupt. */
3720 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3721 
3722 	/* Disable the RAM Interface Arbiter. */
3723 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3724 
3725 	/* Reset the PCI FIFO of the async Tx queue */
3726 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3727 	    BMU_RST_SET | BMU_FIFO_RST);
3728 
3729 	/* Reset the Tx prefetch units. */
3730 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3731 	    PREF_UNIT_RST_SET);
3732 
3733 	/* Reset the RAM Buffer async Tx queue. */
3734 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3735 
3736 	/* Reset Tx MAC FIFO. */
3737 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3738 	/* Set Pause Off. */
3739 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3740 
3741 	/*
3742 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3743 	 * reach the end of packet and since we can't make sure that we have
3744 	 * incoming data, we must reset the BMU while it is not during a DMA
3745 	 * transfer. Since it is possible that the Rx path is still active,
3746 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3747 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3748 	 * BMU is polled until any DMA in progress is ended and only then it
3749 	 * will be reset.
3750 	 */
3751 
3752 	/* Disable the RAM Buffer receive queue. */
3753 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3754 	for (i = 0; i < MSK_TIMEOUT; i++) {
3755 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3756 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3757 			break;
3758 		DELAY(1);
3759 	}
3760 	if (i == MSK_TIMEOUT)
3761 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3762 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3763 	    BMU_RST_SET | BMU_FIFO_RST);
3764 	/* Reset the Rx prefetch unit. */
3765 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3766 	    PREF_UNIT_RST_SET);
3767 	/* Reset the RAM Buffer receive queue. */
3768 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3769 	/* Reset Rx MAC FIFO. */
3770 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3771 
3772 	/* Free Rx and Tx mbufs still in the queues. */
3773 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3774 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3775 		if (rxd->rx_m != NULL) {
3776 			bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
3777 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3778 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3779 			    rxd->rx_dmamap);
3780 			m_freem(rxd->rx_m);
3781 			rxd->rx_m = NULL;
3782 		}
3783 	}
3784 #ifdef MSK_JUMBO
3785 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3786 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3787 		if (jrxd->rx_m != NULL) {
3788 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3789 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3790 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3791 			    jrxd->rx_dmamap);
3792 			m_freem(jrxd->rx_m);
3793 			jrxd->rx_m = NULL;
3794 		}
3795 	}
3796 #endif
3797 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3798 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3799 		if (txd->tx_m != NULL) {
3800 			bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
3801 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3802 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3803 			    txd->tx_dmamap);
3804 			m_freem(txd->tx_m);
3805 			txd->tx_m = NULL;
3806 		}
3807 	}
3808 
3809 	/*
3810 	 * Mark the interface down.
3811 	 */
3812 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3813 	sc_if->msk_link = 0;
3814 }
3815 
3816 static int
3817 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3818 {
3819 	return sysctl_int_range(oidp, arg1, arg2, req,
3820 				MSK_PROC_MIN, MSK_PROC_MAX);
3821 }
3822 
3823 static int
3824 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3825 {
3826 	struct msk_softc *sc = arg1;
3827 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3828 	int error = 0, v;
3829 
3830 	lwkt_serialize_enter(serializer);
3831 
3832 	v = sc->msk_intr_rate;
3833 	error = sysctl_handle_int(oidp, &v, 0, req);
3834 	if (error || req->newptr == NULL)
3835 		goto back;
3836 	if (v < 0) {
3837 		error = EINVAL;
3838 		goto back;
3839 	}
3840 
3841 	if (sc->msk_intr_rate != v) {
3842 		int flag = 0, i;
3843 
3844 		sc->msk_intr_rate = v;
3845 		for (i = 0; i < 2; ++i) {
3846 			if (sc->msk_if[i] != NULL) {
3847 				flag |= sc->msk_if[i]->
3848 					arpcom.ac_if.if_flags & IFF_RUNNING;
3849 			}
3850 		}
3851 		if (flag)
3852 			mskc_set_imtimer(sc);
3853 	}
3854 back:
3855 	lwkt_serialize_exit(serializer);
3856 	return error;
3857 }
3858 
3859 static int
3860 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3861 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3862 {
3863 	struct msk_if_softc *sc_if = device_get_softc(dev);
3864 	struct msk_dmamap_arg ctx;
3865 	bus_dma_segment_t seg;
3866 	int error;
3867 
3868 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,
3869 				   MSK_RING_ALIGN, 0,
3870 				   BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3871 				   NULL, NULL,
3872 				   size, 1, BUS_SPACE_MAXSIZE_32BIT,
3873 				   0, dtag);
3874 	if (error) {
3875 		device_printf(dev, "can't create DMA tag\n");
3876 		return error;
3877 	}
3878 
3879 	error = bus_dmamem_alloc(*dtag, addr, BUS_DMA_WAITOK | BUS_DMA_ZERO,
3880 				 dmap);
3881 	if (error) {
3882 		device_printf(dev, "can't allocate DMA mem\n");
3883 		bus_dma_tag_destroy(*dtag);
3884 		*dtag = NULL;
3885 		return error;
3886 	}
3887 
3888 	bzero(&ctx, sizeof(ctx));
3889 	ctx.nseg = 1;
3890 	ctx.segs = &seg;
3891 	error = bus_dmamap_load(*dtag, *dmap, *addr, size,
3892 				msk_dmamap_cb, &ctx, BUS_DMA_WAITOK);
3893 	if (error) {
3894 		device_printf(dev, "can't load DMA mem\n");
3895 		bus_dmamem_free(*dtag, *addr, *dmap);
3896 		bus_dma_tag_destroy(*dtag);
3897 		*dtag = NULL;
3898 		return error;
3899 	}
3900 	*paddr = seg.ds_addr;
3901 	return 0;
3902 }
3903 
3904 static void
3905 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3906 {
3907 	if (dtag != NULL) {
3908 		bus_dmamap_unload(dtag, dmap);
3909 		bus_dmamem_free(dtag, addr, dmap);
3910 		bus_dma_tag_destroy(dtag);
3911 	}
3912 }
3913 
3914 static void
3915 mskc_set_imtimer(struct msk_softc *sc)
3916 {
3917 	if (sc->msk_intr_rate > 0) {
3918 		/*
3919 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3920 		 *     and 78.125MHz for rest of chip types
3921 		 */
3922 		CSR_WRITE_4(sc, B2_IRQM_INI,
3923 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3924 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3925 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3926 	} else {
3927 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3928 	}
3929 }
3930