xref: /dragonfly/sys/dev/netif/msk/if_msk.c (revision f0a26983)
1 /******************************************************************************
2  *
3  * Name   : sky2.c
4  * Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
5  * Version: $Revision: 1.23 $
6  * Date   : $Date: 2005/12/22 09:04:11 $
7  * Purpose: Main driver source file
8  *
9  *****************************************************************************/
10 
11 /******************************************************************************
12  *
13  *	LICENSE:
14  *	Copyright (C) Marvell International Ltd. and/or its affiliates
15  *
16  *	The computer program files contained in this folder ("Files")
17  *	are provided to you under the BSD-type license terms provided
18  *	below, and any use of such Files and any derivative works
19  *	thereof created by you shall be governed by the following terms
20  *	and conditions:
21  *
22  *	- Redistributions of source code must retain the above copyright
23  *	  notice, this list of conditions and the following disclaimer.
24  *	- Redistributions in binary form must reproduce the above
25  *	  copyright notice, this list of conditions and the following
26  *	  disclaimer in the documentation and/or other materials provided
27  *	  with the distribution.
28  *	- Neither the name of Marvell nor the names of its contributors
29  *	  may be used to endorse or promote products derived from this
30  *	  software without specific prior written permission.
31  *
32  *	THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
33  *	"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
34  *	LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
35  *	FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
36  *	COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
37  *	INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
38  *	BUT NOT LIMITED TO, PROCUREMENT OF  SUBSTITUTE GOODS OR SERVICES;
39  *	LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  *	HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
41  *	STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
42  *	ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
43  *	OF THE POSSIBILITY OF SUCH DAMAGE.
44  *	/LICENSE
45  *
46  *****************************************************************************/
47 
48 /*-
49  * Copyright (c) 1997, 1998, 1999, 2000
50  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
51  *
52  * Redistribution and use in source and binary forms, with or without
53  * modification, are permitted provided that the following conditions
54  * are met:
55  * 1. Redistributions of source code must retain the above copyright
56  *    notice, this list of conditions and the following disclaimer.
57  * 2. Redistributions in binary form must reproduce the above copyright
58  *    notice, this list of conditions and the following disclaimer in the
59  *    documentation and/or other materials provided with the distribution.
60  * 3. All advertising materials mentioning features or use of this software
61  *    must display the following acknowledgement:
62  *	This product includes software developed by Bill Paul.
63  * 4. Neither the name of the author nor the names of any co-contributors
64  *    may be used to endorse or promote products derived from this software
65  *    without specific prior written permission.
66  *
67  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
68  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
69  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
70  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
71  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
72  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
73  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
74  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
75  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
76  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
77  * THE POSSIBILITY OF SUCH DAMAGE.
78  */
79 /*-
80  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
81  *
82  * Permission to use, copy, modify, and distribute this software for any
83  * purpose with or without fee is hereby granted, provided that the above
84  * copyright notice and this permission notice appear in all copies.
85  *
86  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
87  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
88  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
89  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
90  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
91  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
92  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
93  */
94 
95 /* $FreeBSD: src/sys/dev/msk/if_msk.c,v 1.26 2007/12/05 09:41:58 remko Exp $ */
96 
97 /*
98  * Device driver for the Marvell Yukon II Ethernet controller.
99  * Due to lack of documentation, this driver is based on the code from
100  * sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/endian.h>
105 #include <sys/kernel.h>
106 #include <sys/bus.h>
107 #include <sys/in_cksum.h>
108 #include <sys/interrupt.h>
109 #include <sys/malloc.h>
110 #include <sys/proc.h>
111 #include <sys/rman.h>
112 #include <sys/serialize.h>
113 #include <sys/socket.h>
114 #include <sys/sockio.h>
115 #include <sys/sysctl.h>
116 
117 #include <net/ethernet.h>
118 #include <net/if.h>
119 #include <net/bpf.h>
120 #include <net/if_arp.h>
121 #include <net/if_dl.h>
122 #include <net/if_media.h>
123 #include <net/ifq_var.h>
124 #include <net/vlan/if_vlan_var.h>
125 
126 #include <netinet/ip.h>
127 #include <netinet/ip_var.h>
128 
129 #include <dev/netif/mii_layer/miivar.h>
130 
131 #include <bus/pci/pcireg.h>
132 #include <bus/pci/pcivar.h>
133 
134 #include "if_mskreg.h"
135 
136 /* "device miibus" required.  See GENERIC if you get errors here. */
137 #include "miibus_if.h"
138 
139 #define MSK_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
140 
141 /*
142  * Devices supported by this driver.
143  */
144 static const struct msk_product {
145 	uint16_t	msk_vendorid;
146 	uint16_t	msk_deviceid;
147 	const char	*msk_name;
148 } msk_products[] = {
149 	{ VENDORID_SK, DEVICEID_SK_YUKON2,
150 	    "SK-9Sxx Gigabit Ethernet" },
151 	{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
152 	    "SK-9Exx Gigabit Ethernet"},
153 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
154 	    "Marvell Yukon 88E8021CU Gigabit Ethernet" },
155 	{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
156 	    "Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
157 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
158 	    "Marvell Yukon 88E8022CU Gigabit Ethernet" },
159 	{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
160 	    "Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
161 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
162 	    "Marvell Yukon 88E8061CU Gigabit Ethernet" },
163 	{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
164 	    "Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
165 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
166 	    "Marvell Yukon 88E8062CU Gigabit Ethernet" },
167 	{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
168 	    "Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
169 	{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
170 	    "Marvell Yukon 88E8035 Fast Ethernet" },
171 	{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
172 	    "Marvell Yukon 88E8036 Fast Ethernet" },
173 	{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
174 	    "Marvell Yukon 88E8038 Fast Ethernet" },
175 	{ VENDORID_MARVELL, DEVICEID_MRVL_8039,
176 	    "Marvell Yukon 88E8039 Fast Ethernet" },
177 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040,
178 	    "Marvell Yukon 88E8040 Fast Ethernet" },
179 	{ VENDORID_MARVELL, DEVICEID_MRVL_8040T,
180 	    "Marvell Yukon 88E8040T Fast Ethernet" },
181 	{ VENDORID_MARVELL, DEVICEID_MRVL_8042,
182 	    "Marvell Yukon 88E8042 Fast Ethernet" },
183 	{ VENDORID_MARVELL, DEVICEID_MRVL_8048,
184 	    "Marvell Yukon 88E8048 Fast Ethernet" },
185 	{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
186 	    "Marvell Yukon 88E8050 Gigabit Ethernet" },
187 	{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
188 	    "Marvell Yukon 88E8052 Gigabit Ethernet" },
189 	{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
190 	    "Marvell Yukon 88E8053 Gigabit Ethernet" },
191 	{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
192 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
193 	{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
194 	    "Marvell Yukon 88E8056 Gigabit Ethernet" },
195 	{ VENDORID_MARVELL, DEVICEID_MRVL_4365,
196 	    "Marvell Yukon 88E8070 Gigabit Ethernet" },
197 	{ VENDORID_MARVELL, DEVICEID_MRVL_436A,
198 	    "Marvell Yukon 88E8058 Gigabit Ethernet" },
199 	{ VENDORID_MARVELL, DEVICEID_MRVL_436B,
200 	    "Marvell Yukon 88E8071 Gigabit Ethernet" },
201 	{ VENDORID_MARVELL, DEVICEID_MRVL_436C,
202 	    "Marvell Yukon 88E8072 Gigabit Ethernet" },
203 	{ VENDORID_MARVELL, DEVICEID_MRVL_436D,
204 	    "Marvell Yukon 88E8055 Gigabit Ethernet" },
205 	{ VENDORID_MARVELL, DEVICEID_MRVL_4370,
206 	    "Marvell Yukon 88E8075 Gigabit Ethernet" },
207 	{ VENDORID_MARVELL, DEVICEID_MRVL_4380,
208 	    "Marvell Yukon 88E8057 Gigabit Ethernet" },
209 	{ VENDORID_MARVELL, DEVICEID_MRVL_4381,
210 	    "Marvell Yukon 88E8059 Gigabit Ethernet" },
211 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
212 	    "D-Link 550SX Gigabit Ethernet" },
213 	{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
214 	    "D-Link 560T Gigabit Ethernet" },
215 	{ 0, 0, NULL }
216 };
217 
218 static const char *model_name[] = {
219 	"Yukon XL",
220 	"Yukon EC Ultra",
221 	"Yukon EX",
222 	"Yukon EC",
223 	"Yukon FE",
224 	"Yukon FE+",
225 	"Yukon Supreme",
226 	"Yukon Ultra 2",
227 	"Yukon Unknown",
228 	"Yukon Optima"
229 };
230 
231 static int	mskc_probe(device_t);
232 static int	mskc_attach(device_t);
233 static int	mskc_detach(device_t);
234 static int	mskc_shutdown(device_t);
235 static int	mskc_suspend(device_t);
236 static int	mskc_resume(device_t);
237 static void	mskc_intr(void *);
238 
239 static void	mskc_reset(struct msk_softc *);
240 static void	mskc_set_imtimer(struct msk_softc *);
241 static void	mskc_intr_hwerr(struct msk_softc *);
242 static int	mskc_handle_events(struct msk_softc *);
243 static void	mskc_phy_power(struct msk_softc *, int);
244 static int	mskc_setup_rambuffer(struct msk_softc *);
245 static int	mskc_status_dma_alloc(struct msk_softc *);
246 static void	mskc_status_dma_free(struct msk_softc *);
247 static int	mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS);
248 static int	mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
249 
250 static int	msk_probe(device_t);
251 static int	msk_attach(device_t);
252 static int	msk_detach(device_t);
253 static int	msk_miibus_readreg(device_t, int, int);
254 static int	msk_miibus_writereg(device_t, int, int, int);
255 static void	msk_miibus_statchg(device_t);
256 
257 static void	msk_init(void *);
258 static int	msk_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
259 static void	msk_start(struct ifnet *, struct ifaltq_subque *);
260 static void	msk_watchdog(struct ifnet *);
261 static int	msk_mediachange(struct ifnet *);
262 static void	msk_mediastatus(struct ifnet *, struct ifmediareq *);
263 
264 static void	msk_tick(void *);
265 static void	msk_intr_phy(struct msk_if_softc *);
266 static void	msk_intr_gmac(struct msk_if_softc *);
267 static __inline void
268 		msk_rxput(struct msk_if_softc *);
269 static void	msk_handle_hwerr(struct msk_if_softc *, uint32_t);
270 static void	msk_rxeof(struct msk_if_softc *, uint32_t, int);
271 static void	msk_txeof(struct msk_if_softc *, int);
272 static void	msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
273 static void	msk_set_rambuffer(struct msk_if_softc *);
274 static void	msk_stop(struct msk_if_softc *);
275 
276 static int	msk_txrx_dma_alloc(struct msk_if_softc *);
277 static void	msk_txrx_dma_free(struct msk_if_softc *);
278 static int	msk_init_rx_ring(struct msk_if_softc *);
279 static void	msk_init_tx_ring(struct msk_if_softc *);
280 static __inline void
281 		msk_discard_rxbuf(struct msk_if_softc *, int);
282 static int	msk_newbuf(struct msk_if_softc *, int, int);
283 static int	msk_encap(struct msk_if_softc *, struct mbuf **);
284 
285 #ifdef MSK_JUMBO
286 static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
287 static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
288 static int msk_jumbo_newbuf(struct msk_if_softc *, int);
289 static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
290 static void *msk_jalloc(struct msk_if_softc *);
291 static void msk_jfree(void *, void *);
292 #endif
293 
294 static int	msk_phy_readreg(struct msk_if_softc *, int, int);
295 static int	msk_phy_writereg(struct msk_if_softc *, int, int, int);
296 
297 static void	msk_rxfilter(struct msk_if_softc *);
298 static void	msk_setvlan(struct msk_if_softc *, struct ifnet *);
299 static void	msk_set_tx_stfwd(struct msk_if_softc *);
300 
301 static int	msk_dmamem_create(device_t, bus_size_t, bus_dma_tag_t *,
302 				  void **, bus_addr_t *, bus_dmamap_t *);
303 static void	msk_dmamem_destroy(bus_dma_tag_t, void *, bus_dmamap_t);
304 
305 static device_method_t mskc_methods[] = {
306 	/* Device interface */
307 	DEVMETHOD(device_probe,		mskc_probe),
308 	DEVMETHOD(device_attach,	mskc_attach),
309 	DEVMETHOD(device_detach,	mskc_detach),
310 	DEVMETHOD(device_suspend,	mskc_suspend),
311 	DEVMETHOD(device_resume,	mskc_resume),
312 	DEVMETHOD(device_shutdown,	mskc_shutdown),
313 
314 	/* bus interface */
315 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
316 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
317 
318 	{ NULL, NULL }
319 };
320 
321 static DEFINE_CLASS_0(mskc, mskc_driver, mskc_methods, sizeof(struct msk_softc));
322 static devclass_t mskc_devclass;
323 
324 static device_method_t msk_methods[] = {
325 	/* Device interface */
326 	DEVMETHOD(device_probe,		msk_probe),
327 	DEVMETHOD(device_attach,	msk_attach),
328 	DEVMETHOD(device_detach,	msk_detach),
329 	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
330 
331 	/* bus interface */
332 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
333 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
334 
335 	/* MII interface */
336 	DEVMETHOD(miibus_readreg,	msk_miibus_readreg),
337 	DEVMETHOD(miibus_writereg,	msk_miibus_writereg),
338 	DEVMETHOD(miibus_statchg,	msk_miibus_statchg),
339 
340 	{ NULL, NULL }
341 };
342 
343 static DEFINE_CLASS_0(msk, msk_driver, msk_methods, sizeof(struct msk_if_softc));
344 static devclass_t msk_devclass;
345 
346 DECLARE_DUMMY_MODULE(if_msk);
347 DRIVER_MODULE(if_msk, pci, mskc_driver, mskc_devclass, NULL, NULL);
348 DRIVER_MODULE(if_msk, mskc, msk_driver, msk_devclass, NULL, NULL);
349 DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, NULL, NULL);
350 
351 static int	mskc_intr_rate = 0;
352 static int	mskc_process_limit = MSK_PROC_DEFAULT;
353 
354 TUNABLE_INT("hw.mskc.intr_rate", &mskc_intr_rate);
355 TUNABLE_INT("hw.mskc.process_limit", &mskc_process_limit);
356 
357 static int
358 msk_miibus_readreg(device_t dev, int phy, int reg)
359 {
360 	struct msk_if_softc *sc_if;
361 
362 	if (phy != PHY_ADDR_MARV)
363 		return (0);
364 
365 	sc_if = device_get_softc(dev);
366 
367 	return (msk_phy_readreg(sc_if, phy, reg));
368 }
369 
370 static int
371 msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
372 {
373 	struct msk_softc *sc;
374 	int i, val;
375 
376 	sc = sc_if->msk_softc;
377 
378         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
379 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
380 
381 	for (i = 0; i < MSK_TIMEOUT; i++) {
382 		DELAY(1);
383 		val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
384 		if ((val & GM_SMI_CT_RD_VAL) != 0) {
385 			val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
386 			break;
387 		}
388 	}
389 
390 	if (i == MSK_TIMEOUT) {
391 		if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
392 		val = 0;
393 	}
394 
395 	return (val);
396 }
397 
398 static int
399 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
400 {
401 	struct msk_if_softc *sc_if;
402 
403 	if (phy != PHY_ADDR_MARV)
404 		return (0);
405 
406 	sc_if = device_get_softc(dev);
407 
408 	return (msk_phy_writereg(sc_if, phy, reg, val));
409 }
410 
411 static int
412 msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
413 {
414 	struct msk_softc *sc;
415 	int i;
416 
417 	sc = sc_if->msk_softc;
418 
419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
420         GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
421 	    GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
422 	for (i = 0; i < MSK_TIMEOUT; i++) {
423 		DELAY(1);
424 		if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
425 		    GM_SMI_CT_BUSY) == 0)
426 			break;
427 	}
428 	if (i == MSK_TIMEOUT)
429 		if_printf(sc_if->msk_ifp, "phy write timeout\n");
430 
431 	return (0);
432 }
433 
434 static void
435 msk_miibus_statchg(device_t dev)
436 {
437 	struct msk_if_softc *sc_if;
438 	struct msk_softc *sc;
439 	struct mii_data *mii;
440 	uint32_t gmac;
441 
442 	sc_if = device_get_softc(dev);
443 	sc = sc_if->msk_softc;
444 
445 	mii = device_get_softc(sc_if->msk_miibus);
446 
447 	sc_if->msk_link = 0;
448 	if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
449 	    (IFM_AVALID | IFM_ACTIVE)) {
450 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
451 		case IFM_10_T:
452 		case IFM_100_TX:
453 			sc_if->msk_link = 1;
454 			break;
455 		case IFM_1000_T:
456 		case IFM_1000_SX:
457 		case IFM_1000_LX:
458 		case IFM_1000_CX:
459 			if ((sc_if->msk_flags & MSK_FLAG_FASTETHER) == 0)
460 				sc_if->msk_link = 1;
461 			break;
462 		}
463 	}
464 
465 	if (sc_if->msk_link != 0) {
466 		/* Enable Tx FIFO Underrun. */
467 		CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
468 		    GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
469 		/*
470 		 * Because mii(4) notify msk(4) that it detected link status
471 		 * change, there is no need to enable automatic
472 		 * speed/flow-control/duplex updates.
473 		 */
474 		gmac = GM_GPCR_AU_ALL_DIS;
475 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
476 		case IFM_1000_SX:
477 		case IFM_1000_T:
478 			gmac |= GM_GPCR_SPEED_1000;
479 			break;
480 		case IFM_100_TX:
481 			gmac |= GM_GPCR_SPEED_100;
482 			break;
483 		case IFM_10_T:
484 			break;
485 		}
486 
487 		if ((mii->mii_media_active & IFM_GMASK) & IFM_FDX)
488 			gmac |= GM_GPCR_DUP_FULL;
489 		else
490 			gmac |= GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS;
491 		/* Disable Rx flow control. */
492 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
493 			gmac |= GM_GPCR_FC_RX_DIS;
494 		/* Disable Tx flow control. */
495 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
496 			gmac |= GM_GPCR_FC_TX_DIS;
497 		gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
498 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
499 		/* Read again to ensure writing. */
500 		GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
501 
502 		gmac = GMC_PAUSE_OFF;
503 		if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) &&
504 		    ((mii->mii_media_active & IFM_GMASK) & IFM_FDX))
505 			gmac = GMC_PAUSE_ON;
506 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
507 
508 		/* Enable PHY interrupt for FIFO underrun/overflow. */
509 		msk_phy_writereg(sc_if, PHY_ADDR_MARV,
510 		    PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
511 	} else {
512 		/*
513 		 * Link state changed to down.
514 		 * Disable PHY interrupts.
515 		 */
516 		msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
517 		/* Disable Rx/Tx MAC. */
518 		gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
519 		if (gmac & (GM_GPCR_RX_ENA | GM_GPCR_TX_ENA)) {
520 			gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
521 			GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
522 			/* Read again to ensure writing. */
523 			GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
524 		}
525 	}
526 }
527 
528 static void
529 msk_rxfilter(struct msk_if_softc *sc_if)
530 {
531 	struct msk_softc *sc;
532 	struct ifnet *ifp;
533 	struct ifmultiaddr *ifma;
534 	uint32_t mchash[2];
535 	uint32_t crc;
536 	uint16_t mode;
537 
538 	sc = sc_if->msk_softc;
539 	ifp = sc_if->msk_ifp;
540 
541 	bzero(mchash, sizeof(mchash));
542 	mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
543 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
544 		mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
545 	} else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
546 		mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
547 		mchash[0] = 0xffff;
548 		mchash[1] = 0xffff;
549 	} else {
550 		mode |= GM_RXCR_UCF_ENA;
551 		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
552 			if (ifma->ifma_addr->sa_family != AF_LINK)
553 				continue;
554 			crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
555 			    ifma->ifma_addr), ETHER_ADDR_LEN);
556 			/* Just want the 6 least significant bits. */
557 			crc &= 0x3f;
558 			/* Set the corresponding bit in the hash table. */
559 			mchash[crc >> 5] |= 1 << (crc & 0x1f);
560 		}
561 		if (mchash[0] != 0 || mchash[1] != 0)
562 			mode |= GM_RXCR_MCF_ENA;
563 	}
564 
565 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
566 	    mchash[0] & 0xffff);
567 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
568 	    (mchash[0] >> 16) & 0xffff);
569 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
570 	    mchash[1] & 0xffff);
571 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
572 	    (mchash[1] >> 16) & 0xffff);
573 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
574 }
575 
576 static void
577 msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
578 {
579 	struct msk_softc *sc;
580 
581 	sc = sc_if->msk_softc;
582 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
583 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
584 		    RX_VLAN_STRIP_ON);
585 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
586 		    TX_VLAN_TAG_ON);
587 	} else {
588 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
589 		    RX_VLAN_STRIP_OFF);
590 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
591 		    TX_VLAN_TAG_OFF);
592 	}
593 }
594 
595 static int
596 msk_init_rx_ring(struct msk_if_softc *sc_if)
597 {
598 	struct msk_ring_data *rd;
599 	struct msk_rxdesc *rxd;
600 	int i, prod;
601 
602 	sc_if->msk_cdata.msk_rx_cons = 0;
603 	sc_if->msk_cdata.msk_rx_prod = 0;
604 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
605 
606 	rd = &sc_if->msk_rdata;
607 	bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
608 	prod = sc_if->msk_cdata.msk_rx_prod;
609 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
610 		rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
611 		rxd->rx_m = NULL;
612 		rxd->rx_le = &rd->msk_rx_ring[prod];
613 		if (msk_newbuf(sc_if, prod, 1) != 0)
614 			return (ENOBUFS);
615 		MSK_INC(prod, MSK_RX_RING_CNT);
616 	}
617 
618 	/* Update prefetch unit. */
619 	sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
620 	CSR_WRITE_2(sc_if->msk_softc,
621 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
622 	    sc_if->msk_cdata.msk_rx_prod);
623 
624 	return (0);
625 }
626 
627 #ifdef MSK_JUMBO
628 static int
629 msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
630 {
631 	struct msk_ring_data *rd;
632 	struct msk_rxdesc *rxd;
633 	int i, prod;
634 
635 	MSK_IF_LOCK_ASSERT(sc_if);
636 
637 	sc_if->msk_cdata.msk_rx_cons = 0;
638 	sc_if->msk_cdata.msk_rx_prod = 0;
639 	sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
640 
641 	rd = &sc_if->msk_rdata;
642 	bzero(rd->msk_jumbo_rx_ring,
643 	    sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
644 	prod = sc_if->msk_cdata.msk_rx_prod;
645 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
646 		rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
647 		rxd->rx_m = NULL;
648 		rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
649 		if (msk_jumbo_newbuf(sc_if, prod) != 0)
650 			return (ENOBUFS);
651 		MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
652 	}
653 
654 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
655 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
656 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
657 
658 	sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
659 	CSR_WRITE_2(sc_if->msk_softc,
660 	    Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
661 	    sc_if->msk_cdata.msk_rx_prod);
662 
663 	return (0);
664 }
665 #endif
666 
667 static void
668 msk_init_tx_ring(struct msk_if_softc *sc_if)
669 {
670 	struct msk_ring_data *rd;
671 	struct msk_txdesc *txd;
672 	int i;
673 
674 	sc_if->msk_cdata.msk_tx_prod = 0;
675 	sc_if->msk_cdata.msk_tx_cons = 0;
676 	sc_if->msk_cdata.msk_tx_cnt = 0;
677 
678 	rd = &sc_if->msk_rdata;
679 	bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
680 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
681 		txd = &sc_if->msk_cdata.msk_txdesc[i];
682 		txd->tx_m = NULL;
683 		txd->tx_le = &rd->msk_tx_ring[i];
684 	}
685 }
686 
687 static __inline void
688 msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
689 {
690 	struct msk_rx_desc *rx_le;
691 	struct msk_rxdesc *rxd;
692 	struct mbuf *m;
693 
694 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
695 	m = rxd->rx_m;
696 	rx_le = rxd->rx_le;
697 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
698 }
699 
700 #ifdef MSK_JUMBO
701 static __inline void
702 msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int	idx)
703 {
704 	struct msk_rx_desc *rx_le;
705 	struct msk_rxdesc *rxd;
706 	struct mbuf *m;
707 
708 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
709 	m = rxd->rx_m;
710 	rx_le = rxd->rx_le;
711 	rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
712 }
713 #endif
714 
715 static int
716 msk_newbuf(struct msk_if_softc *sc_if, int idx, int init)
717 {
718 	struct msk_rx_desc *rx_le;
719 	struct msk_rxdesc *rxd;
720 	struct mbuf *m;
721 	bus_dma_segment_t seg;
722 	bus_dmamap_t map;
723 	int error, nseg;
724 
725 	m = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
726 	if (m == NULL)
727 		return (ENOBUFS);
728 
729 	m->m_len = m->m_pkthdr.len = MCLBYTES;
730 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
731 		m_adj(m, ETHER_ALIGN);
732 
733 	error = bus_dmamap_load_mbuf_segment(sc_if->msk_cdata.msk_rx_tag,
734 			sc_if->msk_cdata.msk_rx_sparemap,
735 			m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
736 	if (error) {
737 		m_freem(m);
738 		if (init)
739 			if_printf(&sc_if->arpcom.ac_if, "can't load RX mbuf\n");
740 		return (error);
741 	}
742 
743 	rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
744 	if (rxd->rx_m != NULL) {
745 		bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
746 		    BUS_DMASYNC_POSTREAD);
747 		bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
748 	}
749 
750 	map = rxd->rx_dmamap;
751 	rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
752 	sc_if->msk_cdata.msk_rx_sparemap = map;
753 
754 	rxd->rx_m = m;
755 	rx_le = rxd->rx_le;
756 	rx_le->msk_addr = htole32(MSK_ADDR_LO(seg.ds_addr));
757 	rx_le->msk_control = htole32(seg.ds_len | OP_PACKET | HW_OWNER);
758 
759 	return (0);
760 }
761 
762 #ifdef MSK_JUMBO
763 static int
764 msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
765 {
766 	struct msk_rx_desc *rx_le;
767 	struct msk_rxdesc *rxd;
768 	struct mbuf *m;
769 	bus_dma_segment_t segs[1];
770 	bus_dmamap_t map;
771 	int nsegs;
772 	void *buf;
773 
774 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
775 	if (m == NULL)
776 		return (ENOBUFS);
777 	buf = msk_jalloc(sc_if);
778 	if (buf == NULL) {
779 		m_freem(m);
780 		return (ENOBUFS);
781 	}
782 	/* Attach the buffer to the mbuf. */
783 	MEXTADD(m, buf, MSK_JLEN, msk_jfree, sc_if, 0, EXT_NET_DRV);
784 	if ((m->m_flags & M_EXT) == 0) {
785 		m_freem(m);
786 		return (ENOBUFS);
787 	}
788 	m->m_pkthdr.len = m->m_len = MSK_JLEN;
789 	m_adj(m, ETHER_ALIGN);
790 
791 	if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
792 	    sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
793 	    BUS_DMA_NOWAIT) != 0) {
794 		m_freem(m);
795 		return (ENOBUFS);
796 	}
797 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
798 
799 	rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
800 	if (rxd->rx_m != NULL) {
801 		bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
802 		    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
803 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
804 		    rxd->rx_dmamap);
805 	}
806 	map = rxd->rx_dmamap;
807 	rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
808 	sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
809 	bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
810 	    BUS_DMASYNC_PREREAD);
811 	rxd->rx_m = m;
812 	rx_le = rxd->rx_le;
813 	rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
814 	rx_le->msk_control =
815 	    htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
816 
817 	return (0);
818 }
819 #endif
820 
821 /*
822  * Set media options.
823  */
824 static int
825 msk_mediachange(struct ifnet *ifp)
826 {
827 	struct msk_if_softc *sc_if = ifp->if_softc;
828 	struct mii_data	*mii;
829 	int error;
830 
831 	mii = device_get_softc(sc_if->msk_miibus);
832 	error = mii_mediachg(mii);
833 
834 	return (error);
835 }
836 
837 /*
838  * Report current media status.
839  */
840 static void
841 msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
842 {
843 	struct msk_if_softc *sc_if = ifp->if_softc;
844 	struct mii_data	*mii;
845 
846 	mii = device_get_softc(sc_if->msk_miibus);
847 	mii_pollstat(mii);
848 
849 	ifmr->ifm_active = mii->mii_media_active;
850 	ifmr->ifm_status = mii->mii_media_status;
851 }
852 
853 static int
854 msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
855 {
856 	struct msk_if_softc *sc_if;
857 	struct ifreq *ifr;
858 	struct mii_data	*mii;
859 	int error, mask;
860 
861 	sc_if = ifp->if_softc;
862 	ifr = (struct ifreq *)data;
863 	error = 0;
864 
865 	switch(command) {
866 	case SIOCSIFMTU:
867 #ifdef MSK_JUMBO
868 		if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
869 			error = EINVAL;
870 			break;
871 		}
872 		if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_FE &&
873 		    ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
874 			error = EINVAL;
875 			break;
876 		}
877 		ifp->if_mtu = ifr->ifr_mtu;
878 		if ((ifp->if_flags & IFF_RUNNING) != 0)
879 			msk_init(sc_if);
880 #else
881 		error = EOPNOTSUPP;
882 #endif
883 		break;
884 
885 	case SIOCSIFFLAGS:
886 		if (ifp->if_flags & IFF_UP) {
887 			if (ifp->if_flags & IFF_RUNNING) {
888 				if (((ifp->if_flags ^ sc_if->msk_if_flags)
889 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
890 					msk_rxfilter(sc_if);
891 			} else {
892 				if (sc_if->msk_detach == 0)
893 					msk_init(sc_if);
894 			}
895 		} else {
896 			if (ifp->if_flags & IFF_RUNNING)
897 				msk_stop(sc_if);
898 		}
899 		sc_if->msk_if_flags = ifp->if_flags;
900 		break;
901 
902 	case SIOCADDMULTI:
903 	case SIOCDELMULTI:
904 		if (ifp->if_flags & IFF_RUNNING)
905 			msk_rxfilter(sc_if);
906 		break;
907 
908 	case SIOCGIFMEDIA:
909 	case SIOCSIFMEDIA:
910 		mii = device_get_softc(sc_if->msk_miibus);
911 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
912 		break;
913 
914 	case SIOCSIFCAP:
915 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
916 		if ((mask & IFCAP_TXCSUM) != 0) {
917 			ifp->if_capenable ^= IFCAP_TXCSUM;
918 			if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
919 			    (IFCAP_TXCSUM & ifp->if_capabilities) != 0)
920 				ifp->if_hwassist |= MSK_CSUM_FEATURES;
921 			else
922 				ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
923 		}
924 #ifdef notyet
925 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
926 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
927 			msk_setvlan(sc_if, ifp);
928 		}
929 #endif
930 
931 		if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
932 		    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
933 			/*
934 			 * In Yukon EC Ultra, TSO & checksum offload is not
935 			 * supported for jumbo frame.
936 			 */
937 			ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
938 			ifp->if_capenable &= ~IFCAP_TXCSUM;
939 		}
940 		break;
941 
942 	default:
943 		error = ether_ioctl(ifp, command, data);
944 		break;
945 	}
946 
947 	return (error);
948 }
949 
950 static int
951 mskc_probe(device_t dev)
952 {
953 	const struct msk_product *mp;
954 	uint16_t vendor, devid;
955 
956 	vendor = pci_get_vendor(dev);
957 	devid = pci_get_device(dev);
958 	for (mp = msk_products; mp->msk_name != NULL; ++mp) {
959 		if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
960 			device_set_desc(dev, mp->msk_name);
961 			return (0);
962 		}
963 	}
964 	return (ENXIO);
965 }
966 
967 static int
968 mskc_setup_rambuffer(struct msk_softc *sc)
969 {
970 	int next;
971 	int i;
972 
973 	/* Get adapter SRAM size. */
974 	sc->msk_ramsize = CSR_READ_1(sc, B2_E_0) * 4;
975 	if (bootverbose) {
976 		device_printf(sc->msk_dev,
977 		    "RAM buffer size : %dKB\n", sc->msk_ramsize);
978 	}
979 	if (sc->msk_ramsize == 0)
980 		return (0);
981 	sc->msk_pflags |= MSK_FLAG_RAMBUF;
982 
983 	/*
984 	 * Give receiver 2/3 of memory and round down to the multiple
985 	 * of 1024. Tx/Rx RAM buffer size of Yukon II shoud be multiple
986 	 * of 1024.
987 	 */
988 	sc->msk_rxqsize = rounddown((sc->msk_ramsize * 1024 * 2) / 3, 1024);
989 	sc->msk_txqsize = (sc->msk_ramsize * 1024) - sc->msk_rxqsize;
990 	for (i = 0, next = 0; i < sc->msk_num_port; i++) {
991 		sc->msk_rxqstart[i] = next;
992 		sc->msk_rxqend[i] = next + sc->msk_rxqsize - 1;
993 		next = sc->msk_rxqend[i] + 1;
994 		sc->msk_txqstart[i] = next;
995 		sc->msk_txqend[i] = next + sc->msk_txqsize - 1;
996 		next = sc->msk_txqend[i] + 1;
997 		if (bootverbose) {
998 			device_printf(sc->msk_dev,
999 			    "Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
1000 			    sc->msk_rxqsize / 1024, sc->msk_rxqstart[i],
1001 			    sc->msk_rxqend[i]);
1002 			device_printf(sc->msk_dev,
1003 			    "Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
1004 			    sc->msk_txqsize / 1024, sc->msk_txqstart[i],
1005 			    sc->msk_txqend[i]);
1006 		}
1007 	}
1008 
1009 	return (0);
1010 }
1011 
1012 static void
1013 mskc_phy_power(struct msk_softc *sc, int mode)
1014 {
1015 	uint32_t our, val;
1016 	int i;
1017 
1018 	switch (mode) {
1019 	case MSK_PHY_POWERUP:
1020 		/* Switch power to VCC (WA for VAUX problem). */
1021 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1022 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
1023 		/* Disable Core Clock Division, set Clock Select to 0. */
1024 		CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
1025 
1026 		val = 0;
1027 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1028 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1029 			/* Enable bits are inverted. */
1030 			val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1031 			      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1032 			      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1033 		}
1034 		/*
1035 		 * Enable PCI & Core Clock, enable clock gating for both Links.
1036 		 */
1037 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1038 
1039 		our = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1040 		our &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
1041 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
1042 			if (sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1043 				/* Deassert Low Power for 1st PHY. */
1044 				our |= PCI_Y2_PHY1_COMA;
1045 				if (sc->msk_num_port > 1)
1046 					our |= PCI_Y2_PHY2_COMA;
1047 			}
1048 		}
1049 		if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U ||
1050 		    sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1051 		    sc->msk_hw_id >= CHIP_ID_YUKON_FE_P) {
1052 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_4);
1053 			val &= (PCI_FORCE_ASPM_REQUEST |
1054 			    PCI_ASPM_GPHY_LINK_DOWN | PCI_ASPM_INT_FIFO_EMPTY |
1055 			    PCI_ASPM_CLKRUN_REQUEST);
1056 			/* Set all bits to 0 except bits 15..12. */
1057 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_4, val);
1058 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_5);
1059 			val &= PCI_CTL_TIM_VMAIN_AV_MSK;
1060 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_5, val);
1061 			CSR_PCI_WRITE_4(sc, PCI_CFG_REG_1, 0);
1062 			CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
1063 			/*
1064 			 * Disable status race, workaround for
1065 			 * Yukon EC Ultra & Yukon EX.
1066 			 */
1067 			val = CSR_READ_4(sc, B2_GP_IO);
1068 			val |= GLB_GPIO_STAT_RACE_DIS;
1069 			CSR_WRITE_4(sc, B2_GP_IO, val);
1070 			CSR_READ_4(sc, B2_GP_IO);
1071 		}
1072 		/* Release PHY from PowerDown/COMA mode. */
1073 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, our);
1074 
1075 		for (i = 0; i < sc->msk_num_port; i++) {
1076 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1077 			    GMLC_RST_SET);
1078 			CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
1079 			    GMLC_RST_CLR);
1080 		}
1081 		break;
1082 	case MSK_PHY_POWERDOWN:
1083 		val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1084 		val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
1085 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1086 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1087 			val &= ~PCI_Y2_PHY1_COMA;
1088 			if (sc->msk_num_port > 1)
1089 				val &= ~PCI_Y2_PHY2_COMA;
1090 		}
1091 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1092 
1093 		val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
1094 		      Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
1095 		      Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
1096 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1097 		    sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
1098 			/* Enable bits are inverted. */
1099 			val = 0;
1100 		}
1101 		/*
1102 		 * Disable PCI & Core Clock, disable clock gating for
1103 		 * both Links.
1104 		 */
1105 		CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
1106 		CSR_WRITE_1(sc, B0_POWER_CTRL,
1107 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
1108 		break;
1109 	default:
1110 		break;
1111 	}
1112 }
1113 
1114 static void
1115 mskc_reset(struct msk_softc *sc)
1116 {
1117 	bus_addr_t addr;
1118 	uint16_t status;
1119 	uint32_t val;
1120 	int i;
1121 
1122 	/* Disable ASF. */
1123 	if (sc->msk_hw_id >= CHIP_ID_YUKON_XL &&
1124 	    sc->msk_hw_id <= CHIP_ID_YUKON_SUPR) {
1125 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1126 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1127 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1128 			status = CSR_READ_2(sc, B28_Y2_ASF_HCU_CCSR);
1129 			/* Clear AHB bridge & microcontroller reset. */
1130 			status &= ~(Y2_ASF_HCU_CCSR_AHB_RST |
1131 			    Y2_ASF_HCU_CCSR_CPU_RST_MODE);
1132 			/* Clear ASF microcontroller state. */
1133 			status &= ~Y2_ASF_HCU_CCSR_UC_STATE_MSK;
1134 			status &= ~Y2_ASF_HCU_CCSR_CPU_CLK_DIVIDE_MSK;
1135 			CSR_WRITE_2(sc, B28_Y2_ASF_HCU_CCSR, status);
1136 			CSR_WRITE_4(sc, B28_Y2_CPU_WDOG, 0);
1137 		} else {
1138 			CSR_WRITE_1(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
1139 		}
1140 		CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
1141 		/*
1142 		 * Since we disabled ASF, S/W reset is required for
1143 		 * Power Management.
1144 		 */
1145 		CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1146 		CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1147 	}
1148 
1149 	/* Clear all error bits in the PCI status register. */
1150 	status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
1151 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1152 
1153 	pci_write_config(sc->msk_dev, PCIR_STATUS, status |
1154 	    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
1155 	    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
1156 	CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
1157 
1158 	switch (sc->msk_bustype) {
1159 	case MSK_PEX_BUS:
1160 		/* Clear all PEX errors. */
1161 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
1162 		val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
1163 		if ((val & PEX_RX_OV) != 0) {
1164 			sc->msk_intrmask &= ~Y2_IS_HW_ERR;
1165 			sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
1166 		}
1167 		break;
1168 	case MSK_PCI_BUS:
1169 	case MSK_PCIX_BUS:
1170 		/* Set Cache Line Size to 2(8bytes) if configured to 0. */
1171 		val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
1172 		if (val == 0)
1173 			pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
1174 		if (sc->msk_bustype == MSK_PCIX_BUS) {
1175 			/* Set Cache Line Size opt. */
1176 			val = CSR_PCI_READ_4(sc, PCI_OUR_REG_1);
1177 			val |= PCI_CLS_OPT;
1178 			CSR_PCI_WRITE_4(sc, PCI_OUR_REG_1, val);
1179 		}
1180 		break;
1181 	}
1182 	/* Set PHY power state. */
1183 	mskc_phy_power(sc, MSK_PHY_POWERUP);
1184 
1185 	/* Reset GPHY/GMAC Control */
1186 	for (i = 0; i < sc->msk_num_port; i++) {
1187 		/* GPHY Control reset. */
1188 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
1189 		CSR_WRITE_1(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
1190 		/* GMAC Control reset. */
1191 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
1192 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
1193 		CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
1194 		if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
1195 		    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
1196 			CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL),
1197 			    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
1198 			    GMC_BYP_RETR_ON);
1199 		}
1200 	}
1201 
1202 	if (sc->msk_hw_id == CHIP_ID_YUKON_SUPR &&
1203 	    sc->msk_hw_rev > CHIP_REV_YU_SU_B0)
1204 		CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, PCI_CLK_MACSEC_DIS);
1205 	if (sc->msk_hw_id == CHIP_ID_YUKON_OPT && sc->msk_hw_rev == 0) {
1206 		/* Disable PCIe PHY powerdown(reg 0x80, bit7). */
1207 		CSR_WRITE_4(sc, Y2_PEX_PHY_DATA, (0x0080 << 16) | 0x0080);
1208 	}
1209 	CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1210 
1211 	/* LED On. */
1212 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
1213 
1214 	/* Clear TWSI IRQ. */
1215 	CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
1216 
1217 	/* Turn off hardware timer. */
1218 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
1219 	CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
1220 
1221 	/* Turn off descriptor polling. */
1222 	CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
1223 
1224 	/* Turn off time stamps. */
1225 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
1226 	CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
1227 
1228 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL ||
1229 	    sc->msk_hw_id == CHIP_ID_YUKON_EC ||
1230 	    sc->msk_hw_id == CHIP_ID_YUKON_FE) {
1231 		/* Configure timeout values. */
1232 		for (i = 0; i < sc->msk_num_port; i++) {
1233 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1234 			    RI_RST_SET);
1235 			CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL),
1236 			    RI_RST_CLR);
1237 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
1238 			    MSK_RI_TO_53);
1239 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
1240 			    MSK_RI_TO_53);
1241 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
1242 			    MSK_RI_TO_53);
1243 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
1244 			    MSK_RI_TO_53);
1245 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
1246 			    MSK_RI_TO_53);
1247 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
1248 			    MSK_RI_TO_53);
1249 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
1250 			    MSK_RI_TO_53);
1251 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
1252 			    MSK_RI_TO_53);
1253 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
1254 			    MSK_RI_TO_53);
1255 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
1256 			    MSK_RI_TO_53);
1257 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
1258 			    MSK_RI_TO_53);
1259 			CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
1260 			    MSK_RI_TO_53);
1261 		}
1262 	}
1263 
1264 	/* Disable all interrupts. */
1265 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1266 	CSR_READ_4(sc, B0_HWE_IMSK);
1267 	CSR_WRITE_4(sc, B0_IMSK, 0);
1268 	CSR_READ_4(sc, B0_IMSK);
1269 
1270         /*
1271          * On dual port PCI-X card, there is an problem where status
1272          * can be received out of order due to split transactions.
1273          */
1274 	if (sc->msk_pcixcap != 0 && sc->msk_num_port > 1) {
1275 		uint16_t pcix_cmd;
1276 
1277 		pcix_cmd = pci_read_config(sc->msk_dev,
1278 		    sc->msk_pcixcap + PCIXR_COMMAND, 2);
1279 		/* Clear Max Outstanding Split Transactions. */
1280 		pcix_cmd &= ~PCIXM_COMMAND_MAX_SPLITS;
1281 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
1282 		pci_write_config(sc->msk_dev,
1283 		    sc->msk_pcixcap + PCIXR_COMMAND, pcix_cmd, 2);
1284 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
1285 	}
1286 	if (sc->msk_pciecap != 0) {
1287 		/* Change Max. Read Request Size to 2048 bytes. */
1288 		if (pcie_get_max_readrq(sc->msk_dev) ==
1289 		    PCIEM_DEVCTL_MAX_READRQ_512) {
1290 			pcie_set_max_readrq(sc->msk_dev,
1291 			    PCIEM_DEVCTL_MAX_READRQ_2048);
1292 		}
1293 	}
1294 
1295 	/* Clear status list. */
1296 	bzero(sc->msk_stat_ring,
1297 	    sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
1298 	sc->msk_stat_cons = 0;
1299 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
1300 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
1301 	/* Set the status list base address. */
1302 	addr = sc->msk_stat_ring_paddr;
1303 	CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
1304 	CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
1305 	/* Set the status list last index. */
1306 	CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
1307 	if (sc->msk_hw_id == CHIP_ID_YUKON_EC &&
1308 	    sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
1309 		/* WA for dev. #4.3 */
1310 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
1311 		/* WA for dev. #4.18 */
1312 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
1313 		CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
1314 	} else {
1315 		CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
1316 		CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
1317 		if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
1318 		    sc->msk_hw_rev == CHIP_REV_YU_XL_A0)
1319 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x04);
1320 		else
1321 			CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x10);
1322 		CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
1323 	}
1324 	/*
1325 	 * Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
1326 	 */
1327 	CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
1328 
1329 	/* Enable status unit. */
1330 	CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
1331 
1332 	CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
1333 	CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
1334 	CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
1335 }
1336 
1337 static int
1338 msk_probe(device_t dev)
1339 {
1340 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1341 	char desc[100];
1342 
1343 	/*
1344 	 * Not much to do here. We always know there will be
1345 	 * at least one GMAC present, and if there are two,
1346 	 * mskc_attach() will create a second device instance
1347 	 * for us.
1348 	 */
1349 	ksnprintf(desc, sizeof(desc),
1350 	    "Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
1351 	    model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
1352 	    sc->msk_hw_rev);
1353 	device_set_desc_copy(dev, desc);
1354 
1355 	return (0);
1356 }
1357 
1358 static int
1359 msk_attach(device_t dev)
1360 {
1361 	struct msk_softc *sc = device_get_softc(device_get_parent(dev));
1362 	struct msk_if_softc *sc_if = device_get_softc(dev);
1363 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
1364 	int i, port, error;
1365 	uint8_t eaddr[ETHER_ADDR_LEN];
1366 
1367 	port = *(int *)device_get_ivars(dev);
1368 	KKASSERT(port == MSK_PORT_A || port == MSK_PORT_B);
1369 
1370 	kfree(device_get_ivars(dev), M_DEVBUF);
1371 	device_set_ivars(dev, NULL);
1372 
1373 	callout_init(&sc_if->msk_tick_ch);
1374 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1375 
1376 	sc_if->msk_if_dev = dev;
1377 	sc_if->msk_port = port;
1378 	sc_if->msk_softc = sc;
1379 	sc_if->msk_ifp = ifp;
1380 	sc_if->msk_flags = sc->msk_pflags;
1381 	sc->msk_if[port] = sc_if;
1382 
1383 	/* Setup Tx/Rx queue register offsets. */
1384 	if (port == MSK_PORT_A) {
1385 		sc_if->msk_txq = Q_XA1;
1386 		sc_if->msk_txsq = Q_XS1;
1387 		sc_if->msk_rxq = Q_R1;
1388 	} else {
1389 		sc_if->msk_txq = Q_XA2;
1390 		sc_if->msk_txsq = Q_XS2;
1391 		sc_if->msk_rxq = Q_R2;
1392 	}
1393 
1394 	error = msk_txrx_dma_alloc(sc_if);
1395 	if (error)
1396 		goto fail;
1397 
1398 	ifp->if_softc = sc_if;
1399 	ifp->if_mtu = ETHERMTU;
1400 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1401 	ifp->if_init = msk_init;
1402 	ifp->if_ioctl = msk_ioctl;
1403 	ifp->if_start = msk_start;
1404 	ifp->if_watchdog = msk_watchdog;
1405 	ifq_set_maxlen(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1406 	ifq_set_ready(&ifp->if_snd);
1407 
1408 #ifdef notyet
1409 	/*
1410 	 * IFCAP_RXCSUM capability is intentionally disabled as the hardware
1411 	 * has serious bug in Rx checksum offload for all Yukon II family
1412 	 * hardware. It seems there is a workaround to make it work somtimes.
1413 	 * However, the workaround also have to check OP code sequences to
1414 	 * verify whether the OP code is correct. Sometimes it should compute
1415 	 * IP/TCP/UDP checksum in driver in order to verify correctness of
1416 	 * checksum computed by hardware. If you have to compute checksum
1417 	 * with software to verify the hardware's checksum why have hardware
1418 	 * compute the checksum? I think there is no reason to spend time to
1419 	 * make Rx checksum offload work on Yukon II hardware.
1420 	 */
1421 	ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_VLAN_MTU |
1422 			       IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
1423 	ifp->if_hwassist = MSK_CSUM_FEATURES;
1424 	ifp->if_capenable = ifp->if_capabilities;
1425 #endif
1426 
1427 	/*
1428 	 * Get station address for this interface. Note that
1429 	 * dual port cards actually come with three station
1430 	 * addresses: one for each port, plus an extra. The
1431 	 * extra one is used by the SysKonnect driver software
1432 	 * as a 'virtual' station address for when both ports
1433 	 * are operating in failover mode. Currently we don't
1434 	 * use this extra address.
1435 	 */
1436 	for (i = 0; i < ETHER_ADDR_LEN; i++)
1437 		eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
1438 
1439 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
1440 
1441 	/*
1442 	 * Do miibus setup.
1443 	 */
1444 	error = mii_phy_probe(dev, &sc_if->msk_miibus,
1445 			      msk_mediachange, msk_mediastatus);
1446 	if (error) {
1447 		device_printf(sc_if->msk_if_dev, "no PHY found!\n");
1448 		goto fail;
1449 	}
1450 
1451 	/*
1452 	 * Call MI attach routine.  Can't hold locks when calling into ether_*.
1453 	 */
1454 	ether_ifattach(ifp, eaddr, &sc->msk_serializer);
1455 #if 0
1456 	/*
1457 	 * Tell the upper layer(s) we support long frames.
1458 	 * Must appear after the call to ether_ifattach() because
1459 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1460 	 */
1461         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1462 #endif
1463 
1464 	return 0;
1465 fail:
1466 	msk_detach(dev);
1467 	sc->msk_if[port] = NULL;
1468 	return (error);
1469 }
1470 
1471 /*
1472  * Attach the interface. Allocate softc structures, do ifmedia
1473  * setup and ethernet/BPF attach.
1474  */
1475 static int
1476 mskc_attach(device_t dev)
1477 {
1478 	struct msk_softc *sc;
1479 	int error, *port, cpuid;
1480 
1481 	sc = device_get_softc(dev);
1482 	sc->msk_dev = dev;
1483 	lwkt_serialize_init(&sc->msk_serializer);
1484 
1485 	/*
1486 	 * Initailize sysctl variables
1487 	 */
1488 	sc->msk_process_limit = mskc_process_limit;
1489 	sc->msk_intr_rate = mskc_intr_rate;
1490 
1491 #ifndef BURN_BRIDGES
1492 	/*
1493 	 * Handle power management nonsense.
1494 	 */
1495 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1496 		uint32_t irq, bar0, bar1;
1497 
1498 		/* Save important PCI config data. */
1499 		bar0 = pci_read_config(dev, PCIR_BAR(0), 4);
1500 		bar1 = pci_read_config(dev, PCIR_BAR(1), 4);
1501 		irq = pci_read_config(dev, PCIR_INTLINE, 4);
1502 
1503 		/* Reset the power state. */
1504 		device_printf(dev, "chip is in D%d power mode "
1505 			      "-- setting to D0\n", pci_get_powerstate(dev));
1506 
1507 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1508 
1509 		/* Restore PCI config data. */
1510 		pci_write_config(dev, PCIR_BAR(0), bar0, 4);
1511 		pci_write_config(dev, PCIR_BAR(1), bar1, 4);
1512 		pci_write_config(dev, PCIR_INTLINE, irq, 4);
1513 	}
1514 #endif	/* BURN_BRIDGES */
1515 
1516 	/*
1517 	 * Map control/status registers.
1518 	 */
1519 	pci_enable_busmaster(dev);
1520 
1521 	/*
1522 	 * Allocate I/O resource
1523 	 */
1524 #ifdef MSK_USEIOSPACE
1525 	sc->msk_res_type = SYS_RES_IOPORT;
1526 	sc->msk_res_rid = PCIR_BAR(1);
1527 #else
1528 	sc->msk_res_type = SYS_RES_MEMORY;
1529 	sc->msk_res_rid = PCIR_BAR(0);
1530 #endif
1531 	sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1532 					     &sc->msk_res_rid, RF_ACTIVE);
1533 	if (sc->msk_res == NULL) {
1534 		if (sc->msk_res_type == SYS_RES_MEMORY) {
1535 			sc->msk_res_type = SYS_RES_IOPORT;
1536 			sc->msk_res_rid = PCIR_BAR(1);
1537 		} else {
1538 			sc->msk_res_type = SYS_RES_MEMORY;
1539 			sc->msk_res_rid = PCIR_BAR(0);
1540 		}
1541 		sc->msk_res = bus_alloc_resource_any(dev, sc->msk_res_type,
1542 						     &sc->msk_res_rid,
1543 						     RF_ACTIVE);
1544 		if (sc->msk_res == NULL) {
1545 			device_printf(dev, "couldn't allocate %s resources\n",
1546 			sc->msk_res_type == SYS_RES_MEMORY ? "memory" : "I/O");
1547 			return (ENXIO);
1548 		}
1549 	}
1550 	sc->msk_res_bt = rman_get_bustag(sc->msk_res);
1551 	sc->msk_res_bh = rman_get_bushandle(sc->msk_res);
1552 
1553 	/*
1554 	 * Allocate IRQ
1555 	 */
1556 	sc->msk_irq_rid = 0;
1557 	sc->msk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1558 					     &sc->msk_irq_rid,
1559 					     RF_SHAREABLE | RF_ACTIVE);
1560 	if (sc->msk_irq == NULL) {
1561 		device_printf(dev, "couldn't allocate IRQ resources\n");
1562 		error = ENXIO;
1563 		goto fail;
1564 	}
1565 
1566 	/* Enable all clocks before accessing any registers. */
1567 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
1568 
1569 	CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
1570 	sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
1571 	sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
1572 	/* Bail out if chip is not recognized. */
1573 	if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
1574 	    sc->msk_hw_id > CHIP_ID_YUKON_OPT ||
1575 	    sc->msk_hw_id == CHIP_ID_YUKON_UNKNOWN) {
1576 		device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
1577 		    sc->msk_hw_id, sc->msk_hw_rev);
1578 		error = ENXIO;
1579 		goto fail;
1580 	}
1581 
1582 	/*
1583 	 * Create sysctl tree
1584 	 */
1585 	sysctl_ctx_init(&sc->msk_sysctl_ctx);
1586 	sc->msk_sysctl_tree = SYSCTL_ADD_NODE(&sc->msk_sysctl_ctx,
1587 					      SYSCTL_STATIC_CHILDREN(_hw),
1588 					      OID_AUTO,
1589 					      device_get_nameunit(dev),
1590 					      CTLFLAG_RD, 0, "");
1591 	if (sc->msk_sysctl_tree == NULL) {
1592 		device_printf(dev, "can't add sysctl node\n");
1593 		error = ENXIO;
1594 		goto fail;
1595 	}
1596 
1597 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1598 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1599 			OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
1600 			&sc->msk_process_limit, 0, mskc_sysctl_proc_limit,
1601 			"I", "max number of Rx events to process");
1602 	SYSCTL_ADD_PROC(&sc->msk_sysctl_ctx,
1603 			SYSCTL_CHILDREN(sc->msk_sysctl_tree),
1604 			OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1605 			sc, 0, mskc_sysctl_intr_rate,
1606 			"I", "max number of interrupt per second");
1607 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1608 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1609 		       "defrag_avoided", CTLFLAG_RW, &sc->msk_defrag_avoided,
1610 		       0, "# of avoided m_defrag on TX path");
1611 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1612 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1613 		       "leading_copied", CTLFLAG_RW, &sc->msk_leading_copied,
1614 		       0, "# of leading copies on TX path");
1615 	SYSCTL_ADD_INT(&sc->msk_sysctl_ctx,
1616 		       SYSCTL_CHILDREN(sc->msk_sysctl_tree), OID_AUTO,
1617 		       "trailing_copied", CTLFLAG_RW, &sc->msk_trailing_copied,
1618 		       0, "# of trailing copies on TX path");
1619 
1620 	sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
1621 	if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
1622 		sc->msk_coppertype = 0;
1623 	else
1624 		sc->msk_coppertype = 1;
1625 	/* Check number of MACs. */
1626 	sc->msk_num_port = 1;
1627 	if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
1628 	    CFG_DUAL_MAC_MSK) {
1629 		if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
1630 			sc->msk_num_port++;
1631 	}
1632 
1633 	/* Check bus type. */
1634 	if (pci_is_pcie(sc->msk_dev) == 0) {
1635 		sc->msk_bustype = MSK_PEX_BUS;
1636 		sc->msk_pciecap = pci_get_pciecap_ptr(sc->msk_dev);
1637 	} else if (pci_is_pcix(sc->msk_dev) == 0) {
1638 		sc->msk_bustype = MSK_PCIX_BUS;
1639 		sc->msk_pcixcap = pci_get_pcixcap_ptr(sc->msk_dev);
1640 	} else {
1641 		sc->msk_bustype = MSK_PCI_BUS;
1642 	}
1643 
1644 	switch (sc->msk_hw_id) {
1645 	case CHIP_ID_YUKON_EC:
1646 	case CHIP_ID_YUKON_EC_U:
1647 		sc->msk_clock = 125;	/* 125 Mhz */
1648 		break;
1649 	case CHIP_ID_YUKON_EX:
1650 		sc->msk_clock = 125;	/* 125 Mhz */
1651 		break;
1652 	case CHIP_ID_YUKON_FE:
1653 		sc->msk_clock = 100;	/* 100 Mhz */
1654 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1655 		break;
1656 	case CHIP_ID_YUKON_FE_P:
1657 		sc->msk_clock = 50;	/* 50 Mhz */
1658 		/* DESCV2 */
1659 		sc->msk_pflags |= MSK_FLAG_FASTETHER;
1660 		if (sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
1661 			/*
1662 			 * XXX
1663 			 * FE+ A0 has status LE writeback bug so msk(4)
1664 			 * does not rely on status word of received frame
1665 			 * in msk_rxeof() which in turn disables all
1666 			 * hardware assistance bits reported by the status
1667 			 * word as well as validity of the recevied frame.
1668 			 * Just pass received frames to upper stack with
1669 			 * minimal test and let upper stack handle them.
1670 			 */
1671 			sc->msk_pflags |= MSK_FLAG_NORXCHK;
1672 		}
1673 		break;
1674 	case CHIP_ID_YUKON_XL:
1675 		sc->msk_clock = 156;	/* 156 Mhz */
1676 		break;
1677 	case CHIP_ID_YUKON_SUPR:
1678 		sc->msk_clock = 125;	/* 125 MHz */
1679 		break;
1680 	case CHIP_ID_YUKON_UL_2:
1681 		sc->msk_clock = 125;	/* 125 Mhz */
1682 		break;
1683 	case CHIP_ID_YUKON_OPT:
1684 		sc->msk_clock = 125;	/* 125 MHz */
1685 		break;
1686 	default:
1687 		sc->msk_clock = 156;	/* 156 Mhz */
1688 		break;
1689 	}
1690 
1691 	error = mskc_status_dma_alloc(sc);
1692 	if (error)
1693 		goto fail;
1694 
1695 	/* Set base interrupt mask. */
1696 	sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
1697 	sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
1698 	    Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
1699 
1700 	/* Reset the adapter. */
1701 	mskc_reset(sc);
1702 
1703 	error = mskc_setup_rambuffer(sc);
1704 	if (error)
1705 		goto fail;
1706 
1707 	sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
1708 	if (sc->msk_devs[MSK_PORT_A] == NULL) {
1709 		device_printf(dev, "failed to add child for PORT_A\n");
1710 		error = ENXIO;
1711 		goto fail;
1712 	}
1713 	port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1714 	*port = MSK_PORT_A;
1715 	device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
1716 
1717 	if (sc->msk_num_port > 1) {
1718 		sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
1719 		if (sc->msk_devs[MSK_PORT_B] == NULL) {
1720 			device_printf(dev, "failed to add child for PORT_B\n");
1721 			error = ENXIO;
1722 			goto fail;
1723 		}
1724 		port = kmalloc(sizeof(*port), M_DEVBUF, M_WAITOK);
1725 		*port = MSK_PORT_B;
1726 		device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
1727 	}
1728 
1729 	bus_generic_attach(dev);
1730 
1731 	error = bus_setup_intr(dev, sc->msk_irq, INTR_MPSAFE,
1732 			       mskc_intr, sc, &sc->msk_intrhand,
1733 			       &sc->msk_serializer);
1734 	if (error) {
1735 		device_printf(dev, "couldn't set up interrupt handler\n");
1736 		goto fail;
1737 	}
1738 
1739 	cpuid = rman_get_cpuid(sc->msk_irq);
1740 	if (sc->msk_if[0] != NULL)
1741 		ifq_set_cpuid(&sc->msk_if[0]->msk_ifp->if_snd, cpuid);
1742 	if (sc->msk_if[1] != NULL)
1743 		ifq_set_cpuid(&sc->msk_if[1]->msk_ifp->if_snd, cpuid);
1744 	return 0;
1745 fail:
1746 	mskc_detach(dev);
1747 	return (error);
1748 }
1749 
1750 /*
1751  * Shutdown hardware and free up resources. This can be called any
1752  * time after the mutex has been initialized. It is called in both
1753  * the error case in attach and the normal detach case so it needs
1754  * to be careful about only freeing resources that have actually been
1755  * allocated.
1756  */
1757 static int
1758 msk_detach(device_t dev)
1759 {
1760 	struct msk_if_softc *sc_if = device_get_softc(dev);
1761 
1762 	if (device_is_attached(dev)) {
1763 		struct msk_softc *sc = sc_if->msk_softc;
1764 		struct ifnet *ifp = &sc_if->arpcom.ac_if;
1765 
1766 		lwkt_serialize_enter(ifp->if_serializer);
1767 
1768 		if (sc->msk_intrhand != NULL) {
1769 			if (sc->msk_if[MSK_PORT_A] != NULL)
1770 				msk_stop(sc->msk_if[MSK_PORT_A]);
1771 			if (sc->msk_if[MSK_PORT_B] != NULL)
1772 				msk_stop(sc->msk_if[MSK_PORT_B]);
1773 
1774 			bus_teardown_intr(sc->msk_dev, sc->msk_irq,
1775 					  sc->msk_intrhand);
1776 			sc->msk_intrhand = NULL;
1777 		}
1778 
1779 		lwkt_serialize_exit(ifp->if_serializer);
1780 
1781 		ether_ifdetach(ifp);
1782 	}
1783 
1784 	if (sc_if->msk_miibus != NULL)
1785 		device_delete_child(dev, sc_if->msk_miibus);
1786 
1787 	msk_txrx_dma_free(sc_if);
1788 	return (0);
1789 }
1790 
1791 static int
1792 mskc_detach(device_t dev)
1793 {
1794 	struct msk_softc *sc = device_get_softc(dev);
1795 	int *port, i;
1796 
1797 #ifdef INVARIANTS
1798 	if (device_is_attached(dev)) {
1799 		KASSERT(sc->msk_intrhand == NULL,
1800 			("intr is not torn down yet"));
1801 	}
1802 #endif
1803 
1804 	for (i = 0; i < sc->msk_num_port; ++i) {
1805 		if (sc->msk_devs[i] != NULL) {
1806 			port = device_get_ivars(sc->msk_devs[i]);
1807 			if (port != NULL) {
1808 				kfree(port, M_DEVBUF);
1809 				device_set_ivars(sc->msk_devs[i], NULL);
1810 			}
1811 			device_delete_child(dev, sc->msk_devs[i]);
1812 		}
1813 	}
1814 
1815 	/* Disable all interrupts. */
1816 	CSR_WRITE_4(sc, B0_IMSK, 0);
1817 	CSR_READ_4(sc, B0_IMSK);
1818 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
1819 	CSR_READ_4(sc, B0_HWE_IMSK);
1820 
1821 	/* LED Off. */
1822 	CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
1823 
1824 	/* Put hardware reset. */
1825 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
1826 
1827 	mskc_status_dma_free(sc);
1828 
1829 	if (sc->msk_irq != NULL) {
1830 		bus_release_resource(dev, SYS_RES_IRQ, sc->msk_irq_rid,
1831 				     sc->msk_irq);
1832 	}
1833 	if (sc->msk_res != NULL) {
1834 		bus_release_resource(dev, sc->msk_res_type, sc->msk_res_rid,
1835 				     sc->msk_res);
1836 	}
1837 
1838 	if (sc->msk_sysctl_tree != NULL)
1839 		sysctl_ctx_free(&sc->msk_sysctl_ctx);
1840 
1841 	return (0);
1842 }
1843 
1844 /* Create status DMA region. */
1845 static int
1846 mskc_status_dma_alloc(struct msk_softc *sc)
1847 {
1848 	bus_dmamem_t dmem;
1849 	int error;
1850 
1851 	error = bus_dmamem_coherent(NULL/* XXX parent */, MSK_STAT_ALIGN, 0,
1852 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
1853 			MSK_STAT_RING_SZ, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
1854 	if (error) {
1855 		device_printf(sc->msk_dev,
1856 		    "failed to create status coherent DMA memory\n");
1857 		return error;
1858 	}
1859 	sc->msk_stat_tag = dmem.dmem_tag;
1860 	sc->msk_stat_map = dmem.dmem_map;
1861 	sc->msk_stat_ring = dmem.dmem_addr;
1862 	sc->msk_stat_ring_paddr = dmem.dmem_busaddr;
1863 
1864 	return (0);
1865 }
1866 
1867 static void
1868 mskc_status_dma_free(struct msk_softc *sc)
1869 {
1870 	/* Destroy status block. */
1871 	if (sc->msk_stat_tag) {
1872 		bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
1873 		bus_dmamem_free(sc->msk_stat_tag, sc->msk_stat_ring,
1874 				sc->msk_stat_map);
1875 		bus_dma_tag_destroy(sc->msk_stat_tag);
1876 		sc->msk_stat_tag = NULL;
1877 	}
1878 }
1879 
1880 static int
1881 msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
1882 {
1883 	int error, i, j;
1884 #ifdef MSK_JUMBO
1885 	struct msk_rxdesc *jrxd;
1886 	struct msk_jpool_entry *entry;
1887 	uint8_t *ptr;
1888 #endif
1889 	bus_size_t rxalign;
1890 
1891 	/* Create parent DMA tag. */
1892 	/*
1893 	 * XXX
1894 	 * It seems that Yukon II supports full 64bits DMA operations. But
1895 	 * it needs two descriptors(list elements) for 64bits DMA operations.
1896 	 * Since we don't know what DMA address mappings(32bits or 64bits)
1897 	 * would be used in advance for each mbufs, we limits its DMA space
1898 	 * to be in range of 32bits address space. Otherwise, we should check
1899 	 * what DMA address is used and chain another descriptor for the
1900 	 * 64bits DMA operation. This also means descriptor ring size is
1901 	 * variable. Limiting DMA address to be in 32bit address space greatly
1902 	 * simplyfies descriptor handling and possibly would increase
1903 	 * performance a bit due to efficient handling of descriptors.
1904 	 * Apart from harassing checksum offloading mechanisms, it seems
1905 	 * it's really bad idea to use a seperate descriptor for 64bit
1906 	 * DMA operation to save small descriptor memory. Anyway, I've
1907 	 * never seen these exotic scheme on ethernet interface hardware.
1908 	 */
1909 	error = bus_dma_tag_create(
1910 		    NULL,			/* parent */
1911 		    1, 0,			/* alignment, boundary */
1912 		    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1913 		    BUS_SPACE_MAXADDR,		/* highaddr */
1914 		    NULL, NULL,			/* filter, filterarg */
1915 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1916 		    0,				/* nsegments */
1917 		    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1918 		    0,				/* flags */
1919 		    &sc_if->msk_cdata.msk_parent_tag);
1920 	if (error) {
1921 		device_printf(sc_if->msk_if_dev,
1922 			      "failed to create parent DMA tag\n");
1923 		return error;
1924 	}
1925 
1926 	/* Create DMA stuffs for Tx ring. */
1927 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_TX_RING_SZ,
1928 				  &sc_if->msk_cdata.msk_tx_ring_tag,
1929 				  (void *)&sc_if->msk_rdata.msk_tx_ring,
1930 				  &sc_if->msk_rdata.msk_tx_ring_paddr,
1931 				  &sc_if->msk_cdata.msk_tx_ring_map);
1932 	if (error) {
1933 		device_printf(sc_if->msk_if_dev,
1934 			      "failed to create TX ring DMA stuffs\n");
1935 		return error;
1936 	}
1937 
1938 	/* Create DMA stuffs for Rx ring. */
1939 	error = msk_dmamem_create(sc_if->msk_if_dev, MSK_RX_RING_SZ,
1940 				  &sc_if->msk_cdata.msk_rx_ring_tag,
1941 				  (void *)&sc_if->msk_rdata.msk_rx_ring,
1942 				  &sc_if->msk_rdata.msk_rx_ring_paddr,
1943 				  &sc_if->msk_cdata.msk_rx_ring_map);
1944 	if (error) {
1945 		device_printf(sc_if->msk_if_dev,
1946 			      "failed to create RX ring DMA stuffs\n");
1947 		return error;
1948 	}
1949 
1950 	/* Create tag for Tx buffers. */
1951 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
1952 		    1, 0,			/* alignment, boundary */
1953 		    BUS_SPACE_MAXADDR,		/* lowaddr */
1954 		    BUS_SPACE_MAXADDR,		/* highaddr */
1955 		    NULL, NULL,			/* filter, filterarg */
1956 		    MSK_JUMBO_FRAMELEN,		/* maxsize */
1957 		    MSK_MAXTXSEGS,		/* nsegments */
1958 		    MSK_MAXSGSIZE,		/* maxsegsize */
1959 		    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
1960 		    BUS_DMA_ONEBPAGE,		/* flags */
1961 		    &sc_if->msk_cdata.msk_tx_tag);
1962 	if (error) {
1963 		device_printf(sc_if->msk_if_dev,
1964 			      "failed to create Tx DMA tag\n");
1965 		return error;
1966 	}
1967 
1968 	/* Create DMA maps for Tx buffers. */
1969 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
1970 		struct msk_txdesc *txd = &sc_if->msk_cdata.msk_txdesc[i];
1971 
1972 		error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag,
1973 				BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
1974 				&txd->tx_dmamap);
1975 		if (error) {
1976 			device_printf(sc_if->msk_if_dev,
1977 				      "failed to create %dth Tx dmamap\n", i);
1978 
1979 			for (j = 0; j < i; ++j) {
1980 				txd = &sc_if->msk_cdata.msk_txdesc[j];
1981 				bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
1982 						   txd->tx_dmamap);
1983 			}
1984 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
1985 			sc_if->msk_cdata.msk_tx_tag = NULL;
1986 
1987 			return error;
1988 		}
1989 	}
1990 
1991 	/*
1992 	 * Workaround hardware hang which seems to happen when Rx buffer
1993 	 * is not aligned on multiple of FIFO word(8 bytes).
1994 	 */
1995 	if (sc_if->msk_flags & MSK_FLAG_RAMBUF)
1996 		rxalign = MSK_RX_BUF_ALIGN;
1997 	else
1998 		rxalign = 1;
1999 
2000 	/* Create tag for Rx buffers. */
2001 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2002 		    rxalign, 0,			/* alignment, boundary */
2003 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2004 		    BUS_SPACE_MAXADDR,		/* highaddr */
2005 		    NULL, NULL,			/* filter, filterarg */
2006 		    MCLBYTES,			/* maxsize */
2007 		    1,				/* nsegments */
2008 		    MCLBYTES,			/* maxsegsize */
2009 		    BUS_DMA_ALLOCNOW | BUS_DMA_ALIGNED |
2010 		    BUS_DMA_WAITOK,		/* flags */
2011 		    &sc_if->msk_cdata.msk_rx_tag);
2012 	if (error) {
2013 		device_printf(sc_if->msk_if_dev,
2014 			      "failed to create Rx DMA tag\n");
2015 		return error;
2016 	}
2017 
2018 	/* Create DMA maps for Rx buffers. */
2019 	error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, BUS_DMA_WAITOK,
2020 				  &sc_if->msk_cdata.msk_rx_sparemap);
2021 	if (error) {
2022 		device_printf(sc_if->msk_if_dev,
2023 			      "failed to create spare Rx dmamap\n");
2024 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2025 		sc_if->msk_cdata.msk_rx_tag = NULL;
2026 		return error;
2027 	}
2028 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
2029 		struct msk_rxdesc *rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2030 
2031 		error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag,
2032 					  BUS_DMA_WAITOK, &rxd->rx_dmamap);
2033 		if (error) {
2034 			device_printf(sc_if->msk_if_dev,
2035 				      "failed to create %dth Rx dmamap\n", i);
2036 
2037 			for (j = 0; j < i; ++j) {
2038 				rxd = &sc_if->msk_cdata.msk_rxdesc[j];
2039 				bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2040 						   rxd->rx_dmamap);
2041 			}
2042 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2043 					   sc_if->msk_cdata.msk_rx_sparemap);
2044 			bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2045 			sc_if->msk_cdata.msk_rx_tag = NULL;
2046 
2047 			return error;
2048 		}
2049 	}
2050 
2051 #ifdef MSK_JUMBO
2052 	SLIST_INIT(&sc_if->msk_jfree_listhead);
2053 	SLIST_INIT(&sc_if->msk_jinuse_listhead);
2054 
2055 	/* Create tag for jumbo Rx ring. */
2056 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2057 		    MSK_RING_ALIGN, 0,		/* alignment, boundary */
2058 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2059 		    BUS_SPACE_MAXADDR,		/* highaddr */
2060 		    NULL, NULL,			/* filter, filterarg */
2061 		    MSK_JUMBO_RX_RING_SZ,	/* maxsize */
2062 		    1,				/* nsegments */
2063 		    MSK_JUMBO_RX_RING_SZ,	/* maxsegsize */
2064 		    0,				/* flags */
2065 		    NULL, NULL,			/* lockfunc, lockarg */
2066 		    &sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2067 	if (error != 0) {
2068 		device_printf(sc_if->msk_if_dev,
2069 		    "failed to create jumbo Rx ring DMA tag\n");
2070 		goto fail;
2071 	}
2072 
2073 	/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
2074 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2075 	    (void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
2076 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2077 	    &sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2078 	if (error != 0) {
2079 		device_printf(sc_if->msk_if_dev,
2080 		    "failed to allocate DMA'able memory for jumbo Rx ring\n");
2081 		goto fail;
2082 	}
2083 
2084 	ctx.msk_busaddr = 0;
2085 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2086 	    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
2087 	    sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
2088 	    msk_dmamap_cb, &ctx, 0);
2089 	if (error != 0) {
2090 		device_printf(sc_if->msk_if_dev,
2091 		    "failed to load DMA'able memory for jumbo Rx ring\n");
2092 		goto fail;
2093 	}
2094 	sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
2095 
2096 	/* Create tag for jumbo buffer blocks. */
2097 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2098 		    PAGE_SIZE, 0,		/* alignment, boundary */
2099 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2100 		    BUS_SPACE_MAXADDR,		/* highaddr */
2101 		    NULL, NULL,			/* filter, filterarg */
2102 		    MSK_JMEM,			/* maxsize */
2103 		    1,				/* nsegments */
2104 		    MSK_JMEM,			/* maxsegsize */
2105 		    0,				/* flags */
2106 		    NULL, NULL,			/* lockfunc, lockarg */
2107 		    &sc_if->msk_cdata.msk_jumbo_tag);
2108 	if (error != 0) {
2109 		device_printf(sc_if->msk_if_dev,
2110 		    "failed to create jumbo Rx buffer block DMA tag\n");
2111 		goto fail;
2112 	}
2113 
2114 	/* Create tag for jumbo Rx buffers. */
2115 	error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
2116 		    PAGE_SIZE, 0,		/* alignment, boundary */
2117 		    BUS_SPACE_MAXADDR,		/* lowaddr */
2118 		    BUS_SPACE_MAXADDR,		/* highaddr */
2119 		    NULL, NULL,			/* filter, filterarg */
2120 		    MCLBYTES * MSK_MAXRXSEGS,	/* maxsize */
2121 		    MSK_MAXRXSEGS,		/* nsegments */
2122 		    MSK_JLEN,			/* maxsegsize */
2123 		    0,				/* flags */
2124 		    NULL, NULL,			/* lockfunc, lockarg */
2125 		    &sc_if->msk_cdata.msk_jumbo_rx_tag);
2126 	if (error != 0) {
2127 		device_printf(sc_if->msk_if_dev,
2128 		    "failed to create jumbo Rx DMA tag\n");
2129 		goto fail;
2130 	}
2131 
2132 	/* Create DMA maps for jumbo Rx buffers. */
2133 	if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2134 	    &sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
2135 		device_printf(sc_if->msk_if_dev,
2136 		    "failed to create spare jumbo Rx dmamap\n");
2137 		goto fail;
2138 	}
2139 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2140 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2141 		jrxd->rx_m = NULL;
2142 		jrxd->rx_dmamap = NULL;
2143 		error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
2144 		    &jrxd->rx_dmamap);
2145 		if (error != 0) {
2146 			device_printf(sc_if->msk_if_dev,
2147 			    "failed to create jumbo Rx dmamap\n");
2148 			goto fail;
2149 		}
2150 	}
2151 
2152 	/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
2153 	error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
2154 	    (void **)&sc_if->msk_rdata.msk_jumbo_buf,
2155 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
2156 	    &sc_if->msk_cdata.msk_jumbo_map);
2157 	if (error != 0) {
2158 		device_printf(sc_if->msk_if_dev,
2159 		    "failed to allocate DMA'able memory for jumbo buf\n");
2160 		goto fail;
2161 	}
2162 
2163 	ctx.msk_busaddr = 0;
2164 	error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
2165 	    sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
2166 	    MSK_JMEM, msk_dmamap_cb, &ctx, 0);
2167 	if (error != 0) {
2168 		device_printf(sc_if->msk_if_dev,
2169 		    "failed to load DMA'able memory for jumbobuf\n");
2170 		goto fail;
2171 	}
2172 	sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
2173 
2174 	/*
2175 	 * Now divide it up into 9K pieces and save the addresses
2176 	 * in an array.
2177 	 */
2178 	ptr = sc_if->msk_rdata.msk_jumbo_buf;
2179 	for (i = 0; i < MSK_JSLOTS; i++) {
2180 		sc_if->msk_cdata.msk_jslots[i] = ptr;
2181 		ptr += MSK_JLEN;
2182 		entry = malloc(sizeof(struct msk_jpool_entry),
2183 		    M_DEVBUF, M_WAITOK);
2184 		if (entry == NULL) {
2185 			device_printf(sc_if->msk_if_dev,
2186 			    "no memory for jumbo buffers!\n");
2187 			error = ENOMEM;
2188 			goto fail;
2189 		}
2190 		entry->slot = i;
2191 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2192 		    jpool_entries);
2193 	}
2194 #endif
2195 	return 0;
2196 }
2197 
2198 static void
2199 msk_txrx_dma_free(struct msk_if_softc *sc_if)
2200 {
2201 	struct msk_txdesc *txd;
2202 	struct msk_rxdesc *rxd;
2203 #ifdef MSK_JUMBO
2204 	struct msk_rxdesc *jrxd;
2205 	struct msk_jpool_entry *entry;
2206 #endif
2207 	int i;
2208 
2209 #ifdef MSK_JUMBO
2210 	MSK_JLIST_LOCK(sc_if);
2211 	while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
2212 		device_printf(sc_if->msk_if_dev,
2213 		    "asked to free buffer that is in use!\n");
2214 		SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2215 		SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
2216 		    jpool_entries);
2217 	}
2218 
2219 	while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
2220 		entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2221 		SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2222 		free(entry, M_DEVBUF);
2223 	}
2224 	MSK_JLIST_UNLOCK(sc_if);
2225 
2226 	/* Destroy jumbo buffer block. */
2227 	if (sc_if->msk_cdata.msk_jumbo_map)
2228 		bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
2229 		    sc_if->msk_cdata.msk_jumbo_map);
2230 
2231 	if (sc_if->msk_rdata.msk_jumbo_buf) {
2232 		bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
2233 		    sc_if->msk_rdata.msk_jumbo_buf,
2234 		    sc_if->msk_cdata.msk_jumbo_map);
2235 		sc_if->msk_rdata.msk_jumbo_buf = NULL;
2236 		sc_if->msk_cdata.msk_jumbo_map = NULL;
2237 	}
2238 
2239 	/* Jumbo Rx ring. */
2240 	if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
2241 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
2242 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2243 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2244 		if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
2245 		    sc_if->msk_rdata.msk_jumbo_rx_ring)
2246 			bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
2247 			    sc_if->msk_rdata.msk_jumbo_rx_ring,
2248 			    sc_if->msk_cdata.msk_jumbo_rx_ring_map);
2249 		sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
2250 		sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
2251 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
2252 		sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
2253 	}
2254 
2255 	/* Jumbo Rx buffers. */
2256 	if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
2257 		for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
2258 			jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
2259 			if (jrxd->rx_dmamap) {
2260 				bus_dmamap_destroy(
2261 				    sc_if->msk_cdata.msk_jumbo_rx_tag,
2262 				    jrxd->rx_dmamap);
2263 				jrxd->rx_dmamap = NULL;
2264 			}
2265 		}
2266 		if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
2267 			bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
2268 			    sc_if->msk_cdata.msk_jumbo_rx_sparemap);
2269 			sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
2270 		}
2271 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
2272 		sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
2273 	}
2274 #endif
2275 
2276 	/* Tx ring. */
2277 	msk_dmamem_destroy(sc_if->msk_cdata.msk_tx_ring_tag,
2278 			   sc_if->msk_rdata.msk_tx_ring,
2279 			   sc_if->msk_cdata.msk_tx_ring_map);
2280 
2281 	/* Rx ring. */
2282 	msk_dmamem_destroy(sc_if->msk_cdata.msk_rx_ring_tag,
2283 			   sc_if->msk_rdata.msk_rx_ring,
2284 			   sc_if->msk_cdata.msk_rx_ring_map);
2285 
2286 	/* Tx buffers. */
2287 	if (sc_if->msk_cdata.msk_tx_tag) {
2288 		for (i = 0; i < MSK_TX_RING_CNT; i++) {
2289 			txd = &sc_if->msk_cdata.msk_txdesc[i];
2290 			bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
2291 					   txd->tx_dmamap);
2292 		}
2293 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
2294 		sc_if->msk_cdata.msk_tx_tag = NULL;
2295 	}
2296 
2297 	/* Rx buffers. */
2298 	if (sc_if->msk_cdata.msk_rx_tag) {
2299 		for (i = 0; i < MSK_RX_RING_CNT; i++) {
2300 			rxd = &sc_if->msk_cdata.msk_rxdesc[i];
2301 			bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2302 					   rxd->rx_dmamap);
2303 		}
2304 		bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
2305 				   sc_if->msk_cdata.msk_rx_sparemap);
2306 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
2307 		sc_if->msk_cdata.msk_rx_tag = NULL;
2308 	}
2309 
2310 	if (sc_if->msk_cdata.msk_parent_tag) {
2311 		bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
2312 		sc_if->msk_cdata.msk_parent_tag = NULL;
2313 	}
2314 }
2315 
2316 #ifdef MSK_JUMBO
2317 /*
2318  * Allocate a jumbo buffer.
2319  */
2320 static void *
2321 msk_jalloc(struct msk_if_softc *sc_if)
2322 {
2323 	struct msk_jpool_entry *entry;
2324 
2325 	MSK_JLIST_LOCK(sc_if);
2326 
2327 	entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
2328 
2329 	if (entry == NULL) {
2330 		MSK_JLIST_UNLOCK(sc_if);
2331 		return (NULL);
2332 	}
2333 
2334 	SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
2335 	SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
2336 
2337 	MSK_JLIST_UNLOCK(sc_if);
2338 
2339 	return (sc_if->msk_cdata.msk_jslots[entry->slot]);
2340 }
2341 
2342 /*
2343  * Release a jumbo buffer.
2344  */
2345 static void
2346 msk_jfree(void *buf, void *args)
2347 {
2348 	struct msk_if_softc *sc_if;
2349 	struct msk_jpool_entry *entry;
2350 	int i;
2351 
2352 	/* Extract the softc struct pointer. */
2353 	sc_if = (struct msk_if_softc *)args;
2354 	KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
2355 
2356 	MSK_JLIST_LOCK(sc_if);
2357 	/* Calculate the slot this buffer belongs to. */
2358 	i = ((vm_offset_t)buf
2359 	     - (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
2360 	KASSERT(i >= 0 && i < MSK_JSLOTS,
2361 	    ("%s: asked to free buffer that we don't manage!", __func__));
2362 
2363 	entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
2364 	KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
2365 	entry->slot = i;
2366 	SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
2367 	SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
2368 	if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
2369 		wakeup(sc_if);
2370 
2371 	MSK_JLIST_UNLOCK(sc_if);
2372 }
2373 #endif
2374 
2375 static int
2376 msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
2377 {
2378 	struct msk_txdesc *txd, *txd_last;
2379 	struct msk_tx_desc *tx_le;
2380 	struct mbuf *m;
2381 	bus_dmamap_t map;
2382 	bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
2383 	uint32_t control, prod, si;
2384 	uint16_t offset, tcp_offset;
2385 	int error, i, nsegs, maxsegs, defrag;
2386 
2387 	maxsegs = MSK_TX_RING_CNT - sc_if->msk_cdata.msk_tx_cnt -
2388 		  MSK_RESERVED_TX_DESC_CNT;
2389 	KASSERT(maxsegs >= MSK_SPARE_TX_DESC_CNT,
2390 		("not enough spare TX desc"));
2391 	if (maxsegs > MSK_MAXTXSEGS)
2392 		maxsegs = MSK_MAXTXSEGS;
2393 
2394 	/*
2395 	 * Align TX buffer to 64bytes boundary.  This greately improves
2396 	 * bulk data TX performance on my 88E8053 (+100Mbps) at least.
2397 	 * Try avoiding m_defrag(), if the mbufs are not chained together
2398 	 * by m_next (i.e. m->m_len == m->m_pkthdr.len).
2399 	 */
2400 
2401 #define MSK_TXBUF_ALIGN	64
2402 #define MSK_TXBUF_MASK	(MSK_TXBUF_ALIGN - 1)
2403 
2404 	defrag = 1;
2405 	m = *m_head;
2406 	if (m->m_len == m->m_pkthdr.len) {
2407 		int space;
2408 
2409 		space = ((uintptr_t)m->m_data & MSK_TXBUF_MASK);
2410 		if (space) {
2411 			if (M_WRITABLE(m)) {
2412 				if (M_TRAILINGSPACE(m) >= space) {
2413 					/* e.g. TCP ACKs */
2414 					bcopy(m->m_data, m->m_data + space,
2415 					      m->m_len);
2416 					m->m_data += space;
2417 					defrag = 0;
2418 					sc_if->msk_softc->msk_trailing_copied++;
2419 				} else {
2420 					space = MSK_TXBUF_ALIGN - space;
2421 					if (M_LEADINGSPACE(m) >= space) {
2422 						/* e.g. Small UDP datagrams */
2423 						bcopy(m->m_data,
2424 						      m->m_data - space,
2425 						      m->m_len);
2426 						m->m_data -= space;
2427 						defrag = 0;
2428 						sc_if->msk_softc->
2429 						msk_leading_copied++;
2430 					}
2431 				}
2432 			}
2433 		} else {
2434 			/* e.g. on forwarding path */
2435 			defrag = 0;
2436 		}
2437 	}
2438 	if (defrag) {
2439 		m = m_defrag(*m_head, MB_DONTWAIT);
2440 		if (m == NULL) {
2441 			m_freem(*m_head);
2442 			*m_head = NULL;
2443 			return ENOBUFS;
2444 		}
2445 		*m_head = m;
2446 	} else {
2447 		sc_if->msk_softc->msk_defrag_avoided++;
2448 	}
2449 
2450 #undef MSK_TXBUF_MASK
2451 #undef MSK_TXBUF_ALIGN
2452 
2453 	tcp_offset = offset = 0;
2454 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2455 		/*
2456 		 * Since mbuf has no protocol specific structure information
2457 		 * in it we have to inspect protocol information here to
2458 		 * setup TSO and checksum offload. I don't know why Marvell
2459 		 * made a such decision in chip design because other GigE
2460 		 * hardwares normally takes care of all these chores in
2461 		 * hardware. However, TSO performance of Yukon II is very
2462 		 * good such that it's worth to implement it.
2463 		 */
2464 		struct ether_header *eh;
2465 		struct ip *ip;
2466 
2467 		/* TODO check for M_WRITABLE(m) */
2468 
2469 		offset = sizeof(struct ether_header);
2470 		m = m_pullup(m, offset);
2471 		if (m == NULL) {
2472 			*m_head = NULL;
2473 			return (ENOBUFS);
2474 		}
2475 		eh = mtod(m, struct ether_header *);
2476 		/* Check if hardware VLAN insertion is off. */
2477 		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2478 			offset = sizeof(struct ether_vlan_header);
2479 			m = m_pullup(m, offset);
2480 			if (m == NULL) {
2481 				*m_head = NULL;
2482 				return (ENOBUFS);
2483 			}
2484 		}
2485 		m = m_pullup(m, offset + sizeof(struct ip));
2486 		if (m == NULL) {
2487 			*m_head = NULL;
2488 			return (ENOBUFS);
2489 		}
2490 		ip = (struct ip *)(mtod(m, char *) + offset);
2491 		offset += (ip->ip_hl << 2);
2492 		tcp_offset = offset;
2493 		/*
2494 		 * It seems that Yukon II has Tx checksum offload bug for
2495 		 * small TCP packets that's less than 60 bytes in size
2496 		 * (e.g. TCP window probe packet, pure ACK packet).
2497 		 * Common work around like padding with zeros to make the
2498 		 * frame minimum ethernet frame size didn't work at all.
2499 		 * Instead of disabling checksum offload completely we
2500 		 * resort to S/W checksum routine when we encounter short
2501 		 * TCP frames.
2502 		 * Short UDP packets appear to be handled correctly by
2503 		 * Yukon II.
2504 		 */
2505 		if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
2506 		    (m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
2507 			uint16_t csum;
2508 
2509 			csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
2510 			    (ip->ip_hl << 2), offset);
2511 			*(uint16_t *)(m->m_data + offset +
2512 			    m->m_pkthdr.csum_data) = csum;
2513 			m->m_pkthdr.csum_flags &= ~CSUM_TCP;
2514 		}
2515 		*m_head = m;
2516 	}
2517 
2518 	prod = sc_if->msk_cdata.msk_tx_prod;
2519 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2520 	txd_last = txd;
2521 	map = txd->tx_dmamap;
2522 
2523 	error = bus_dmamap_load_mbuf_defrag(sc_if->msk_cdata.msk_tx_tag, map,
2524 			m_head, txsegs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2525 	if (error) {
2526 		m_freem(*m_head);
2527 		*m_head = NULL;
2528 		return error;
2529 	}
2530 	bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
2531 
2532 	m = *m_head;
2533 	control = 0;
2534 	tx_le = NULL;
2535 
2536 #ifdef notyet
2537 	/* Check if we have a VLAN tag to insert. */
2538 	if ((m->m_flags & M_VLANTAG) != 0) {
2539 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2540 		tx_le->msk_addr = htole32(0);
2541 		tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
2542 		    htons(m->m_pkthdr.ether_vtag));
2543 		sc_if->msk_cdata.msk_tx_cnt++;
2544 		MSK_INC(prod, MSK_TX_RING_CNT);
2545 		control |= INS_VLAN;
2546 	}
2547 #endif
2548 	/* Check if we have to handle checksum offload. */
2549 	if (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) {
2550 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2551 		tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
2552 		    & 0xffff) | ((uint32_t)tcp_offset << 16));
2553 		tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
2554 		control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
2555 		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2556 			control |= UDPTCP;
2557 		sc_if->msk_cdata.msk_tx_cnt++;
2558 		MSK_INC(prod, MSK_TX_RING_CNT);
2559 	}
2560 
2561 	si = prod;
2562 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2563 	tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
2564 	tx_le->msk_control = htole32(txsegs[0].ds_len | control |
2565 	    OP_PACKET);
2566 	sc_if->msk_cdata.msk_tx_cnt++;
2567 	MSK_INC(prod, MSK_TX_RING_CNT);
2568 
2569 	for (i = 1; i < nsegs; i++) {
2570 		tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2571 		tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
2572 		tx_le->msk_control = htole32(txsegs[i].ds_len | control |
2573 		    OP_BUFFER | HW_OWNER);
2574 		sc_if->msk_cdata.msk_tx_cnt++;
2575 		MSK_INC(prod, MSK_TX_RING_CNT);
2576 	}
2577 	/* Update producer index. */
2578 	sc_if->msk_cdata.msk_tx_prod = prod;
2579 
2580 	/* Set EOP on the last desciptor. */
2581 	prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
2582 	tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
2583 	tx_le->msk_control |= htole32(EOP);
2584 
2585 	/* Turn the first descriptor ownership to hardware. */
2586 	tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
2587 	tx_le->msk_control |= htole32(HW_OWNER);
2588 
2589 	txd = &sc_if->msk_cdata.msk_txdesc[prod];
2590 	map = txd_last->tx_dmamap;
2591 	txd_last->tx_dmamap = txd->tx_dmamap;
2592 	txd->tx_dmamap = map;
2593 	txd->tx_m = m;
2594 
2595 	return (0);
2596 }
2597 
2598 static void
2599 msk_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
2600 {
2601         struct msk_if_softc *sc_if;
2602         struct mbuf *m_head;
2603 	int enq;
2604 
2605 	sc_if = ifp->if_softc;
2606 
2607 	ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq);
2608 	ASSERT_SERIALIZED(ifp->if_serializer);
2609 
2610 	if (!sc_if->msk_link) {
2611 		ifq_purge(&ifp->if_snd);
2612 		return;
2613 	}
2614 
2615 	if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd))
2616 		return;
2617 
2618 	enq = 0;
2619 	while (!ifq_is_empty(&ifp->if_snd)) {
2620 		if (MSK_IS_OACTIVE(sc_if)) {
2621 			ifq_set_oactive(&ifp->if_snd);
2622 			break;
2623 		}
2624 
2625 		m_head = ifq_dequeue(&ifp->if_snd, NULL);
2626 		if (m_head == NULL)
2627 			break;
2628 
2629 		/*
2630 		 * Pack the data into the transmit ring. If we
2631 		 * don't have room, set the OACTIVE flag and wait
2632 		 * for the NIC to drain the ring.
2633 		 */
2634 		if (msk_encap(sc_if, &m_head) != 0) {
2635 			ifp->if_oerrors++;
2636 			if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2637 				continue;
2638 			} else {
2639 				ifq_set_oactive(&ifp->if_snd);
2640 				break;
2641 			}
2642 		}
2643 		enq = 1;
2644 
2645 		/*
2646 		 * If there's a BPF listener, bounce a copy of this frame
2647 		 * to him.
2648 		 */
2649 		BPF_MTAP(ifp, m_head);
2650 	}
2651 
2652 	if (enq) {
2653 		/* Transmit */
2654 		CSR_WRITE_2(sc_if->msk_softc,
2655 		    Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
2656 		    sc_if->msk_cdata.msk_tx_prod);
2657 
2658 		/* Set a timeout in case the chip goes out to lunch. */
2659 		ifp->if_timer = MSK_TX_TIMEOUT;
2660 	}
2661 }
2662 
2663 static void
2664 msk_watchdog(struct ifnet *ifp)
2665 {
2666 	struct msk_if_softc *sc_if = ifp->if_softc;
2667 	uint32_t ridx;
2668 	int idx;
2669 
2670 	ASSERT_SERIALIZED(ifp->if_serializer);
2671 
2672 	if (sc_if->msk_link == 0) {
2673 		if (bootverbose)
2674 			if_printf(sc_if->msk_ifp, "watchdog timeout "
2675 			   "(missed link)\n");
2676 		ifp->if_oerrors++;
2677 		msk_init(sc_if);
2678 		return;
2679 	}
2680 
2681 	/*
2682 	 * Reclaim first as there is a possibility of losing Tx completion
2683 	 * interrupts.
2684 	 */
2685 	ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
2686 	idx = CSR_READ_2(sc_if->msk_softc, ridx);
2687 	if (sc_if->msk_cdata.msk_tx_cons != idx) {
2688 		msk_txeof(sc_if, idx);
2689 		if (sc_if->msk_cdata.msk_tx_cnt == 0) {
2690 			if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2691 			    "-- recovering\n");
2692 			if (!ifq_is_empty(&ifp->if_snd))
2693 				if_devstart(ifp);
2694 			return;
2695 		}
2696 	}
2697 
2698 	if_printf(ifp, "watchdog timeout\n");
2699 	ifp->if_oerrors++;
2700 	msk_init(sc_if);
2701 	if (!ifq_is_empty(&ifp->if_snd))
2702 		if_devstart(ifp);
2703 }
2704 
2705 static int
2706 mskc_shutdown(device_t dev)
2707 {
2708 	struct msk_softc *sc = device_get_softc(dev);
2709 	int i;
2710 
2711 	lwkt_serialize_enter(&sc->msk_serializer);
2712 
2713 	for (i = 0; i < sc->msk_num_port; i++) {
2714 		if (sc->msk_if[i] != NULL)
2715 			msk_stop(sc->msk_if[i]);
2716 	}
2717 
2718 	/* Put hardware reset. */
2719 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2720 
2721 	lwkt_serialize_exit(&sc->msk_serializer);
2722 	return (0);
2723 }
2724 
2725 static int
2726 mskc_suspend(device_t dev)
2727 {
2728 	struct msk_softc *sc = device_get_softc(dev);
2729 	int i;
2730 
2731 	lwkt_serialize_enter(&sc->msk_serializer);
2732 
2733 	for (i = 0; i < sc->msk_num_port; i++) {
2734 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2735 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_RUNNING) != 0))
2736 			msk_stop(sc->msk_if[i]);
2737 	}
2738 
2739 	/* Disable all interrupts. */
2740 	CSR_WRITE_4(sc, B0_IMSK, 0);
2741 	CSR_READ_4(sc, B0_IMSK);
2742 	CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
2743 	CSR_READ_4(sc, B0_HWE_IMSK);
2744 
2745 	mskc_phy_power(sc, MSK_PHY_POWERDOWN);
2746 
2747 	/* Put hardware reset. */
2748 	CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
2749 	sc->msk_suspended = 1;
2750 
2751 	lwkt_serialize_exit(&sc->msk_serializer);
2752 
2753 	return (0);
2754 }
2755 
2756 static int
2757 mskc_resume(device_t dev)
2758 {
2759 	struct msk_softc *sc = device_get_softc(dev);
2760 	int i;
2761 
2762 	lwkt_serialize_enter(&sc->msk_serializer);
2763 
2764 	/* Enable all clocks before accessing any registers. */
2765 	CSR_PCI_WRITE_4(sc, PCI_OUR_REG_3, 0);
2766 	mskc_reset(sc);
2767 	for (i = 0; i < sc->msk_num_port; i++) {
2768 		if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
2769 		    ((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
2770 			msk_init(sc->msk_if[i]);
2771 	}
2772 	sc->msk_suspended = 0;
2773 
2774 	lwkt_serialize_exit(&sc->msk_serializer);
2775 
2776 	return (0);
2777 }
2778 
2779 static void
2780 msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2781 {
2782 	struct mbuf *m;
2783 	struct ifnet *ifp;
2784 	struct msk_rxdesc *rxd;
2785 	int cons, rxlen;
2786 
2787 	ifp = sc_if->msk_ifp;
2788 
2789 	cons = sc_if->msk_cdata.msk_rx_cons;
2790 	do {
2791 		rxlen = status >> 16;
2792 		if ((status & GMR_FS_VLAN) != 0 &&
2793 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2794 			rxlen -= EVL_ENCAPLEN;
2795 		if (sc_if->msk_flags & MSK_FLAG_NORXCHK) {
2796 			/*
2797 			 * For controllers that returns bogus status code
2798 			 * just do minimal check and let upper stack
2799 			 * handle this frame.
2800 			 */
2801 			if (len > MSK_MAX_FRAMELEN || len < ETHER_HDR_LEN) {
2802 				ifp->if_ierrors++;
2803 				msk_discard_rxbuf(sc_if, cons);
2804 				break;
2805 			}
2806 		} else if (len > sc_if->msk_framesize ||
2807 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2808 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2809 			/* Don't count flow-control packet as errors. */
2810 			if ((status & GMR_FS_GOOD_FC) == 0)
2811 				ifp->if_ierrors++;
2812 			msk_discard_rxbuf(sc_if, cons);
2813 			break;
2814 		}
2815 		rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
2816 		m = rxd->rx_m;
2817 		if (msk_newbuf(sc_if, cons, 0) != 0) {
2818 			ifp->if_iqdrops++;
2819 			/* Reuse old buffer. */
2820 			msk_discard_rxbuf(sc_if, cons);
2821 			break;
2822 		}
2823 		m->m_pkthdr.rcvif = ifp;
2824 		m->m_pkthdr.len = m->m_len = len;
2825 		ifp->if_ipackets++;
2826 #ifdef notyet
2827 		/* Check for VLAN tagged packets. */
2828 		if ((status & GMR_FS_VLAN) != 0 &&
2829 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2830 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2831 			m->m_flags |= M_VLANTAG;
2832 		}
2833 #endif
2834 
2835 		ifp->if_input(ifp, m);
2836 	} while (0);
2837 
2838 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
2839 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
2840 }
2841 
2842 #ifdef MSK_JUMBO
2843 static void
2844 msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
2845 {
2846 	struct mbuf *m;
2847 	struct ifnet *ifp;
2848 	struct msk_rxdesc *jrxd;
2849 	int cons, rxlen;
2850 
2851 	ifp = sc_if->msk_ifp;
2852 
2853 	MSK_IF_LOCK_ASSERT(sc_if);
2854 
2855 	cons = sc_if->msk_cdata.msk_rx_cons;
2856 	do {
2857 		rxlen = status >> 16;
2858 		if ((status & GMR_FS_VLAN) != 0 &&
2859 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2860 			rxlen -= ETHER_VLAN_ENCAP_LEN;
2861 		if (len > sc_if->msk_framesize ||
2862 		    ((status & GMR_FS_ANY_ERR) != 0) ||
2863 		    ((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
2864 			/* Don't count flow-control packet as errors. */
2865 			if ((status & GMR_FS_GOOD_FC) == 0)
2866 				ifp->if_ierrors++;
2867 			msk_discard_jumbo_rxbuf(sc_if, cons);
2868 			break;
2869 		}
2870 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
2871 		m = jrxd->rx_m;
2872 		if (msk_jumbo_newbuf(sc_if, cons) != 0) {
2873 			ifp->if_iqdrops++;
2874 			/* Reuse old buffer. */
2875 			msk_discard_jumbo_rxbuf(sc_if, cons);
2876 			break;
2877 		}
2878 		m->m_pkthdr.rcvif = ifp;
2879 		m->m_pkthdr.len = m->m_len = len;
2880 		ifp->if_ipackets++;
2881 		/* Check for VLAN tagged packets. */
2882 		if ((status & GMR_FS_VLAN) != 0 &&
2883 		    (ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
2884 			m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
2885 			m->m_flags |= M_VLANTAG;
2886 		}
2887 		MSK_IF_UNLOCK(sc_if);
2888 		(*ifp->if_input)(ifp, m);
2889 		MSK_IF_LOCK(sc_if);
2890 	} while (0);
2891 
2892 	MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
2893 	MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
2894 }
2895 #endif
2896 
2897 static void
2898 msk_txeof(struct msk_if_softc *sc_if, int idx)
2899 {
2900 	struct msk_txdesc *txd;
2901 	struct msk_tx_desc *cur_tx;
2902 	struct ifnet *ifp;
2903 	uint32_t control;
2904 	int cons, prog;
2905 
2906 	ifp = sc_if->msk_ifp;
2907 
2908 	/*
2909 	 * Go through our tx ring and free mbufs for those
2910 	 * frames that have been sent.
2911 	 */
2912 	cons = sc_if->msk_cdata.msk_tx_cons;
2913 	prog = 0;
2914 	for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
2915 		if (sc_if->msk_cdata.msk_tx_cnt <= 0)
2916 			break;
2917 		prog++;
2918 		cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
2919 		control = le32toh(cur_tx->msk_control);
2920 		sc_if->msk_cdata.msk_tx_cnt--;
2921 		if ((control & EOP) == 0)
2922 			continue;
2923 		txd = &sc_if->msk_cdata.msk_txdesc[cons];
2924 		bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
2925 
2926 		ifp->if_opackets++;
2927 		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
2928 		    __func__));
2929 		m_freem(txd->tx_m);
2930 		txd->tx_m = NULL;
2931 	}
2932 
2933 	if (prog > 0) {
2934 		sc_if->msk_cdata.msk_tx_cons = cons;
2935 		if (!MSK_IS_OACTIVE(sc_if))
2936 			ifq_clr_oactive(&ifp->if_snd);
2937 		if (sc_if->msk_cdata.msk_tx_cnt == 0)
2938 			ifp->if_timer = 0;
2939 		/* No need to sync LEs as we didn't update LEs. */
2940 	}
2941 }
2942 
2943 static void
2944 msk_tick(void *xsc_if)
2945 {
2946 	struct msk_if_softc *sc_if = xsc_if;
2947 	struct ifnet *ifp = &sc_if->arpcom.ac_if;
2948 	struct mii_data *mii;
2949 
2950 	lwkt_serialize_enter(ifp->if_serializer);
2951 
2952 	mii = device_get_softc(sc_if->msk_miibus);
2953 
2954 	mii_tick(mii);
2955 	if (!sc_if->msk_link)
2956 		msk_miibus_statchg(sc_if->msk_if_dev);
2957 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
2958 
2959 	lwkt_serialize_exit(ifp->if_serializer);
2960 }
2961 
2962 static void
2963 msk_intr_phy(struct msk_if_softc *sc_if)
2964 {
2965 	uint16_t status;
2966 
2967 	msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2968 	status = msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
2969 	/* Handle FIFO Underrun/Overflow? */
2970 	if (status & PHY_M_IS_FIFO_ERROR) {
2971 		device_printf(sc_if->msk_if_dev,
2972 		    "PHY FIFO underrun/overflow.\n");
2973 	}
2974 }
2975 
2976 static void
2977 msk_intr_gmac(struct msk_if_softc *sc_if)
2978 {
2979 	struct msk_softc *sc;
2980 	uint8_t status;
2981 
2982 	sc = sc_if->msk_softc;
2983 	status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
2984 
2985 	/* GMAC Rx FIFO overrun. */
2986 	if ((status & GM_IS_RX_FF_OR) != 0) {
2987 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
2988 		    GMF_CLI_RX_FO);
2989 	}
2990 	/* GMAC Tx FIFO underrun. */
2991 	if ((status & GM_IS_TX_FF_UR) != 0) {
2992 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
2993 		    GMF_CLI_TX_FU);
2994 		device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
2995 		/*
2996 		 * XXX
2997 		 * In case of Tx underrun, we may need to flush/reset
2998 		 * Tx MAC but that would also require resynchronization
2999 		 * with status LEs. Reintializing status LEs would
3000 		 * affect other port in dual MAC configuration so it
3001 		 * should be avoided as possible as we can.
3002 		 * Due to lack of documentation it's all vague guess but
3003 		 * it needs more investigation.
3004 		 */
3005 	}
3006 }
3007 
3008 static void
3009 msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
3010 {
3011 	struct msk_softc *sc;
3012 
3013 	sc = sc_if->msk_softc;
3014 	if ((status & Y2_IS_PAR_RD1) != 0) {
3015 		device_printf(sc_if->msk_if_dev,
3016 		    "RAM buffer read parity error\n");
3017 		/* Clear IRQ. */
3018 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3019 		    RI_CLR_RD_PERR);
3020 	}
3021 	if ((status & Y2_IS_PAR_WR1) != 0) {
3022 		device_printf(sc_if->msk_if_dev,
3023 		    "RAM buffer write parity error\n");
3024 		/* Clear IRQ. */
3025 		CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
3026 		    RI_CLR_WR_PERR);
3027 	}
3028 	if ((status & Y2_IS_PAR_MAC1) != 0) {
3029 		device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
3030 		/* Clear IRQ. */
3031 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3032 		    GMF_CLI_TX_PE);
3033 	}
3034 	if ((status & Y2_IS_PAR_RX1) != 0) {
3035 		device_printf(sc_if->msk_if_dev, "Rx parity error\n");
3036 		/* Clear IRQ. */
3037 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
3038 	}
3039 	if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
3040 		device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
3041 		/* Clear IRQ. */
3042 		CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
3043 	}
3044 }
3045 
3046 static void
3047 mskc_intr_hwerr(struct msk_softc *sc)
3048 {
3049 	uint32_t status;
3050 	uint32_t tlphead[4];
3051 
3052 	status = CSR_READ_4(sc, B0_HWE_ISRC);
3053 	/* Time Stamp timer overflow. */
3054 	if ((status & Y2_IS_TIST_OV) != 0)
3055 		CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3056 	if ((status & Y2_IS_PCI_NEXP) != 0) {
3057 		/*
3058 		 * PCI Express Error occured which is not described in PEX
3059 		 * spec.
3060 		 * This error is also mapped either to Master Abort(
3061 		 * Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
3062 		 * can only be cleared there.
3063                  */
3064 		device_printf(sc->msk_dev,
3065 		    "PCI Express protocol violation error\n");
3066 	}
3067 
3068 	if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
3069 		uint16_t v16;
3070 
3071 		if ((status & Y2_IS_MST_ERR) != 0)
3072 			device_printf(sc->msk_dev,
3073 			    "unexpected IRQ Status error\n");
3074 		else
3075 			device_printf(sc->msk_dev,
3076 			    "unexpected IRQ Master error\n");
3077 		/* Reset all bits in the PCI status register. */
3078 		v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
3079 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3080 		pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
3081 		    PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
3082 		    PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
3083 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3084 	}
3085 
3086 	/* Check for PCI Express Uncorrectable Error. */
3087 	if ((status & Y2_IS_PCI_EXP) != 0) {
3088 		uint32_t v32;
3089 
3090 		/*
3091 		 * On PCI Express bus bridges are called root complexes (RC).
3092 		 * PCI Express errors are recognized by the root complex too,
3093 		 * which requests the system to handle the problem. After
3094 		 * error occurence it may be that no access to the adapter
3095 		 * may be performed any longer.
3096 		 */
3097 
3098 		v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
3099 		if ((v32 & PEX_UNSUP_REQ) != 0) {
3100 			/* Ignore unsupported request error. */
3101 			if (bootverbose) {
3102 				device_printf(sc->msk_dev,
3103 				    "Uncorrectable PCI Express error\n");
3104 			}
3105 		}
3106 		if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
3107 			int i;
3108 
3109 			/* Get TLP header form Log Registers. */
3110 			for (i = 0; i < 4; i++)
3111 				tlphead[i] = CSR_PCI_READ_4(sc,
3112 				    PEX_HEADER_LOG + i * 4);
3113 			/* Check for vendor defined broadcast message. */
3114 			if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
3115 				sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
3116 				CSR_WRITE_4(sc, B0_HWE_IMSK,
3117 				    sc->msk_intrhwemask);
3118 				CSR_READ_4(sc, B0_HWE_IMSK);
3119 			}
3120 		}
3121 		/* Clear the interrupt. */
3122 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3123 		CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
3124 		CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3125 	}
3126 
3127 	if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
3128 		msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
3129 	if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
3130 		msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
3131 }
3132 
3133 static __inline void
3134 msk_rxput(struct msk_if_softc *sc_if)
3135 {
3136 	struct msk_softc *sc;
3137 
3138 	sc = sc_if->msk_softc;
3139 #ifdef MSK_JUMBO
3140 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3141 		bus_dmamap_sync(
3142 		    sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
3143 		    sc_if->msk_cdata.msk_jumbo_rx_ring_map,
3144 		    BUS_DMASYNC_PREWRITE);
3145 	}
3146 #endif
3147 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
3148 	    PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
3149 }
3150 
3151 static int
3152 mskc_handle_events(struct msk_softc *sc)
3153 {
3154 	struct msk_if_softc *sc_if;
3155 	int rxput[2];
3156 	struct msk_stat_desc *sd;
3157 	uint32_t control, status;
3158 	int cons, idx, len, port, rxprog;
3159 
3160 	idx = CSR_READ_2(sc, STAT_PUT_IDX);
3161 	if (idx == sc->msk_stat_cons)
3162 		return (0);
3163 
3164 	rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
3165 
3166 	rxprog = 0;
3167 	for (cons = sc->msk_stat_cons; cons != idx;) {
3168 		sd = &sc->msk_stat_ring[cons];
3169 		control = le32toh(sd->msk_control);
3170 		if ((control & HW_OWNER) == 0)
3171 			break;
3172 		/*
3173 		 * Marvell's FreeBSD driver updates status LE after clearing
3174 		 * HW_OWNER. However we don't have a way to sync single LE
3175 		 * with bus_dma(9) API. bus_dma(9) provides a way to sync
3176 		 * an entire DMA map. So don't sync LE until we have a better
3177 		 * way to sync LEs.
3178 		 */
3179 		control &= ~HW_OWNER;
3180 		sd->msk_control = htole32(control);
3181 		status = le32toh(sd->msk_status);
3182 		len = control & STLE_LEN_MASK;
3183 		port = (control >> 16) & 0x01;
3184 		sc_if = sc->msk_if[port];
3185 		if (sc_if == NULL) {
3186 			device_printf(sc->msk_dev, "invalid port opcode "
3187 			    "0x%08x\n", control & STLE_OP_MASK);
3188 			continue;
3189 		}
3190 
3191 		switch (control & STLE_OP_MASK) {
3192 		case OP_RXVLAN:
3193 			sc_if->msk_vtag = ntohs(len);
3194 			break;
3195 		case OP_RXCHKSVLAN:
3196 			sc_if->msk_vtag = ntohs(len);
3197 			break;
3198 		case OP_RXSTAT:
3199 			if ((sc_if->msk_ifp->if_flags & IFF_RUNNING) == 0)
3200 				break;
3201 #ifdef MSK_JUMBO
3202 			if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
3203 				msk_jumbo_rxeof(sc_if, status, len);
3204 			else
3205 #endif
3206 				msk_rxeof(sc_if, status, len);
3207 			rxprog++;
3208 			/*
3209 			 * Because there is no way to sync single Rx LE
3210 			 * put the DMA sync operation off until the end of
3211 			 * event processing.
3212 			 */
3213 			rxput[port]++;
3214 			/* Update prefetch unit if we've passed water mark. */
3215 			if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
3216 				msk_rxput(sc_if);
3217 				rxput[port] = 0;
3218 			}
3219 			break;
3220 		case OP_TXINDEXLE:
3221 			if (sc->msk_if[MSK_PORT_A] != NULL) {
3222 				msk_txeof(sc->msk_if[MSK_PORT_A],
3223 				    status & STLE_TXA1_MSKL);
3224 			}
3225 			if (sc->msk_if[MSK_PORT_B] != NULL) {
3226 				msk_txeof(sc->msk_if[MSK_PORT_B],
3227 				    ((status & STLE_TXA2_MSKL) >>
3228 				    STLE_TXA2_SHIFTL) |
3229 				    ((len & STLE_TXA2_MSKH) <<
3230 				    STLE_TXA2_SHIFTH));
3231 			}
3232 			break;
3233 		default:
3234 			device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
3235 			    control & STLE_OP_MASK);
3236 			break;
3237 		}
3238 		MSK_INC(cons, MSK_STAT_RING_CNT);
3239 		if (rxprog > sc->msk_process_limit)
3240 			break;
3241 	}
3242 
3243 	sc->msk_stat_cons = cons;
3244 	/* XXX We should sync status LEs here. See above notes. */
3245 
3246 	if (rxput[MSK_PORT_A] > 0)
3247 		msk_rxput(sc->msk_if[MSK_PORT_A]);
3248 	if (rxput[MSK_PORT_B] > 0)
3249 		msk_rxput(sc->msk_if[MSK_PORT_B]);
3250 
3251 	return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
3252 }
3253 
3254 /* Legacy interrupt handler for shared interrupt. */
3255 static void
3256 mskc_intr(void *xsc)
3257 {
3258 	struct msk_softc *sc;
3259 	struct msk_if_softc *sc_if0, *sc_if1;
3260 	struct ifnet *ifp0, *ifp1;
3261 	uint32_t status;
3262 
3263 	sc = xsc;
3264 	ASSERT_SERIALIZED(&sc->msk_serializer);
3265 
3266 	/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
3267 	status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
3268 	if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
3269 	    (status & sc->msk_intrmask) == 0) {
3270 		CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3271 		return;
3272 	}
3273 
3274 	sc_if0 = sc->msk_if[MSK_PORT_A];
3275 	sc_if1 = sc->msk_if[MSK_PORT_B];
3276 	ifp0 = ifp1 = NULL;
3277 	if (sc_if0 != NULL)
3278 		ifp0 = sc_if0->msk_ifp;
3279 	if (sc_if1 != NULL)
3280 		ifp1 = sc_if1->msk_ifp;
3281 
3282 	if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
3283 		msk_intr_phy(sc_if0);
3284 	if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
3285 		msk_intr_phy(sc_if1);
3286 	if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
3287 		msk_intr_gmac(sc_if0);
3288 	if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
3289 		msk_intr_gmac(sc_if1);
3290 	if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
3291 		device_printf(sc->msk_dev, "Rx descriptor error\n");
3292 		sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
3293 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3294 		CSR_READ_4(sc, B0_IMSK);
3295 	}
3296         if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
3297 		device_printf(sc->msk_dev, "Tx descriptor error\n");
3298 		sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
3299 		CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3300 		CSR_READ_4(sc, B0_IMSK);
3301 	}
3302 	if ((status & Y2_IS_HW_ERR) != 0)
3303 		mskc_intr_hwerr(sc);
3304 
3305 	while (mskc_handle_events(sc) != 0)
3306 		;
3307 	if ((status & Y2_IS_STAT_BMU) != 0)
3308 		CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
3309 
3310 	/* Reenable interrupts. */
3311 	CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
3312 
3313 	if (ifp0 != NULL && (ifp0->if_flags & IFF_RUNNING) != 0 &&
3314 	    !ifq_is_empty(&ifp0->if_snd))
3315 		if_devstart(ifp0);
3316 	if (ifp1 != NULL && (ifp1->if_flags & IFF_RUNNING) != 0 &&
3317 	    !ifq_is_empty(&ifp1->if_snd))
3318 		if_devstart(ifp1);
3319 }
3320 
3321 static void
3322 msk_set_tx_stfwd(struct msk_if_softc *sc_if)
3323 {
3324 	struct msk_softc *sc = sc_if->msk_softc;
3325 	struct ifnet *ifp = sc_if->msk_ifp;
3326 
3327 	if ((sc->msk_hw_id == CHIP_ID_YUKON_EX &&
3328 	    sc->msk_hw_rev != CHIP_REV_YU_EX_A0) ||
3329 	    sc->msk_hw_id >= CHIP_ID_YUKON_SUPR) {
3330 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3331 		    TX_STFW_ENA);
3332 	} else {
3333 		if (ifp->if_mtu > ETHERMTU) {
3334 			/* Set Tx GMAC FIFO Almost Empty Threshold. */
3335 			CSR_WRITE_4(sc,
3336 			    MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
3337 			    MSK_ECU_JUMBO_WM << 16 | MSK_ECU_AE_THR);
3338 			/* Disable Store & Forward mode for Tx. */
3339 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3340 			    TX_STFW_DIS);
3341 		} else {
3342 			CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
3343 			    TX_STFW_ENA);
3344 		}
3345 	}
3346 }
3347 
3348 static void
3349 msk_init(void *xsc)
3350 {
3351 	struct msk_if_softc *sc_if = xsc;
3352 	struct msk_softc *sc = sc_if->msk_softc;
3353 	struct ifnet *ifp = sc_if->msk_ifp;
3354 	struct mii_data	 *mii;
3355 	uint16_t eaddr[ETHER_ADDR_LEN / 2];
3356 	uint16_t gmac;
3357 	uint32_t reg;
3358 	int error, i;
3359 
3360 	ASSERT_SERIALIZED(ifp->if_serializer);
3361 
3362 	mii = device_get_softc(sc_if->msk_miibus);
3363 
3364 	error = 0;
3365 	/* Cancel pending I/O and free all Rx/Tx buffers. */
3366 	msk_stop(sc_if);
3367 
3368 	sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN + EVL_ENCAPLEN;
3369 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN &&
3370 	    sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
3371 		/*
3372 		 * In Yukon EC Ultra, TSO & checksum offload is not
3373 		 * supported for jumbo frame.
3374 		 */
3375 		ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
3376 		ifp->if_capenable &= ~IFCAP_TXCSUM;
3377 	}
3378 
3379 	/* GMAC Control reset. */
3380 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_SET);
3381 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_RST_CLR);
3382 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_F_LOOPB_OFF);
3383 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3384 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3385 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL),
3386 		    GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON |
3387 		    GMC_BYP_RETR_ON);
3388 	}
3389 
3390 	/*
3391 	 * Initialize GMAC first such that speed/duplex/flow-control
3392 	 * parameters are renegotiated when interface is brought up.
3393 	 */
3394 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, 0);
3395 
3396 	/* Dummy read the Interrupt Source Register. */
3397 	CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
3398 
3399 	/* Set MIB Clear Counter Mode. */
3400 	gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
3401 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
3402 	/* Read all MIB Counters with Clear Mode set. */
3403 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
3404 		GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
3405 	/* Clear MIB Clear Counter Mode. */
3406 	gmac &= ~GM_PAR_MIB_CLR;
3407 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
3408 
3409 	/* Disable FCS. */
3410 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
3411 
3412 	/* Setup Transmit Control Register. */
3413 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
3414 
3415 	/* Setup Transmit Flow Control Register. */
3416 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
3417 
3418 	/* Setup Transmit Parameter Register. */
3419 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
3420 	    TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
3421 	    TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
3422 
3423 	gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
3424 	    GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
3425 
3426 	if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
3427 		gmac |= GM_SMOD_JUMBO_ENA;
3428 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
3429 
3430 	/* Set station address. */
3431         bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
3432         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3433 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
3434 		    eaddr[i]);
3435         for (i = 0; i < ETHER_ADDR_LEN /2; i++)
3436 		GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
3437 		    eaddr[i]);
3438 
3439 	/* Disable interrupts for counter overflows. */
3440 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
3441 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
3442 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
3443 
3444 	/* Configure Rx MAC FIFO. */
3445 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3446 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
3447 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
3448 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P ||
3449 	    sc->msk_hw_id == CHIP_ID_YUKON_EX)
3450 		reg |= GMF_RX_OVER_ON;
3451 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), reg);
3452 
3453 	/* Set receive filter. */
3454 	msk_rxfilter(sc_if);
3455 
3456 	if (sc->msk_hw_id == CHIP_ID_YUKON_XL) {
3457 		/* Clear flush mask - HW bug. */
3458 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK), 0);
3459 	} else {
3460 		/* Flush Rx MAC FIFO on any flow control or error. */
3461 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
3462 		    GMR_FS_ANY_ERR);
3463 	}
3464 
3465 	/*
3466 	 * Set Rx FIFO flush threshold to 64 bytes 1 FIFO word
3467 	 * due to hardware hang on receipt of pause frames.
3468 	 */
3469 	reg = RX_GMF_FL_THR_DEF + 1;
3470 	/* Another magic for Yukon FE+ - From Linux. */
3471 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3472 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0)
3473 		reg = 0x178;
3474 	CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR), reg);
3475 
3476 
3477 	/* Configure Tx MAC FIFO. */
3478 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3479 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
3480 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
3481 
3482 	/* Configure hardware VLAN tag insertion/stripping. */
3483 	msk_setvlan(sc_if, ifp);
3484 
3485 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0) {
3486 		/* Set Rx Pause threshould. */
3487 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
3488 		    MSK_ECU_LLPP);
3489 		CSR_WRITE_2(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
3490 		    MSK_ECU_ULPP);
3491 		/* Configure store-and-forward for Tx. */
3492 		msk_set_tx_stfwd(sc_if);
3493 	}
3494 
3495 	if (sc->msk_hw_id == CHIP_ID_YUKON_FE_P &&
3496 	    sc->msk_hw_rev == CHIP_REV_YU_FE_P_A0) {
3497 		/* Disable dynamic watermark - from Linux. */
3498 		reg = CSR_READ_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA));
3499 		reg &= ~0x03;
3500 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_EA), reg);
3501 	}
3502 
3503 	/*
3504 	 * Disable Force Sync bit and Alloc bit in Tx RAM interface
3505 	 * arbiter as we don't use Sync Tx queue.
3506 	 */
3507 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
3508 	    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
3509 	/* Enable the RAM Interface Arbiter. */
3510 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
3511 
3512 	/* Setup RAM buffer. */
3513 	msk_set_rambuffer(sc_if);
3514 
3515 	/* Disable Tx sync Queue. */
3516 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
3517 
3518 	/* Setup Tx Queue Bus Memory Interface. */
3519 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
3520 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
3521 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
3522 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
3523 	switch (sc->msk_hw_id) {
3524 	case CHIP_ID_YUKON_EC_U:
3525 		if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
3526 			/* Fix for Yukon-EC Ultra: set BMU FIFO level */
3527 			CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL),
3528 			    MSK_ECU_TXFF_LEV);
3529 		}
3530 		break;
3531 	case CHIP_ID_YUKON_EX:
3532 		/*
3533 		 * Yukon Extreme seems to have silicon bug for
3534 		 * automatic Tx checksum calculation capability.
3535 		 */
3536 		if (sc->msk_hw_rev == CHIP_REV_YU_EX_B0) {
3537 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_F),
3538 			    F_TX_CHK_AUTO_OFF);
3539 		}
3540 		break;
3541  	}
3542 
3543 	/* Setup Rx Queue Bus Memory Interface. */
3544 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
3545 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
3546 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
3547 	CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
3548         if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
3549 	    sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
3550 		/* MAC Rx RAM Read is controlled by hardware. */
3551                 CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
3552 	}
3553 
3554 	msk_set_prefetch(sc, sc_if->msk_txq,
3555 	    sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
3556 	msk_init_tx_ring(sc_if);
3557 
3558 	/* Disable Rx checksum offload and RSS hash. */
3559 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3560 	    BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
3561 #ifdef MSK_JUMBO
3562 	if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
3563 		msk_set_prefetch(sc, sc_if->msk_rxq,
3564 		    sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
3565 		    MSK_JUMBO_RX_RING_CNT - 1);
3566 		error = msk_init_jumbo_rx_ring(sc_if);
3567 	} else
3568 #endif
3569 	{
3570 		msk_set_prefetch(sc, sc_if->msk_rxq,
3571 		    sc_if->msk_rdata.msk_rx_ring_paddr,
3572 		    MSK_RX_RING_CNT - 1);
3573 		error = msk_init_rx_ring(sc_if);
3574 	}
3575 	if (error != 0) {
3576 		device_printf(sc_if->msk_if_dev,
3577 		    "initialization failed: no memory for Rx buffers\n");
3578 		msk_stop(sc_if);
3579 		return;
3580 	}
3581 	if (sc->msk_hw_id == CHIP_ID_YUKON_EX ||
3582 	    sc->msk_hw_id == CHIP_ID_YUKON_SUPR) {
3583 		/* Disable flushing of non-ASF packets. */
3584 		CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
3585 		    GMF_RX_MACSEC_FLUSH_OFF);
3586 	}
3587 
3588 	/* Configure interrupt handling. */
3589 	if (sc_if->msk_port == MSK_PORT_A) {
3590 		sc->msk_intrmask |= Y2_IS_PORT_A;
3591 		sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
3592 	} else {
3593 		sc->msk_intrmask |= Y2_IS_PORT_B;
3594 		sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
3595 	}
3596 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3597 	CSR_READ_4(sc, B0_HWE_IMSK);
3598 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3599 	CSR_READ_4(sc, B0_IMSK);
3600 
3601 	sc_if->msk_link = 0;
3602 	mii_mediachg(mii);
3603 
3604 	mskc_set_imtimer(sc);
3605 
3606 	ifp->if_flags |= IFF_RUNNING;
3607 	ifq_clr_oactive(&ifp->if_snd);
3608 
3609 	callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
3610 }
3611 
3612 static void
3613 msk_set_rambuffer(struct msk_if_softc *sc_if)
3614 {
3615 	struct msk_softc *sc;
3616 	int ltpp, utpp;
3617 
3618 	if ((sc_if->msk_flags & MSK_FLAG_RAMBUF) == 0)
3619 		return;
3620 
3621 	sc = sc_if->msk_softc;
3622 
3623 	/* Setup Rx Queue. */
3624 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
3625 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
3626 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3627 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
3628 	    sc->msk_rxqend[sc_if->msk_port] / 8);
3629 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
3630 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3631 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
3632 	    sc->msk_rxqstart[sc_if->msk_port] / 8);
3633 
3634 	utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3635 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
3636 	ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
3637 	    sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
3638 	if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
3639 		ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
3640 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
3641 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
3642 	/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
3643 
3644 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
3645 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
3646 
3647 	/* Setup Tx Queue. */
3648 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
3649 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
3650 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3651 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
3652 	    sc->msk_txqend[sc_if->msk_port] / 8);
3653 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
3654 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3655 	CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
3656 	    sc->msk_txqstart[sc_if->msk_port] / 8);
3657 	/* Enable Store & Forward for Tx side. */
3658 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
3659 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
3660 	CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
3661 }
3662 
3663 static void
3664 msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
3665     uint32_t count)
3666 {
3667 
3668 	/* Reset the prefetch unit. */
3669 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3670 	    PREF_UNIT_RST_SET);
3671 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3672 	    PREF_UNIT_RST_CLR);
3673 	/* Set LE base address. */
3674 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
3675 	    MSK_ADDR_LO(addr));
3676 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
3677 	    MSK_ADDR_HI(addr));
3678 	/* Set the list last index. */
3679 	CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
3680 	    count);
3681 	/* Turn on prefetch unit. */
3682 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
3683 	    PREF_UNIT_OP_ON);
3684 	/* Dummy read to ensure write. */
3685 	CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
3686 }
3687 
3688 static void
3689 msk_stop(struct msk_if_softc *sc_if)
3690 {
3691 	struct msk_softc *sc = sc_if->msk_softc;
3692 	struct ifnet *ifp = sc_if->msk_ifp;
3693 	struct msk_txdesc *txd;
3694 	struct msk_rxdesc *rxd;
3695 #ifdef MSK_JUMBO
3696 	struct msk_rxdesc *jrxd;
3697 #endif
3698 	uint32_t val;
3699 	int i;
3700 
3701 	ASSERT_SERIALIZED(ifp->if_serializer);
3702 
3703 	callout_stop(&sc_if->msk_tick_ch);
3704 	ifp->if_timer = 0;
3705 
3706 	/* Disable interrupts. */
3707 	if (sc_if->msk_port == MSK_PORT_A) {
3708 		sc->msk_intrmask &= ~Y2_IS_PORT_A;
3709 		sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
3710 	} else {
3711 		sc->msk_intrmask &= ~Y2_IS_PORT_B;
3712 		sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
3713 	}
3714 	CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
3715 	CSR_READ_4(sc, B0_HWE_IMSK);
3716 	CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
3717 	CSR_READ_4(sc, B0_IMSK);
3718 
3719 	/* Disable Tx/Rx MAC. */
3720 	val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3721 	val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
3722 	GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
3723 	/* Read again to ensure writing. */
3724 	GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
3725 
3726 	/* Stop Tx BMU. */
3727 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
3728 	val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3729 	for (i = 0; i < MSK_TIMEOUT; i++) {
3730 		if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
3731 			CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3732 			    BMU_STOP);
3733 			val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
3734 		} else
3735 			break;
3736 		DELAY(1);
3737 	}
3738 	if (i == MSK_TIMEOUT)
3739 		device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
3740 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
3741 	    RB_RST_SET | RB_DIS_OP_MD);
3742 
3743 	/* Disable all GMAC interrupt. */
3744 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
3745 	/* Disable PHY interrupt. */
3746 	msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
3747 
3748 	/* Disable the RAM Interface Arbiter. */
3749 	CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
3750 
3751 	/* Reset the PCI FIFO of the async Tx queue */
3752 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
3753 	    BMU_RST_SET | BMU_FIFO_RST);
3754 
3755 	/* Reset the Tx prefetch units. */
3756 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
3757 	    PREF_UNIT_RST_SET);
3758 
3759 	/* Reset the RAM Buffer async Tx queue. */
3760 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
3761 
3762 	/* Reset Tx MAC FIFO. */
3763 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
3764 	/* Set Pause Off. */
3765 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
3766 
3767 	/*
3768 	 * The Rx Stop command will not work for Yukon-2 if the BMU does not
3769 	 * reach the end of packet and since we can't make sure that we have
3770 	 * incoming data, we must reset the BMU while it is not during a DMA
3771 	 * transfer. Since it is possible that the Rx path is still active,
3772 	 * the Rx RAM buffer will be stopped first, so any possible incoming
3773 	 * data will not trigger a DMA. After the RAM buffer is stopped, the
3774 	 * BMU is polled until any DMA in progress is ended and only then it
3775 	 * will be reset.
3776 	 */
3777 
3778 	/* Disable the RAM Buffer receive queue. */
3779 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
3780 	for (i = 0; i < MSK_TIMEOUT; i++) {
3781 		if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
3782 		    CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
3783 			break;
3784 		DELAY(1);
3785 	}
3786 	if (i == MSK_TIMEOUT)
3787 		device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
3788 	CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
3789 	    BMU_RST_SET | BMU_FIFO_RST);
3790 	/* Reset the Rx prefetch unit. */
3791 	CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
3792 	    PREF_UNIT_RST_SET);
3793 	/* Reset the RAM Buffer receive queue. */
3794 	CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
3795 	/* Reset Rx MAC FIFO. */
3796 	CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
3797 
3798 	/* Free Rx and Tx mbufs still in the queues. */
3799 	for (i = 0; i < MSK_RX_RING_CNT; i++) {
3800 		rxd = &sc_if->msk_cdata.msk_rxdesc[i];
3801 		if (rxd->rx_m != NULL) {
3802 			bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
3803 			    rxd->rx_dmamap);
3804 			m_freem(rxd->rx_m);
3805 			rxd->rx_m = NULL;
3806 		}
3807 	}
3808 #ifdef MSK_JUMBO
3809 	for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
3810 		jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
3811 		if (jrxd->rx_m != NULL) {
3812 			bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
3813 			    jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3814 			bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
3815 			    jrxd->rx_dmamap);
3816 			m_freem(jrxd->rx_m);
3817 			jrxd->rx_m = NULL;
3818 		}
3819 	}
3820 #endif
3821 	for (i = 0; i < MSK_TX_RING_CNT; i++) {
3822 		txd = &sc_if->msk_cdata.msk_txdesc[i];
3823 		if (txd->tx_m != NULL) {
3824 			bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
3825 			    txd->tx_dmamap);
3826 			m_freem(txd->tx_m);
3827 			txd->tx_m = NULL;
3828 		}
3829 	}
3830 
3831 	/*
3832 	 * Mark the interface down.
3833 	 */
3834 	ifp->if_flags &= ~IFF_RUNNING;
3835 	ifq_clr_oactive(&ifp->if_snd);
3836 	sc_if->msk_link = 0;
3837 }
3838 
3839 static int
3840 mskc_sysctl_proc_limit(SYSCTL_HANDLER_ARGS)
3841 {
3842 	return sysctl_int_range(oidp, arg1, arg2, req,
3843 				MSK_PROC_MIN, MSK_PROC_MAX);
3844 }
3845 
3846 static int
3847 mskc_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3848 {
3849 	struct msk_softc *sc = arg1;
3850 	struct lwkt_serialize *serializer = &sc->msk_serializer;
3851 	int error = 0, v;
3852 
3853 	lwkt_serialize_enter(serializer);
3854 
3855 	v = sc->msk_intr_rate;
3856 	error = sysctl_handle_int(oidp, &v, 0, req);
3857 	if (error || req->newptr == NULL)
3858 		goto back;
3859 	if (v < 0) {
3860 		error = EINVAL;
3861 		goto back;
3862 	}
3863 
3864 	if (sc->msk_intr_rate != v) {
3865 		int flag = 0, i;
3866 
3867 		sc->msk_intr_rate = v;
3868 		for (i = 0; i < 2; ++i) {
3869 			if (sc->msk_if[i] != NULL) {
3870 				flag |= sc->msk_if[i]->
3871 					arpcom.ac_if.if_flags & IFF_RUNNING;
3872 			}
3873 		}
3874 		if (flag)
3875 			mskc_set_imtimer(sc);
3876 	}
3877 back:
3878 	lwkt_serialize_exit(serializer);
3879 	return error;
3880 }
3881 
3882 static int
3883 msk_dmamem_create(device_t dev, bus_size_t size, bus_dma_tag_t *dtag,
3884 		  void **addr, bus_addr_t *paddr, bus_dmamap_t *dmap)
3885 {
3886 	struct msk_if_softc *sc_if = device_get_softc(dev);
3887 	bus_dmamem_t dmem;
3888 	int error;
3889 
3890 	error = bus_dmamem_coherent(sc_if->msk_cdata.msk_parent_tag,
3891 			MSK_RING_ALIGN, 0,
3892 			BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3893 			size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
3894 	if (error) {
3895 		device_printf(dev, "can't create coherent DMA memory\n");
3896 		return error;
3897 	}
3898 
3899 	*dtag = dmem.dmem_tag;
3900 	*dmap = dmem.dmem_map;
3901 	*addr = dmem.dmem_addr;
3902 	*paddr = dmem.dmem_busaddr;
3903 
3904 	return 0;
3905 }
3906 
3907 static void
3908 msk_dmamem_destroy(bus_dma_tag_t dtag, void *addr, bus_dmamap_t dmap)
3909 {
3910 	if (dtag != NULL) {
3911 		bus_dmamap_unload(dtag, dmap);
3912 		bus_dmamem_free(dtag, addr, dmap);
3913 		bus_dma_tag_destroy(dtag);
3914 	}
3915 }
3916 
3917 static void
3918 mskc_set_imtimer(struct msk_softc *sc)
3919 {
3920 	if (sc->msk_intr_rate > 0) {
3921 		/*
3922 		 * XXX myk(4) seems to use 125MHz for EC/FE/XL
3923 		 *     and 78.125MHz for rest of chip types
3924 		 */
3925 		CSR_WRITE_4(sc, B2_IRQM_INI,
3926 			    MSK_USECS(sc, 1000000 / sc->msk_intr_rate));
3927 		CSR_WRITE_4(sc, B2_IRQM_MSK, sc->msk_intrmask);
3928 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_START);
3929 	} else {
3930 		CSR_WRITE_4(sc, B2_IRQM_CTRL, TIM_STOP);
3931 	}
3932 }
3933