xref: /dragonfly/sys/dev/netif/sn/if_sn.c (revision 36a3d1d6)
1 /*
2  * Copyright (c) 1996 Gardner Buchanan <gbuchanan@shl.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *      This product includes software developed by Gardner Buchanan.
16  * 4. The name of Gardner Buchanan may not be used to endorse or promote
17  *    products derived from this software without specific prior written
18  *    permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
21  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
22  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
25  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
29  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *   $FreeBSD: src/sys/dev/sn/if_sn.c,v 1.7.2.3 2001/02/04 04:38:38 toshi Exp $
32  *   $DragonFly: src/sys/dev/netif/sn/if_sn.c,v 1.29 2008/08/17 04:32:34 sephe Exp $
33  */
34 
35 /*
36  * This is a driver for SMC's 9000 series of Ethernet adapters.
37  *
38  * This FreeBSD driver is derived from the smc9194 Linux driver by
39  * Erik Stahlman and is Copyright (C) 1996 by Erik Stahlman.
40  * This driver also shamelessly borrows from the FreeBSD ep driver
41  * which is Copyright (C) 1994 Herb Peyerl <hpeyerl@novatel.ca>
42  * All rights reserved.
43  *
44  * It is set up for my SMC91C92 equipped Ampro LittleBoard embedded
45  * PC.  It is adapted from Erik Stahlman's Linux driver which worked
46  * with his EFA Info*Express SVC VLB adaptor.  According to SMC's databook,
47  * it will work for the entire SMC 9xxx series. (Ha Ha)
48  *
49  * "Features" of the SMC chip:
50  *   4608 byte packet memory. (for the 91C92.  Others have more)
51  *   EEPROM for configuration
52  *   AUI/TP selection
53  *
54  * Authors:
55  *      Erik Stahlman                   erik@vt.edu
56  *      Herb Peyerl                     hpeyerl@novatel.ca
57  *      Andres Vega Garcia              avega@sophia.inria.fr
58  *      Serge Babkin                    babkin@hq.icb.chel.su
59  *      Gardner Buchanan                gbuchanan@shl.com
60  *
61  * Sources:
62  *    o   SMC databook
63  *    o   "smc9194.c:v0.10(FIXED) 02/15/96 by Erik Stahlman (erik@vt.edu)"
64  *    o   "if_ep.c,v 1.19 1995/01/24 20:53:45 davidg Exp"
65  *
66  * Known Bugs:
67  *    o   The hardware multicast filter isn't used yet.
68  *    o   Setting of the hardware address isn't supported.
69  *    o   Hardware padding isn't used.
70  */
71 
72 /*
73  * Modifications for Megahertz X-Jack Ethernet Card (XJ-10BT)
74  *
75  * Copyright (c) 1996 by Tatsumi Hosokawa <hosokawa@jp.FreeBSD.org>
76  *                       BSD-nomads, Tokyo, Japan.
77  */
78 /*
79  * Multicast support by Kei TANAKA <kei@pal.xerox.com>
80  * Special thanks to itojun@itojun.org
81  */
82 
83 #undef	SN_DEBUG	/* (by hosokawa) */
84 
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/kernel.h>
88 #include <sys/interrupt.h>
89 #include <sys/errno.h>
90 #include <sys/sockio.h>
91 #include <sys/malloc.h>
92 #include <sys/mbuf.h>
93 #include <sys/socket.h>
94 #include <sys/syslog.h>
95 #include <sys/serialize.h>
96 #include <sys/module.h>
97 #include <sys/bus.h>
98 #include <sys/rman.h>
99 #include <sys/thread2.h>
100 
101 #include <net/ethernet.h>
102 #include <net/if.h>
103 #include <net/ifq_var.h>
104 #include <net/if_arp.h>
105 #include <net/if_dl.h>
106 #include <net/if_types.h>
107 #include <net/if_mib.h>
108 
109 #ifdef INET
110 #include <netinet/in.h>
111 #include <netinet/in_systm.h>
112 #include <netinet/in_var.h>
113 #include <netinet/ip.h>
114 #endif
115 
116 #ifdef NS
117 #include <netns/ns.h>
118 #include <netns/ns_if.h>
119 #endif
120 
121 #include <net/bpf.h>
122 #include <net/bpfdesc.h>
123 
124 #include <machine/clock.h>
125 
126 #include "if_snreg.h"
127 #include "if_snvar.h"
128 
129 /* Exported variables */
130 devclass_t sn_devclass;
131 
132 static int snioctl(struct ifnet * ifp, u_long, caddr_t, struct ucred *);
133 
134 static void snresume(struct ifnet *);
135 
136 void sninit(void *);
137 void snread(struct ifnet *);
138 void snreset(struct sn_softc *);
139 void snstart(struct ifnet *);
140 void snstop(struct sn_softc *);
141 void snwatchdog(struct ifnet *);
142 
143 static void sn_setmcast(struct sn_softc *);
144 static int sn_getmcf(struct arpcom *ac, u_char *mcf);
145 static u_int smc_crc(u_char *);
146 
147 DECLARE_DUMMY_MODULE(if_sn);
148 
149 /* I (GB) have been unlucky getting the hardware padding
150  * to work properly.
151  */
152 #define SW_PAD
153 
154 static const char *chip_ids[15] = {
155 	NULL, NULL, NULL,
156 	 /* 3 */ "SMC91C90/91C92",
157 	 /* 4 */ "SMC91C94",
158 	 /* 5 */ "SMC91C95",
159 	NULL,
160 	 /* 7 */ "SMC91C100",
161 	 /* 8 */ "SMC91C100FD",
162 	NULL, NULL, NULL,
163 	NULL, NULL, NULL
164 };
165 
166 int
167 sn_attach(device_t dev)
168 {
169 	struct sn_softc *sc = device_get_softc(dev);
170 	struct ifnet   *ifp = &sc->arpcom.ac_if;
171 	u_short         i;
172 	u_char         *p;
173 	int             rev;
174 	u_short         address;
175 	int		j;
176 	int		error;
177 
178 	sn_activate(dev);
179 
180 	snstop(sc);
181 
182 	sc->dev = dev;
183 	sc->pages_wanted = -1;
184 
185 	device_printf(dev, " ");
186 
187 	SMC_SELECT_BANK(3);
188 	rev = inw(BASE + REVISION_REG_W);
189 	if (chip_ids[(rev >> 4) & 0xF])
190 		kprintf("%s ", chip_ids[(rev >> 4) & 0xF]);
191 
192 	SMC_SELECT_BANK(1);
193 	i = inw(BASE + CONFIG_REG_W);
194 	kprintf("%s\n", i & CR_AUI_SELECT ? "AUI" : "UTP");
195 
196 	if (sc->pccard_enaddr)
197 		for (j = 0; j < 3; j++) {
198 			u_short	w;
199 
200 			w = (u_short)sc->arpcom.ac_enaddr[j * 2] |
201 				(((u_short)sc->arpcom.ac_enaddr[j * 2 + 1]) << 8);
202 			outw(BASE + IAR_ADDR0_REG_W + j * 2, w);
203 		}
204 
205 	/*
206 	 * Read the station address from the chip. The MAC address is bank 1,
207 	 * regs 4 - 9
208 	 */
209 	SMC_SELECT_BANK(1);
210 	p = (u_char *) & sc->arpcom.ac_enaddr;
211 	for (i = 0; i < 6; i += 2) {
212 		address = inw(BASE + IAR_ADDR0_REG_W + i);
213 		p[i + 1] = address >> 8;
214 		p[i] = address & 0xFF;
215 	}
216 	ifp->if_softc = sc;
217 	if_initname(ifp, "sn", device_get_unit(dev));
218 	ifp->if_mtu = ETHERMTU;
219 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
220 	ifp->if_start = snstart;
221 	ifp->if_ioctl = snioctl;
222 	ifp->if_watchdog = snwatchdog;
223 	ifp->if_init = sninit;
224 	ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
225 	ifq_set_ready(&ifp->if_snd);
226 	ifp->if_timer = 0;
227 
228 	ether_ifattach(ifp, sc->arpcom.ac_enaddr, NULL);
229 
230 	error = bus_setup_intr(dev, sc->irq_res, INTR_MPSAFE,
231 			       sn_intr, sc, &sc->intrhand,
232 			       ifp->if_serializer);
233 	if (error) {
234 		ether_ifdetach(ifp);
235 		sn_deactivate(dev);
236 		return error;
237 	}
238 
239 	ifp->if_cpuid = ithread_cpuid(rman_get_start(sc->irq_res));
240 	KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
241 
242 	return 0;
243 }
244 
245 
246 /*
247  * Reset and initialize the chip
248  */
249 void
250 sninit(void *xsc)
251 {
252 	struct sn_softc *sc = xsc;
253 	struct ifnet *ifp = &sc->arpcom.ac_if;
254 	int             flags;
255 	int             mask;
256 
257 	/*
258 	 * This resets the registers mostly to defaults, but doesn't affect
259 	 * EEPROM.  After the reset cycle, we pause briefly for the chip to
260 	 * be happy.
261 	 */
262 	SMC_SELECT_BANK(0);
263 	outw(BASE + RECV_CONTROL_REG_W, RCR_SOFTRESET);
264 	SMC_DELAY();
265 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
266 	SMC_DELAY();
267 	SMC_DELAY();
268 
269 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
270 
271 	/*
272 	 * Set the control register to automatically release succesfully
273 	 * transmitted packets (making the best use out of our limited
274 	 * memory) and to enable the EPH interrupt on certain TX errors.
275 	 */
276 	SMC_SELECT_BANK(1);
277 	outw(BASE + CONTROL_REG_W, (CTR_AUTO_RELEASE | CTR_TE_ENABLE |
278 				    CTR_CR_ENABLE | CTR_LE_ENABLE));
279 
280 	/* Set squelch level to 240mV (default 480mV) */
281 	flags = inw(BASE + CONFIG_REG_W);
282 	flags |= CR_SET_SQLCH;
283 	outw(BASE + CONFIG_REG_W, flags);
284 
285 	/*
286 	 * Reset the MMU and wait for it to be un-busy.
287 	 */
288 	SMC_SELECT_BANK(2);
289 	outw(BASE + MMU_CMD_REG_W, MMUCR_RESET);
290 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
291 		;
292 
293 	/*
294 	 * Disable all interrupts
295 	 */
296 	outb(BASE + INTR_MASK_REG_B, 0x00);
297 
298 	sn_setmcast(sc);
299 
300 	/*
301 	 * Set the transmitter control.  We want it enabled.
302 	 */
303 	flags = TCR_ENABLE;
304 
305 #ifndef SW_PAD
306 	/*
307 	 * I (GB) have been unlucky getting this to work.
308 	 */
309 	flags |= TCR_PAD_ENABLE;
310 #endif	/* SW_PAD */
311 
312 	outw(BASE + TXMIT_CONTROL_REG_W, flags);
313 
314 
315 	/*
316 	 * Now, enable interrupts
317 	 */
318 	SMC_SELECT_BANK(2);
319 
320 	mask = IM_EPH_INT |
321 		IM_RX_OVRN_INT |
322 		IM_RCV_INT |
323 		IM_TX_INT;
324 
325 	outb(BASE + INTR_MASK_REG_B, mask);
326 	sc->intr_mask = mask;
327 	sc->pages_wanted = -1;
328 
329 
330 	/*
331 	 * Mark the interface running but not active.
332 	 */
333 	ifp->if_flags |= IFF_RUNNING;
334 	ifp->if_flags &= ~IFF_OACTIVE;
335 
336 	/*
337 	 * Attempt to push out any waiting packets.
338 	 */
339 	if_devstart(ifp);
340 }
341 
342 
343 void
344 snstart(struct ifnet *ifp)
345 {
346 	struct sn_softc *sc = ifp->if_softc;
347 	u_int  len;
348 	struct mbuf *m;
349 	struct mbuf    *top;
350 	int             pad;
351 	int             mask;
352 	u_short         length;
353 	u_short         numPages;
354 	u_char          packet_no;
355 	int             time_out;
356 
357 	if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
358 		return;
359 
360 	if (sc->pages_wanted != -1) {
361 		/* XXX should never happen */
362 		kprintf("%s: snstart() while memory allocation pending\n",
363 		       ifp->if_xname);
364 		ifp->if_flags |= IFF_OACTIVE;
365 		return;
366 	}
367 startagain:
368 
369 	/*
370 	 * Sneak a peek at the next packet
371 	 */
372 	m = ifq_dequeue(&ifp->if_snd, NULL);
373 	if (m == NULL)
374 		return;
375 
376 	/*
377 	 * Compute the frame length and set pad to give an overall even
378 	 * number of bytes.  Below we assume that the packet length is even.
379 	 */
380 	for (len = 0, top = m; m; m = m->m_next)
381 		len += m->m_len;
382 
383 	pad = (len & 1);
384 
385 	/*
386 	 * We drop packets that are too large. Perhaps we should truncate
387 	 * them instead?
388 	 */
389 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
390 		kprintf("%s: large packet discarded (A)\n", ifp->if_xname);
391 		++sc->arpcom.ac_if.if_oerrors;
392 		m_freem(top);
393 		goto readcheck;
394 	}
395 #ifdef SW_PAD
396 
397 	/*
398 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
399 	 */
400 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
401 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
402 
403 #endif	/* SW_PAD */
404 
405 	length = pad + len;
406 
407 	/*
408 	 * The MMU wants the number of pages to be the number of 256 byte
409 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
410 	 * include space for the status word, byte count and control bytes in
411 	 * the allocation request.
412 	 */
413 	numPages = (length + 6) >> 8;
414 
415 
416 	/*
417 	 * Now, try to allocate the memory
418 	 */
419 	SMC_SELECT_BANK(2);
420 	outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages);
421 
422 	/*
423 	 * Wait a short amount of time to see if the allocation request
424 	 * completes.  Otherwise, I enable the interrupt and wait for
425 	 * completion asyncronously.
426 	 */
427 
428 	time_out = MEMORY_WAIT_TIME;
429 	do {
430 		if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT)
431 			break;
432 	} while (--time_out);
433 
434 	if (!time_out) {
435 
436 		/*
437 		 * No memory now.  Oh well, wait until the chip finds memory
438 		 * later.   Remember how many pages we were asking for and
439 		 * enable the allocation completion interrupt. Also set a
440 		 * watchdog in case  we miss the interrupt. We mark the
441 		 * interface active since there is no point in attempting an
442 		 * snstart() until after the memory is available.
443 		 */
444 		mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT;
445 		outb(BASE + INTR_MASK_REG_B, mask);
446 		sc->intr_mask = mask;
447 
448 		ifp->if_timer = 1;
449 		ifp->if_flags |= IFF_OACTIVE;
450 		sc->pages_wanted = numPages;
451 		ifq_prepend(&ifp->if_snd, top);
452 
453 		return;
454 	}
455 	/*
456 	 * The memory allocation completed.  Check the results.
457 	 */
458 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
459 	if (packet_no & ARR_FAILED) {
460 		kprintf("%s: Memory allocation failed\n", ifp->if_xname);
461 		ifq_prepend(&ifp->if_snd, top);
462 		goto startagain;
463 	}
464 	/*
465 	 * We have a packet number, so tell the card to use it.
466 	 */
467 	outb(BASE + PACKET_NUM_REG_B, packet_no);
468 
469 	/*
470 	 * Point to the beginning of the packet
471 	 */
472 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
473 
474 	/*
475 	 * Send the packet length (+6 for status, length and control byte)
476 	 * and the status word (set to zeros)
477 	 */
478 	outw(BASE + DATA_REG_W, 0);
479 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
480 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
481 
482 	/*
483 	 * Push out the data to the card.
484 	 */
485 	for (m = top; m != NULL; m = m->m_next) {
486 
487 		/*
488 		 * Push out words.
489 		 */
490 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
491 
492 		/*
493 		 * Push out remaining byte.
494 		 */
495 		if (m->m_len & 1)
496 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
497 	}
498 
499 	/*
500 	 * Push out padding.
501 	 */
502 	while (pad > 1) {
503 		outw(BASE + DATA_REG_W, 0);
504 		pad -= 2;
505 	}
506 	if (pad)
507 		outb(BASE + DATA_REG_B, 0);
508 
509 	/*
510 	 * Push out control byte and unused packet byte The control byte is 0
511 	 * meaning the packet is even lengthed and no special CRC handling is
512 	 * desired.
513 	 */
514 	outw(BASE + DATA_REG_W, 0);
515 
516 	/*
517 	 * Enable the interrupts and let the chipset deal with it Also set a
518 	 * watchdog in case we miss the interrupt.
519 	 */
520 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
521 	outb(BASE + INTR_MASK_REG_B, mask);
522 	sc->intr_mask = mask;
523 
524 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
525 
526 	ifp->if_flags |= IFF_OACTIVE;
527 	ifp->if_timer = 1;
528 
529 	BPF_MTAP(ifp, top);
530 
531 	ifp->if_opackets++;
532 	m_freem(top);
533 
534 readcheck:
535 
536 	/*
537 	 * Is another packet coming in?  We don't want to overflow the tiny
538 	 * RX FIFO.  If nothing has arrived then attempt to queue another
539 	 * transmit packet.
540 	 */
541 	if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY)
542 		goto startagain;
543 }
544 
545 
546 
547 /* Resume a packet transmit operation after a memory allocation
548  * has completed.
549  *
550  * This is basically a hacked up copy of snstart() which handles
551  * a completed memory allocation the same way snstart() does.
552  * It then passes control to snstart to handle any other queued
553  * packets.
554  */
555 static void
556 snresume(struct ifnet *ifp)
557 {
558 	struct sn_softc *sc = ifp->if_softc;
559 	u_int  len;
560 	struct mbuf *m;
561 	struct mbuf    *top;
562 	int             pad;
563 	int             mask;
564 	u_short         length;
565 	u_short         numPages;
566 	u_short         pages_wanted;
567 	u_char          packet_no;
568 
569 	if (sc->pages_wanted < 0)
570 		return;
571 
572 	pages_wanted = sc->pages_wanted;
573 	sc->pages_wanted = -1;
574 
575 	/*
576 	 * Sneak a peek at the next packet
577 	 */
578 	m = ifq_dequeue(&ifp->if_snd, NULL);
579 	if (m == NULL) {
580 		kprintf("%s: snresume() with nothing to send\n",
581 			ifp->if_xname);
582 		return;
583 	}
584 
585 	/*
586 	 * Compute the frame length and set pad to give an overall even
587 	 * number of bytes.  Below we assume that the packet length is even.
588 	 */
589 	for (len = 0, top = m; m; m = m->m_next)
590 		len += m->m_len;
591 
592 	pad = (len & 1);
593 
594 	/*
595 	 * We drop packets that are too large. Perhaps we should truncate
596 	 * them instead?
597 	 */
598 	if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) {
599 		kprintf("%s: large packet discarded (B)\n", ifp->if_xname);
600 		++ifp->if_oerrors;
601 		m_freem(top);
602 		return;
603 	}
604 #ifdef SW_PAD
605 
606 	/*
607 	 * If HW padding is not turned on, then pad to ETHER_MIN_LEN.
608 	 */
609 	if (len < ETHER_MIN_LEN - ETHER_CRC_LEN)
610 		pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len;
611 
612 #endif	/* SW_PAD */
613 
614 	length = pad + len;
615 
616 
617 	/*
618 	 * The MMU wants the number of pages to be the number of 256 byte
619 	 * 'pages', minus 1 (A packet can't ever have 0 pages. We also
620 	 * include space for the status word, byte count and control bytes in
621 	 * the allocation request.
622 	 */
623 	numPages = (length + 6) >> 8;
624 
625 
626 	SMC_SELECT_BANK(2);
627 
628 	/*
629 	 * The memory allocation completed.  Check the results. If it failed,
630 	 * we simply set a watchdog timer and hope for the best.
631 	 */
632 	packet_no = inb(BASE + ALLOC_RESULT_REG_B);
633 	if (packet_no & ARR_FAILED) {
634 		kprintf("%s: Memory allocation failed.  Weird.\n", ifp->if_xname);
635 		ifp->if_timer = 1;
636 		ifq_prepend(&ifp->if_snd, top);
637 		goto try_start;
638 	}
639 	/*
640 	 * We have a packet number, so tell the card to use it.
641 	 */
642 	outb(BASE + PACKET_NUM_REG_B, packet_no);
643 
644 	/*
645 	 * Now, numPages should match the pages_wanted recorded when the
646 	 * memory allocation was initiated.
647 	 */
648 	if (pages_wanted != numPages) {
649 		kprintf("%s: memory allocation wrong size.  Weird.\n", ifp->if_xname);
650 		/*
651 		 * If the allocation was the wrong size we simply release the
652 		 * memory once it is granted. Wait for the MMU to be un-busy.
653 		 */
654 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
655 			;
656 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
657 
658 		ifq_prepend(&ifp->if_snd, top);
659 		return;
660 	}
661 	/*
662 	 * Point to the beginning of the packet
663 	 */
664 	outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000);
665 
666 	/*
667 	 * Send the packet length (+6 for status, length and control byte)
668 	 * and the status word (set to zeros)
669 	 */
670 	outw(BASE + DATA_REG_W, 0);
671 	outb(BASE + DATA_REG_B, (length + 6) & 0xFF);
672 	outb(BASE + DATA_REG_B, (length + 6) >> 8);
673 
674 	/*
675 	 * Push out the data to the card.
676 	 */
677 	for (m = top; m != NULL; m = m->m_next) {
678 
679 		/*
680 		 * Push out words.
681 		 */
682 		outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2);
683 
684 		/*
685 		 * Push out remaining byte.
686 		 */
687 		if (m->m_len & 1)
688 			outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1));
689 	}
690 
691 	/*
692 	 * Push out padding.
693 	 */
694 	while (pad > 1) {
695 		outw(BASE + DATA_REG_W, 0);
696 		pad -= 2;
697 	}
698 	if (pad)
699 		outb(BASE + DATA_REG_B, 0);
700 
701 	/*
702 	 * Push out control byte and unused packet byte The control byte is 0
703 	 * meaning the packet is even lengthed and no special CRC handling is
704 	 * desired.
705 	 */
706 	outw(BASE + DATA_REG_W, 0);
707 
708 	/*
709 	 * Enable the interrupts and let the chipset deal with it Also set a
710 	 * watchdog in case we miss the interrupt.
711 	 */
712 	mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT);
713 	outb(BASE + INTR_MASK_REG_B, mask);
714 	sc->intr_mask = mask;
715 	outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE);
716 
717 	BPF_MTAP(ifp, top);
718 
719 	ifp->if_opackets++;
720 	m_freem(top);
721 
722 try_start:
723 
724 	/*
725 	 * Now pass control to snstart() to queue any additional packets
726 	 */
727 	ifp->if_flags &= ~IFF_OACTIVE;
728 	if_devstart(ifp);
729 
730 	/*
731 	 * We've sent something, so we're active.  Set a watchdog in case the
732 	 * TX_EMPTY interrupt is lost.
733 	 */
734 	ifp->if_flags |= IFF_OACTIVE;
735 	ifp->if_timer = 1;
736 }
737 
738 
739 void
740 sn_intr(void *arg)
741 {
742 	int             status, interrupts;
743 	struct sn_softc *sc = (struct sn_softc *) arg;
744 	struct ifnet   *ifp = &sc->arpcom.ac_if;
745 
746 	/*
747 	 * Chip state registers
748 	 */
749 	u_char          mask;
750 	u_char          packet_no;
751 	u_short         tx_status;
752 	u_short         card_stats;
753 
754 	/*
755 	 * Clear the watchdog.
756 	 */
757 	ifp->if_timer = 0;
758 
759 	SMC_SELECT_BANK(2);
760 
761 	/*
762 	 * Obtain the current interrupt mask and clear the hardware mask
763 	 * while servicing interrupts.
764 	 */
765 	mask = inb(BASE + INTR_MASK_REG_B);
766 	outb(BASE + INTR_MASK_REG_B, 0x00);
767 
768 	/*
769 	 * Get the set of interrupts which occurred and eliminate any which
770 	 * are masked.
771 	 */
772 	interrupts = inb(BASE + INTR_STAT_REG_B);
773 	status = interrupts & mask;
774 
775 	/*
776 	 * Now, process each of the interrupt types.
777 	 */
778 
779 	/*
780 	 * Receive Overrun.
781 	 */
782 	if (status & IM_RX_OVRN_INT) {
783 
784 		/*
785 		 * Acknowlege Interrupt
786 		 */
787 		SMC_SELECT_BANK(2);
788 		outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT);
789 
790 		++sc->arpcom.ac_if.if_ierrors;
791 	}
792 	/*
793 	 * Got a packet.
794 	 */
795 	if (status & IM_RCV_INT) {
796 #if 1
797 		int             packet_number;
798 
799 		SMC_SELECT_BANK(2);
800 		packet_number = inw(BASE + FIFO_PORTS_REG_W);
801 
802 		if (packet_number & FIFO_REMPTY) {
803 
804 			/*
805 			 * we got called , but nothing was on the FIFO
806 			 */
807 			kprintf("sn: Receive interrupt with nothing on FIFO\n");
808 
809 			goto out;
810 		}
811 #endif
812 		snread(ifp);
813 	}
814 	/*
815 	 * An on-card memory allocation came through.
816 	 */
817 	if (status & IM_ALLOC_INT) {
818 
819 		/*
820 		 * Disable this interrupt.
821 		 */
822 		mask &= ~IM_ALLOC_INT;
823 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
824 		snresume(&sc->arpcom.ac_if);
825 	}
826 	/*
827 	 * TX Completion.  Handle a transmit error message. This will only be
828 	 * called when there is an error, because of the AUTO_RELEASE mode.
829 	 */
830 	if (status & IM_TX_INT) {
831 
832 		/*
833 		 * Acknowlege Interrupt
834 		 */
835 		SMC_SELECT_BANK(2);
836 		outb(BASE + INTR_ACK_REG_B, IM_TX_INT);
837 
838 		packet_no = inw(BASE + FIFO_PORTS_REG_W);
839 		packet_no &= FIFO_TX_MASK;
840 
841 		/*
842 		 * select this as the packet to read from
843 		 */
844 		outb(BASE + PACKET_NUM_REG_B, packet_no);
845 
846 		/*
847 		 * Position the pointer to the first word from this packet
848 		 */
849 		outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000);
850 
851 		/*
852 		 * Fetch the TX status word.  The value found here will be a
853 		 * copy of the EPH_STATUS_REG_W at the time the transmit
854 		 * failed.
855 		 */
856 		tx_status = inw(BASE + DATA_REG_W);
857 
858 		if (tx_status & EPHSR_TX_SUC) {
859 			device_printf(sc->dev,
860 			    "Successful packet caused interrupt\n");
861 		} else {
862 			++sc->arpcom.ac_if.if_oerrors;
863 		}
864 
865 		if (tx_status & EPHSR_LATCOL)
866 			++sc->arpcom.ac_if.if_collisions;
867 
868 		/*
869 		 * Some of these errors will have disabled transmit.
870 		 * Re-enable transmit now.
871 		 */
872 		SMC_SELECT_BANK(0);
873 
874 #ifdef SW_PAD
875 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE);
876 #else
877 		outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE);
878 #endif	/* SW_PAD */
879 
880 		/*
881 		 * kill the failed packet. Wait for the MMU to be un-busy.
882 		 */
883 		SMC_SELECT_BANK(2);
884 		while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
885 			;
886 		outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT);
887 
888 		/*
889 		 * Attempt to queue more transmits.
890 		 */
891 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
892 		if_devstart(&sc->arpcom.ac_if);
893 	}
894 	/*
895 	 * Transmit underrun.  We use this opportunity to update transmit
896 	 * statistics from the card.
897 	 */
898 	if (status & IM_TX_EMPTY_INT) {
899 
900 		/*
901 		 * Acknowlege Interrupt
902 		 */
903 		SMC_SELECT_BANK(2);
904 		outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT);
905 
906 		/*
907 		 * Disable this interrupt.
908 		 */
909 		mask &= ~IM_TX_EMPTY_INT;
910 
911 		SMC_SELECT_BANK(0);
912 		card_stats = inw(BASE + COUNTER_REG_W);
913 
914 		/*
915 		 * Single collisions
916 		 */
917 		sc->arpcom.ac_if.if_collisions += card_stats & ECR_COLN_MASK;
918 
919 		/*
920 		 * Multiple collisions
921 		 */
922 		sc->arpcom.ac_if.if_collisions += (card_stats & ECR_MCOLN_MASK) >> 4;
923 
924 		SMC_SELECT_BANK(2);
925 
926 		/*
927 		 * Attempt to enqueue some more stuff.
928 		 */
929 		sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
930 		if_devstart(&sc->arpcom.ac_if);
931 	}
932 	/*
933 	 * Some other error.  Try to fix it by resetting the adapter.
934 	 */
935 	if (status & IM_EPH_INT) {
936 		snstop(sc);
937 		sninit(sc);
938 	}
939 
940 out:
941 	/*
942 	 * Handled all interrupt sources.
943 	 */
944 
945 	SMC_SELECT_BANK(2);
946 
947 	/*
948 	 * Reestablish interrupts from mask which have not been deselected
949 	 * during this interrupt.  Note that the hardware mask, which was set
950 	 * to 0x00 at the start of this service routine, may have been
951 	 * updated by one or more of the interrupt handers and we must let
952 	 * those new interrupts stay enabled here.
953 	 */
954 	mask |= inb(BASE + INTR_MASK_REG_B);
955 	outb(BASE + INTR_MASK_REG_B, mask);
956 	sc->intr_mask = mask;
957 }
958 
959 void
960 snread(struct ifnet *ifp)
961 {
962         struct sn_softc *sc = ifp->if_softc;
963 	struct mbuf    *m;
964 	short           status;
965 	int             packet_number;
966 	u_short         packet_length;
967 	u_char         *data;
968 
969 	SMC_SELECT_BANK(2);
970 #if 0
971 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
972 
973 	if (packet_number & FIFO_REMPTY) {
974 
975 		/*
976 		 * we got called , but nothing was on the FIFO
977 		 */
978 		kprintf("sn: Receive interrupt with nothing on FIFO\n");
979 		return;
980 	}
981 #endif
982 read_another:
983 
984 	/*
985 	 * Start reading from the start of the packet. Since PTR_RCV is set,
986 	 * packet number is found in FIFO_PORTS_REG_W, FIFO_RX_MASK.
987 	 */
988 	outw(BASE + POINTER_REG_W, PTR_READ | PTR_RCV | PTR_AUTOINC | 0x0000);
989 
990 	/*
991 	 * First two words are status and packet_length
992 	 */
993 	status = inw(BASE + DATA_REG_W);
994 	packet_length = inw(BASE + DATA_REG_W) & RLEN_MASK;
995 
996 	/*
997 	 * The packet length contains 3 extra words: status, length, and a
998 	 * extra word with the control byte.
999 	 */
1000 	packet_length -= 6;
1001 
1002 	/*
1003 	 * Account for receive errors and discard.
1004 	 */
1005 	if (status & RS_ERRORS) {
1006 		++ifp->if_ierrors;
1007 		goto out;
1008 	}
1009 	/*
1010 	 * A packet is received.
1011 	 */
1012 
1013 	/*
1014 	 * Adjust for odd-length packet.
1015 	 */
1016 	if (status & RS_ODDFRAME)
1017 		packet_length++;
1018 
1019 	/*
1020 	 * Allocate a header mbuf from the kernel.
1021 	 */
1022 	MGETHDR(m, MB_DONTWAIT, MT_DATA);
1023 	if (m == NULL)
1024 		goto out;
1025 
1026 	m->m_pkthdr.rcvif = ifp;
1027 	m->m_pkthdr.len = m->m_len = packet_length;
1028 
1029 	/*
1030 	 * Attach an mbuf cluster
1031 	 */
1032 	MCLGET(m, MB_DONTWAIT);
1033 
1034 	/*
1035 	 * Insist on getting a cluster
1036 	 */
1037 	if ((m->m_flags & M_EXT) == 0) {
1038 		m_freem(m);
1039 		++ifp->if_ierrors;
1040 		kprintf("sn: snread() kernel memory allocation problem\n");
1041 		goto out;
1042 	}
1043 
1044 	/*
1045 	 * Get packet, including link layer address, from interface.
1046 	 */
1047 
1048 	data = mtod(m, u_char *);
1049 	insw(BASE + DATA_REG_W, data, packet_length >> 1);
1050 	if (packet_length & 1) {
1051 		data += packet_length & ~1;
1052 		*data = inb(BASE + DATA_REG_B);
1053 	}
1054 	++ifp->if_ipackets;
1055 
1056 	m->m_pkthdr.len = m->m_len = packet_length;
1057 
1058 	ifp->if_input(ifp, m);
1059 
1060 out:
1061 
1062 	/*
1063 	 * Error or good, tell the card to get rid of this packet Wait for
1064 	 * the MMU to be un-busy.
1065 	 */
1066 	SMC_SELECT_BANK(2);
1067 	while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY)	/* NOTHING */
1068 		;
1069 	outw(BASE + MMU_CMD_REG_W, MMUCR_RELEASE);
1070 
1071 	/*
1072 	 * Check whether another packet is ready
1073 	 */
1074 	packet_number = inw(BASE + FIFO_PORTS_REG_W);
1075 	if (packet_number & FIFO_REMPTY) {
1076 		return;
1077 	}
1078 	goto read_another;
1079 }
1080 
1081 
1082 /*
1083  * Handle IOCTLS.  This function is completely stolen from if_ep.c
1084  * As with its progenitor, it does not handle hardware address
1085  * changes.
1086  */
1087 static int
1088 snioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1089 {
1090 	struct sn_softc *sc = ifp->if_softc;
1091 	int error = 0;
1092 
1093 	switch (cmd) {
1094 	case SIOCSIFFLAGS:
1095 		if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
1096 			ifp->if_flags &= ~IFF_RUNNING;
1097 			snstop(sc);
1098 			break;
1099 		} else {
1100 			/* reinitialize card on any parameter change */
1101 			sninit(sc);
1102 			break;
1103 		}
1104 		break;
1105 
1106 #ifdef notdef
1107 	case SIOCGHWADDR:
1108 		bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
1109 		      sizeof(sc->sc_addr));
1110 		break;
1111 #endif
1112 
1113 	case SIOCADDMULTI:
1114 	    /* update multicast filter list. */
1115 	    sn_setmcast(sc);
1116 	    error = 0;
1117 	    break;
1118 	case SIOCDELMULTI:
1119 	    /* update multicast filter list. */
1120 	    sn_setmcast(sc);
1121 	    error = 0;
1122 	    break;
1123 	default:
1124 		error = ether_ioctl(ifp, cmd, data);
1125 		break;
1126 	}
1127 
1128 	return (error);
1129 }
1130 
1131 void
1132 snreset(struct sn_softc *sc)
1133 {
1134 	snstop(sc);
1135 	sninit(sc);
1136 }
1137 
1138 void
1139 snwatchdog(struct ifnet *ifp)
1140 {
1141 	sn_intr(ifp->if_softc);
1142 }
1143 
1144 
1145 /* 1. zero the interrupt mask
1146  * 2. clear the enable receive flag
1147  * 3. clear the enable xmit flags
1148  */
1149 void
1150 snstop(struct sn_softc *sc)
1151 {
1152 
1153 	struct ifnet   *ifp = &sc->arpcom.ac_if;
1154 
1155 	/*
1156 	 * Clear interrupt mask; disable all interrupts.
1157 	 */
1158 	SMC_SELECT_BANK(2);
1159 	outb(BASE + INTR_MASK_REG_B, 0x00);
1160 
1161 	/*
1162 	 * Disable transmitter and Receiver
1163 	 */
1164 	SMC_SELECT_BANK(0);
1165 	outw(BASE + RECV_CONTROL_REG_W, 0x0000);
1166 	outw(BASE + TXMIT_CONTROL_REG_W, 0x0000);
1167 
1168 	/*
1169 	 * Cancel watchdog.
1170 	 */
1171 	ifp->if_timer = 0;
1172 }
1173 
1174 
1175 int
1176 sn_activate(device_t dev)
1177 {
1178 	struct sn_softc *sc = device_get_softc(dev);
1179 
1180 	sc->port_rid = 0;
1181 	sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
1182 	    0, ~0, SMC_IO_EXTENT, RF_ACTIVE);
1183 	if (!sc->port_res) {
1184 #ifdef SN_DEBUG
1185 		device_printf(dev, "Cannot allocate ioport\n");
1186 #endif
1187 		return ENOMEM;
1188 	}
1189 
1190 	sc->irq_rid = 0;
1191 	sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
1192 	    RF_ACTIVE);
1193 	if (!sc->irq_res) {
1194 #ifdef SN_DEBUG
1195 		device_printf(dev, "Cannot allocate irq\n");
1196 #endif
1197 		sn_deactivate(dev);
1198 		return ENOMEM;
1199 	}
1200 
1201 	sc->sn_io_addr = rman_get_start(sc->port_res);
1202 	return (0);
1203 }
1204 
1205 void
1206 sn_deactivate(device_t dev)
1207 {
1208 	struct sn_softc *sc = device_get_softc(dev);
1209 
1210 	if (sc->port_res)
1211 		bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid,
1212 		    sc->port_res);
1213 	sc->port_res = 0;
1214 	if (sc->irq_res)
1215 		bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid,
1216 		    sc->irq_res);
1217 	sc->irq_res = 0;
1218 	return;
1219 }
1220 
1221 /*
1222  * Function: sn_probe( device_t dev, int pccard )
1223  *
1224  * Purpose:
1225  *      Tests to see if a given ioaddr points to an SMC9xxx chip.
1226  *      Tries to cause as little damage as possible if it's not a SMC chip.
1227  *      Returns a 0 on success
1228  *
1229  * Algorithm:
1230  *      (1) see if the high byte of BANK_SELECT is 0x33
1231  *      (2) compare the ioaddr with the base register's address
1232  *      (3) see if I recognize the chip ID in the appropriate register
1233  *
1234  *
1235  */
1236 int
1237 sn_probe(device_t dev, int pccard)
1238 {
1239 	struct sn_softc *sc = device_get_softc(dev);
1240 	u_int           bank;
1241 	u_short         revision_register;
1242 	u_short         base_address_register;
1243 	u_short		ioaddr;
1244 	int		err;
1245 
1246 	if ((err = sn_activate(dev)) != 0)
1247 		return err;
1248 
1249 	ioaddr = sc->sn_io_addr;
1250 
1251 	/*
1252 	 * First, see if the high byte is 0x33
1253 	 */
1254 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1255 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1256 #ifdef	SN_DEBUG
1257 		device_printf(dev, "test1 failed\n");
1258 #endif
1259 		goto error;
1260 	}
1261 	/*
1262 	 * The above MIGHT indicate a device, but I need to write to further
1263 	 * test this.  Go to bank 0, then test that the register still
1264 	 * reports the high byte is 0x33.
1265 	 */
1266 	outw(ioaddr + BANK_SELECT_REG_W, 0x0000);
1267 	bank = inw(ioaddr + BANK_SELECT_REG_W);
1268 	if ((bank & BSR_DETECT_MASK) != BSR_DETECT_VALUE) {
1269 #ifdef	SN_DEBUG
1270 		device_printf(dev, "test2 failed\n");
1271 #endif
1272 		goto error;
1273 	}
1274 	/*
1275 	 * well, we've already written once, so hopefully another time won't
1276 	 * hurt.  This time, I need to switch the bank register to bank 1, so
1277 	 * I can access the base address register.  The contents of the
1278 	 * BASE_ADDR_REG_W register, after some jiggery pokery, is expected
1279 	 * to match the I/O port address where the adapter is being probed.
1280 	 */
1281 	outw(ioaddr + BANK_SELECT_REG_W, 0x0001);
1282 	base_address_register = inw(ioaddr + BASE_ADDR_REG_W);
1283 
1284 	/*
1285 	 * This test is nonsence on PC-card architecture, so if
1286 	 * pccard == 1, skip this test. (hosokawa)
1287 	 */
1288 	if (!pccard && (ioaddr != (base_address_register >> 3 & 0x3E0))) {
1289 
1290 		/*
1291 		 * Well, the base address register didn't match.  Must not
1292 		 * have been a SMC chip after all.
1293 		 */
1294 		/*
1295 		 * kprintf("sn: ioaddr %x doesn't match card configuration
1296 		 * (%x)\n", ioaddr, base_address_register >> 3 & 0x3E0 );
1297 		 */
1298 
1299 #ifdef	SN_DEBUG
1300 		device_printf(dev, "test3 failed ioaddr = 0x%x, "
1301 		    "base_address_register = 0x%x\n", ioaddr,
1302 		    base_address_register >> 3 & 0x3E0);
1303 #endif
1304 		goto error;
1305 	}
1306 	/*
1307 	 * Check if the revision register is something that I recognize.
1308 	 * These might need to be added to later, as future revisions could
1309 	 * be added.
1310 	 */
1311 	outw(ioaddr + BANK_SELECT_REG_W, 0x3);
1312 	revision_register = inw(ioaddr + REVISION_REG_W);
1313 	if (!chip_ids[(revision_register >> 4) & 0xF]) {
1314 
1315 		/*
1316 		 * I don't regonize this chip, so...
1317 		 */
1318 #ifdef	SN_DEBUG
1319 		device_printf(dev, "test4 failed\n");
1320 #endif
1321 		goto error;
1322 	}
1323 	/*
1324 	 * at this point I'll assume that the chip is an SMC9xxx. It might be
1325 	 * prudent to check a listing of MAC addresses against the hardware
1326 	 * address, or do some other tests.
1327 	 */
1328 	sn_deactivate(dev);
1329 	return 0;
1330  error:
1331 	sn_deactivate(dev);
1332 	return ENXIO;
1333 }
1334 
1335 #define MCFSZ 8
1336 
1337 static void
1338 sn_setmcast(struct sn_softc *sc)
1339 {
1340 	struct ifnet *ifp = (struct ifnet *)sc;
1341 	int flags;
1342 
1343 	/*
1344 	 * Set the receiver filter.  We want receive enabled and auto strip
1345 	 * of CRC from received packet.  If we are promiscuous then set that
1346 	 * bit too.
1347 	 */
1348 	flags = RCR_ENABLE | RCR_STRIP_CRC;
1349 
1350 	if (ifp->if_flags & IFF_PROMISC) {
1351 		flags |= RCR_PROMISC | RCR_ALMUL;
1352 	} else if (ifp->if_flags & IFF_ALLMULTI) {
1353 		flags |= RCR_ALMUL;
1354 	} else {
1355 		u_char mcf[MCFSZ];
1356 		if (sn_getmcf(&sc->arpcom, mcf)) {
1357 			/* set filter */
1358 			SMC_SELECT_BANK(3);
1359 			outw(BASE + MULTICAST1_REG_W,
1360 			    ((u_short)mcf[1] << 8) |  mcf[0]);
1361 			outw(BASE + MULTICAST2_REG_W,
1362 			    ((u_short)mcf[3] << 8) |  mcf[2]);
1363 			outw(BASE + MULTICAST3_REG_W,
1364 			    ((u_short)mcf[5] << 8) |  mcf[4]);
1365 			outw(BASE + MULTICAST4_REG_W,
1366 			    ((u_short)mcf[7] << 8) |  mcf[6]);
1367 		} else {
1368 			flags |= RCR_ALMUL;
1369 		}
1370 	}
1371 	SMC_SELECT_BANK(0);
1372 	outw(BASE + RECV_CONTROL_REG_W, flags);
1373 }
1374 
1375 static int
1376 sn_getmcf(struct arpcom *ac, u_char *mcf)
1377 {
1378 	int i;
1379 	u_int index, index2;
1380 	u_char *af = (u_char *) mcf;
1381 	struct ifmultiaddr *ifma;
1382 
1383 	bzero(mcf, MCFSZ);
1384 
1385 	TAILQ_FOREACH(ifma, &ac->ac_if.if_multiaddrs, ifma_link) {
1386 	    if (ifma->ifma_addr->sa_family != AF_LINK)
1387 		return 0;
1388 	    index = smc_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)) & 0x3f;
1389 	    index2 = 0;
1390 	    for (i = 0; i < 6; i++) {
1391 		index2 <<= 1;
1392 		index2 |= (index & 0x01);
1393 		index >>= 1;
1394 	    }
1395 	    af[index2 >> 3] |= 1 << (index2 & 7);
1396 	}
1397 	return 1;  /* use multicast filter */
1398 }
1399 
1400 static u_int
1401 smc_crc(u_char *s)
1402 {
1403 	int perByte;
1404 	int perBit;
1405 	const u_int poly = 0xedb88320;
1406 	u_int v = 0xffffffff;
1407 	u_char c;
1408 
1409 	for (perByte = 0; perByte < ETHER_ADDR_LEN; perByte++) {
1410 		c = s[perByte];
1411 		for (perBit = 0; perBit < 8; perBit++) {
1412 			v = (v >> 1)^(((v ^ c) & 0x01) ? poly : 0);
1413 			c >>= 1;
1414 		}
1415 	}
1416 	return v;
1417 }
1418