xref: /freebsd/contrib/bc/manuals/algorithms.md (revision aa339f1d)
1252884aeSStefan Eßer# Algorithms
2252884aeSStefan Eßer
3252884aeSStefan EßerThis `bc` uses the math algorithms below:
4252884aeSStefan Eßer
5252884aeSStefan Eßer### Addition
6252884aeSStefan Eßer
7252884aeSStefan EßerThis `bc` uses brute force addition, which is linear (`O(n)`) in the number of
8252884aeSStefan Eßerdigits.
9252884aeSStefan Eßer
10252884aeSStefan Eßer### Subtraction
11252884aeSStefan Eßer
12252884aeSStefan EßerThis `bc` uses brute force subtraction, which is linear (`O(n)`) in the number
13252884aeSStefan Eßerof digits.
14252884aeSStefan Eßer
15252884aeSStefan Eßer### Multiplication
16252884aeSStefan Eßer
17252884aeSStefan EßerThis `bc` uses two algorithms: [Karatsuba][1] and brute force.
18252884aeSStefan Eßer
19252884aeSStefan EßerKaratsuba is used for "large" numbers. ("Large" numbers are defined as any
20252884aeSStefan Eßernumber with `BC_NUM_KARATSUBA_LEN` digits or larger. `BC_NUM_KARATSUBA_LEN` has
21252884aeSStefan Eßera sane default, but may be configured by the user.) Karatsuba, as implemented in
22252884aeSStefan Eßerthis `bc`, is superlinear but subpolynomial (bounded by `O(n^log_2(3))`).
23252884aeSStefan Eßer
24252884aeSStefan EßerBrute force multiplication is used below `BC_NUM_KARATSUBA_LEN` digits. It is
25252884aeSStefan Eßerpolynomial (`O(n^2)`), but since Karatsuba requires both more intermediate
26252884aeSStefan Eßervalues (which translate to memory allocations) and a few more additions, there
27252884aeSStefan Eßeris a "break even" point in the number of digits where brute force multiplication
2844d4804dSStefan Eßeris faster than Karatsuba. There is a script (`$ROOT/scripts/karatsuba.py`) that
2944d4804dSStefan Eßerwill find the break even point on a particular machine.
30252884aeSStefan Eßer
31252884aeSStefan Eßer***WARNING: The Karatsuba script requires Python 3.***
32252884aeSStefan Eßer
33252884aeSStefan Eßer### Division
34252884aeSStefan Eßer
35252884aeSStefan EßerThis `bc` uses Algorithm D ([long division][2]). Long division is polynomial
36252884aeSStefan Eßer(`O(n^2)`), but unlike Karatsuba, any division "divide and conquer" algorithm
37252884aeSStefan Eßerreaches its "break even" point with significantly larger numbers. "Fast"
38252884aeSStefan Eßeralgorithms become less attractive with division as this operation typically
39252884aeSStefan Eßerreduces the problem size.
40252884aeSStefan Eßer
41252884aeSStefan EßerWhile the implementation of long division may appear to use the subtractive
42252884aeSStefan Eßerchunking method, it only uses subtraction to find a quotient digit. It avoids
43252884aeSStefan Eßerunnecessary work by aligning digits prior to performing subtraction and finding
44252884aeSStefan Eßera starting guess for the quotient.
45252884aeSStefan Eßer
46252884aeSStefan EßerSubtraction was used instead of multiplication for two reasons:
47252884aeSStefan Eßer
48252884aeSStefan Eßer1.	Division and subtraction can share code (one of the less important goals of
49252884aeSStefan Eßer	this `bc` is small code).
50252884aeSStefan Eßer2.	It minimizes algorithmic complexity.
51252884aeSStefan Eßer
52252884aeSStefan EßerUsing multiplication would make division have the even worse algorithmic
53252884aeSStefan Eßercomplexity of `O(n^(2*log_2(3)))` (best case) and `O(n^3)` (worst case).
54252884aeSStefan Eßer
55252884aeSStefan Eßer### Power
56252884aeSStefan Eßer
57252884aeSStefan EßerThis `bc` implements [Exponentiation by Squaring][3], which (via Karatsuba) has
58252884aeSStefan Eßera complexity of `O((n*log(n))^log_2(3))` which is favorable to the
59252884aeSStefan Eßer`O((n*log(n))^2)` without Karatsuba.
60252884aeSStefan Eßer
61252884aeSStefan Eßer### Square Root
62252884aeSStefan Eßer
63252884aeSStefan EßerThis `bc` implements the fast algorithm [Newton's Method][4] (also known as the
64252884aeSStefan EßerNewton-Raphson Method, or the [Babylonian Method][5]) to perform the square root
6544d4804dSStefan Eßeroperation.
66252884aeSStefan Eßer
6744d4804dSStefan EßerIts complexity is `O(log(n)*n^2)` as it requires one division per iteration, and
6844d4804dSStefan Eßerit doubles the amount of correct digits per iteration.
6944d4804dSStefan Eßer
7044d4804dSStefan Eßer### Sine and Cosine (`bc` Math Library Only)
71252884aeSStefan Eßer
72252884aeSStefan EßerThis `bc` uses the series
73252884aeSStefan Eßer
74252884aeSStefan Eßer```
75252884aeSStefan Eßerx - x^3/3! + x^5/5! - x^7/7! + ...
76252884aeSStefan Eßer```
77252884aeSStefan Eßer
78252884aeSStefan Eßerto calculate `sin(x)` and `cos(x)`. It also uses the relation
79252884aeSStefan Eßer
80252884aeSStefan Eßer```
81252884aeSStefan Eßercos(x) = sin(x + pi/2)
82252884aeSStefan Eßer```
83252884aeSStefan Eßer
84252884aeSStefan Eßerto calculate `cos(x)`. It has a complexity of `O(n^3)`.
85252884aeSStefan Eßer
86252884aeSStefan Eßer**Note**: this series has a tendency to *occasionally* produce an error of 1
87252884aeSStefan Eßer[ULP][6]. (It is an unfortunate side effect of the algorithm, and there isn't
88252884aeSStefan Eßerany way around it; [this article][7] explains why calculating sine and cosine,
89252884aeSStefan Eßerand the other transcendental functions below, within less than 1 ULP is nearly
90252884aeSStefan Eßerimpossible and unnecessary.) Therefore, I recommend that users do their
91252884aeSStefan Eßercalculations with the precision (`scale`) set to at least 1 greater than is
92252884aeSStefan Eßerneeded.
93252884aeSStefan Eßer
9444d4804dSStefan Eßer### Exponentiation (`bc` Math Library Only)
95252884aeSStefan Eßer
96252884aeSStefan EßerThis `bc` uses the series
97252884aeSStefan Eßer
98252884aeSStefan Eßer```
99252884aeSStefan Eßer1 + x + x^2/2! + x^3/3! + ...
100252884aeSStefan Eßer```
101252884aeSStefan Eßer
102252884aeSStefan Eßerto calculate `e^x`. Since this only works when `x` is small, it uses
103252884aeSStefan Eßer
104252884aeSStefan Eßer```
105252884aeSStefan Eßere^x = (e^(x/2))^2
106252884aeSStefan Eßer```
107252884aeSStefan Eßer
10844d4804dSStefan Eßerto reduce `x`.
10944d4804dSStefan Eßer
11044d4804dSStefan EßerIt has a complexity of `O(n^3)`.
111252884aeSStefan Eßer
112252884aeSStefan Eßer**Note**: this series can also produce errors of 1 ULP, so I recommend users do
113252884aeSStefan Eßertheir calculations with the precision (`scale`) set to at least 1 greater than
114252884aeSStefan Eßeris needed.
115252884aeSStefan Eßer
11644d4804dSStefan Eßer### Natural Logarithm (`bc` Math Library Only)
117252884aeSStefan Eßer
118252884aeSStefan EßerThis `bc` uses the series
119252884aeSStefan Eßer
120252884aeSStefan Eßer```
121252884aeSStefan Eßera + a^3/3 + a^5/5 + ...
122252884aeSStefan Eßer```
123252884aeSStefan Eßer
124252884aeSStefan Eßer(where `a` is equal to `(x - 1)/(x + 1)`) to calculate `ln(x)` when `x` is small
125252884aeSStefan Eßerand uses the relation
126252884aeSStefan Eßer
127252884aeSStefan Eßer```
128252884aeSStefan Eßerln(x^2) = 2 * ln(x)
129252884aeSStefan Eßer```
130252884aeSStefan Eßer
13144d4804dSStefan Eßerto sufficiently reduce `x`.
13244d4804dSStefan Eßer
13344d4804dSStefan EßerIt has a complexity of `O(n^3)`.
134252884aeSStefan Eßer
135252884aeSStefan Eßer**Note**: this series can also produce errors of 1 ULP, so I recommend users do
136252884aeSStefan Eßertheir calculations with the precision (`scale`) set to at least 1 greater than
137252884aeSStefan Eßeris needed.
138252884aeSStefan Eßer
13944d4804dSStefan Eßer### Arctangent (`bc` Math Library Only)
140252884aeSStefan Eßer
141252884aeSStefan EßerThis `bc` uses the series
142252884aeSStefan Eßer
143252884aeSStefan Eßer```
144252884aeSStefan Eßerx - x^3/3 + x^5/5 - x^7/7 + ...
145252884aeSStefan Eßer```
146252884aeSStefan Eßer
147252884aeSStefan Eßerto calculate `atan(x)` for small `x` and the relation
148252884aeSStefan Eßer
149252884aeSStefan Eßer```
150252884aeSStefan Eßeratan(x) = atan(c) + atan((x - c)/(1 + x * c))
151252884aeSStefan Eßer```
152252884aeSStefan Eßer
153252884aeSStefan Eßerto reduce `x` to small enough. It has a complexity of `O(n^3)`.
154252884aeSStefan Eßer
155252884aeSStefan Eßer**Note**: this series can also produce errors of 1 ULP, so I recommend users do
156252884aeSStefan Eßertheir calculations with the precision (`scale`) set to at least 1 greater than
157252884aeSStefan Eßeris needed.
158252884aeSStefan Eßer
15944d4804dSStefan Eßer### Bessel (`bc` Math Library Only)
160252884aeSStefan Eßer
161252884aeSStefan EßerThis `bc` uses the series
162252884aeSStefan Eßer
163252884aeSStefan Eßer```
164252884aeSStefan Eßerx^n/(2^n * n!) * (1 - x^2 * 2 * 1! * (n + 1)) + x^4/(2^4 * 2! * (n + 1) * (n + 2)) - ...
165252884aeSStefan Eßer```
166252884aeSStefan Eßer
167252884aeSStefan Eßerto calculate the bessel function (integer order only).
168252884aeSStefan Eßer
169252884aeSStefan EßerIt also uses the relation
170252884aeSStefan Eßer
171252884aeSStefan Eßer```
172252884aeSStefan Eßerj(-n,x) = (-1)^n * j(n,x)
173252884aeSStefan Eßer```
174252884aeSStefan Eßer
175252884aeSStefan Eßerto calculate the bessel when `x < 0`, It has a complexity of `O(n^3)`.
176252884aeSStefan Eßer
177252884aeSStefan Eßer**Note**: this series can also produce errors of 1 ULP, so I recommend users do
178252884aeSStefan Eßertheir calculations with the precision (`scale`) set to at least 1 greater than
179252884aeSStefan Eßeris needed.
180252884aeSStefan Eßer
181d101cdd6SStefan Eßer### Modular Exponentiation
182252884aeSStefan Eßer
183252884aeSStefan EßerThis `dc` uses the [Memory-efficient method][8] to compute modular
184252884aeSStefan Eßerexponentiation. The complexity is `O(e*n^2)`, which may initially seem
185252884aeSStefan Eßerinefficient, but `n` is kept small by maintaining small numbers. In practice, it
186252884aeSStefan Eßeris extremely fast.
187252884aeSStefan Eßer
18844d4804dSStefan Eßer### Non-Integer Exponentiation (`bc` Math Library 2 Only)
18944d4804dSStefan Eßer
19044d4804dSStefan EßerThis is implemented in the function `p(x,y)`.
19144d4804dSStefan Eßer
19244d4804dSStefan EßerThe algorithm used is to use the formula `e(y*l(x))`.
19344d4804dSStefan Eßer
19444d4804dSStefan EßerIt has a complexity of `O(n^3)` because both `e()` and `l()` do.
19544d4804dSStefan Eßer
196aa339f1dSStefan EßerHowever, there are details to this algorithm, described by the author,
197aa339f1dSStefan EßerTediusTimmy, in GitHub issue [#69][12].
198aa339f1dSStefan Eßer
199aa339f1dSStefan EßerFirst, check if the exponent is 0. If it is, return 1 at the appropriate
200aa339f1dSStefan Eßer`scale`.
201aa339f1dSStefan Eßer
202aa339f1dSStefan EßerNext, check if the number is 0. If so, check if the exponent is greater than
203aa339f1dSStefan Eßerzero; if it is, return 0. If the exponent is less than 0, error (with a divide
204aa339f1dSStefan Eßerby 0) because that is undefined.
205aa339f1dSStefan Eßer
206aa339f1dSStefan EßerNext, check if the exponent is actually an integer, and if it is, use the
207aa339f1dSStefan Eßerexponentiation operator.
208aa339f1dSStefan Eßer
209aa339f1dSStefan EßerAt the `z=0` line is the start of the meat of the new code.
210aa339f1dSStefan Eßer
211aa339f1dSStefan Eßer`z` is set to zero as a flag and as a value. What I mean by that will be clear
212aa339f1dSStefan Eßerlater.
213aa339f1dSStefan Eßer
214aa339f1dSStefan EßerThen we check if the number is less than 0. If it is, we negate the exponent
215aa339f1dSStefan Eßer(and the integer version of the exponent, which we calculated earlier to check
216aa339f1dSStefan Eßerif it was an integer). We also save the number in `z`; being non-zero is a flag
217aa339f1dSStefan Eßerfor later and a value to be used. Then we store the reciprocal of the number in
218aa339f1dSStefan Eßeritself.
219aa339f1dSStefan Eßer
220aa339f1dSStefan EßerAll of the above paragraph will not make sense unless you remember the
221aa339f1dSStefan Eßerrelationship `l(x) == -l(1/x)`; we negated the exponent, which is equivalent to
222aa339f1dSStefan Eßerthe negative sign in that relationship, and we took the reciprocal of the
223aa339f1dSStefan Eßernumber, which is equivalent to the reciprocal in the relationship.
224aa339f1dSStefan Eßer
225aa339f1dSStefan EßerBut what if the number is negative? We ignore that for now because we eventually
226aa339f1dSStefan Eßercall `l(x)`, which will raise an error if `x` is negative.
227aa339f1dSStefan Eßer
228aa339f1dSStefan EßerNow, we can keep going.
229aa339f1dSStefan Eßer
230aa339f1dSStefan EßerIf at this point, the exponent is negative, we need to use the original formula
231aa339f1dSStefan Eßer(`e(y * l(x))`) and return that result because the result will go to zero
232aa339f1dSStefan Eßeranyway.
233aa339f1dSStefan Eßer
234aa339f1dSStefan EßerBut if we did *not* return, we know the exponent is *not* negative, so we can
235aa339f1dSStefan Eßerget clever.
236aa339f1dSStefan Eßer
237aa339f1dSStefan EßerWe then compute the integral portion of the power by computing the number to
238aa339f1dSStefan Eßerpower of the integral portion of the exponent.
239aa339f1dSStefan Eßer
240aa339f1dSStefan EßerThen we have the most clever trick: we add the length of that integer power (and
241aa339f1dSStefan Eßera little extra) to the `scale`. Why? Because this will ensure that the next part
242aa339f1dSStefan Eßeris calculated to at least as many digits as should be in the integer *plus* any
243aa339f1dSStefan Eßerextra `scale` that was wanted.
244aa339f1dSStefan Eßer
245aa339f1dSStefan EßerThen we check `z`, which, if it is not zero, is the original value of the
246aa339f1dSStefan Eßernumber. If it is not zero, we need to take the take the reciprocal *again*
247aa339f1dSStefan Eßerbecause now we have the correct `scale`. And we *also* have to calculate the
248aa339f1dSStefan Eßerinteger portion of the power again.
249aa339f1dSStefan Eßer
250aa339f1dSStefan EßerThen we need to calculate the fractional portion of the number. We do this by
251aa339f1dSStefan Eßerusing the original formula, but we instead of calculating `e(y * l(x))`, we
252aa339f1dSStefan Eßercalculate `e((y - a) * l(x))`, where `a` is the integer portion of `y`. It's
253aa339f1dSStefan Eßereasy to see that `y - a` will be just the fractional portion of `y` (the
254aa339f1dSStefan Eßerexponent), so this makes sense.
255aa339f1dSStefan Eßer
256aa339f1dSStefan EßerBut then we *multiply* it into the integer portion of the power. Why? Because
257aa339f1dSStefan Eßerremember: we're dealing with an exponent and a power; the relationship is
258aa339f1dSStefan Eßer`x^(y+z) == (x^y)*(x^z)`.
259aa339f1dSStefan Eßer
260aa339f1dSStefan EßerSo we multiply it into the integer portion of the power.
261aa339f1dSStefan Eßer
262aa339f1dSStefan EßerFinally, we set the result to the `scale`.
263aa339f1dSStefan Eßer
26444d4804dSStefan Eßer### Rounding (`bc` Math Library 2 Only)
26544d4804dSStefan Eßer
26644d4804dSStefan EßerThis is implemented in the function `r(x,p)`.
26744d4804dSStefan Eßer
26844d4804dSStefan EßerThe algorithm is a simple method to check if rounding away from zero is
26944d4804dSStefan Eßernecessary, and if so, adds `1e10^p`.
27044d4804dSStefan Eßer
27144d4804dSStefan EßerIt has a complexity of `O(n)` because of add.
27244d4804dSStefan Eßer
27344d4804dSStefan Eßer### Ceiling (`bc` Math Library 2 Only)
27444d4804dSStefan Eßer
27544d4804dSStefan EßerThis is implemented in the function `ceil(x,p)`.
27644d4804dSStefan Eßer
27744d4804dSStefan EßerThe algorithm is a simple add of one less decimal place than `p`.
27844d4804dSStefan Eßer
27944d4804dSStefan EßerIt has a complexity of `O(n)` because of add.
28044d4804dSStefan Eßer
28144d4804dSStefan Eßer### Factorial (`bc` Math Library 2 Only)
28244d4804dSStefan Eßer
28344d4804dSStefan EßerThis is implemented in the function `f(n)`.
28444d4804dSStefan Eßer
28544d4804dSStefan EßerThe algorithm is a simple multiplication loop.
28644d4804dSStefan Eßer
28744d4804dSStefan EßerIt has a complexity of `O(n^3)` because of linear amount of `O(n^2)`
28844d4804dSStefan Eßermultiplications.
28944d4804dSStefan Eßer
29044d4804dSStefan Eßer### Permutations (`bc` Math Library 2 Only)
29144d4804dSStefan Eßer
29244d4804dSStefan EßerThis is implemented in the function `perm(n,k)`.
29344d4804dSStefan Eßer
29444d4804dSStefan EßerThe algorithm is to use the formula `n!/(n-k)!`.
29544d4804dSStefan Eßer
29644d4804dSStefan EßerIt has a complexity of `O(n^3)` because of the division and factorials.
29744d4804dSStefan Eßer
29844d4804dSStefan Eßer### Combinations (`bc` Math Library 2 Only)
29944d4804dSStefan Eßer
30044d4804dSStefan EßerThis is implemented in the function `comb(n,r)`.
30144d4804dSStefan Eßer
30244d4804dSStefan EßerThe algorithm is to use the formula `n!/r!*(n-r)!`.
30344d4804dSStefan Eßer
30444d4804dSStefan EßerIt has a complexity of `O(n^3)` because of the division and factorials.
30544d4804dSStefan Eßer
30644d4804dSStefan Eßer### Logarithm of Any Base (`bc` Math Library 2 Only)
30744d4804dSStefan Eßer
30844d4804dSStefan EßerThis is implemented in the function `log(x,b)`.
30944d4804dSStefan Eßer
31044d4804dSStefan EßerThe algorithm is to use the formula `l(x)/l(b)` with double the `scale` because
31144d4804dSStefan Eßerthere is no good way of knowing how many digits of precision are needed when
31244d4804dSStefan Eßerswitching bases.
31344d4804dSStefan Eßer
31444d4804dSStefan EßerIt has a complexity of `O(n^3)` because of the division and `l()`.
31544d4804dSStefan Eßer
31644d4804dSStefan Eßer### Logarithm of Base 2 (`bc` Math Library 2 Only)
31744d4804dSStefan Eßer
31844d4804dSStefan EßerThis is implemented in the function `l2(x)`.
31944d4804dSStefan Eßer
32044d4804dSStefan EßerThis is a convenience wrapper around `log(x,2)`.
32144d4804dSStefan Eßer
32244d4804dSStefan Eßer### Logarithm of Base 10 (`bc` Math Library 2 Only)
32344d4804dSStefan Eßer
32444d4804dSStefan EßerThis is implemented in the function `l10(x)`.
32544d4804dSStefan Eßer
32644d4804dSStefan EßerThis is a convenience wrapper around `log(x,10)`.
32744d4804dSStefan Eßer
32844d4804dSStefan Eßer### Root (`bc` Math Library 2 Only)
32944d4804dSStefan Eßer
33044d4804dSStefan EßerThis is implemented in the function `root(x,n)`.
33144d4804dSStefan Eßer
33244d4804dSStefan EßerThe algorithm is [Newton's method][9]. The initial guess is calculated as
33344d4804dSStefan Eßer`10^ceil(length(x)/n)`.
33444d4804dSStefan Eßer
33544d4804dSStefan EßerLike square root, its complexity is `O(log(n)*n^2)` as it requires one division
33644d4804dSStefan Eßerper iteration, and it doubles the amount of correct digits per iteration.
33744d4804dSStefan Eßer
33844d4804dSStefan Eßer### Cube Root (`bc` Math Library 2 Only)
33944d4804dSStefan Eßer
34044d4804dSStefan EßerThis is implemented in the function `cbrt(x)`.
34144d4804dSStefan Eßer
34244d4804dSStefan EßerThis is a convenience wrapper around `root(x,3)`.
34344d4804dSStefan Eßer
34444d4804dSStefan Eßer### Greatest Common Divisor (`bc` Math Library 2 Only)
34544d4804dSStefan Eßer
34644d4804dSStefan EßerThis is implemented in the function `gcd(a,b)`.
34744d4804dSStefan Eßer
34844d4804dSStefan EßerThe algorithm is an iterative version of the [Euclidean Algorithm][10].
34944d4804dSStefan Eßer
35044d4804dSStefan EßerIt has a complexity of `O(n^4)` because it has a linear number of divisions.
35144d4804dSStefan Eßer
35244d4804dSStefan EßerThis function ensures that `a` is always bigger than `b` before starting the
35344d4804dSStefan Eßeralgorithm.
35444d4804dSStefan Eßer
35544d4804dSStefan Eßer### Least Common Multiple (`bc` Math Library 2 Only)
35644d4804dSStefan Eßer
35744d4804dSStefan EßerThis is implemented in the function `lcm(a,b)`.
35844d4804dSStefan Eßer
35944d4804dSStefan EßerThe algorithm uses the formula `a*b/gcd(a,b)`.
36044d4804dSStefan Eßer
36144d4804dSStefan EßerIt has a complexity of `O(n^4)` because of `gcd()`.
36244d4804dSStefan Eßer
36344d4804dSStefan Eßer### Pi (`bc` Math Library 2 Only)
36444d4804dSStefan Eßer
36544d4804dSStefan EßerThis is implemented in the function `pi(s)`.
36644d4804dSStefan Eßer
36744d4804dSStefan EßerThe algorithm uses the formula `4*a(1)`.
36844d4804dSStefan Eßer
36944d4804dSStefan EßerIt has a complexity of `O(n^3)` because of arctangent.
37044d4804dSStefan Eßer
37144d4804dSStefan Eßer### Tangent (`bc` Math Library 2 Only)
37244d4804dSStefan Eßer
37344d4804dSStefan EßerThis is implemented in the function `t(x)`.
37444d4804dSStefan Eßer
37544d4804dSStefan EßerThe algorithm uses the formula `s(x)/c(x)`.
37644d4804dSStefan Eßer
37744d4804dSStefan EßerIt has a complexity of `O(n^3)` because of sine, cosine, and division.
37844d4804dSStefan Eßer
37944d4804dSStefan Eßer### Atan2 (`bc` Math Library 2 Only)
38044d4804dSStefan Eßer
38144d4804dSStefan EßerThis is implemented in the function `a2(y,x)`.
38244d4804dSStefan Eßer
38344d4804dSStefan EßerThe algorithm uses the [standard formulas][11].
38444d4804dSStefan Eßer
38544d4804dSStefan EßerIt has a complexity of `O(n^3)` because of arctangent.
38644d4804dSStefan Eßer
387252884aeSStefan Eßer[1]: https://en.wikipedia.org/wiki/Karatsuba_algorithm
388252884aeSStefan Eßer[2]: https://en.wikipedia.org/wiki/Long_division
389252884aeSStefan Eßer[3]: https://en.wikipedia.org/wiki/Exponentiation_by_squaring
390252884aeSStefan Eßer[4]: https://en.wikipedia.org/wiki/Newton%27s_method#Square_root_of_a_number
391252884aeSStefan Eßer[5]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
392252884aeSStefan Eßer[6]: https://en.wikipedia.org/wiki/Unit_in_the_last_place
393252884aeSStefan Eßer[7]: https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
394252884aeSStefan Eßer[8]: https://en.wikipedia.org/wiki/Modular_exponentiation#Memory-efficient_method
39544d4804dSStefan Eßer[9]: https://en.wikipedia.org/wiki/Root-finding_algorithms#Newton's_method_(and_similar_derivative-based_methods)
39644d4804dSStefan Eßer[10]: https://en.wikipedia.org/wiki/Euclidean_algorithm
39744d4804dSStefan Eßer[11]: https://en.wikipedia.org/wiki/Atan2#Definition_and_computation
398aa339f1dSStefan Eßer[12]: https://github.com/gavinhoward/bc/issues/69
399