xref: /freebsd/contrib/flex/src/dfa.c (revision 7e382390)
1 /* dfa - DFA construction routines */
2 
3 /*  Copyright (c) 1990 The Regents of the University of California. */
4 /*  All rights reserved. */
5 
6 /*  This code is derived from software contributed to Berkeley by */
7 /*  Vern Paxson. */
8 
9 /*  The United States Government has rights in this work pursuant */
10 /*  to contract no. DE-AC03-76SF00098 between the United States */
11 /*  Department of Energy and the University of California. */
12 
13 /*  Redistribution and use in source and binary forms, with or without */
14 /*  modification, are permitted provided that the following conditions */
15 /*  are met: */
16 
17 /*  1. Redistributions of source code must retain the above copyright */
18 /*     notice, this list of conditions and the following disclaimer. */
19 /*  2. Redistributions in binary form must reproduce the above copyright */
20 /*     notice, this list of conditions and the following disclaimer in the */
21 /*     documentation and/or other materials provided with the distribution. */
22 
23 /*  Neither the name of the University nor the names of its contributors */
24 /*  may be used to endorse or promote products derived from this software */
25 /*  without specific prior written permission. */
26 
27 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /*  PURPOSE. */
31 
32 #include "flexdef.h"
33 #include "tables.h"
34 
35 /* declare functions that have forward references */
36 
37 void	dump_associated_rules(FILE *, int);
38 void	dump_transitions(FILE *, int[]);
39 void	sympartition(int[], int, int[], int[]);
40 int	symfollowset(int[], int, int, int[]);
41 
42 
43 /* check_for_backing_up - check a DFA state for backing up
44  *
45  * synopsis
46  *     void check_for_backing_up( int ds, int state[numecs] );
47  *
48  * ds is the number of the state to check and state[] is its out-transitions,
49  * indexed by equivalence class.
50  */
51 
check_for_backing_up(int ds,int state[])52 void check_for_backing_up (int ds, int state[])
53 {
54 	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
55 		++num_backing_up;
56 
57 		if (backing_up_report) {
58 			fprintf (backing_up_file,
59 				 _("State #%d is non-accepting -\n"), ds);
60 
61 			/* identify the state */
62 			dump_associated_rules (backing_up_file, ds);
63 
64 			/* Now identify it further using the out- and
65 			 * jam-transitions.
66 			 */
67 			dump_transitions (backing_up_file, state);
68 
69 			putc ('\n', backing_up_file);
70 		}
71 	}
72 }
73 
74 
75 /* check_trailing_context - check to see if NFA state set constitutes
76  *                          "dangerous" trailing context
77  *
78  * synopsis
79  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
80  *				int accset[nacc+1], int nacc );
81  *
82  * NOTES
83  *  Trailing context is "dangerous" if both the head and the trailing
84  *  part are of variable size \and/ there's a DFA state which contains
85  *  both an accepting state for the head part of the rule and NFA states
86  *  which occur after the beginning of the trailing context.
87  *
88  *  When such a rule is matched, it's impossible to tell if having been
89  *  in the DFA state indicates the beginning of the trailing context or
90  *  further-along scanning of the pattern.  In these cases, a warning
91  *  message is issued.
92  *
93  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
94  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
95  */
96 
check_trailing_context(int * nfa_states,int num_states,int * accset,int nacc)97 void check_trailing_context (int *nfa_states, int num_states, int *accset, int nacc)
98 {
99 	int i, j;
100 
101 	for (i = 1; i <= num_states; ++i) {
102 		int     ns = nfa_states[i];
103 		int type = state_type[ns];
104 		int ar = assoc_rule[ns];
105 
106 		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
107 		}
108 
109 		else if (type == STATE_TRAILING_CONTEXT) {
110 			/* Potential trouble.  Scan set of accepting numbers
111 			 * for the one marking the end of the "head".  We
112 			 * assume that this looping will be fairly cheap
113 			 * since it's rare that an accepting number set
114 			 * is large.
115 			 */
116 			for (j = 1; j <= nacc; ++j)
117 				if (accset[j] & YY_TRAILING_HEAD_MASK) {
118 					line_warning (_
119 						      ("dangerous trailing context"),
120 						      rule_linenum[ar]);
121 					return;
122 				}
123 		}
124 	}
125 }
126 
127 
128 /* dump_associated_rules - list the rules associated with a DFA state
129  *
130  * Goes through the set of NFA states associated with the DFA and
131  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
132  * and writes a report to the given file.
133  */
134 
dump_associated_rules(FILE * file,int ds)135 void dump_associated_rules (FILE *file, int ds)
136 {
137 	int i, j;
138 	int num_associated_rules = 0;
139 	int rule_set[MAX_ASSOC_RULES + 1];
140 	int *dset = dss[ds];
141 	int size = dfasiz[ds];
142 
143 	for (i = 1; i <= size; ++i) {
144 		int rule_num = rule_linenum[assoc_rule[dset[i]]];
145 
146 		for (j = 1; j <= num_associated_rules; ++j)
147 			if (rule_num == rule_set[j])
148 				break;
149 
150 		if (j > num_associated_rules) {	/* new rule */
151 			if (num_associated_rules < MAX_ASSOC_RULES)
152 				rule_set[++num_associated_rules] =
153 					rule_num;
154 		}
155 	}
156 
157 	qsort (&rule_set [1], (size_t) num_associated_rules, sizeof (rule_set [1]), intcmp);
158 
159 	fprintf (file, _(" associated rule line numbers:"));
160 
161 	for (i = 1; i <= num_associated_rules; ++i) {
162 		if (i % 8 == 1)
163 			putc ('\n', file);
164 
165 		fprintf (file, "\t%d", rule_set[i]);
166 	}
167 
168 	putc ('\n', file);
169 }
170 
171 
172 /* dump_transitions - list the transitions associated with a DFA state
173  *
174  * synopsis
175  *     dump_transitions( FILE *file, int state[numecs] );
176  *
177  * Goes through the set of out-transitions and lists them in human-readable
178  * form (i.e., not as equivalence classes); also lists jam transitions
179  * (i.e., all those which are not out-transitions, plus EOF).  The dump
180  * is done to the given file.
181  */
182 
dump_transitions(FILE * file,int state[])183 void dump_transitions (FILE *file, int state[])
184 {
185 	int i, ec;
186 	int out_char_set[CSIZE];
187 
188 	for (i = 0; i < csize; ++i) {
189 		ec = ABS (ecgroup[i]);
190 		out_char_set[i] = state[ec];
191 	}
192 
193 	fprintf (file, _(" out-transitions: "));
194 
195 	list_character_set (file, out_char_set);
196 
197 	/* now invert the members of the set to get the jam transitions */
198 	for (i = 0; i < csize; ++i)
199 		out_char_set[i] = !out_char_set[i];
200 
201 	fprintf (file, _("\n jam-transitions: EOF "));
202 
203 	list_character_set (file, out_char_set);
204 
205 	putc ('\n', file);
206 }
207 
208 
209 /* epsclosure - construct the epsilon closure of a set of ndfa states
210  *
211  * synopsis
212  *    int *epsclosure( int t[num_states], int *numstates_addr,
213  *			int accset[num_rules+1], int *nacc_addr,
214  *			int *hashval_addr );
215  *
216  * NOTES
217  *  The epsilon closure is the set of all states reachable by an arbitrary
218  *  number of epsilon transitions, which themselves do not have epsilon
219  *  transitions going out, unioned with the set of states which have non-null
220  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
221  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
222  *  accset holds a list of the accepting numbers, and the size of accset is
223  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
224  *  large enough to hold the epsilon closure.
225  *
226  *  hashval is the hash value for the dfa corresponding to the state set.
227  */
228 
epsclosure(int * t,int * ns_addr,int accset[],int * nacc_addr,int * hv_addr)229 int    *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, int *hv_addr)
230 {
231 	int     stkpos, ns, tsp;
232 	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
233 	int     stkend, nstate;
234 	static int did_stk_init = false, *stk;
235 
236 #define MARK_STATE(state) \
237 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
238 
239 #define IS_MARKED(state) (trans1[state] < 0)
240 
241 #define UNMARK_STATE(state) \
242 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
243 
244 #define CHECK_ACCEPT(state) \
245 do{ \
246 nfaccnum = accptnum[state]; \
247 if ( nfaccnum != NIL ) \
248 accset[++nacc] = nfaccnum; \
249 }while(0)
250 
251 #define DO_REALLOCATION() \
252 do { \
253 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
254 ++num_reallocs; \
255 t = reallocate_integer_array( t, current_max_dfa_size ); \
256 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
257 }while(0) \
258 
259 #define PUT_ON_STACK(state) \
260 do { \
261 if ( ++stkend >= current_max_dfa_size ) \
262 DO_REALLOCATION(); \
263 stk[stkend] = state; \
264 MARK_STATE(state); \
265 }while(0)
266 
267 #define ADD_STATE(state) \
268 do { \
269 if ( ++numstates >= current_max_dfa_size ) \
270 DO_REALLOCATION(); \
271 t[numstates] = state; \
272 hashval += state; \
273 }while(0)
274 
275 #define STACK_STATE(state) \
276 do { \
277 PUT_ON_STACK(state); \
278 CHECK_ACCEPT(state); \
279 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
280 ADD_STATE(state); \
281 }while(0)
282 
283 
284 	if (!did_stk_init) {
285 		stk = allocate_integer_array (current_max_dfa_size);
286 		did_stk_init = true;
287 	}
288 
289 	nacc = stkend = hashval = 0;
290 
291 	for (nstate = 1; nstate <= numstates; ++nstate) {
292 		ns = t[nstate];
293 
294 		/* The state could be marked if we've already pushed it onto
295 		 * the stack.
296 		 */
297 		if (!IS_MARKED (ns)) {
298 			PUT_ON_STACK (ns);
299 			CHECK_ACCEPT (ns);
300 			hashval += ns;
301 		}
302 	}
303 
304 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
305 		ns = stk[stkpos];
306 		transsym = transchar[ns];
307 
308 		if (transsym == SYM_EPSILON) {
309 			tsp = trans1[ns] + MARKER_DIFFERENCE;
310 
311 			if (tsp != NO_TRANSITION) {
312 				if (!IS_MARKED (tsp))
313 					STACK_STATE (tsp);
314 
315 				tsp = trans2[ns];
316 
317 				if (tsp != NO_TRANSITION
318 				    && !IS_MARKED (tsp))
319 					STACK_STATE (tsp);
320 			}
321 		}
322 	}
323 
324 	/* Clear out "visit" markers. */
325 
326 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
327 		if (IS_MARKED (stk[stkpos]))
328 			UNMARK_STATE (stk[stkpos]);
329 		else
330 			flexfatal (_
331 				   ("consistency check failed in epsclosure()"));
332 	}
333 
334 	*ns_addr = numstates;
335 	*hv_addr = hashval;
336 	*nacc_addr = nacc;
337 
338 	return t;
339 }
340 
341 
342 /* increase_max_dfas - increase the maximum number of DFAs */
343 
increase_max_dfas(void)344 void increase_max_dfas (void)
345 {
346 	current_max_dfas += MAX_DFAS_INCREMENT;
347 
348 	++num_reallocs;
349 
350 	base = reallocate_integer_array (base, current_max_dfas);
351 	def = reallocate_integer_array (def, current_max_dfas);
352 	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
353 	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
354 	dhash = reallocate_integer_array (dhash, current_max_dfas);
355 	dss = reallocate_int_ptr_array (dss, current_max_dfas);
356 	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
357 
358 	if (nultrans)
359 		nultrans =
360 			reallocate_integer_array (nultrans,
361 						  current_max_dfas);
362 }
363 
364 
365 /* ntod - convert an ndfa to a dfa
366  *
367  * Creates the dfa corresponding to the ndfa we've constructed.  The
368  * dfa starts out in state #1.
369  */
370 
ntod(void)371 void ntod (void)
372 {
373 	int    *accset, ds, nacc, newds;
374 	int     sym, hashval, numstates, dsize;
375 	int     num_full_table_rows=0;	/* used only for -f */
376 	int    *nset, *dset;
377 	int     targptr, totaltrans, i, comstate, comfreq, targ;
378 	int     symlist[CSIZE + 1];
379 	int     num_start_states;
380 	int     todo_head, todo_next;
381 
382 	struct yytbl_data *yynxt_tbl = 0;
383 	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
384 
385 	/* Note that the following are indexed by *equivalence classes*
386 	 * and not by characters.  Since equivalence classes are indexed
387 	 * beginning with 1, even if the scanner accepts NUL's, this
388 	 * means that (since every character is potentially in its own
389 	 * equivalence class) these arrays must have room for indices
390 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
391 	 */
392 	int     duplist[CSIZE + 1], state[CSIZE + 1];
393 	int     targfreq[CSIZE + 1] = {0}, targstate[CSIZE + 1];
394 
395 	/* accset needs to be large enough to hold all of the rules present
396 	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
397 	 */
398 	accset = allocate_integer_array ((num_rules + 1) * 2);
399 	nset = allocate_integer_array (current_max_dfa_size);
400 
401 	/* The "todo" queue is represented by the head, which is the DFA
402 	 * state currently being processed, and the "next", which is the
403 	 * next DFA state number available (not in use).  We depend on the
404 	 * fact that snstods() returns DFA's \in increasing order/, and thus
405 	 * need only know the bounds of the dfas to be processed.
406 	 */
407 	todo_head = todo_next = 0;
408 
409 	for (i = 0; i <= csize; ++i) {
410 		duplist[i] = NIL;
411 		symlist[i] = false;
412 	}
413 
414 	for (i = 0; i <= num_rules; ++i)
415 		accset[i] = NIL;
416 
417 	if (trace) {
418 		dumpnfa (scset[1]);
419 		fputs (_("\n\nDFA Dump:\n\n"), stderr);
420 	}
421 
422 	inittbl ();
423 
424 	/* Check to see whether we should build a separate table for
425 	 * transitions on NUL characters.  We don't do this for full-speed
426 	 * (-F) scanners, since for them we don't have a simple state
427 	 * number lying around with which to index the table.  We also
428 	 * don't bother doing it for scanners unless (1) NUL is in its own
429 	 * equivalence class (indicated by a positive value of
430 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
431 	 * equivalence class, and (3) the number of equivalence classes is
432 	 * the same as the number of characters.  This latter case comes
433 	 * about when useecs is false or when it's true but every character
434 	 * still manages to land in its own class (unlikely, but it's
435 	 * cheap to check for).  If all these things are true then the
436 	 * character code needed to represent NUL's equivalence class for
437 	 * indexing the tables is going to take one more bit than the
438 	 * number of characters, and therefore we won't be assured of
439 	 * being able to fit it into a YY_CHAR variable.  This rules out
440 	 * storing the transitions in a compressed table, since the code
441 	 * for interpreting them uses a YY_CHAR variable (perhaps it
442 	 * should just use an integer, though; this is worth pondering ...
443 	 * ###).
444 	 *
445 	 * Finally, for full tables, we want the number of entries in the
446 	 * table to be a power of two so the array references go fast (it
447 	 * will just take a shift to compute the major index).  If
448 	 * encoding NUL's transitions in the table will spoil this, we
449 	 * give it its own table (note that this will be the case if we're
450 	 * not using equivalence classes).
451 	 */
452 
453 	/* Note that the test for ecgroup[0] == numecs below accomplishes
454 	 * both (1) and (2) above
455 	 */
456 	if (!fullspd && ecgroup[0] == numecs) {
457 		/* NUL is alone in its equivalence class, which is the
458 		 * last one.
459 		 */
460 		int     use_NUL_table = (numecs == csize);
461 
462 		if (fulltbl && !use_NUL_table) {
463 			/* We still may want to use the table if numecs
464 			 * is a power of 2.
465 			 */
466 			if (numecs <= csize && is_power_of_2(numecs)) {
467 				use_NUL_table = true;
468 			}
469 		}
470 
471 		if (use_NUL_table)
472 			nultrans =
473 				allocate_integer_array (current_max_dfas);
474 
475 		/* From now on, nultrans != nil indicates that we're
476 		 * saving null transitions for later, separate encoding.
477 		 */
478 	}
479 
480 
481 	if (fullspd) {
482 		for (i = 0; i <= numecs; ++i)
483 			state[i] = 0;
484 
485 		place_state (state, 0, 0);
486 		dfaacc[0].dfaacc_state = 0;
487 	}
488 
489 	else if (fulltbl) {
490 		if (nultrans)
491 			/* We won't be including NUL's transitions in the
492 			 * table, so build it for entries from 0 .. numecs - 1.
493 			 */
494 			num_full_table_rows = numecs;
495 
496 		else
497 			/* Take into account the fact that we'll be including
498 			 * the NUL entries in the transition table.  Build it
499 			 * from 0 .. numecs.
500 			 */
501 			num_full_table_rows = numecs + 1;
502 
503 		/* Begin generating yy_nxt[][]
504 		 * This spans the entire LONG function.
505 		 * This table is tricky because we don't know how big it will be.
506 		 * So we'll have to realloc() on the way...
507 		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
508 		 */
509 		yynxt_tbl = calloc(1, sizeof (struct yytbl_data));
510 
511 		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
512 		yynxt_tbl->td_hilen = 1;
513 		yynxt_tbl->td_lolen = (flex_uint32_t) num_full_table_rows;
514 		yynxt_tbl->td_data = yynxt_data =
515 			calloc(yynxt_tbl->td_lolen *
516 					    yynxt_tbl->td_hilen,
517 					    sizeof (flex_int32_t));
518 		yynxt_curr = 0;
519 
520 		buf_prints (&yydmap_buf,
521 			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
522 			    long_align ? "flex_int32_t" : "flex_int16_t");
523 
524 		/* Unless -Ca, declare it "short" because it's a real
525 		 * long-shot that that won't be large enough.
526 		 */
527 		if (gentables)
528 			out_str_dec
529 				("static const %s yy_nxt[][%d] =\n    {\n",
530 				 long_align ? "flex_int32_t" : "flex_int16_t",
531 				 num_full_table_rows);
532 		else {
533 			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
534 			out_str ("static const %s *yy_nxt =0;\n",
535 				 long_align ? "flex_int32_t" : "flex_int16_t");
536 		}
537 
538 
539 		if (gentables)
540 			outn ("    {");
541 
542 		/* Generate 0 entries for state #0. */
543 		for (i = 0; i < num_full_table_rows; ++i) {
544 			mk2data (0);
545 			yynxt_data[yynxt_curr++] = 0;
546 		}
547 
548 		dataflush ();
549 		if (gentables)
550 			outn ("    },\n");
551 	}
552 
553 	/* Create the first states. */
554 
555 	num_start_states = lastsc * 2;
556 
557 	for (i = 1; i <= num_start_states; ++i) {
558 		numstates = 1;
559 
560 		/* For each start condition, make one state for the case when
561 		 * we're at the beginning of the line (the '^' operator) and
562 		 * one for the case when we're not.
563 		 */
564 		if (i % 2 == 1)
565 			nset[numstates] = scset[(i / 2) + 1];
566 		else
567 			nset[numstates] =
568 				mkbranch (scbol[i / 2], scset[i / 2]);
569 
570 		nset = epsclosure (nset, &numstates, accset, &nacc,
571 				   &hashval);
572 
573 		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
574 			numas += nacc;
575 			totnst += numstates;
576 			++todo_next;
577 
578 			if (variable_trailing_context_rules && nacc > 0)
579 				check_trailing_context (nset, numstates,
580 							accset, nacc);
581 		}
582 	}
583 
584 	if (!fullspd) {
585 		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
586 			flexfatal (_
587 				   ("could not create unique end-of-buffer state"));
588 
589 		++numas;
590 		++num_start_states;
591 		++todo_next;
592 	}
593 
594 
595 	while (todo_head < todo_next) {
596 		targptr = 0;
597 		totaltrans = 0;
598 
599 		for (i = 1; i <= numecs; ++i)
600 			state[i] = 0;
601 
602 		ds = ++todo_head;
603 
604 		dset = dss[ds];
605 		dsize = dfasiz[ds];
606 
607 		if (trace)
608 			fprintf (stderr, _("state # %d:\n"), ds);
609 
610 		sympartition (dset, dsize, symlist, duplist);
611 
612 		for (sym = 1; sym <= numecs; ++sym) {
613 			if (symlist[sym]) {
614 				symlist[sym] = 0;
615 
616 				if (duplist[sym] == NIL) {
617 					/* Symbol has unique out-transitions. */
618 					numstates =
619 						symfollowset (dset, dsize,
620 							      sym, nset);
621 					nset = epsclosure (nset,
622 							   &numstates,
623 							   accset, &nacc,
624 							   &hashval);
625 
626 					if (snstods
627 					    (nset, numstates, accset, nacc,
628 					     hashval, &newds)) {
629 						totnst = totnst +
630 							numstates;
631 						++todo_next;
632 						numas += nacc;
633 
634 						if (variable_trailing_context_rules && nacc > 0)
635 							check_trailing_context
636 								(nset,
637 								 numstates,
638 								 accset,
639 								 nacc);
640 					}
641 
642 					state[sym] = newds;
643 
644 					if (trace)
645 						fprintf (stderr,
646 							 "\t%d\t%d\n", sym,
647 							 newds);
648 
649 					targfreq[++targptr] = 1;
650 					targstate[targptr] = newds;
651 					++numuniq;
652 				}
653 
654 				else {
655 					/* sym's equivalence class has the same
656 					 * transitions as duplist(sym)'s
657 					 * equivalence class.
658 					 */
659 					targ = state[duplist[sym]];
660 					state[sym] = targ;
661 
662 					if (trace)
663 						fprintf (stderr,
664 							 "\t%d\t%d\n", sym,
665 							 targ);
666 
667 					/* Update frequency count for
668 					 * destination state.
669 					 */
670 
671 					i = 0;
672 					while (targstate[++i] != targ) ;
673 
674 					++targfreq[i];
675 					++numdup;
676 				}
677 
678 				++totaltrans;
679 				duplist[sym] = NIL;
680 			}
681 		}
682 
683 
684 		numsnpairs += totaltrans;
685 
686 		if (ds > num_start_states)
687 			check_for_backing_up (ds, state);
688 
689 		if (nultrans) {
690 			nultrans[ds] = state[NUL_ec];
691 			state[NUL_ec] = 0;	/* remove transition */
692 		}
693 
694 		if (fulltbl) {
695 
696 			/* Each time we hit here, it's another td_hilen, so we realloc. */
697 			yynxt_tbl->td_hilen++;
698 			yynxt_tbl->td_data = yynxt_data =
699 				realloc (yynxt_data,
700 						     yynxt_tbl->td_hilen *
701 						     yynxt_tbl->td_lolen *
702 						     sizeof (flex_int32_t));
703 
704 
705 			if (gentables)
706 				outn ("    {");
707 
708 			/* Supply array's 0-element. */
709 			if (ds == end_of_buffer_state) {
710 				mk2data (-end_of_buffer_state);
711 				yynxt_data[yynxt_curr++] =
712 					-end_of_buffer_state;
713 			}
714 			else {
715 				mk2data (end_of_buffer_state);
716 				yynxt_data[yynxt_curr++] =
717 					end_of_buffer_state;
718 			}
719 
720 			for (i = 1; i < num_full_table_rows; ++i) {
721 				/* Jams are marked by negative of state
722 				 * number.
723 				 */
724 				mk2data (state[i] ? state[i] : -ds);
725 				yynxt_data[yynxt_curr++] =
726 					state[i] ? state[i] : -ds;
727 			}
728 
729 			dataflush ();
730 			if (gentables)
731 				outn ("    },\n");
732 		}
733 
734 		else if (fullspd)
735 			place_state (state, ds, totaltrans);
736 
737 		else if (ds == end_of_buffer_state)
738 			/* Special case this state to make sure it does what
739 			 * it's supposed to, i.e., jam on end-of-buffer.
740 			 */
741 			stack1 (ds, 0, 0, JAMSTATE);
742 
743 		else {		/* normal, compressed state */
744 
745 			/* Determine which destination state is the most
746 			 * common, and how many transitions to it there are.
747 			 */
748 
749 			comfreq = 0;
750 			comstate = 0;
751 
752 			for (i = 1; i <= targptr; ++i)
753 				if (targfreq[i] > comfreq) {
754 					comfreq = targfreq[i];
755 					comstate = targstate[i];
756 				}
757 
758 			bldtbl (state, ds, totaltrans, comstate, comfreq);
759 		}
760 	}
761 
762 	if (fulltbl) {
763 		dataend ();
764 		if (tablesext) {
765 			yytbl_data_compress (yynxt_tbl);
766 			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
767 				flexerror (_
768 					   ("Could not write yynxt_tbl[][]"));
769 		}
770 		if (yynxt_tbl) {
771 			yytbl_data_destroy (yynxt_tbl);
772 			yynxt_tbl = 0;
773 		}
774 	}
775 
776 	else if (!fullspd) {
777 		cmptmps ();	/* create compressed template entries */
778 
779 		/* Create tables for all the states with only one
780 		 * out-transition.
781 		 */
782 		while (onesp > 0) {
783 			mk1tbl (onestate[onesp], onesym[onesp],
784 				onenext[onesp], onedef[onesp]);
785 			--onesp;
786 		}
787 
788 		mkdeftbl ();
789 	}
790 
791 	free(accset);
792 	free(nset);
793 }
794 
795 
796 /* snstods - converts a set of ndfa states into a dfa state
797  *
798  * synopsis
799  *    is_new_state = snstods( int sns[numstates], int numstates,
800  *				int accset[num_rules+1], int nacc,
801  *				int hashval, int *newds_addr );
802  *
803  * On return, the dfa state number is in newds.
804  */
805 
snstods(int sns[],int numstates,int accset[],int nacc,int hashval,int * newds_addr)806 int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, int *newds_addr)
807 {
808 	int didsort = 0;
809 	int i, j;
810 	int newds, *oldsns;
811 
812 	for (i = 1; i <= lastdfa; ++i)
813 		if (hashval == dhash[i]) {
814 			if (numstates == dfasiz[i]) {
815 				oldsns = dss[i];
816 
817 				if (!didsort) {
818 					/* We sort the states in sns so we
819 					 * can compare it to oldsns quickly.
820 					 */
821 					qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
822 					didsort = 1;
823 				}
824 
825 				for (j = 1; j <= numstates; ++j)
826 					if (sns[j] != oldsns[j])
827 						break;
828 
829 				if (j > numstates) {
830 					++dfaeql;
831 					*newds_addr = i;
832 					return 0;
833 				}
834 
835 				++hshcol;
836 			}
837 
838 			else
839 				++hshsave;
840 		}
841 
842 	/* Make a new dfa. */
843 
844 	if (++lastdfa >= current_max_dfas)
845 		increase_max_dfas ();
846 
847 	newds = lastdfa;
848 
849 	dss[newds] = allocate_integer_array (numstates + 1);
850 
851 	/* If we haven't already sorted the states in sns, we do so now,
852 	 * so that future comparisons with it can be made quickly.
853 	 */
854 
855 	if (!didsort)
856           	qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
857 
858 	for (i = 1; i <= numstates; ++i)
859 		dss[newds][i] = sns[i];
860 
861 	dfasiz[newds] = numstates;
862 	dhash[newds] = hashval;
863 
864 	if (nacc == 0) {
865 		if (reject)
866 			dfaacc[newds].dfaacc_set = NULL;
867 		else
868 			dfaacc[newds].dfaacc_state = 0;
869 
870 		accsiz[newds] = 0;
871 	}
872 
873 	else if (reject) {
874 		/* We sort the accepting set in increasing order so the
875 		 * disambiguating rule that the first rule listed is considered
876 		 * match in the event of ties will work.
877 		 */
878 
879 		qsort (&accset [1], (size_t) nacc, sizeof (accset [1]), intcmp);
880 
881 		dfaacc[newds].dfaacc_set =
882 			allocate_integer_array (nacc + 1);
883 
884 		/* Save the accepting set for later */
885 		for (i = 1; i <= nacc; ++i) {
886 			dfaacc[newds].dfaacc_set[i] = accset[i];
887 
888 			if (accset[i] <= num_rules)
889 				/* Who knows, perhaps a REJECT can yield
890 				 * this rule.
891 				 */
892 				rule_useful[accset[i]] = true;
893 		}
894 
895 		accsiz[newds] = nacc;
896 	}
897 
898 	else {
899 		/* Find lowest numbered rule so the disambiguating rule
900 		 * will work.
901 		 */
902 		j = num_rules + 1;
903 
904 		for (i = 1; i <= nacc; ++i)
905 			if (accset[i] < j)
906 				j = accset[i];
907 
908 		dfaacc[newds].dfaacc_state = j;
909 
910 		if (j <= num_rules)
911 			rule_useful[j] = true;
912 	}
913 
914 	*newds_addr = newds;
915 
916 	return 1;
917 }
918 
919 
920 /* symfollowset - follow the symbol transitions one step
921  *
922  * synopsis
923  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
924  *				int transsym, int nset[current_max_dfa_size] );
925  */
926 
symfollowset(int ds[],int dsize,int transsym,int nset[])927 int symfollowset (int ds[], int dsize, int transsym, int nset[])
928 {
929 	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
930 
931 	numstates = 0;
932 
933 	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
934 		ns = ds[i];
935 		sym = transchar[ns];
936 		tsp = trans1[ns];
937 
938 		if (sym < 0) {	/* it's a character class */
939 			sym = -sym;
940 			ccllist = cclmap[sym];
941 			lenccl = ccllen[sym];
942 
943 			if (cclng[sym]) {
944 				for (j = 0; j < lenccl; ++j) {
945 					/* Loop through negated character
946 					 * class.
947 					 */
948 					ch = ccltbl[ccllist + j];
949 
950 					if (ch == 0)
951 						ch = NUL_ec;
952 
953 					if (ch > transsym)
954 						/* Transsym isn't in negated
955 						 * ccl.
956 						 */
957 						break;
958 
959 					else if (ch == transsym)
960 						/* next 2 */
961 						goto bottom;
962 				}
963 
964 				/* Didn't find transsym in ccl. */
965 				nset[++numstates] = tsp;
966 			}
967 
968 			else
969 				for (j = 0; j < lenccl; ++j) {
970 					ch = ccltbl[ccllist + j];
971 
972 					if (ch == 0)
973 						ch = NUL_ec;
974 
975 					if (ch > transsym)
976 						break;
977 					else if (ch == transsym) {
978 						nset[++numstates] = tsp;
979 						break;
980 					}
981 				}
982 		}
983 
984 		else if (sym == SYM_EPSILON) {	/* do nothing */
985 		}
986 
987 		else if (ABS (ecgroup[sym]) == transsym)
988 			nset[++numstates] = tsp;
989 
990 	      bottom:;
991 	}
992 
993 	return numstates;
994 }
995 
996 
997 /* sympartition - partition characters with same out-transitions
998  *
999  * synopsis
1000  *    sympartition( int ds[current_max_dfa_size], int numstates,
1001  *			int symlist[numecs], int duplist[numecs] );
1002  */
1003 
sympartition(int ds[],int numstates,int symlist[],int duplist[])1004 void sympartition (int ds[], int numstates, int symlist[], int duplist[])
1005 {
1006 	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1007 
1008 	/* Partitioning is done by creating equivalence classes for those
1009 	 * characters which have out-transitions from the given state.  Thus
1010 	 * we are really creating equivalence classes of equivalence classes.
1011 	 */
1012 
1013 	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1014 		duplist[i] = i - 1;
1015 		dupfwd[i] = i + 1;
1016 	}
1017 
1018 	duplist[1] = NIL;
1019 	dupfwd[numecs] = NIL;
1020 
1021 	for (i = 1; i <= numstates; ++i) {
1022 		ns = ds[i];
1023 		tch = transchar[ns];
1024 
1025 		if (tch != SYM_EPSILON) {
1026 			if (tch < -lastccl || tch >= csize) {
1027 				flexfatal (_
1028 					   ("bad transition character detected in sympartition()"));
1029 			}
1030 
1031 			if (tch >= 0) {	/* character transition */
1032 				int     ec = ecgroup[tch];
1033 
1034 				mkechar (ec, dupfwd, duplist);
1035 				symlist[ec] = 1;
1036 			}
1037 
1038 			else {	/* character class */
1039 				tch = -tch;
1040 
1041 				lenccl = ccllen[tch];
1042 				cclp = cclmap[tch];
1043 				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1044 					duplist, numecs, NUL_ec);
1045 
1046 				if (cclng[tch]) {
1047 					j = 0;
1048 
1049 					for (k = 0; k < lenccl; ++k) {
1050 						ich = ccltbl[cclp + k];
1051 
1052 						if (ich == 0)
1053 							ich = NUL_ec;
1054 
1055 						for (++j; j < ich; ++j)
1056 							symlist[j] = 1;
1057 					}
1058 
1059 					for (++j; j <= numecs; ++j)
1060 						symlist[j] = 1;
1061 				}
1062 
1063 				else
1064 					for (k = 0; k < lenccl; ++k) {
1065 						ich = ccltbl[cclp + k];
1066 
1067 						if (ich == 0)
1068 							ich = NUL_ec;
1069 
1070 						symlist[ich] = 1;
1071 					}
1072 			}
1073 		}
1074 	}
1075 }
1076