xref: /freebsd/contrib/flex/src/nfa.c (revision 7e382390)
1 /* nfa - NFA construction routines */
2 
3 /*  Copyright (c) 1990 The Regents of the University of California. */
4 /*  All rights reserved. */
5 
6 /*  This code is derived from software contributed to Berkeley by */
7 /*  Vern Paxson. */
8 
9 /*  The United States Government has rights in this work pursuant */
10 /*  to contract no. DE-AC03-76SF00098 between the United States */
11 /*  Department of Energy and the University of California. */
12 
13 /*  This file is part of flex. */
14 
15 /*  Redistribution and use in source and binary forms, with or without */
16 /*  modification, are permitted provided that the following conditions */
17 /*  are met: */
18 
19 /*  1. Redistributions of source code must retain the above copyright */
20 /*     notice, this list of conditions and the following disclaimer. */
21 /*  2. Redistributions in binary form must reproduce the above copyright */
22 /*     notice, this list of conditions and the following disclaimer in the */
23 /*     documentation and/or other materials provided with the distribution. */
24 
25 /*  Neither the name of the University nor the names of its contributors */
26 /*  may be used to endorse or promote products derived from this software */
27 /*  without specific prior written permission. */
28 
29 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32 /*  PURPOSE. */
33 
34 #include "flexdef.h"
35 
36 
37 /* declare functions that have forward references */
38 
39 int	dupmachine(int);
40 void	mkxtion(int, int);
41 
42 
43 /* add_accept - add an accepting state to a machine
44  *
45  * accepting_number becomes mach's accepting number.
46  */
47 
add_accept(int mach,int accepting_number)48 void    add_accept (int mach, int accepting_number)
49 {
50 	/* Hang the accepting number off an epsilon state.  if it is associated
51 	 * with a state that has a non-epsilon out-transition, then the state
52 	 * will accept BEFORE it makes that transition, i.e., one character
53 	 * too soon.
54 	 */
55 
56 	if (transchar[finalst[mach]] == SYM_EPSILON)
57 		accptnum[finalst[mach]] = accepting_number;
58 
59 	else {
60 		int     astate = mkstate (SYM_EPSILON);
61 
62 		accptnum[astate] = accepting_number;
63 		(void) link_machines (mach, astate);
64 	}
65 }
66 
67 
68 /* copysingl - make a given number of copies of a singleton machine
69  *
70  * synopsis
71  *
72  *   newsng = copysingl( singl, num );
73  *
74  *     newsng - a new singleton composed of num copies of singl
75  *     singl  - a singleton machine
76  *     num    - the number of copies of singl to be present in newsng
77  */
78 
copysingl(int singl,int num)79 int     copysingl (int singl, int num)
80 {
81 	int     copy, i;
82 
83 	copy = mkstate (SYM_EPSILON);
84 
85 	for (i = 1; i <= num; ++i)
86 		copy = link_machines (copy, dupmachine (singl));
87 
88 	return copy;
89 }
90 
91 
92 /* dumpnfa - debugging routine to write out an nfa */
93 
dumpnfa(int state1)94 void    dumpnfa (int state1)
95 {
96 	int     sym, tsp1, tsp2, anum, ns;
97 
98 	fprintf (stderr,
99 		 _
100 		 ("\n\n********** beginning dump of nfa with start state %d\n"),
101 		 state1);
102 
103 	/* We probably should loop starting at firstst[state1] and going to
104 	 * lastst[state1], but they're not maintained properly when we "or"
105 	 * all of the rules together.  So we use our knowledge that the machine
106 	 * starts at state 1 and ends at lastnfa.
107 	 */
108 
109 	/* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
110 	for (ns = 1; ns <= lastnfa; ++ns) {
111 		fprintf (stderr, _("state # %4d\t"), ns);
112 
113 		sym = transchar[ns];
114 		tsp1 = trans1[ns];
115 		tsp2 = trans2[ns];
116 		anum = accptnum[ns];
117 
118 		fprintf (stderr, "%3d:  %4d, %4d", sym, tsp1, tsp2);
119 
120 		if (anum != NIL)
121 			fprintf (stderr, "  [%d]", anum);
122 
123 		fprintf (stderr, "\n");
124 	}
125 
126 	fprintf (stderr, _("********** end of dump\n"));
127 }
128 
129 
130 /* dupmachine - make a duplicate of a given machine
131  *
132  * synopsis
133  *
134  *   copy = dupmachine( mach );
135  *
136  *     copy - holds duplicate of mach
137  *     mach - machine to be duplicated
138  *
139  * note that the copy of mach is NOT an exact duplicate; rather, all the
140  * transition states values are adjusted so that the copy is self-contained,
141  * as the original should have been.
142  *
143  * also note that the original MUST be contiguous, with its low and high
144  * states accessible by the arrays firstst and lastst
145  */
146 
dupmachine(int mach)147 int     dupmachine (int mach)
148 {
149 	int     i, init, state_offset;
150 	int     state = 0;
151 	int     last = lastst[mach];
152 
153 	for (i = firstst[mach]; i <= last; ++i) {
154 		state = mkstate (transchar[i]);
155 
156 		if (trans1[i] != NO_TRANSITION) {
157 			mkxtion (finalst[state], trans1[i] + state - i);
158 
159 			if (transchar[i] == SYM_EPSILON &&
160 			    trans2[i] != NO_TRANSITION)
161 					mkxtion (finalst[state],
162 						 trans2[i] + state - i);
163 		}
164 
165 		accptnum[state] = accptnum[i];
166 	}
167 
168 	if (state == 0)
169 		flexfatal (_("empty machine in dupmachine()"));
170 
171 	state_offset = state - i + 1;
172 
173 	init = mach + state_offset;
174 	firstst[init] = firstst[mach] + state_offset;
175 	finalst[init] = finalst[mach] + state_offset;
176 	lastst[init] = lastst[mach] + state_offset;
177 
178 	return init;
179 }
180 
181 
182 /* finish_rule - finish up the processing for a rule
183  *
184  * An accepting number is added to the given machine.  If variable_trail_rule
185  * is true then the rule has trailing context and both the head and trail
186  * are variable size.  Otherwise if headcnt or trailcnt is non-zero then
187  * the machine recognizes a pattern with trailing context and headcnt is
188  * the number of characters in the matched part of the pattern, or zero
189  * if the matched part has variable length.  trailcnt is the number of
190  * trailing context characters in the pattern, or zero if the trailing
191  * context has variable length.
192  */
193 
finish_rule(int mach,int variable_trail_rule,int headcnt,int trailcnt,int pcont_act)194 void    finish_rule (int mach, int variable_trail_rule, int headcnt, int trailcnt,
195 		     int pcont_act)
196 {
197 	char    action_text[MAXLINE];
198 
199 	add_accept (mach, num_rules);
200 
201 	/* We did this in new_rule(), but it often gets the wrong
202 	 * number because we do it before we start parsing the current rule.
203 	 */
204 	rule_linenum[num_rules] = linenum;
205 
206 	/* If this is a continued action, then the line-number has already
207 	 * been updated, giving us the wrong number.
208 	 */
209 	if (continued_action)
210 		--rule_linenum[num_rules];
211 
212 
213 	/* If the previous rule was continued action, then we inherit the
214 	 * previous newline flag, possibly overriding the current one.
215 	 */
216 	if (pcont_act && rule_has_nl[num_rules - 1])
217 		rule_has_nl[num_rules] = true;
218 
219 	snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
220 	add_action (action_text);
221 	if (rule_has_nl[num_rules]) {
222 		snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
223 			 num_rules);
224 		add_action (action_text);
225 	}
226 
227 
228 	if (variable_trail_rule) {
229 		rule_type[num_rules] = RULE_VARIABLE;
230 
231 		if (performance_report > 0)
232 			fprintf (stderr,
233 				 _
234 				 ("Variable trailing context rule at line %d\n"),
235 				 rule_linenum[num_rules]);
236 
237 		variable_trailing_context_rules = true;
238 	}
239 
240 	else {
241 		rule_type[num_rules] = RULE_NORMAL;
242 
243 		if (headcnt > 0 || trailcnt > 0) {
244 			/* Do trailing context magic to not match the trailing
245 			 * characters.
246 			 */
247 			char   *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
248 			char   *scanner_bp = "yy_bp";
249 
250 			add_action
251 				("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
252 
253 			if (headcnt > 0) {
254 				if (rule_has_nl[num_rules]) {
255 					snprintf (action_text, sizeof(action_text),
256 						"YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
257 					add_action (action_text);
258 				}
259 				snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
260 					 scanner_cp, scanner_bp, headcnt);
261 				add_action (action_text);
262 			}
263 
264 			else {
265 				if (rule_has_nl[num_rules]) {
266 					snprintf (action_text, sizeof(action_text),
267 						 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
268 					add_action (action_text);
269 				}
270 
271 				snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
272 					 scanner_cp, trailcnt);
273 				add_action (action_text);
274 			}
275 
276 			add_action
277 				("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
278 		}
279 	}
280 
281 	/* Okay, in the action code at this point yytext and yyleng have
282 	 * their proper final values for this rule, so here's the point
283 	 * to do any user action.  But don't do it for continued actions,
284 	 * as that'll result in multiple YY_RULE_SETUP's.
285 	 */
286 	if (!continued_action)
287 		add_action ("YY_RULE_SETUP\n");
288 
289 	line_directive_out(NULL, 1);
290         add_action("[[");
291 }
292 
293 
294 /* link_machines - connect two machines together
295  *
296  * synopsis
297  *
298  *   new = link_machines( first, last );
299  *
300  *     new    - a machine constructed by connecting first to last
301  *     first  - the machine whose successor is to be last
302  *     last   - the machine whose predecessor is to be first
303  *
304  * note: this routine concatenates the machine first with the machine
305  *  last to produce a machine new which will pattern-match first first
306  *  and then last, and will fail if either of the sub-patterns fails.
307  *  FIRST is set to new by the operation.  last is unmolested.
308  */
309 
link_machines(int first,int last)310 int     link_machines (int first, int last)
311 {
312 	if (first == NIL)
313 		return last;
314 
315 	else if (last == NIL)
316 		return first;
317 
318 	else {
319 		mkxtion (finalst[first], last);
320 		finalst[first] = finalst[last];
321 		lastst[first] = MAX (lastst[first], lastst[last]);
322 		firstst[first] = MIN (firstst[first], firstst[last]);
323 
324 		return first;
325 	}
326 }
327 
328 
329 /* mark_beginning_as_normal - mark each "beginning" state in a machine
330  *                            as being a "normal" (i.e., not trailing context-
331  *                            associated) states
332  *
333  * The "beginning" states are the epsilon closure of the first state
334  */
335 
mark_beginning_as_normal(int mach)336 void    mark_beginning_as_normal (int mach)
337 {
338 	switch (state_type[mach]) {
339 	case STATE_NORMAL:
340 		/* Oh, we've already visited here. */
341 		return;
342 
343 	case STATE_TRAILING_CONTEXT:
344 		state_type[mach] = STATE_NORMAL;
345 
346 		if (transchar[mach] == SYM_EPSILON) {
347 			if (trans1[mach] != NO_TRANSITION)
348 				mark_beginning_as_normal (trans1[mach]);
349 
350 			if (trans2[mach] != NO_TRANSITION)
351 				mark_beginning_as_normal (trans2[mach]);
352 		}
353 		break;
354 
355 	default:
356 		flexerror (_
357 			   ("bad state type in mark_beginning_as_normal()"));
358 		break;
359 	}
360 }
361 
362 
363 /* mkbranch - make a machine that branches to two machines
364  *
365  * synopsis
366  *
367  *   branch = mkbranch( first, second );
368  *
369  *     branch - a machine which matches either first's pattern or second's
370  *     first, second - machines whose patterns are to be or'ed (the | operator)
371  *
372  * Note that first and second are NEITHER destroyed by the operation.  Also,
373  * the resulting machine CANNOT be used with any other "mk" operation except
374  * more mkbranch's.  Compare with mkor()
375  */
376 
mkbranch(int first,int second)377 int     mkbranch (int first, int second)
378 {
379 	int     eps;
380 
381 	if (first == NO_TRANSITION)
382 		return second;
383 
384 	else if (second == NO_TRANSITION)
385 		return first;
386 
387 	eps = mkstate (SYM_EPSILON);
388 
389 	mkxtion (eps, first);
390 	mkxtion (eps, second);
391 
392 	return eps;
393 }
394 
395 
396 /* mkclos - convert a machine into a closure
397  *
398  * synopsis
399  *   new = mkclos( state );
400  *
401  * new - a new state which matches the closure of "state"
402  */
403 
mkclos(int state)404 int     mkclos (int state)
405 {
406 	return mkopt (mkposcl (state));
407 }
408 
409 
410 /* mkopt - make a machine optional
411  *
412  * synopsis
413  *
414  *   new = mkopt( mach );
415  *
416  *     new  - a machine which optionally matches whatever mach matched
417  *     mach - the machine to make optional
418  *
419  * notes:
420  *     1. mach must be the last machine created
421  *     2. mach is destroyed by the call
422  */
423 
mkopt(int mach)424 int     mkopt (int mach)
425 {
426 	int     eps;
427 
428 	if (!SUPER_FREE_EPSILON (finalst[mach])) {
429 		eps = mkstate (SYM_EPSILON);
430 		mach = link_machines (mach, eps);
431 	}
432 
433 	/* Can't skimp on the following if FREE_EPSILON(mach) is true because
434 	 * some state interior to "mach" might point back to the beginning
435 	 * for a closure.
436 	 */
437 	eps = mkstate (SYM_EPSILON);
438 	mach = link_machines (eps, mach);
439 
440 	mkxtion (mach, finalst[mach]);
441 
442 	return mach;
443 }
444 
445 
446 /* mkor - make a machine that matches either one of two machines
447  *
448  * synopsis
449  *
450  *   new = mkor( first, second );
451  *
452  *     new - a machine which matches either first's pattern or second's
453  *     first, second - machines whose patterns are to be or'ed (the | operator)
454  *
455  * note that first and second are both destroyed by the operation
456  * the code is rather convoluted because an attempt is made to minimize
457  * the number of epsilon states needed
458  */
459 
mkor(int first,int second)460 int     mkor (int first, int second)
461 {
462 	int     eps, orend;
463 
464 	if (first == NIL)
465 		return second;
466 
467 	else if (second == NIL)
468 		return first;
469 
470 	else {
471 		/* See comment in mkopt() about why we can't use the first
472 		 * state of "first" or "second" if they satisfy "FREE_EPSILON".
473 		 */
474 		eps = mkstate (SYM_EPSILON);
475 
476 		first = link_machines (eps, first);
477 
478 		mkxtion (first, second);
479 
480 		if (SUPER_FREE_EPSILON (finalst[first]) &&
481 		    accptnum[finalst[first]] == NIL) {
482 			orend = finalst[first];
483 			mkxtion (finalst[second], orend);
484 		}
485 
486 		else if (SUPER_FREE_EPSILON (finalst[second]) &&
487 			 accptnum[finalst[second]] == NIL) {
488 			orend = finalst[second];
489 			mkxtion (finalst[first], orend);
490 		}
491 
492 		else {
493 			eps = mkstate (SYM_EPSILON);
494 
495 			first = link_machines (first, eps);
496 			orend = finalst[first];
497 
498 			mkxtion (finalst[second], orend);
499 		}
500 	}
501 
502 	finalst[first] = orend;
503 	return first;
504 }
505 
506 
507 /* mkposcl - convert a machine into a positive closure
508  *
509  * synopsis
510  *   new = mkposcl( state );
511  *
512  *    new - a machine matching the positive closure of "state"
513  */
514 
mkposcl(int state)515 int     mkposcl (int state)
516 {
517 	int     eps;
518 
519 	if (SUPER_FREE_EPSILON (finalst[state])) {
520 		mkxtion (finalst[state], state);
521 		return state;
522 	}
523 
524 	else {
525 		eps = mkstate (SYM_EPSILON);
526 		mkxtion (eps, state);
527 		return link_machines (state, eps);
528 	}
529 }
530 
531 
532 /* mkrep - make a replicated machine
533  *
534  * synopsis
535  *   new = mkrep( mach, lb, ub );
536  *
537  *    new - a machine that matches whatever "mach" matched from "lb"
538  *          number of times to "ub" number of times
539  *
540  * note
541  *   if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
542  */
543 
mkrep(int mach,int lb,int ub)544 int     mkrep (int mach, int lb, int ub)
545 {
546 	int     base_mach, tail, copy, i;
547 
548 	base_mach = copysingl (mach, lb - 1);
549 
550 	if (ub == INFINITE_REPEAT) {
551 		copy = dupmachine (mach);
552 		mach = link_machines (mach,
553 				      link_machines (base_mach,
554 						     mkclos (copy)));
555 	}
556 
557 	else {
558 		tail = mkstate (SYM_EPSILON);
559 
560 		for (i = lb; i < ub; ++i) {
561 			copy = dupmachine (mach);
562 			tail = mkopt (link_machines (copy, tail));
563 		}
564 
565 		mach =
566 			link_machines (mach,
567 				       link_machines (base_mach, tail));
568 	}
569 
570 	return mach;
571 }
572 
573 
574 /* mkstate - create a state with a transition on a given symbol
575  *
576  * synopsis
577  *
578  *   state = mkstate( sym );
579  *
580  *     state - a new state matching sym
581  *     sym   - the symbol the new state is to have an out-transition on
582  *
583  * note that this routine makes new states in ascending order through the
584  * state array (and increments LASTNFA accordingly).  The routine DUPMACHINE
585  * relies on machines being made in ascending order and that they are
586  * CONTIGUOUS.  Change it and you will have to rewrite DUPMACHINE (kludge
587  * that it admittedly is)
588  */
589 
mkstate(int sym)590 int     mkstate (int sym)
591 {
592 	if (++lastnfa >= current_mns) {
593 		if ((current_mns += MNS_INCREMENT) >= maximum_mns)
594 			lerr(_
595 				("input rules are too complicated (>= %d NFA states)"),
596 current_mns);
597 
598 		++num_reallocs;
599 
600 		firstst = reallocate_integer_array (firstst, current_mns);
601 		lastst = reallocate_integer_array (lastst, current_mns);
602 		finalst = reallocate_integer_array (finalst, current_mns);
603 		transchar =
604 			reallocate_integer_array (transchar, current_mns);
605 		trans1 = reallocate_integer_array (trans1, current_mns);
606 		trans2 = reallocate_integer_array (trans2, current_mns);
607 		accptnum =
608 			reallocate_integer_array (accptnum, current_mns);
609 		assoc_rule =
610 			reallocate_integer_array (assoc_rule, current_mns);
611 		state_type =
612 			reallocate_integer_array (state_type, current_mns);
613 	}
614 
615 	firstst[lastnfa] = lastnfa;
616 	finalst[lastnfa] = lastnfa;
617 	lastst[lastnfa] = lastnfa;
618 	transchar[lastnfa] = sym;
619 	trans1[lastnfa] = NO_TRANSITION;
620 	trans2[lastnfa] = NO_TRANSITION;
621 	accptnum[lastnfa] = NIL;
622 	assoc_rule[lastnfa] = num_rules;
623 	state_type[lastnfa] = current_state_type;
624 
625 	/* Fix up equivalence classes base on this transition.  Note that any
626 	 * character which has its own transition gets its own equivalence
627 	 * class.  Thus only characters which are only in character classes
628 	 * have a chance at being in the same equivalence class.  E.g. "a|b"
629 	 * puts 'a' and 'b' into two different equivalence classes.  "[ab]"
630 	 * puts them in the same equivalence class (barring other differences
631 	 * elsewhere in the input).
632 	 */
633 
634 	if (sym < 0) {
635 		/* We don't have to update the equivalence classes since
636 		 * that was already done when the ccl was created for the
637 		 * first time.
638 		 */
639 	}
640 
641 	else if (sym == SYM_EPSILON)
642 		++numeps;
643 
644 	else {
645 		check_char (sym);
646 
647 		if (useecs)
648 			/* Map NUL's to csize. */
649 			mkechar (sym ? sym : csize, nextecm, ecgroup);
650 	}
651 
652 	return lastnfa;
653 }
654 
655 
656 /* mkxtion - make a transition from one state to another
657  *
658  * synopsis
659  *
660  *   mkxtion( statefrom, stateto );
661  *
662  *     statefrom - the state from which the transition is to be made
663  *     stateto   - the state to which the transition is to be made
664  */
665 
mkxtion(int statefrom,int stateto)666 void    mkxtion (int statefrom, int stateto)
667 {
668 	if (trans1[statefrom] == NO_TRANSITION)
669 		trans1[statefrom] = stateto;
670 
671 	else if ((transchar[statefrom] != SYM_EPSILON) ||
672 		 (trans2[statefrom] != NO_TRANSITION))
673 		flexfatal (_("found too many transitions in mkxtion()"));
674 
675 	else {			/* second out-transition for an epsilon state */
676 		++eps2;
677 		trans2[statefrom] = stateto;
678 	}
679 }
680 
681 /* new_rule - initialize for a new rule */
682 
new_rule(void)683 void    new_rule (void)
684 {
685 	if (++num_rules >= current_max_rules) {
686 		++num_reallocs;
687 		current_max_rules += MAX_RULES_INCREMENT;
688 		rule_type = reallocate_integer_array (rule_type,
689 						      current_max_rules);
690 		rule_linenum = reallocate_integer_array (rule_linenum,
691 							 current_max_rules);
692 		rule_useful = reallocate_integer_array (rule_useful,
693 							current_max_rules);
694 		rule_has_nl = reallocate_bool_array (rule_has_nl,
695 						     current_max_rules);
696 	}
697 
698 	if (num_rules > MAX_RULE)
699 		lerr (_("too many rules (> %d)!"), MAX_RULE);
700 
701 	rule_linenum[num_rules] = linenum;
702 	rule_useful[num_rules] = false;
703 	rule_has_nl[num_rules] = false;
704 }
705