1 //===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the CFG and CFGBuilder classes for representing and
10 //  building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_ANALYSIS_CFG_H
15 #define LLVM_CLANG_ANALYSIS_CFG_H
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Analysis/ConstructionContext.h"
21 #include "clang/Analysis/Support/BumpVector.h"
22 #include "clang/Basic/LLVM.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/Allocator.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <bitset>
30 #include <cassert>
31 #include <cstddef>
32 #include <iterator>
33 #include <memory>
34 #include <optional>
35 #include <vector>
36 
37 namespace clang {
38 
39 class ASTContext;
40 class BinaryOperator;
41 class CFG;
42 class CXXBaseSpecifier;
43 class CXXBindTemporaryExpr;
44 class CXXCtorInitializer;
45 class CXXDeleteExpr;
46 class CXXDestructorDecl;
47 class CXXNewExpr;
48 class CXXRecordDecl;
49 class Decl;
50 class FieldDecl;
51 class LangOptions;
52 class VarDecl;
53 
54 /// Represents a top-level expression in a basic block.
55 class CFGElement {
56 public:
57   enum Kind {
58     // main kind
59     Initializer,
60     ScopeBegin,
61     ScopeEnd,
62     NewAllocator,
63     LifetimeEnds,
64     LoopExit,
65     // stmt kind
66     Statement,
67     Constructor,
68     CXXRecordTypedCall,
69     STMT_BEGIN = Statement,
70     STMT_END = CXXRecordTypedCall,
71     // dtor kind
72     AutomaticObjectDtor,
73     DeleteDtor,
74     BaseDtor,
75     MemberDtor,
76     TemporaryDtor,
77     DTOR_BEGIN = AutomaticObjectDtor,
78     DTOR_END = TemporaryDtor,
79     CleanupFunction,
80   };
81 
82 protected:
83   // The int bits are used to mark the kind.
84   llvm::PointerIntPair<void *, 2> Data1;
85   llvm::PointerIntPair<void *, 2> Data2;
86 
87   CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
88       : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
89         Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
90     assert(getKind() == kind);
91   }
92 
93   CFGElement() = default;
94 
95 public:
96   /// Convert to the specified CFGElement type, asserting that this
97   /// CFGElement is of the desired type.
98   template<typename T>
castAs()99   T castAs() const {
100     assert(T::isKind(*this));
101     T t;
102     CFGElement& e = t;
103     e = *this;
104     return t;
105   }
106 
107   /// Convert to the specified CFGElement type, returning std::nullopt if this
108   /// CFGElement is not of the desired type.
getAs()109   template <typename T> std::optional<T> getAs() const {
110     if (!T::isKind(*this))
111       return std::nullopt;
112     T t;
113     CFGElement& e = t;
114     e = *this;
115     return t;
116   }
117 
getKind()118   Kind getKind() const {
119     unsigned x = Data2.getInt();
120     x <<= 2;
121     x |= Data1.getInt();
122     return (Kind) x;
123   }
124 
125   void dumpToStream(llvm::raw_ostream &OS) const;
126 
dump()127   void dump() const {
128     dumpToStream(llvm::errs());
129   }
130 };
131 
132 class CFGStmt : public CFGElement {
133 public:
CFGElement(K,S)134   explicit CFGStmt(const Stmt *S, Kind K = Statement) : CFGElement(K, S) {
135     assert(isKind(*this));
136   }
137 
getStmt()138   const Stmt *getStmt() const {
139     return static_cast<const Stmt *>(Data1.getPointer());
140   }
141 
142 private:
143   friend class CFGElement;
144 
isKind(const CFGElement & E)145   static bool isKind(const CFGElement &E) {
146     return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
147   }
148 
149 protected:
150   CFGStmt() = default;
151 };
152 
153 /// Represents C++ constructor call. Maintains information necessary to figure
154 /// out what memory is being initialized by the constructor expression. For now
155 /// this is only used by the analyzer's CFG.
156 class CFGConstructor : public CFGStmt {
157 public:
CFGConstructor(const CXXConstructExpr * CE,const ConstructionContext * C)158   explicit CFGConstructor(const CXXConstructExpr *CE,
159                           const ConstructionContext *C)
160       : CFGStmt(CE, Constructor) {
161     assert(C);
162     Data2.setPointer(const_cast<ConstructionContext *>(C));
163   }
164 
getConstructionContext()165   const ConstructionContext *getConstructionContext() const {
166     return static_cast<ConstructionContext *>(Data2.getPointer());
167   }
168 
169 private:
170   friend class CFGElement;
171 
172   CFGConstructor() = default;
173 
isKind(const CFGElement & E)174   static bool isKind(const CFGElement &E) {
175     return E.getKind() == Constructor;
176   }
177 };
178 
179 /// Represents a function call that returns a C++ object by value. This, like
180 /// constructor, requires a construction context in order to understand the
181 /// storage of the returned object . In C such tracking is not necessary because
182 /// no additional effort is required for destroying the object or modeling copy
183 /// elision. Like CFGConstructor, this element is for now only used by the
184 /// analyzer's CFG.
185 class CFGCXXRecordTypedCall : public CFGStmt {
186 public:
187   /// Returns true when call expression \p CE needs to be represented
188   /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
isCXXRecordTypedCall(const Expr * E)189   static bool isCXXRecordTypedCall(const Expr *E) {
190     assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
191     // There is no such thing as reference-type expression. If the function
192     // returns a reference, it'll return the respective lvalue or xvalue
193     // instead, and we're only interested in objects.
194     return !E->isGLValue() &&
195            E->getType().getCanonicalType()->getAsCXXRecordDecl();
196   }
197 
CFGCXXRecordTypedCall(const Expr * E,const ConstructionContext * C)198   explicit CFGCXXRecordTypedCall(const Expr *E, const ConstructionContext *C)
199       : CFGStmt(E, CXXRecordTypedCall) {
200     assert(isCXXRecordTypedCall(E));
201     assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
202                  // These are possible in C++17 due to mandatory copy elision.
203                  isa<ReturnedValueConstructionContext>(C) ||
204                  isa<VariableConstructionContext>(C) ||
205                  isa<ConstructorInitializerConstructionContext>(C) ||
206                  isa<ArgumentConstructionContext>(C) ||
207                  isa<LambdaCaptureConstructionContext>(C)));
208     Data2.setPointer(const_cast<ConstructionContext *>(C));
209   }
210 
getConstructionContext()211   const ConstructionContext *getConstructionContext() const {
212     return static_cast<ConstructionContext *>(Data2.getPointer());
213   }
214 
215 private:
216   friend class CFGElement;
217 
218   CFGCXXRecordTypedCall() = default;
219 
isKind(const CFGElement & E)220   static bool isKind(const CFGElement &E) {
221     return E.getKind() == CXXRecordTypedCall;
222   }
223 };
224 
225 /// Represents C++ base or member initializer from constructor's initialization
226 /// list.
227 class CFGInitializer : public CFGElement {
228 public:
CFGInitializer(const CXXCtorInitializer * initializer)229   explicit CFGInitializer(const CXXCtorInitializer *initializer)
230       : CFGElement(Initializer, initializer) {}
231 
getInitializer()232   CXXCtorInitializer* getInitializer() const {
233     return static_cast<CXXCtorInitializer*>(Data1.getPointer());
234   }
235 
236 private:
237   friend class CFGElement;
238 
239   CFGInitializer() = default;
240 
isKind(const CFGElement & E)241   static bool isKind(const CFGElement &E) {
242     return E.getKind() == Initializer;
243   }
244 };
245 
246 /// Represents C++ allocator call.
247 class CFGNewAllocator : public CFGElement {
248 public:
CFGNewAllocator(const CXXNewExpr * S)249   explicit CFGNewAllocator(const CXXNewExpr *S)
250     : CFGElement(NewAllocator, S) {}
251 
252   // Get the new expression.
getAllocatorExpr()253   const CXXNewExpr *getAllocatorExpr() const {
254     return static_cast<CXXNewExpr *>(Data1.getPointer());
255   }
256 
257 private:
258   friend class CFGElement;
259 
260   CFGNewAllocator() = default;
261 
isKind(const CFGElement & elem)262   static bool isKind(const CFGElement &elem) {
263     return elem.getKind() == NewAllocator;
264   }
265 };
266 
267 /// Represents the point where a loop ends.
268 /// This element is only produced when building the CFG for the static
269 /// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
270 ///
271 /// Note: a loop exit element can be reached even when the loop body was never
272 /// entered.
273 class CFGLoopExit : public CFGElement {
274 public:
CFGLoopExit(const Stmt * stmt)275   explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}
276 
getLoopStmt()277   const Stmt *getLoopStmt() const {
278     return static_cast<Stmt *>(Data1.getPointer());
279   }
280 
281 private:
282   friend class CFGElement;
283 
284   CFGLoopExit() = default;
285 
isKind(const CFGElement & elem)286   static bool isKind(const CFGElement &elem) {
287     return elem.getKind() == LoopExit;
288   }
289 };
290 
291 /// Represents the point where the lifetime of an automatic object ends
292 class CFGLifetimeEnds : public CFGElement {
293 public:
CFGLifetimeEnds(const VarDecl * var,const Stmt * stmt)294   explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
295       : CFGElement(LifetimeEnds, var, stmt) {}
296 
getVarDecl()297   const VarDecl *getVarDecl() const {
298     return static_cast<VarDecl *>(Data1.getPointer());
299   }
300 
getTriggerStmt()301   const Stmt *getTriggerStmt() const {
302     return static_cast<Stmt *>(Data2.getPointer());
303   }
304 
305 private:
306   friend class CFGElement;
307 
308   CFGLifetimeEnds() = default;
309 
isKind(const CFGElement & elem)310   static bool isKind(const CFGElement &elem) {
311     return elem.getKind() == LifetimeEnds;
312   }
313 };
314 
315 /// Represents beginning of a scope implicitly generated
316 /// by the compiler on encountering a CompoundStmt
317 class CFGScopeBegin : public CFGElement {
318 public:
CFGScopeBegin()319   CFGScopeBegin() {}
CFGScopeBegin(const VarDecl * VD,const Stmt * S)320   CFGScopeBegin(const VarDecl *VD, const Stmt *S)
321       : CFGElement(ScopeBegin, VD, S) {}
322 
323   // Get statement that triggered a new scope.
getTriggerStmt()324   const Stmt *getTriggerStmt() const {
325     return static_cast<Stmt*>(Data2.getPointer());
326   }
327 
328   // Get VD that triggered a new scope.
getVarDecl()329   const VarDecl *getVarDecl() const {
330     return static_cast<VarDecl *>(Data1.getPointer());
331   }
332 
333 private:
334   friend class CFGElement;
isKind(const CFGElement & E)335   static bool isKind(const CFGElement &E) {
336     Kind kind = E.getKind();
337     return kind == ScopeBegin;
338   }
339 };
340 
341 /// Represents end of a scope implicitly generated by
342 /// the compiler after the last Stmt in a CompoundStmt's body
343 class CFGScopeEnd : public CFGElement {
344 public:
CFGScopeEnd()345   CFGScopeEnd() {}
CFGScopeEnd(const VarDecl * VD,const Stmt * S)346   CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}
347 
getVarDecl()348   const VarDecl *getVarDecl() const {
349     return static_cast<VarDecl *>(Data1.getPointer());
350   }
351 
getTriggerStmt()352   const Stmt *getTriggerStmt() const {
353     return static_cast<Stmt *>(Data2.getPointer());
354   }
355 
356 private:
357   friend class CFGElement;
isKind(const CFGElement & E)358   static bool isKind(const CFGElement &E) {
359     Kind kind = E.getKind();
360     return kind == ScopeEnd;
361   }
362 };
363 
364 /// Represents C++ object destructor implicitly generated by compiler on various
365 /// occasions.
366 class CFGImplicitDtor : public CFGElement {
367 protected:
368   CFGImplicitDtor() = default;
369 
370   CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
CFGElement(kind,data1,data2)371     : CFGElement(kind, data1, data2) {
372     assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
373   }
374 
375 public:
376   const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
377   bool isNoReturn(ASTContext &astContext) const;
378 
379 private:
380   friend class CFGElement;
381 
isKind(const CFGElement & E)382   static bool isKind(const CFGElement &E) {
383     Kind kind = E.getKind();
384     return kind >= DTOR_BEGIN && kind <= DTOR_END;
385   }
386 };
387 
388 class CFGCleanupFunction final : public CFGElement {
389 public:
390   CFGCleanupFunction() = default;
CFGCleanupFunction(const VarDecl * VD)391   CFGCleanupFunction(const VarDecl *VD)
392       : CFGElement(Kind::CleanupFunction, VD) {
393     assert(VD->hasAttr<CleanupAttr>());
394   }
395 
getVarDecl()396   const VarDecl *getVarDecl() const {
397     return static_cast<VarDecl *>(Data1.getPointer());
398   }
399 
400   /// Returns the function to be called when cleaning up the var decl.
getFunctionDecl()401   const FunctionDecl *getFunctionDecl() const {
402     const CleanupAttr *A = getVarDecl()->getAttr<CleanupAttr>();
403     return A->getFunctionDecl();
404   }
405 
406 private:
407   friend class CFGElement;
408 
isKind(const CFGElement E)409   static bool isKind(const CFGElement E) {
410     return E.getKind() == Kind::CleanupFunction;
411   }
412 };
413 
414 /// Represents C++ object destructor implicitly generated for automatic object
415 /// or temporary bound to const reference at the point of leaving its local
416 /// scope.
417 class CFGAutomaticObjDtor: public CFGImplicitDtor {
418 public:
CFGAutomaticObjDtor(const VarDecl * var,const Stmt * stmt)419   CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
420       : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
421 
getVarDecl()422   const VarDecl *getVarDecl() const {
423     return static_cast<VarDecl*>(Data1.getPointer());
424   }
425 
426   // Get statement end of which triggered the destructor call.
getTriggerStmt()427   const Stmt *getTriggerStmt() const {
428     return static_cast<Stmt*>(Data2.getPointer());
429   }
430 
431 private:
432   friend class CFGElement;
433 
434   CFGAutomaticObjDtor() = default;
435 
isKind(const CFGElement & elem)436   static bool isKind(const CFGElement &elem) {
437     return elem.getKind() == AutomaticObjectDtor;
438   }
439 };
440 
441 /// Represents C++ object destructor generated from a call to delete.
442 class CFGDeleteDtor : public CFGImplicitDtor {
443 public:
CFGDeleteDtor(const CXXRecordDecl * RD,const CXXDeleteExpr * DE)444   CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
445       : CFGImplicitDtor(DeleteDtor, RD, DE) {}
446 
getCXXRecordDecl()447   const CXXRecordDecl *getCXXRecordDecl() const {
448     return static_cast<CXXRecordDecl*>(Data1.getPointer());
449   }
450 
451   // Get Delete expression which triggered the destructor call.
getDeleteExpr()452   const CXXDeleteExpr *getDeleteExpr() const {
453     return static_cast<CXXDeleteExpr *>(Data2.getPointer());
454   }
455 
456 private:
457   friend class CFGElement;
458 
459   CFGDeleteDtor() = default;
460 
isKind(const CFGElement & elem)461   static bool isKind(const CFGElement &elem) {
462     return elem.getKind() == DeleteDtor;
463   }
464 };
465 
466 /// Represents C++ object destructor implicitly generated for base object in
467 /// destructor.
468 class CFGBaseDtor : public CFGImplicitDtor {
469 public:
CFGBaseDtor(const CXXBaseSpecifier * base)470   CFGBaseDtor(const CXXBaseSpecifier *base)
471       : CFGImplicitDtor(BaseDtor, base) {}
472 
getBaseSpecifier()473   const CXXBaseSpecifier *getBaseSpecifier() const {
474     return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
475   }
476 
477 private:
478   friend class CFGElement;
479 
480   CFGBaseDtor() = default;
481 
isKind(const CFGElement & E)482   static bool isKind(const CFGElement &E) {
483     return E.getKind() == BaseDtor;
484   }
485 };
486 
487 /// Represents C++ object destructor implicitly generated for member object in
488 /// destructor.
489 class CFGMemberDtor : public CFGImplicitDtor {
490 public:
CFGMemberDtor(const FieldDecl * field)491   CFGMemberDtor(const FieldDecl *field)
492       : CFGImplicitDtor(MemberDtor, field, nullptr) {}
493 
getFieldDecl()494   const FieldDecl *getFieldDecl() const {
495     return static_cast<const FieldDecl*>(Data1.getPointer());
496   }
497 
498 private:
499   friend class CFGElement;
500 
501   CFGMemberDtor() = default;
502 
isKind(const CFGElement & E)503   static bool isKind(const CFGElement &E) {
504     return E.getKind() == MemberDtor;
505   }
506 };
507 
508 /// Represents C++ object destructor implicitly generated at the end of full
509 /// expression for temporary object.
510 class CFGTemporaryDtor : public CFGImplicitDtor {
511 public:
CFGTemporaryDtor(const CXXBindTemporaryExpr * expr)512   CFGTemporaryDtor(const CXXBindTemporaryExpr *expr)
513       : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
514 
getBindTemporaryExpr()515   const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
516     return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
517   }
518 
519 private:
520   friend class CFGElement;
521 
522   CFGTemporaryDtor() = default;
523 
isKind(const CFGElement & E)524   static bool isKind(const CFGElement &E) {
525     return E.getKind() == TemporaryDtor;
526   }
527 };
528 
529 /// Represents CFGBlock terminator statement.
530 ///
531 class CFGTerminator {
532 public:
533   enum Kind {
534     /// A branch that corresponds to a statement in the code,
535     /// such as an if-statement.
536     StmtBranch,
537     /// A branch in control flow of destructors of temporaries. In this case
538     /// terminator statement is the same statement that branches control flow
539     /// in evaluation of matching full expression.
540     TemporaryDtorsBranch,
541     /// A shortcut around virtual base initializers. It gets taken when
542     /// virtual base classes have already been initialized by the constructor
543     /// of the most derived class while we're in the base class.
544     VirtualBaseBranch,
545 
546     /// Number of different kinds, for assertions. We subtract 1 so that
547     /// to keep receiving compiler warnings when we don't cover all enum values
548     /// in a switch.
549     NumKindsMinusOne = VirtualBaseBranch
550   };
551 
552 private:
553   static constexpr int KindBits = 2;
554   static_assert((1 << KindBits) > NumKindsMinusOne,
555                 "Not enough room for kind!");
556   llvm::PointerIntPair<Stmt *, KindBits> Data;
557 
558 public:
CFGTerminator()559   CFGTerminator() { assert(!isValid()); }
Data(S,K)560   CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}
561 
isValid()562   bool isValid() const { return Data.getOpaqueValue() != nullptr; }
getStmt()563   Stmt *getStmt() { return Data.getPointer(); }
getStmt()564   const Stmt *getStmt() const { return Data.getPointer(); }
getKind()565   Kind getKind() const { return static_cast<Kind>(Data.getInt()); }
566 
isStmtBranch()567   bool isStmtBranch() const {
568     return getKind() == StmtBranch;
569   }
isTemporaryDtorsBranch()570   bool isTemporaryDtorsBranch() const {
571     return getKind() == TemporaryDtorsBranch;
572   }
isVirtualBaseBranch()573   bool isVirtualBaseBranch() const {
574     return getKind() == VirtualBaseBranch;
575   }
576 };
577 
578 /// Represents a single basic block in a source-level CFG.
579 ///  It consists of:
580 ///
581 ///  (1) A set of statements/expressions (which may contain subexpressions).
582 ///  (2) A "terminator" statement (not in the set of statements).
583 ///  (3) A list of successors and predecessors.
584 ///
585 /// Terminator: The terminator represents the type of control-flow that occurs
586 /// at the end of the basic block.  The terminator is a Stmt* referring to an
587 /// AST node that has control-flow: if-statements, breaks, loops, etc.
588 /// If the control-flow is conditional, the condition expression will appear
589 /// within the set of statements in the block (usually the last statement).
590 ///
591 /// Predecessors: the order in the set of predecessors is arbitrary.
592 ///
593 /// Successors: the order in the set of successors is NOT arbitrary.  We
594 ///  currently have the following orderings based on the terminator:
595 ///
596 ///     Terminator     |   Successor Ordering
597 ///  ------------------|------------------------------------
598 ///       if           |  Then Block;  Else Block
599 ///     ? operator     |  LHS expression;  RHS expression
600 ///     logical and/or |  expression that consumes the op, RHS
601 ///     vbase inits    |  already handled by the most derived class; not yet
602 ///
603 /// But note that any of that may be NULL in case of optimized-out edges.
604 class CFGBlock {
605   class ElementList {
606     using ImplTy = BumpVector<CFGElement>;
607 
608     ImplTy Impl;
609 
610   public:
ElementList(BumpVectorContext & C)611     ElementList(BumpVectorContext &C) : Impl(C, 4) {}
612 
613     using iterator = std::reverse_iterator<ImplTy::iterator>;
614     using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
615     using reverse_iterator = ImplTy::iterator;
616     using const_reverse_iterator = ImplTy::const_iterator;
617     using const_reference = ImplTy::const_reference;
618 
push_back(CFGElement e,BumpVectorContext & C)619     void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
620 
insert(reverse_iterator I,size_t Cnt,CFGElement E,BumpVectorContext & C)621     reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
622         BumpVectorContext &C) {
623       return Impl.insert(I, Cnt, E, C);
624     }
625 
front()626     const_reference front() const { return Impl.back(); }
back()627     const_reference back() const { return Impl.front(); }
628 
begin()629     iterator begin() { return Impl.rbegin(); }
end()630     iterator end() { return Impl.rend(); }
begin()631     const_iterator begin() const { return Impl.rbegin(); }
end()632     const_iterator end() const { return Impl.rend(); }
rbegin()633     reverse_iterator rbegin() { return Impl.begin(); }
rend()634     reverse_iterator rend() { return Impl.end(); }
rbegin()635     const_reverse_iterator rbegin() const { return Impl.begin(); }
rend()636     const_reverse_iterator rend() const { return Impl.end(); }
637 
638     CFGElement operator[](size_t i) const  {
639       assert(i < Impl.size());
640       return Impl[Impl.size() - 1 - i];
641     }
642 
size()643     size_t size() const { return Impl.size(); }
empty()644     bool empty() const { return Impl.empty(); }
645   };
646 
647   /// A convenience class for comparing CFGElements, since methods of CFGBlock
648   /// like operator[] return CFGElements by value. This is practically a wrapper
649   /// around a (CFGBlock, Index) pair.
650   template <bool IsConst> class ElementRefImpl {
651 
652     template <bool IsOtherConst> friend class ElementRefImpl;
653 
654     using CFGBlockPtr =
655         std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
656 
657     using CFGElementPtr =
658         std::conditional_t<IsConst, const CFGElement *, CFGElement *>;
659 
660   protected:
661     CFGBlockPtr Parent;
662     size_t Index;
663 
664   public:
ElementRefImpl(CFGBlockPtr Parent,size_t Index)665     ElementRefImpl(CFGBlockPtr Parent, size_t Index)
666         : Parent(Parent), Index(Index) {}
667 
668     template <bool IsOtherConst>
ElementRefImpl(ElementRefImpl<IsOtherConst> Other)669     ElementRefImpl(ElementRefImpl<IsOtherConst> Other)
670         : ElementRefImpl(Other.Parent, Other.Index) {}
671 
getIndexInBlock()672     size_t getIndexInBlock() const { return Index; }
673 
getParent()674     CFGBlockPtr getParent() { return Parent; }
getParent()675     CFGBlockPtr getParent() const { return Parent; }
676 
677     bool operator<(ElementRefImpl Other) const {
678       return std::make_pair(Parent, Index) <
679              std::make_pair(Other.Parent, Other.Index);
680     }
681 
682     bool operator==(ElementRefImpl Other) const {
683       return Parent == Other.Parent && Index == Other.Index;
684     }
685 
686     bool operator!=(ElementRefImpl Other) const { return !(*this == Other); }
687     CFGElement operator*() const { return (*Parent)[Index]; }
688     CFGElementPtr operator->() const { return &*(Parent->begin() + Index); }
689 
dumpToStream(llvm::raw_ostream & OS)690     void dumpToStream(llvm::raw_ostream &OS) const {
691       OS << getIndexInBlock() + 1 << ": ";
692       (*this)->dumpToStream(OS);
693     }
694 
dump()695     void dump() const {
696       dumpToStream(llvm::errs());
697     }
698   };
699 
700   template <bool IsReverse, bool IsConst> class ElementRefIterator {
701 
702     template <bool IsOtherReverse, bool IsOtherConst>
703     friend class ElementRefIterator;
704 
705     using CFGBlockRef =
706         std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
707 
708     using UnderlayingIteratorTy = std::conditional_t<
709         IsConst,
710         std::conditional_t<IsReverse, ElementList::const_reverse_iterator,
711                            ElementList::const_iterator>,
712         std::conditional_t<IsReverse, ElementList::reverse_iterator,
713                            ElementList::iterator>>;
714 
715     using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>;
716     using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>;
717 
718   public:
719     using difference_type = typename IteratorTraits::difference_type;
720     using value_type = ElementRef;
721     using pointer = ElementRef *;
722     using iterator_category = typename IteratorTraits::iterator_category;
723 
724   private:
725     CFGBlockRef Parent;
726     UnderlayingIteratorTy Pos;
727 
728   public:
ElementRefIterator(CFGBlockRef Parent,UnderlayingIteratorTy Pos)729     ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos)
730         : Parent(Parent), Pos(Pos) {}
731 
732     template <bool IsOtherConst>
ElementRefIterator(ElementRefIterator<false,IsOtherConst> E)733     ElementRefIterator(ElementRefIterator<false, IsOtherConst> E)
734         : ElementRefIterator(E.Parent, E.Pos.base()) {}
735 
736     template <bool IsOtherConst>
ElementRefIterator(ElementRefIterator<true,IsOtherConst> E)737     ElementRefIterator(ElementRefIterator<true, IsOtherConst> E)
738         : ElementRefIterator(E.Parent, std::make_reverse_iterator(E.Pos)) {}
739 
740     bool operator<(ElementRefIterator Other) const {
741       assert(Parent == Other.Parent);
742       return Pos < Other.Pos;
743     }
744 
745     bool operator==(ElementRefIterator Other) const {
746       return Parent == Other.Parent && Pos == Other.Pos;
747     }
748 
749     bool operator!=(ElementRefIterator Other) const {
750       return !(*this == Other);
751     }
752 
753   private:
754     template <bool IsOtherConst>
755     static size_t
getIndexInBlock(CFGBlock::ElementRefIterator<true,IsOtherConst> E)756     getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) {
757       return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1;
758     }
759 
760     template <bool IsOtherConst>
761     static size_t
getIndexInBlock(CFGBlock::ElementRefIterator<false,IsOtherConst> E)762     getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) {
763       return E.Pos - E.Parent->begin();
764     }
765 
766   public:
767     value_type operator*() { return {Parent, getIndexInBlock(*this)}; }
768 
769     difference_type operator-(ElementRefIterator Other) const {
770       return Pos - Other.Pos;
771     }
772 
773     ElementRefIterator operator++() {
774       ++this->Pos;
775       return *this;
776     }
777     ElementRefIterator operator++(int) {
778       ElementRefIterator Ret = *this;
779       ++*this;
780       return Ret;
781     }
782     ElementRefIterator operator+(size_t count) {
783       this->Pos += count;
784       return *this;
785     }
786     ElementRefIterator operator-(size_t count) {
787       this->Pos -= count;
788       return *this;
789     }
790   };
791 
792 public:
793   /// The set of statements in the basic block.
794   ElementList Elements;
795 
796   /// An (optional) label that prefixes the executable statements in the block.
797   /// When this variable is non-NULL, it is either an instance of LabelStmt,
798   /// SwitchCase or CXXCatchStmt.
799   Stmt *Label = nullptr;
800 
801   /// The terminator for a basic block that indicates the type of control-flow
802   /// that occurs between a block and its successors.
803   CFGTerminator Terminator;
804 
805   /// Some blocks are used to represent the "loop edge" to the start of a loop
806   /// from within the loop body. This Stmt* will be refer to the loop statement
807   /// for such blocks (and be null otherwise).
808   const Stmt *LoopTarget = nullptr;
809 
810   /// A numerical ID assigned to a CFGBlock during construction of the CFG.
811   unsigned BlockID;
812 
813 public:
814   /// This class represents a potential adjacent block in the CFG.  It encodes
815   /// whether or not the block is actually reachable, or can be proved to be
816   /// trivially unreachable.  For some cases it allows one to encode scenarios
817   /// where a block was substituted because the original (now alternate) block
818   /// is unreachable.
819   class AdjacentBlock {
820     enum Kind {
821       AB_Normal,
822       AB_Unreachable,
823       AB_Alternate
824     };
825 
826     CFGBlock *ReachableBlock;
827     llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;
828 
829   public:
830     /// Construct an AdjacentBlock with a possibly unreachable block.
831     AdjacentBlock(CFGBlock *B, bool IsReachable);
832 
833     /// Construct an AdjacentBlock with a reachable block and an alternate
834     /// unreachable block.
835     AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
836 
837     /// Get the reachable block, if one exists.
getReachableBlock()838     CFGBlock *getReachableBlock() const {
839       return ReachableBlock;
840     }
841 
842     /// Get the potentially unreachable block.
getPossiblyUnreachableBlock()843     CFGBlock *getPossiblyUnreachableBlock() const {
844       return UnreachableBlock.getPointer();
845     }
846 
847     /// Provide an implicit conversion to CFGBlock* so that
848     /// AdjacentBlock can be substituted for CFGBlock*.
849     operator CFGBlock*() const {
850       return getReachableBlock();
851     }
852 
853     CFGBlock& operator *() const {
854       return *getReachableBlock();
855     }
856 
857     CFGBlock* operator ->() const {
858       return getReachableBlock();
859     }
860 
isReachable()861     bool isReachable() const {
862       Kind K = (Kind) UnreachableBlock.getInt();
863       return K == AB_Normal || K == AB_Alternate;
864     }
865   };
866 
867 private:
868   /// Keep track of the predecessor / successor CFG blocks.
869   using AdjacentBlocks = BumpVector<AdjacentBlock>;
870   AdjacentBlocks Preds;
871   AdjacentBlocks Succs;
872 
873   /// This bit is set when the basic block contains a function call
874   /// or implicit destructor that is attributed as 'noreturn'. In that case,
875   /// control cannot technically ever proceed past this block. All such blocks
876   /// will have a single immediate successor: the exit block. This allows them
877   /// to be easily reached from the exit block and using this bit quickly
878   /// recognized without scanning the contents of the block.
879   ///
880   /// Optimization Note: This bit could be profitably folded with Terminator's
881   /// storage if the memory usage of CFGBlock becomes an issue.
882   unsigned HasNoReturnElement : 1;
883 
884   /// The parent CFG that owns this CFGBlock.
885   CFG *Parent;
886 
887 public:
CFGBlock(unsigned blockid,BumpVectorContext & C,CFG * parent)888   explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
889       : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
890         Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}
891 
892   // Statement iterators
893   using iterator = ElementList::iterator;
894   using const_iterator = ElementList::const_iterator;
895   using reverse_iterator = ElementList::reverse_iterator;
896   using const_reverse_iterator = ElementList::const_reverse_iterator;
897 
898   size_t getIndexInCFG() const;
899 
front()900   CFGElement                 front()       const { return Elements.front();   }
back()901   CFGElement                 back()        const { return Elements.back();    }
902 
begin()903   iterator                   begin()             { return Elements.begin();   }
end()904   iterator                   end()               { return Elements.end();     }
begin()905   const_iterator             begin()       const { return Elements.begin();   }
end()906   const_iterator             end()         const { return Elements.end();     }
907 
rbegin()908   reverse_iterator           rbegin()            { return Elements.rbegin();  }
rend()909   reverse_iterator           rend()              { return Elements.rend();    }
rbegin()910   const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
rend()911   const_reverse_iterator     rend()        const { return Elements.rend();    }
912 
913   using CFGElementRef = ElementRefImpl<false>;
914   using ConstCFGElementRef = ElementRefImpl<true>;
915 
916   using ref_iterator = ElementRefIterator<false, false>;
917   using ref_iterator_range = llvm::iterator_range<ref_iterator>;
918   using const_ref_iterator = ElementRefIterator<false, true>;
919   using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>;
920 
921   using reverse_ref_iterator = ElementRefIterator<true, false>;
922   using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>;
923 
924   using const_reverse_ref_iterator = ElementRefIterator<true, true>;
925   using const_reverse_ref_iterator_range =
926       llvm::iterator_range<const_reverse_ref_iterator>;
927 
ref_begin()928   ref_iterator ref_begin() { return {this, begin()}; }
ref_end()929   ref_iterator ref_end() { return {this, end()}; }
ref_begin()930   const_ref_iterator ref_begin() const { return {this, begin()}; }
ref_end()931   const_ref_iterator ref_end() const { return {this, end()}; }
932 
rref_begin()933   reverse_ref_iterator rref_begin() { return {this, rbegin()}; }
rref_end()934   reverse_ref_iterator rref_end() { return {this, rend()}; }
rref_begin()935   const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; }
rref_end()936   const_reverse_ref_iterator rref_end() const { return {this, rend()}; }
937 
refs()938   ref_iterator_range refs() { return {ref_begin(), ref_end()}; }
refs()939   const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; }
rrefs()940   reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; }
rrefs()941   const_reverse_ref_iterator_range rrefs() const {
942     return {rref_begin(), rref_end()};
943   }
944 
size()945   unsigned                   size()        const { return Elements.size();    }
empty()946   bool                       empty()       const { return Elements.empty();   }
947 
948   CFGElement operator[](size_t i) const  { return Elements[i]; }
949 
950   // CFG iterators
951   using pred_iterator = AdjacentBlocks::iterator;
952   using const_pred_iterator = AdjacentBlocks::const_iterator;
953   using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
954   using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
955   using pred_range = llvm::iterator_range<pred_iterator>;
956   using pred_const_range = llvm::iterator_range<const_pred_iterator>;
957 
958   using succ_iterator = AdjacentBlocks::iterator;
959   using const_succ_iterator = AdjacentBlocks::const_iterator;
960   using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
961   using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
962   using succ_range = llvm::iterator_range<succ_iterator>;
963   using succ_const_range = llvm::iterator_range<const_succ_iterator>;
964 
pred_begin()965   pred_iterator                pred_begin()        { return Preds.begin();   }
pred_end()966   pred_iterator                pred_end()          { return Preds.end();     }
pred_begin()967   const_pred_iterator          pred_begin()  const { return Preds.begin();   }
pred_end()968   const_pred_iterator          pred_end()    const { return Preds.end();     }
969 
pred_rbegin()970   pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
pred_rend()971   pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
pred_rbegin()972   const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
pred_rend()973   const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
974 
preds()975   pred_range preds() {
976     return pred_range(pred_begin(), pred_end());
977   }
978 
preds()979   pred_const_range preds() const {
980     return pred_const_range(pred_begin(), pred_end());
981   }
982 
succ_begin()983   succ_iterator                succ_begin()        { return Succs.begin();   }
succ_end()984   succ_iterator                succ_end()          { return Succs.end();     }
succ_begin()985   const_succ_iterator          succ_begin()  const { return Succs.begin();   }
succ_end()986   const_succ_iterator          succ_end()    const { return Succs.end();     }
987 
succ_rbegin()988   succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
succ_rend()989   succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
succ_rbegin()990   const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
succ_rend()991   const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
992 
succs()993   succ_range succs() {
994     return succ_range(succ_begin(), succ_end());
995   }
996 
succs()997   succ_const_range succs() const {
998     return succ_const_range(succ_begin(), succ_end());
999   }
1000 
succ_size()1001   unsigned                     succ_size()   const { return Succs.size();    }
succ_empty()1002   bool                         succ_empty()  const { return Succs.empty();   }
1003 
pred_size()1004   unsigned                     pred_size()   const { return Preds.size();    }
pred_empty()1005   bool                         pred_empty()  const { return Preds.empty();   }
1006 
1007 
1008   class FilterOptions {
1009   public:
1010     unsigned IgnoreNullPredecessors : 1;
1011     unsigned IgnoreDefaultsWithCoveredEnums : 1;
1012 
FilterOptions()1013     FilterOptions()
1014         : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
1015   };
1016 
1017   static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
1018        const CFGBlock *Dst);
1019 
1020   template <typename IMPL, bool IsPred>
1021   class FilteredCFGBlockIterator {
1022   private:
1023     IMPL I, E;
1024     const FilterOptions F;
1025     const CFGBlock *From;
1026 
1027   public:
FilteredCFGBlockIterator(const IMPL & i,const IMPL & e,const CFGBlock * from,const FilterOptions & f)1028     explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
1029                                       const CFGBlock *from,
1030                                       const FilterOptions &f)
1031         : I(i), E(e), F(f), From(from) {
1032       while (hasMore() && Filter(*I))
1033         ++I;
1034     }
1035 
hasMore()1036     bool hasMore() const { return I != E; }
1037 
1038     FilteredCFGBlockIterator &operator++() {
1039       do { ++I; } while (hasMore() && Filter(*I));
1040       return *this;
1041     }
1042 
1043     const CFGBlock *operator*() const { return *I; }
1044 
1045   private:
Filter(const CFGBlock * To)1046     bool Filter(const CFGBlock *To) {
1047       return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
1048     }
1049   };
1050 
1051   using filtered_pred_iterator =
1052       FilteredCFGBlockIterator<const_pred_iterator, true>;
1053 
1054   using filtered_succ_iterator =
1055       FilteredCFGBlockIterator<const_succ_iterator, false>;
1056 
filtered_pred_start_end(const FilterOptions & f)1057   filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
1058     return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
1059   }
1060 
filtered_succ_start_end(const FilterOptions & f)1061   filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
1062     return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
1063   }
1064 
1065   // Manipulation of block contents
1066 
setTerminator(CFGTerminator Term)1067   void setTerminator(CFGTerminator Term) { Terminator = Term; }
setLabel(Stmt * Statement)1068   void setLabel(Stmt *Statement) { Label = Statement; }
setLoopTarget(const Stmt * loopTarget)1069   void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
setHasNoReturnElement()1070   void setHasNoReturnElement() { HasNoReturnElement = true; }
1071 
1072   /// Returns true if the block would eventually end with a sink (a noreturn
1073   /// node).
1074   bool isInevitablySinking() const;
1075 
getTerminator()1076   CFGTerminator getTerminator() const { return Terminator; }
1077 
getTerminatorStmt()1078   Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
getTerminatorStmt()1079   const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }
1080 
1081   /// \returns the last (\c rbegin()) condition, e.g. observe the following code
1082   /// snippet:
1083   ///   if (A && B && C)
1084   /// A block would be created for \c A, \c B, and \c C. For the latter,
1085   /// \c getTerminatorStmt() would retrieve the entire condition, rather than
1086   /// C itself, while this method would only return C.
1087   const Expr *getLastCondition() const;
1088 
1089   Stmt *getTerminatorCondition(bool StripParens = true);
1090 
1091   const Stmt *getTerminatorCondition(bool StripParens = true) const {
1092     return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
1093   }
1094 
getLoopTarget()1095   const Stmt *getLoopTarget() const { return LoopTarget; }
1096 
getLabel()1097   Stmt *getLabel() { return Label; }
getLabel()1098   const Stmt *getLabel() const { return Label; }
1099 
hasNoReturnElement()1100   bool hasNoReturnElement() const { return HasNoReturnElement; }
1101 
getBlockID()1102   unsigned getBlockID() const { return BlockID; }
1103 
getParent()1104   CFG *getParent() const { return Parent; }
1105 
1106   void dump() const;
1107 
1108   void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
1109   void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
1110              bool ShowColors) const;
1111 
1112   void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
1113   void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
1114                            bool AddQuotes) const;
1115 
printAsOperand(raw_ostream & OS,bool)1116   void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
1117     OS << "BB#" << getBlockID();
1118   }
1119 
1120   /// Adds a (potentially unreachable) successor block to the current block.
1121   void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
1122 
appendStmt(Stmt * statement,BumpVectorContext & C)1123   void appendStmt(Stmt *statement, BumpVectorContext &C) {
1124     Elements.push_back(CFGStmt(statement), C);
1125   }
1126 
appendConstructor(CXXConstructExpr * CE,const ConstructionContext * CC,BumpVectorContext & C)1127   void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
1128                          BumpVectorContext &C) {
1129     Elements.push_back(CFGConstructor(CE, CC), C);
1130   }
1131 
appendCXXRecordTypedCall(Expr * E,const ConstructionContext * CC,BumpVectorContext & C)1132   void appendCXXRecordTypedCall(Expr *E,
1133                                 const ConstructionContext *CC,
1134                                 BumpVectorContext &C) {
1135     Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
1136   }
1137 
appendInitializer(CXXCtorInitializer * initializer,BumpVectorContext & C)1138   void appendInitializer(CXXCtorInitializer *initializer,
1139                         BumpVectorContext &C) {
1140     Elements.push_back(CFGInitializer(initializer), C);
1141   }
1142 
appendNewAllocator(CXXNewExpr * NE,BumpVectorContext & C)1143   void appendNewAllocator(CXXNewExpr *NE,
1144                           BumpVectorContext &C) {
1145     Elements.push_back(CFGNewAllocator(NE), C);
1146   }
1147 
appendScopeBegin(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)1148   void appendScopeBegin(const VarDecl *VD, const Stmt *S,
1149                         BumpVectorContext &C) {
1150     Elements.push_back(CFGScopeBegin(VD, S), C);
1151   }
1152 
appendScopeEnd(const VarDecl * VD,const Stmt * S,BumpVectorContext & C)1153   void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
1154     Elements.push_back(CFGScopeEnd(VD, S), C);
1155   }
1156 
appendBaseDtor(const CXXBaseSpecifier * BS,BumpVectorContext & C)1157   void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
1158     Elements.push_back(CFGBaseDtor(BS), C);
1159   }
1160 
appendMemberDtor(FieldDecl * FD,BumpVectorContext & C)1161   void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
1162     Elements.push_back(CFGMemberDtor(FD), C);
1163   }
1164 
appendTemporaryDtor(CXXBindTemporaryExpr * E,BumpVectorContext & C)1165   void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
1166     Elements.push_back(CFGTemporaryDtor(E), C);
1167   }
1168 
appendAutomaticObjDtor(VarDecl * VD,Stmt * S,BumpVectorContext & C)1169   void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1170     Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
1171   }
1172 
appendCleanupFunction(const VarDecl * VD,BumpVectorContext & C)1173   void appendCleanupFunction(const VarDecl *VD, BumpVectorContext &C) {
1174     Elements.push_back(CFGCleanupFunction(VD), C);
1175   }
1176 
appendLifetimeEnds(VarDecl * VD,Stmt * S,BumpVectorContext & C)1177   void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1178     Elements.push_back(CFGLifetimeEnds(VD, S), C);
1179   }
1180 
appendLoopExit(const Stmt * LoopStmt,BumpVectorContext & C)1181   void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
1182     Elements.push_back(CFGLoopExit(LoopStmt), C);
1183   }
1184 
appendDeleteDtor(CXXRecordDecl * RD,CXXDeleteExpr * DE,BumpVectorContext & C)1185   void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
1186     Elements.push_back(CFGDeleteDtor(RD, DE), C);
1187   }
1188 };
1189 
1190 /// CFGCallback defines methods that should be called when a logical
1191 /// operator error is found when building the CFG.
1192 class CFGCallback {
1193 public:
1194   CFGCallback() = default;
1195   virtual ~CFGCallback() = default;
1196 
logicAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)1197   virtual void logicAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
compareAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)1198   virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
compareBitwiseEquality(const BinaryOperator * B,bool isAlwaysTrue)1199   virtual void compareBitwiseEquality(const BinaryOperator *B,
1200                                       bool isAlwaysTrue) {}
compareBitwiseOr(const BinaryOperator * B)1201   virtual void compareBitwiseOr(const BinaryOperator *B) {}
1202 };
1203 
1204 /// Represents a source-level, intra-procedural CFG that represents the
1205 ///  control-flow of a Stmt.  The Stmt can represent an entire function body,
1206 ///  or a single expression.  A CFG will always contain one empty block that
1207 ///  represents the Exit point of the CFG.  A CFG will also contain a designated
1208 ///  Entry block.  The CFG solely represents control-flow; it consists of
1209 ///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
1210 ///  was constructed from.
1211 class CFG {
1212 public:
1213   //===--------------------------------------------------------------------===//
1214   // CFG Construction & Manipulation.
1215   //===--------------------------------------------------------------------===//
1216 
1217   class BuildOptions {
1218     // Stmt::lastStmtConstant has the same value as the last Stmt kind,
1219     // so make sure we add one to account for this!
1220     std::bitset<Stmt::lastStmtConstant + 1> alwaysAddMask;
1221 
1222   public:
1223     using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;
1224 
1225     ForcedBlkExprs **forcedBlkExprs = nullptr;
1226     CFGCallback *Observer = nullptr;
1227     bool PruneTriviallyFalseEdges = true;
1228     bool AddEHEdges = false;
1229     bool AddInitializers = false;
1230     bool AddImplicitDtors = false;
1231     bool AddLifetime = false;
1232     bool AddLoopExit = false;
1233     bool AddTemporaryDtors = false;
1234     bool AddScopes = false;
1235     bool AddStaticInitBranches = false;
1236     bool AddCXXNewAllocator = false;
1237     bool AddCXXDefaultInitExprInCtors = false;
1238     bool AddCXXDefaultInitExprInAggregates = false;
1239     bool AddRichCXXConstructors = false;
1240     bool MarkElidedCXXConstructors = false;
1241     bool AddVirtualBaseBranches = false;
1242     bool OmitImplicitValueInitializers = false;
1243 
1244     BuildOptions() = default;
1245 
alwaysAdd(const Stmt * stmt)1246     bool alwaysAdd(const Stmt *stmt) const {
1247       return alwaysAddMask[stmt->getStmtClass()];
1248     }
1249 
1250     BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
1251       alwaysAddMask[stmtClass] = val;
1252       return *this;
1253     }
1254 
setAllAlwaysAdd()1255     BuildOptions &setAllAlwaysAdd() {
1256       alwaysAddMask.set();
1257       return *this;
1258     }
1259   };
1260 
1261   /// Builds a CFG from an AST.
1262   static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
1263                                        const BuildOptions &BO);
1264 
1265   /// Create a new block in the CFG. The CFG owns the block; the caller should
1266   /// not directly free it.
1267   CFGBlock *createBlock();
1268 
1269   /// Set the entry block of the CFG. This is typically used only during CFG
1270   /// construction. Most CFG clients expect that the entry block has no
1271   /// predecessors and contains no statements.
setEntry(CFGBlock * B)1272   void setEntry(CFGBlock *B) { Entry = B; }
1273 
1274   /// Set the block used for indirect goto jumps. This is typically used only
1275   /// during CFG construction.
setIndirectGotoBlock(CFGBlock * B)1276   void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
1277 
1278   //===--------------------------------------------------------------------===//
1279   // Block Iterators
1280   //===--------------------------------------------------------------------===//
1281 
1282   using CFGBlockListTy = BumpVector<CFGBlock *>;
1283   using iterator = CFGBlockListTy::iterator;
1284   using const_iterator = CFGBlockListTy::const_iterator;
1285   using reverse_iterator = std::reverse_iterator<iterator>;
1286   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1287 
front()1288   CFGBlock &                front()                { return *Blocks.front(); }
back()1289   CFGBlock &                back()                 { return *Blocks.back(); }
1290 
begin()1291   iterator                  begin()                { return Blocks.begin(); }
end()1292   iterator                  end()                  { return Blocks.end(); }
begin()1293   const_iterator            begin()       const    { return Blocks.begin(); }
end()1294   const_iterator            end()         const    { return Blocks.end(); }
1295 
nodes_begin()1296   iterator nodes_begin() { return iterator(Blocks.begin()); }
nodes_end()1297   iterator nodes_end() { return iterator(Blocks.end()); }
1298 
nodes()1299   llvm::iterator_range<iterator> nodes() { return {begin(), end()}; }
const_nodes()1300   llvm::iterator_range<const_iterator> const_nodes() const {
1301     return {begin(), end()};
1302   }
1303 
nodes_begin()1304   const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
nodes_end()1305   const_iterator nodes_end() const { return const_iterator(Blocks.end()); }
1306 
rbegin()1307   reverse_iterator          rbegin()               { return Blocks.rbegin(); }
rend()1308   reverse_iterator          rend()                 { return Blocks.rend(); }
rbegin()1309   const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
rend()1310   const_reverse_iterator    rend()        const    { return Blocks.rend(); }
1311 
reverse_nodes()1312   llvm::iterator_range<reverse_iterator> reverse_nodes() {
1313     return {rbegin(), rend()};
1314   }
const_reverse_nodes()1315   llvm::iterator_range<const_reverse_iterator> const_reverse_nodes() const {
1316     return {rbegin(), rend()};
1317   }
1318 
getEntry()1319   CFGBlock &                getEntry()             { return *Entry; }
getEntry()1320   const CFGBlock &          getEntry()    const    { return *Entry; }
getExit()1321   CFGBlock &                getExit()              { return *Exit; }
getExit()1322   const CFGBlock &          getExit()     const    { return *Exit; }
1323 
getIndirectGotoBlock()1324   CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
getIndirectGotoBlock()1325   const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
1326 
1327   using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;
1328   using try_block_range = llvm::iterator_range<try_block_iterator>;
1329 
try_blocks_begin()1330   try_block_iterator try_blocks_begin() const {
1331     return TryDispatchBlocks.begin();
1332   }
1333 
try_blocks_end()1334   try_block_iterator try_blocks_end() const {
1335     return TryDispatchBlocks.end();
1336   }
1337 
try_blocks()1338   try_block_range try_blocks() const {
1339     return try_block_range(try_blocks_begin(), try_blocks_end());
1340   }
1341 
addTryDispatchBlock(const CFGBlock * block)1342   void addTryDispatchBlock(const CFGBlock *block) {
1343     TryDispatchBlocks.push_back(block);
1344   }
1345 
1346   /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
1347   ///
1348   /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
1349   /// multiple decls.
addSyntheticDeclStmt(const DeclStmt * Synthetic,const DeclStmt * Source)1350   void addSyntheticDeclStmt(const DeclStmt *Synthetic,
1351                             const DeclStmt *Source) {
1352     assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
1353     assert(Synthetic != Source && "Don't include original DeclStmts in map");
1354     assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
1355     SyntheticDeclStmts[Synthetic] = Source;
1356   }
1357 
1358   using synthetic_stmt_iterator =
1359       llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
1360   using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;
1361 
1362   /// Iterates over synthetic DeclStmts in the CFG.
1363   ///
1364   /// Each element is a (synthetic statement, source statement) pair.
1365   ///
1366   /// \sa addSyntheticDeclStmt
synthetic_stmt_begin()1367   synthetic_stmt_iterator synthetic_stmt_begin() const {
1368     return SyntheticDeclStmts.begin();
1369   }
1370 
1371   /// \sa synthetic_stmt_begin
synthetic_stmt_end()1372   synthetic_stmt_iterator synthetic_stmt_end() const {
1373     return SyntheticDeclStmts.end();
1374   }
1375 
1376   /// \sa synthetic_stmt_begin
synthetic_stmts()1377   synthetic_stmt_range synthetic_stmts() const {
1378     return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
1379   }
1380 
1381   //===--------------------------------------------------------------------===//
1382   // Member templates useful for various batch operations over CFGs.
1383   //===--------------------------------------------------------------------===//
1384 
VisitBlockStmts(Callback & O)1385   template <typename Callback> void VisitBlockStmts(Callback &O) const {
1386     for (const_iterator I = begin(), E = end(); I != E; ++I)
1387       for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
1388            BI != BE; ++BI) {
1389         if (std::optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
1390           O(const_cast<Stmt *>(stmt->getStmt()));
1391       }
1392   }
1393 
1394   //===--------------------------------------------------------------------===//
1395   // CFG Introspection.
1396   //===--------------------------------------------------------------------===//
1397 
1398   /// Returns the total number of BlockIDs allocated (which start at 0).
getNumBlockIDs()1399   unsigned getNumBlockIDs() const { return NumBlockIDs; }
1400 
1401   /// Return the total number of CFGBlocks within the CFG This is simply a
1402   /// renaming of the getNumBlockIDs(). This is necessary because the dominator
1403   /// implementation needs such an interface.
size()1404   unsigned size() const { return NumBlockIDs; }
1405 
1406   /// Returns true if the CFG has no branches. Usually it boils down to the CFG
1407   /// having exactly three blocks (entry, the actual code, exit), but sometimes
1408   /// more blocks appear due to having control flow that can be fully
1409   /// resolved in compile time.
1410   bool isLinear() const;
1411 
1412   //===--------------------------------------------------------------------===//
1413   // CFG Debugging: Pretty-Printing and Visualization.
1414   //===--------------------------------------------------------------------===//
1415 
1416   void viewCFG(const LangOptions &LO) const;
1417   void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
1418   void dump(const LangOptions &LO, bool ShowColors) const;
1419 
1420   //===--------------------------------------------------------------------===//
1421   // Internal: constructors and data.
1422   //===--------------------------------------------------------------------===//
1423 
CFG()1424   CFG() : Blocks(BlkBVC, 10) {}
1425 
getAllocator()1426   llvm::BumpPtrAllocator& getAllocator() {
1427     return BlkBVC.getAllocator();
1428   }
1429 
getBumpVectorContext()1430   BumpVectorContext &getBumpVectorContext() {
1431     return BlkBVC;
1432   }
1433 
1434 private:
1435   CFGBlock *Entry = nullptr;
1436   CFGBlock *Exit = nullptr;
1437 
1438   // Special block to contain collective dispatch for indirect gotos
1439   CFGBlock* IndirectGotoBlock = nullptr;
1440 
1441   unsigned  NumBlockIDs = 0;
1442 
1443   BumpVectorContext BlkBVC;
1444 
1445   CFGBlockListTy Blocks;
1446 
1447   /// C++ 'try' statements are modeled with an indirect dispatch block.
1448   /// This is the collection of such blocks present in the CFG.
1449   std::vector<const CFGBlock *> TryDispatchBlocks;
1450 
1451   /// Collects DeclStmts synthesized for this CFG and maps each one back to its
1452   /// source DeclStmt.
1453   llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
1454 };
1455 
1456 Expr *extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE);
1457 
1458 } // namespace clang
1459 
1460 //===----------------------------------------------------------------------===//
1461 // GraphTraits specializations for CFG basic block graphs (source-level CFGs)
1462 //===----------------------------------------------------------------------===//
1463 
1464 namespace llvm {
1465 
1466 /// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
1467 /// CFGTerminator to a specific Stmt class.
1468 template <> struct simplify_type< ::clang::CFGTerminator> {
1469   using SimpleType = ::clang::Stmt *;
1470 
1471   static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
1472     return Val.getStmt();
1473   }
1474 };
1475 
1476 // Traits for: CFGBlock
1477 
1478 template <> struct GraphTraits< ::clang::CFGBlock *> {
1479   using NodeRef = ::clang::CFGBlock *;
1480   using ChildIteratorType = ::clang::CFGBlock::succ_iterator;
1481 
1482   static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
1483   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1484   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1485 };
1486 
1487 template <> struct GraphTraits< const ::clang::CFGBlock *> {
1488   using NodeRef = const ::clang::CFGBlock *;
1489   using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;
1490 
1491   static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
1492   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1493   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1494 };
1495 
1496 template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
1497   using NodeRef = ::clang::CFGBlock *;
1498   using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1499 
1500   static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
1501     return G.Graph;
1502   }
1503 
1504   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1505   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1506 };
1507 
1508 template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1509   using NodeRef = const ::clang::CFGBlock *;
1510   using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1511 
1512   static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
1513     return G.Graph;
1514   }
1515 
1516   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1517   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1518 };
1519 
1520 // Traits for: CFG
1521 
1522 template <> struct GraphTraits< ::clang::CFG* >
1523     : public GraphTraits< ::clang::CFGBlock *>  {
1524   using nodes_iterator = ::clang::CFG::iterator;
1525 
1526   static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
1527   static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1528   static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1529   static unsigned              size(::clang::CFG* F) { return F->size(); }
1530 };
1531 
1532 template <> struct GraphTraits<const ::clang::CFG* >
1533     : public GraphTraits<const ::clang::CFGBlock *>  {
1534   using nodes_iterator = ::clang::CFG::const_iterator;
1535 
1536   static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }
1537 
1538   static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1539     return F->nodes_begin();
1540   }
1541 
1542   static nodes_iterator nodes_end( const ::clang::CFG* F) {
1543     return F->nodes_end();
1544   }
1545 
1546   static unsigned size(const ::clang::CFG* F) {
1547     return F->size();
1548   }
1549 };
1550 
1551 template <> struct GraphTraits<Inverse< ::clang::CFG *>>
1552   : public GraphTraits<Inverse< ::clang::CFGBlock *>> {
1553   using nodes_iterator = ::clang::CFG::iterator;
1554 
1555   static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
1556   static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1557   static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1558 };
1559 
1560 template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
1561   : public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1562   using nodes_iterator = ::clang::CFG::const_iterator;
1563 
1564   static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }
1565 
1566   static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1567     return F->nodes_begin();
1568   }
1569 
1570   static nodes_iterator nodes_end(const ::clang::CFG* F) {
1571     return F->nodes_end();
1572   }
1573 };
1574 
1575 } // namespace llvm
1576 
1577 #endif // LLVM_CLANG_ANALYSIS_CFG_H
1578