1 //===-- ArchitectureMips.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Plugins/Architecture/Mips/ArchitectureMips.h"
10 #include "lldb/Core/Address.h"
11 #include "lldb/Core/Disassembler.h"
12 #include "lldb/Core/Module.h"
13 #include "lldb/Core/PluginManager.h"
14 #include "lldb/Symbol/Function.h"
15 #include "lldb/Symbol/SymbolContext.h"
16 #include "lldb/Target/SectionLoadList.h"
17 #include "lldb/Target/Target.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/LLDBLog.h"
20 #include "lldb/Utility/Log.h"
21 
22 using namespace lldb_private;
23 using namespace lldb;
24 
LLDB_PLUGIN_DEFINE(ArchitectureMips)25 LLDB_PLUGIN_DEFINE(ArchitectureMips)
26 
27 void ArchitectureMips::Initialize() {
28   PluginManager::RegisterPlugin(GetPluginNameStatic(),
29                                 "Mips-specific algorithms",
30                                 &ArchitectureMips::Create);
31 }
32 
Terminate()33 void ArchitectureMips::Terminate() {
34   PluginManager::UnregisterPlugin(&ArchitectureMips::Create);
35 }
36 
Create(const ArchSpec & arch)37 std::unique_ptr<Architecture> ArchitectureMips::Create(const ArchSpec &arch) {
38   return arch.IsMIPS() ?
39       std::unique_ptr<Architecture>(new ArchitectureMips(arch)) : nullptr;
40 }
41 
GetCallableLoadAddress(addr_t code_addr,AddressClass addr_class) const42 addr_t ArchitectureMips::GetCallableLoadAddress(addr_t code_addr,
43                                                 AddressClass addr_class) const {
44   bool is_alternate_isa = false;
45 
46   switch (addr_class) {
47   case AddressClass::eData:
48   case AddressClass::eDebug:
49     return LLDB_INVALID_ADDRESS;
50   case AddressClass::eCodeAlternateISA:
51     is_alternate_isa = true;
52     break;
53   default: break;
54   }
55 
56   if ((code_addr & 2ull) || is_alternate_isa)
57     return code_addr | 1u;
58   return code_addr;
59 }
60 
GetOpcodeLoadAddress(addr_t opcode_addr,AddressClass addr_class) const61 addr_t ArchitectureMips::GetOpcodeLoadAddress(addr_t opcode_addr,
62                                               AddressClass addr_class) const {
63   switch (addr_class) {
64   case AddressClass::eData:
65   case AddressClass::eDebug:
66     return LLDB_INVALID_ADDRESS;
67   default: break;
68   }
69   return opcode_addr & ~(1ull);
70 }
71 
GetBreakableLoadAddress(lldb::addr_t addr,Target & target) const72 lldb::addr_t ArchitectureMips::GetBreakableLoadAddress(lldb::addr_t addr,
73                                                        Target &target) const {
74 
75   Log *log = GetLog(LLDBLog::Breakpoints);
76 
77   Address resolved_addr;
78 
79   SectionLoadList &section_load_list = target.GetSectionLoadList();
80   if (section_load_list.IsEmpty())
81     // No sections are loaded, so we must assume we are not running yet and
82     // need to operate only on file address.
83     target.ResolveFileAddress(addr, resolved_addr);
84   else
85     target.ResolveLoadAddress(addr, resolved_addr);
86 
87   addr_t current_offset = 0;
88 
89   // Get the function boundaries to make sure we don't scan back before the
90   // beginning of the current function.
91   ModuleSP temp_addr_module_sp(resolved_addr.GetModule());
92   if (temp_addr_module_sp) {
93     SymbolContext sc;
94     SymbolContextItem resolve_scope =
95         eSymbolContextFunction | eSymbolContextSymbol;
96     temp_addr_module_sp->ResolveSymbolContextForAddress(resolved_addr,
97       resolve_scope, sc);
98     Address sym_addr;
99     if (sc.function)
100       sym_addr = sc.function->GetAddressRange().GetBaseAddress();
101     else if (sc.symbol)
102       sym_addr = sc.symbol->GetAddress();
103 
104     addr_t function_start = sym_addr.GetLoadAddress(&target);
105     if (function_start == LLDB_INVALID_ADDRESS)
106       function_start = sym_addr.GetFileAddress();
107 
108     if (function_start)
109       current_offset = addr - function_start;
110   }
111 
112   // If breakpoint address is start of function then we dont have to do
113   // anything.
114   if (current_offset == 0)
115     return addr;
116 
117   auto insn = GetInstructionAtAddress(target, current_offset, addr);
118 
119   if (nullptr == insn || !insn->HasDelaySlot())
120     return addr;
121 
122   // Adjust the breakable address
123   uint64_t breakable_addr = addr - insn->GetOpcode().GetByteSize();
124   LLDB_LOGF(log,
125             "Target::%s Breakpoint at 0x%8.8" PRIx64
126             " is adjusted to 0x%8.8" PRIx64 " due to delay slot\n",
127             __FUNCTION__, addr, breakable_addr);
128 
129   return breakable_addr;
130 }
131 
GetInstructionAtAddress(Target & target,const Address & resolved_addr,addr_t symbol_offset) const132 Instruction *ArchitectureMips::GetInstructionAtAddress(
133     Target &target, const Address &resolved_addr, addr_t symbol_offset) const {
134 
135   auto loop_count = symbol_offset / 2;
136 
137   uint32_t arch_flags = m_arch.GetFlags();
138   bool IsMips16 = arch_flags & ArchSpec::eMIPSAse_mips16;
139   bool IsMicromips = arch_flags & ArchSpec::eMIPSAse_micromips;
140 
141   if (loop_count > 3) {
142     // Scan previous 6 bytes
143     if (IsMips16 | IsMicromips)
144       loop_count = 3;
145     // For mips-only, instructions are always 4 bytes, so scan previous 4
146     // bytes only.
147     else
148       loop_count = 2;
149   }
150 
151   // Create Disassembler Instance
152   lldb::DisassemblerSP disasm_sp(
153     Disassembler::FindPlugin(m_arch, nullptr, nullptr));
154 
155   InstructionList instruction_list;
156   InstructionSP prev_insn;
157   uint32_t inst_to_choose = 0;
158 
159   Address addr = resolved_addr;
160 
161   for (uint32_t i = 1; i <= loop_count; i++) {
162     // Adjust the address to read from.
163     addr.Slide(-2);
164     uint32_t insn_size = 0;
165 
166     disasm_sp->ParseInstructions(target, addr,
167                                  {Disassembler::Limit::Bytes, i * 2}, nullptr);
168 
169     uint32_t num_insns = disasm_sp->GetInstructionList().GetSize();
170     if (num_insns) {
171       prev_insn = disasm_sp->GetInstructionList().GetInstructionAtIndex(0);
172       insn_size = prev_insn->GetOpcode().GetByteSize();
173       if (i == 1 && insn_size == 2) {
174         // This looks like a valid 2-byte instruction (but it could be a part
175         // of upper 4 byte instruction).
176         instruction_list.Append(prev_insn);
177         inst_to_choose = 1;
178       }
179       else if (i == 2) {
180         // Here we may get one 4-byte instruction or two 2-byte instructions.
181         if (num_insns == 2) {
182           // Looks like there are two 2-byte instructions above our
183           // breakpoint target address. Now the upper 2-byte instruction is
184           // either a valid 2-byte instruction or could be a part of it's
185           // upper 4-byte instruction. In both cases we don't care because in
186           // this case lower 2-byte instruction is definitely a valid
187           // instruction and whatever i=1 iteration has found out is true.
188           inst_to_choose = 1;
189           break;
190         }
191         else if (insn_size == 4) {
192           // This instruction claims its a valid 4-byte instruction. But it
193           // could be a part of it's upper 4-byte instruction. Lets try
194           // scanning upper 2 bytes to verify this.
195           instruction_list.Append(prev_insn);
196           inst_to_choose = 2;
197         }
198       }
199       else if (i == 3) {
200         if (insn_size == 4)
201           // FIXME: We reached here that means instruction at [target - 4] has
202           // already claimed to be a 4-byte instruction, and now instruction
203           // at [target - 6] is also claiming that it's a 4-byte instruction.
204           // This can not be true. In this case we can not decide the valid
205           // previous instruction so we let lldb set the breakpoint at the
206           // address given by user.
207           inst_to_choose = 0;
208         else
209           // This is straight-forward
210           inst_to_choose = 2;
211         break;
212       }
213     }
214     else {
215       // Decode failed, bytes do not form a valid instruction. So whatever
216       // previous iteration has found out is true.
217       if (i > 1) {
218         inst_to_choose = i - 1;
219         break;
220       }
221     }
222   }
223 
224   // Check if we are able to find any valid instruction.
225   if (inst_to_choose) {
226     if (inst_to_choose > instruction_list.GetSize())
227       inst_to_choose--;
228     return instruction_list.GetInstructionAtIndex(inst_to_choose - 1).get();
229   }
230 
231   return nullptr;
232 }
233