1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/SparseBitVector.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/MC/LaneBitmask.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <iterator>
28 #include <string>
29 #include <vector>
30 
31 namespace llvm {
32 
33 class BasicBlock;
34 class MachineFunction;
35 class MCSymbol;
36 class ModuleSlotTracker;
37 class Pass;
38 class Printable;
39 class SlotIndexes;
40 class StringRef;
41 class raw_ostream;
42 class LiveIntervals;
43 class TargetRegisterClass;
44 class TargetRegisterInfo;
45 
46 // This structure uniquely identifies a basic block section.
47 // Possible values are
48 //  {Type: Default, Number: (unsigned)} (These are regular section IDs)
49 //  {Type: Exception, Number: 0}  (ExceptionSectionID)
50 //  {Type: Cold, Number: 0}  (ColdSectionID)
51 struct MBBSectionID {
52   enum SectionType {
53     Default = 0, // Regular section (these sections are distinguished by the
54                  // Number field).
55     Exception,   // Special section type for exception handling blocks
56     Cold,        // Special section type for cold blocks
57   } Type;
58   unsigned Number;
59 
MBBSectionIDMBBSectionID60   MBBSectionID(unsigned N) : Type(Default), Number(N) {}
61 
62   // Special unique sections for cold and exception blocks.
63   const static MBBSectionID ColdSectionID;
64   const static MBBSectionID ExceptionSectionID;
65 
66   bool operator==(const MBBSectionID &Other) const {
67     return Type == Other.Type && Number == Other.Number;
68   }
69 
70   bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
71 
72 private:
73   // This is only used to construct the special cold and exception sections.
MBBSectionIDMBBSectionID74   MBBSectionID(SectionType T) : Type(T), Number(0) {}
75 };
76 
77 // This structure represents the information for a basic block pertaining to
78 // the basic block sections profile.
79 struct UniqueBBID {
80   unsigned BaseID;
81   unsigned CloneID;
82 };
83 
84 template <> struct ilist_traits<MachineInstr> {
85 private:
86   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
87 
88   MachineBasicBlock *Parent;
89 
90   using instr_iterator =
91       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
92 
93 public:
94   void addNodeToList(MachineInstr *N);
95   void removeNodeFromList(MachineInstr *N);
96   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
97                              instr_iterator Last);
98   void deleteNode(MachineInstr *MI);
99 };
100 
101 class MachineBasicBlock
102     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
103 public:
104   /// Pair of physical register and lane mask.
105   /// This is not simply a std::pair typedef because the members should be named
106   /// clearly as they both have an integer type.
107   struct RegisterMaskPair {
108   public:
109     MCPhysReg PhysReg;
110     LaneBitmask LaneMask;
111 
112     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
113         : PhysReg(PhysReg), LaneMask(LaneMask) {}
114 
115     bool operator==(const RegisterMaskPair &other) const {
116       return PhysReg == other.PhysReg && LaneMask == other.LaneMask;
117     }
118   };
119 
120 private:
121   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
122 
123   const BasicBlock *BB;
124   int Number;
125 
126   /// The call frame size on entry to this basic block due to call frame setup
127   /// instructions in a predecessor. This is usually zero, unless basic blocks
128   /// are split in the middle of a call sequence.
129   ///
130   /// This information is only maintained until PrologEpilogInserter eliminates
131   /// call frame pseudos.
132   unsigned CallFrameSize = 0;
133 
134   MachineFunction *xParent;
135   Instructions Insts;
136 
137   /// Keep track of the predecessor / successor basic blocks.
138   std::vector<MachineBasicBlock *> Predecessors;
139   std::vector<MachineBasicBlock *> Successors;
140 
141   /// Keep track of the probabilities to the successors. This vector has the
142   /// same order as Successors, or it is empty if we don't use it (disable
143   /// optimization).
144   std::vector<BranchProbability> Probs;
145   using probability_iterator = std::vector<BranchProbability>::iterator;
146   using const_probability_iterator =
147       std::vector<BranchProbability>::const_iterator;
148 
149   std::optional<uint64_t> IrrLoopHeaderWeight;
150 
151   /// Keep track of the physical registers that are livein of the basicblock.
152   using LiveInVector = std::vector<RegisterMaskPair>;
153   LiveInVector LiveIns;
154 
155   /// Alignment of the basic block. One if the basic block does not need to be
156   /// aligned.
157   Align Alignment;
158   /// Maximum amount of bytes that can be added to align the basic block. If the
159   /// alignment cannot be reached in this many bytes, no bytes are emitted.
160   /// Zero to represent no maximum.
161   unsigned MaxBytesForAlignment = 0;
162 
163   /// Indicate that this basic block is entered via an exception handler.
164   bool IsEHPad = false;
165 
166   /// Indicate that this MachineBasicBlock is referenced somewhere other than
167   /// as predecessor/successor, a terminator MachineInstr, or a jump table.
168   bool MachineBlockAddressTaken = false;
169 
170   /// If this MachineBasicBlock corresponds to an IR-level "blockaddress"
171   /// constant, this contains a pointer to that block.
172   BasicBlock *AddressTakenIRBlock = nullptr;
173 
174   /// Indicate that this basic block needs its symbol be emitted regardless of
175   /// whether the flow just falls-through to it.
176   bool LabelMustBeEmitted = false;
177 
178   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
179   /// the block that used to have a catchpad or cleanuppad instruction in the
180   /// LLVM IR.
181   bool IsEHScopeEntry = false;
182 
183   /// Indicates if this is a target block of a catchret.
184   bool IsEHCatchretTarget = false;
185 
186   /// Indicate that this basic block is the entry block of an EH funclet.
187   bool IsEHFuncletEntry = false;
188 
189   /// Indicate that this basic block is the entry block of a cleanup funclet.
190   bool IsCleanupFuncletEntry = false;
191 
192   /// Fixed unique ID assigned to this basic block upon creation. Used with
193   /// basic block sections and basic block labels.
194   std::optional<UniqueBBID> BBID;
195 
196   /// With basic block sections, this stores the Section ID of the basic block.
197   MBBSectionID SectionID{0};
198 
199   // Indicate that this basic block begins a section.
200   bool IsBeginSection = false;
201 
202   // Indicate that this basic block ends a section.
203   bool IsEndSection = false;
204 
205   /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
206   bool IsInlineAsmBrIndirectTarget = false;
207 
208   /// since getSymbol is a relatively heavy-weight operation, the symbol
209   /// is only computed once and is cached.
210   mutable MCSymbol *CachedMCSymbol = nullptr;
211 
212   /// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
213   mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
214 
215   /// Marks the end of the basic block. Used during basic block sections to
216   /// calculate the size of the basic block, or the BB section ending with it.
217   mutable MCSymbol *CachedEndMCSymbol = nullptr;
218 
219   // Intrusive list support
220   MachineBasicBlock() = default;
221 
222   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
223 
224   ~MachineBasicBlock();
225 
226   // MachineBasicBlocks are allocated and owned by MachineFunction.
227   friend class MachineFunction;
228 
229 public:
230   /// Return the LLVM basic block that this instance corresponded to originally.
231   /// Note that this may be NULL if this instance does not correspond directly
232   /// to an LLVM basic block.
233   const BasicBlock *getBasicBlock() const { return BB; }
234 
235   /// Remove the reference to the underlying IR BasicBlock. This is for
236   /// reduction tools and should generally not be used.
237   void clearBasicBlock() {
238     BB = nullptr;
239   }
240 
241   /// Return the name of the corresponding LLVM basic block, or an empty string.
242   StringRef getName() const;
243 
244   /// Return a formatted string to identify this block and its parent function.
245   std::string getFullName() const;
246 
247   /// Test whether this block is used as something other than the target
248   /// of a terminator, exception-handling target, or jump table. This is
249   /// either the result of an IR-level "blockaddress", or some form
250   /// of target-specific branch lowering.
251   bool hasAddressTaken() const {
252     return MachineBlockAddressTaken || AddressTakenIRBlock;
253   }
254 
255   /// Test whether this block is used as something other than the target of a
256   /// terminator, exception-handling target, jump table, or IR blockaddress.
257   /// For example, its address might be loaded into a register, or
258   /// stored in some branch table that isn't part of MachineJumpTableInfo.
259   bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; }
260 
261   /// Test whether this block is the target of an IR BlockAddress.  (There can
262   /// more than one MBB associated with an IR BB where the address is taken.)
263   bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; }
264 
265   /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock.
266   BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; }
267 
268   /// Set this block to indicate that its address is used as something other
269   /// than the target of a terminator, exception-handling target, jump table,
270   /// or IR-level "blockaddress".
271   void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; }
272 
273   /// Set this block to reflect that it corresponds to an IR-level basic block
274   /// with a BlockAddress.
275   void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; }
276 
277   /// Test whether this block must have its label emitted.
278   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
279 
280   /// Set this block to reflect that, regardless how we flow to it, we need
281   /// its label be emitted.
282   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
283 
284   /// Return the MachineFunction containing this basic block.
285   const MachineFunction *getParent() const { return xParent; }
286   MachineFunction *getParent() { return xParent; }
287 
288   using instr_iterator = Instructions::iterator;
289   using const_instr_iterator = Instructions::const_iterator;
290   using reverse_instr_iterator = Instructions::reverse_iterator;
291   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
292 
293   using iterator = MachineInstrBundleIterator<MachineInstr>;
294   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
295   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
296   using const_reverse_iterator =
297       MachineInstrBundleIterator<const MachineInstr, true>;
298 
299   unsigned size() const { return (unsigned)Insts.size(); }
300   bool sizeWithoutDebugLargerThan(unsigned Limit) const;
301   bool empty() const { return Insts.empty(); }
302 
303   MachineInstr       &instr_front()       { return Insts.front(); }
304   MachineInstr       &instr_back()        { return Insts.back();  }
305   const MachineInstr &instr_front() const { return Insts.front(); }
306   const MachineInstr &instr_back()  const { return Insts.back();  }
307 
308   MachineInstr       &front()             { return Insts.front(); }
309   MachineInstr       &back()              { return *--end();      }
310   const MachineInstr &front()       const { return Insts.front(); }
311   const MachineInstr &back()        const { return *--end();      }
312 
313   instr_iterator                instr_begin()       { return Insts.begin();  }
314   const_instr_iterator          instr_begin() const { return Insts.begin();  }
315   instr_iterator                  instr_end()       { return Insts.end();    }
316   const_instr_iterator            instr_end() const { return Insts.end();    }
317   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
318   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
319   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
320   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
321 
322   using instr_range = iterator_range<instr_iterator>;
323   using const_instr_range = iterator_range<const_instr_iterator>;
324   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
325   const_instr_range instrs() const {
326     return const_instr_range(instr_begin(), instr_end());
327   }
328 
329   iterator                begin()       { return instr_begin();  }
330   const_iterator          begin() const { return instr_begin();  }
331   iterator                end  ()       { return instr_end();    }
332   const_iterator          end  () const { return instr_end();    }
333   reverse_iterator rbegin() {
334     return reverse_iterator::getAtBundleBegin(instr_rbegin());
335   }
336   const_reverse_iterator rbegin() const {
337     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
338   }
339   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
340   const_reverse_iterator rend() const {
341     return const_reverse_iterator(instr_rend());
342   }
343 
344   /// Support for MachineInstr::getNextNode().
345   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
346     return &MachineBasicBlock::Insts;
347   }
348 
349   inline iterator_range<iterator> terminators() {
350     return make_range(getFirstTerminator(), end());
351   }
352   inline iterator_range<const_iterator> terminators() const {
353     return make_range(getFirstTerminator(), end());
354   }
355 
356   /// Returns a range that iterates over the phis in the basic block.
357   inline iterator_range<iterator> phis() {
358     return make_range(begin(), getFirstNonPHI());
359   }
360   inline iterator_range<const_iterator> phis() const {
361     return const_cast<MachineBasicBlock *>(this)->phis();
362   }
363 
364   // Machine-CFG iterators
365   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
366   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
367   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
368   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
369   using pred_reverse_iterator =
370       std::vector<MachineBasicBlock *>::reverse_iterator;
371   using const_pred_reverse_iterator =
372       std::vector<MachineBasicBlock *>::const_reverse_iterator;
373   using succ_reverse_iterator =
374       std::vector<MachineBasicBlock *>::reverse_iterator;
375   using const_succ_reverse_iterator =
376       std::vector<MachineBasicBlock *>::const_reverse_iterator;
377   pred_iterator        pred_begin()       { return Predecessors.begin(); }
378   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
379   pred_iterator        pred_end()         { return Predecessors.end();   }
380   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
381   pred_reverse_iterator        pred_rbegin()
382                                           { return Predecessors.rbegin();}
383   const_pred_reverse_iterator  pred_rbegin() const
384                                           { return Predecessors.rbegin();}
385   pred_reverse_iterator        pred_rend()
386                                           { return Predecessors.rend();  }
387   const_pred_reverse_iterator  pred_rend()   const
388                                           { return Predecessors.rend();  }
389   unsigned             pred_size()  const {
390     return (unsigned)Predecessors.size();
391   }
392   bool                 pred_empty() const { return Predecessors.empty(); }
393   succ_iterator        succ_begin()       { return Successors.begin();   }
394   const_succ_iterator  succ_begin() const { return Successors.begin();   }
395   succ_iterator        succ_end()         { return Successors.end();     }
396   const_succ_iterator  succ_end()   const { return Successors.end();     }
397   succ_reverse_iterator        succ_rbegin()
398                                           { return Successors.rbegin();  }
399   const_succ_reverse_iterator  succ_rbegin() const
400                                           { return Successors.rbegin();  }
401   succ_reverse_iterator        succ_rend()
402                                           { return Successors.rend();    }
403   const_succ_reverse_iterator  succ_rend()   const
404                                           { return Successors.rend();    }
405   unsigned             succ_size()  const {
406     return (unsigned)Successors.size();
407   }
408   bool                 succ_empty() const { return Successors.empty();   }
409 
410   inline iterator_range<pred_iterator> predecessors() {
411     return make_range(pred_begin(), pred_end());
412   }
413   inline iterator_range<const_pred_iterator> predecessors() const {
414     return make_range(pred_begin(), pred_end());
415   }
416   inline iterator_range<succ_iterator> successors() {
417     return make_range(succ_begin(), succ_end());
418   }
419   inline iterator_range<const_succ_iterator> successors() const {
420     return make_range(succ_begin(), succ_end());
421   }
422 
423   // LiveIn management methods.
424 
425   /// Adds the specified register as a live in. Note that it is an error to add
426   /// the same register to the same set more than once unless the intention is
427   /// to call sortUniqueLiveIns after all registers are added.
428   void addLiveIn(MCRegister PhysReg,
429                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
430     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
431   }
432   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
433     LiveIns.push_back(RegMaskPair);
434   }
435 
436   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
437   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
438   /// LiveIn insertion.
439   void sortUniqueLiveIns();
440 
441   /// Clear live in list.
442   void clearLiveIns();
443 
444   /// Add PhysReg as live in to this block, and ensure that there is a copy of
445   /// PhysReg to a virtual register of class RC. Return the virtual register
446   /// that is a copy of the live in PhysReg.
447   Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
448 
449   /// Remove the specified register from the live in set.
450   void removeLiveIn(MCPhysReg Reg,
451                     LaneBitmask LaneMask = LaneBitmask::getAll());
452 
453   /// Return true if the specified register is in the live in set.
454   bool isLiveIn(MCPhysReg Reg,
455                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
456 
457   // Iteration support for live in sets.  These sets are kept in sorted
458   // order by their register number.
459   using livein_iterator = LiveInVector::const_iterator;
460 
461   /// Unlike livein_begin, this method does not check that the liveness
462   /// information is accurate. Still for debug purposes it may be useful
463   /// to have iterators that won't assert if the liveness information
464   /// is not current.
465   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
466   iterator_range<livein_iterator> liveins_dbg() const {
467     return make_range(livein_begin_dbg(), livein_end());
468   }
469 
470   livein_iterator livein_begin() const;
471   livein_iterator livein_end()   const { return LiveIns.end(); }
472   bool            livein_empty() const { return LiveIns.empty(); }
473   iterator_range<livein_iterator> liveins() const {
474     return make_range(livein_begin(), livein_end());
475   }
476 
477   /// Remove entry from the livein set and return iterator to the next.
478   livein_iterator removeLiveIn(livein_iterator I);
479 
480   std::vector<RegisterMaskPair> getLiveIns() const { return LiveIns; }
481 
482   class liveout_iterator {
483   public:
484     using iterator_category = std::input_iterator_tag;
485     using difference_type = std::ptrdiff_t;
486     using value_type = RegisterMaskPair;
487     using pointer = const RegisterMaskPair *;
488     using reference = const RegisterMaskPair &;
489 
490     liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
491                      MCPhysReg ExceptionSelector, bool End)
492         : ExceptionPointer(ExceptionPointer),
493           ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
494           BlockEnd(MBB.succ_end()) {
495       if (End)
496         BlockI = BlockEnd;
497       else if (BlockI != BlockEnd) {
498         LiveRegI = (*BlockI)->livein_begin();
499         if (!advanceToValidPosition())
500           return;
501         if (LiveRegI->PhysReg == ExceptionPointer ||
502             LiveRegI->PhysReg == ExceptionSelector)
503           ++(*this);
504       }
505     }
506 
507     liveout_iterator &operator++() {
508       do {
509         ++LiveRegI;
510         if (!advanceToValidPosition())
511           return *this;
512       } while ((*BlockI)->isEHPad() &&
513                (LiveRegI->PhysReg == ExceptionPointer ||
514                 LiveRegI->PhysReg == ExceptionSelector));
515       return *this;
516     }
517 
518     liveout_iterator operator++(int) {
519       liveout_iterator Tmp = *this;
520       ++(*this);
521       return Tmp;
522     }
523 
524     reference operator*() const {
525       return *LiveRegI;
526     }
527 
528     pointer operator->() const {
529       return &*LiveRegI;
530     }
531 
532     bool operator==(const liveout_iterator &RHS) const {
533       if (BlockI != BlockEnd)
534         return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
535       return RHS.BlockI == BlockEnd;
536     }
537 
538     bool operator!=(const liveout_iterator &RHS) const {
539       return !(*this == RHS);
540     }
541   private:
542     bool advanceToValidPosition() {
543       if (LiveRegI != (*BlockI)->livein_end())
544         return true;
545 
546       do {
547         ++BlockI;
548       } while (BlockI != BlockEnd && (*BlockI)->livein_empty());
549       if (BlockI == BlockEnd)
550         return false;
551 
552       LiveRegI = (*BlockI)->livein_begin();
553       return true;
554     }
555 
556     MCPhysReg ExceptionPointer, ExceptionSelector;
557     const_succ_iterator BlockI;
558     const_succ_iterator BlockEnd;
559     livein_iterator LiveRegI;
560   };
561 
562   /// Iterator scanning successor basic blocks' liveins to determine the
563   /// registers potentially live at the end of this block. There may be
564   /// duplicates or overlapping registers in the list returned.
565   liveout_iterator liveout_begin() const;
566   liveout_iterator liveout_end() const {
567     return liveout_iterator(*this, 0, 0, true);
568   }
569   iterator_range<liveout_iterator> liveouts() const {
570     return make_range(liveout_begin(), liveout_end());
571   }
572 
573   /// Get the clobber mask for the start of this basic block. Funclets use this
574   /// to prevent register allocation across funclet transitions.
575   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
576 
577   /// Get the clobber mask for the end of the basic block.
578   /// \see getBeginClobberMask()
579   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
580 
581   /// Return alignment of the basic block.
582   Align getAlignment() const { return Alignment; }
583 
584   /// Set alignment of the basic block.
585   void setAlignment(Align A) { Alignment = A; }
586 
587   void setAlignment(Align A, unsigned MaxBytes) {
588     setAlignment(A);
589     setMaxBytesForAlignment(MaxBytes);
590   }
591 
592   /// Return the maximum amount of padding allowed for aligning the basic block.
593   unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; }
594 
595   /// Set the maximum amount of padding allowed for aligning the basic block
596   void setMaxBytesForAlignment(unsigned MaxBytes) {
597     MaxBytesForAlignment = MaxBytes;
598   }
599 
600   /// Returns true if the block is a landing pad. That is this basic block is
601   /// entered via an exception handler.
602   bool isEHPad() const { return IsEHPad; }
603 
604   /// Indicates the block is a landing pad.  That is this basic block is entered
605   /// via an exception handler.
606   void setIsEHPad(bool V = true) { IsEHPad = V; }
607 
608   bool hasEHPadSuccessor() const;
609 
610   /// Returns true if this is the entry block of the function.
611   bool isEntryBlock() const;
612 
613   /// Returns true if this is the entry block of an EH scope, i.e., the block
614   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
615   bool isEHScopeEntry() const { return IsEHScopeEntry; }
616 
617   /// Indicates if this is the entry block of an EH scope, i.e., the block that
618   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
619   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
620 
621   /// Returns true if this is a target block of a catchret.
622   bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
623 
624   /// Indicates if this is a target block of a catchret.
625   void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
626 
627   /// Returns true if this is the entry block of an EH funclet.
628   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
629 
630   /// Indicates if this is the entry block of an EH funclet.
631   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
632 
633   /// Returns true if this is the entry block of a cleanup funclet.
634   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
635 
636   /// Indicates if this is the entry block of a cleanup funclet.
637   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
638 
639   /// Returns true if this block begins any section.
640   bool isBeginSection() const { return IsBeginSection; }
641 
642   /// Returns true if this block ends any section.
643   bool isEndSection() const { return IsEndSection; }
644 
645   void setIsBeginSection(bool V = true) { IsBeginSection = V; }
646 
647   void setIsEndSection(bool V = true) { IsEndSection = V; }
648 
649   std::optional<UniqueBBID> getBBID() const { return BBID; }
650 
651   /// Returns the section ID of this basic block.
652   MBBSectionID getSectionID() const { return SectionID; }
653 
654   /// Returns the unique section ID number of this basic block.
655   unsigned getSectionIDNum() const {
656     return ((unsigned)MBBSectionID::SectionType::Cold) -
657            ((unsigned)SectionID.Type) + SectionID.Number;
658   }
659 
660   /// Sets the fixed BBID of this basic block.
661   void setBBID(const UniqueBBID &V) {
662     assert(!BBID.has_value() && "Cannot change BBID.");
663     BBID = V;
664   }
665 
666   /// Sets the section ID for this basic block.
667   void setSectionID(MBBSectionID V) { SectionID = V; }
668 
669   /// Returns the MCSymbol marking the end of this basic block.
670   MCSymbol *getEndSymbol() const;
671 
672   /// Returns true if this block may have an INLINEASM_BR (overestimate, by
673   /// checking if any of the successors are indirect targets of any inlineasm_br
674   /// in the function).
675   bool mayHaveInlineAsmBr() const;
676 
677   /// Returns true if this is the indirect dest of an INLINEASM_BR.
678   bool isInlineAsmBrIndirectTarget() const {
679     return IsInlineAsmBrIndirectTarget;
680   }
681 
682   /// Indicates if this is the indirect dest of an INLINEASM_BR.
683   void setIsInlineAsmBrIndirectTarget(bool V = true) {
684     IsInlineAsmBrIndirectTarget = V;
685   }
686 
687   /// Returns true if it is legal to hoist instructions into this block.
688   bool isLegalToHoistInto() const;
689 
690   // Code Layout methods.
691 
692   /// Move 'this' block before or after the specified block.  This only moves
693   /// the block, it does not modify the CFG or adjust potential fall-throughs at
694   /// the end of the block.
695   void moveBefore(MachineBasicBlock *NewAfter);
696   void moveAfter(MachineBasicBlock *NewBefore);
697 
698   /// Returns true if this and MBB belong to the same section.
699   bool sameSection(const MachineBasicBlock *MBB) const {
700     return getSectionID() == MBB->getSectionID();
701   }
702 
703   /// Update the terminator instructions in block to account for changes to
704   /// block layout which may have been made. PreviousLayoutSuccessor should be
705   /// set to the block which may have been used as fallthrough before the block
706   /// layout was modified.  If the block previously fell through to that block,
707   /// it may now need a branch. If it previously branched to another block, it
708   /// may now be able to fallthrough to the current layout successor.
709   void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
710 
711   // Machine-CFG mutators
712 
713   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
714   /// of Succ is automatically updated. PROB parameter is stored in
715   /// Probabilities list. The default probability is set as unknown. Mixing
716   /// known and unknown probabilities in successor list is not allowed. When all
717   /// successors have unknown probabilities, 1 / N is returned as the
718   /// probability for each successor, where N is the number of successors.
719   ///
720   /// Note that duplicate Machine CFG edges are not allowed.
721   void addSuccessor(MachineBasicBlock *Succ,
722                     BranchProbability Prob = BranchProbability::getUnknown());
723 
724   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
725   /// of Succ is automatically updated. The probability is not provided because
726   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
727   /// won't be used. Using this interface can save some space.
728   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
729 
730   /// Set successor probability of a given iterator.
731   void setSuccProbability(succ_iterator I, BranchProbability Prob);
732 
733   /// Normalize probabilities of all successors so that the sum of them becomes
734   /// one. This is usually done when the current update on this MBB is done, and
735   /// the sum of its successors' probabilities is not guaranteed to be one. The
736   /// user is responsible for the correct use of this function.
737   /// MBB::removeSuccessor() has an option to do this automatically.
738   void normalizeSuccProbs() {
739     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
740   }
741 
742   /// Validate successors' probabilities and check if the sum of them is
743   /// approximate one. This only works in DEBUG mode.
744   void validateSuccProbs() const;
745 
746   /// Remove successor from the successors list of this MachineBasicBlock. The
747   /// Predecessors list of Succ is automatically updated.
748   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
749   /// after the successor is removed.
750   void removeSuccessor(MachineBasicBlock *Succ,
751                        bool NormalizeSuccProbs = false);
752 
753   /// Remove specified successor from the successors list of this
754   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
755   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
756   /// after the successor is removed.
757   /// Return the iterator to the element after the one removed.
758   succ_iterator removeSuccessor(succ_iterator I,
759                                 bool NormalizeSuccProbs = false);
760 
761   /// Replace successor OLD with NEW and update probability info.
762   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
763 
764   /// Copy a successor (and any probability info) from original block to this
765   /// block's. Uses an iterator into the original blocks successors.
766   ///
767   /// This is useful when doing a partial clone of successors. Afterward, the
768   /// probabilities may need to be normalized.
769   void copySuccessor(const MachineBasicBlock *Orig, succ_iterator I);
770 
771   /// Split the old successor into old plus new and updates the probability
772   /// info.
773   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
774                       bool NormalizeSuccProbs = false);
775 
776   /// Transfers all the successors from MBB to this machine basic block (i.e.,
777   /// copies all the successors FromMBB and remove all the successors from
778   /// FromMBB).
779   void transferSuccessors(MachineBasicBlock *FromMBB);
780 
781   /// Transfers all the successors, as in transferSuccessors, and update PHI
782   /// operands in the successor blocks which refer to FromMBB to refer to this.
783   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
784 
785   /// Return true if any of the successors have probabilities attached to them.
786   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
787 
788   /// Return true if the specified MBB is a predecessor of this block.
789   bool isPredecessor(const MachineBasicBlock *MBB) const;
790 
791   /// Return true if the specified MBB is a successor of this block.
792   bool isSuccessor(const MachineBasicBlock *MBB) const;
793 
794   /// Return true if the specified MBB will be emitted immediately after this
795   /// block, such that if this block exits by falling through, control will
796   /// transfer to the specified MBB. Note that MBB need not be a successor at
797   /// all, for example if this block ends with an unconditional branch to some
798   /// other block.
799   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
800 
801   /// Return the successor of this block if it has a single successor.
802   /// Otherwise return a null pointer.
803   ///
804   const MachineBasicBlock *getSingleSuccessor() const;
805   MachineBasicBlock *getSingleSuccessor() {
806     return const_cast<MachineBasicBlock *>(
807         static_cast<const MachineBasicBlock *>(this)->getSingleSuccessor());
808   }
809 
810   /// Return the predecessor of this block if it has a single predecessor.
811   /// Otherwise return a null pointer.
812   ///
813   const MachineBasicBlock *getSinglePredecessor() const;
814   MachineBasicBlock *getSinglePredecessor() {
815     return const_cast<MachineBasicBlock *>(
816         static_cast<const MachineBasicBlock *>(this)->getSinglePredecessor());
817   }
818 
819   /// Return the fallthrough block if the block can implicitly
820   /// transfer control to the block after it by falling off the end of
821   /// it. If an explicit branch to the fallthrough block is not allowed,
822   /// set JumpToFallThrough to be false. Non-null return is a conservative
823   /// answer.
824   MachineBasicBlock *getFallThrough(bool JumpToFallThrough = true);
825 
826   /// Return the fallthrough block if the block can implicitly
827   /// transfer control to it's successor, whether by a branch or
828   /// a fallthrough. Non-null return is a conservative answer.
829   MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(false); }
830 
831   /// Return true if the block can implicitly transfer control to the
832   /// block after it by falling off the end of it.  This should return
833   /// false if it can reach the block after it, but it uses an
834   /// explicit branch to do so (e.g., a table jump).  True is a
835   /// conservative answer.
836   bool canFallThrough();
837 
838   /// Returns a pointer to the first instruction in this block that is not a
839   /// PHINode instruction. When adding instructions to the beginning of the
840   /// basic block, they should be added before the returned value, not before
841   /// the first instruction, which might be PHI.
842   /// Returns end() is there's no non-PHI instruction.
843   iterator getFirstNonPHI();
844   const_iterator getFirstNonPHI() const {
845     return const_cast<MachineBasicBlock *>(this)->getFirstNonPHI();
846   }
847 
848   /// Return the first instruction in MBB after I that is not a PHI or a label.
849   /// This is the correct point to insert lowered copies at the beginning of a
850   /// basic block that must be before any debugging information.
851   iterator SkipPHIsAndLabels(iterator I);
852 
853   /// Return the first instruction in MBB after I that is not a PHI, label or
854   /// debug.  This is the correct point to insert copies at the beginning of a
855   /// basic block. \p Reg is the register being used by a spill or defined for a
856   /// restore/split during register allocation.
857   iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg = Register(),
858                                   bool SkipPseudoOp = true);
859 
860   /// Returns an iterator to the first terminator instruction of this basic
861   /// block. If a terminator does not exist, it returns end().
862   iterator getFirstTerminator();
863   const_iterator getFirstTerminator() const {
864     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
865   }
866 
867   /// Same getFirstTerminator but it ignores bundles and return an
868   /// instr_iterator instead.
869   instr_iterator getFirstInstrTerminator();
870 
871   /// Finds the first terminator in a block by scanning forward. This can handle
872   /// cases in GlobalISel where there may be non-terminator instructions between
873   /// terminators, for which getFirstTerminator() will not work correctly.
874   iterator getFirstTerminatorForward();
875 
876   /// Returns an iterator to the first non-debug instruction in the basic block,
877   /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
878   /// Pseudo probes are like debug instructions which do not turn into real
879   /// machine code. We try to use the function to skip both debug instructions
880   /// and pseudo probe operations to avoid API proliferation. This should work
881   /// most of the time when considering optimizing the rest of code in the
882   /// block, except for certain cases where pseudo probes are designed to block
883   /// the optimizations. For example, code merge like optimizations are supposed
884   /// to be blocked by pseudo probes for better AutoFDO profile quality.
885   /// Therefore, they should be considered as a valid instruction when this
886   /// function is called in a context of such optimizations. On the other hand,
887   /// \c SkipPseudoOp should be true when it's used in optimizations that
888   /// unlikely hurt profile quality, e.g., without block merging. The default
889   /// value of \c SkipPseudoOp is set to true to maximize code quality in
890   /// general, with an explict false value passed in in a few places like branch
891   /// folding and if-conversion to favor profile quality.
892   iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
893   const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
894     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
895         SkipPseudoOp);
896   }
897 
898   /// Returns an iterator to the last non-debug instruction in the basic block,
899   /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
900   /// Pseudo probes are like debug instructions which do not turn into real
901   /// machine code. We try to use the function to skip both debug instructions
902   /// and pseudo probe operations to avoid API proliferation. This should work
903   /// most of the time when considering optimizing the rest of code in the
904   /// block, except for certain cases where pseudo probes are designed to block
905   /// the optimizations. For example, code merge like optimizations are supposed
906   /// to be blocked by pseudo probes for better AutoFDO profile quality.
907   /// Therefore, they should be considered as a valid instruction when this
908   /// function is called in a context of such optimizations. On the other hand,
909   /// \c SkipPseudoOp should be true when it's used in optimizations that
910   /// unlikely hurt profile quality, e.g., without block merging. The default
911   /// value of \c SkipPseudoOp is set to true to maximize code quality in
912   /// general, with an explict false value passed in in a few places like branch
913   /// folding and if-conversion to favor profile quality.
914   iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
915   const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
916     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
917         SkipPseudoOp);
918   }
919 
920   /// Convenience function that returns true if the block ends in a return
921   /// instruction.
922   bool isReturnBlock() const {
923     return !empty() && back().isReturn();
924   }
925 
926   /// Convenience function that returns true if the bock ends in a EH scope
927   /// return instruction.
928   bool isEHScopeReturnBlock() const {
929     return !empty() && back().isEHScopeReturn();
930   }
931 
932   /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
933   /// inserted after this block, and all instructions after \p SplitInst moved
934   /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
935   /// LiveIntervals will be appropriately updated. \return the newly inserted
936   /// block.
937   ///
938   /// If \p UpdateLiveIns is true, this will ensure the live ins list is
939   /// accurate, including for physreg uses/defs in the original block.
940   MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
941                              LiveIntervals *LIS = nullptr);
942 
943   /// Split the critical edge from this block to the given successor block, and
944   /// return the newly created block, or null if splitting is not possible.
945   ///
946   /// This function updates LiveVariables, MachineDominatorTree, and
947   /// MachineLoopInfo, as applicable.
948   MachineBasicBlock *
949   SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
950                     std::vector<SparseBitVector<>> *LiveInSets = nullptr);
951 
952   /// Check if the edge between this block and the given successor \p
953   /// Succ, can be split. If this returns true a subsequent call to
954   /// SplitCriticalEdge is guaranteed to return a valid basic block if
955   /// no changes occurred in the meantime.
956   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
957 
958   void pop_front() { Insts.pop_front(); }
959   void pop_back() { Insts.pop_back(); }
960   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
961 
962   /// Insert MI into the instruction list before I, possibly inside a bundle.
963   ///
964   /// If the insertion point is inside a bundle, MI will be added to the bundle,
965   /// otherwise MI will not be added to any bundle. That means this function
966   /// alone can't be used to prepend or append instructions to bundles. See
967   /// MIBundleBuilder::insert() for a more reliable way of doing that.
968   instr_iterator insert(instr_iterator I, MachineInstr *M);
969 
970   /// Insert a range of instructions into the instruction list before I.
971   template<typename IT>
972   void insert(iterator I, IT S, IT E) {
973     assert((I == end() || I->getParent() == this) &&
974            "iterator points outside of basic block");
975     Insts.insert(I.getInstrIterator(), S, E);
976   }
977 
978   /// Insert MI into the instruction list before I.
979   iterator insert(iterator I, MachineInstr *MI) {
980     assert((I == end() || I->getParent() == this) &&
981            "iterator points outside of basic block");
982     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
983            "Cannot insert instruction with bundle flags");
984     return Insts.insert(I.getInstrIterator(), MI);
985   }
986 
987   /// Insert MI into the instruction list after I.
988   iterator insertAfter(iterator I, MachineInstr *MI) {
989     assert((I == end() || I->getParent() == this) &&
990            "iterator points outside of basic block");
991     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
992            "Cannot insert instruction with bundle flags");
993     return Insts.insertAfter(I.getInstrIterator(), MI);
994   }
995 
996   /// If I is bundled then insert MI into the instruction list after the end of
997   /// the bundle, otherwise insert MI immediately after I.
998   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
999     assert((I == instr_end() || I->getParent() == this) &&
1000            "iterator points outside of basic block");
1001     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1002            "Cannot insert instruction with bundle flags");
1003     while (I->isBundledWithSucc())
1004       ++I;
1005     return Insts.insertAfter(I, MI);
1006   }
1007 
1008   /// Remove an instruction from the instruction list and delete it.
1009   ///
1010   /// If the instruction is part of a bundle, the other instructions in the
1011   /// bundle will still be bundled after removing the single instruction.
1012   instr_iterator erase(instr_iterator I);
1013 
1014   /// Remove an instruction from the instruction list and delete it.
1015   ///
1016   /// If the instruction is part of a bundle, the other instructions in the
1017   /// bundle will still be bundled after removing the single instruction.
1018   instr_iterator erase_instr(MachineInstr *I) {
1019     return erase(instr_iterator(I));
1020   }
1021 
1022   /// Remove a range of instructions from the instruction list and delete them.
1023   iterator erase(iterator I, iterator E) {
1024     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
1025   }
1026 
1027   /// Remove an instruction or bundle from the instruction list and delete it.
1028   ///
1029   /// If I points to a bundle of instructions, they are all erased.
1030   iterator erase(iterator I) {
1031     return erase(I, std::next(I));
1032   }
1033 
1034   /// Remove an instruction from the instruction list and delete it.
1035   ///
1036   /// If I is the head of a bundle of instructions, the whole bundle will be
1037   /// erased.
1038   iterator erase(MachineInstr *I) {
1039     return erase(iterator(I));
1040   }
1041 
1042   /// Remove the unbundled instruction from the instruction list without
1043   /// deleting it.
1044   ///
1045   /// This function can not be used to remove bundled instructions, use
1046   /// remove_instr to remove individual instructions from a bundle.
1047   MachineInstr *remove(MachineInstr *I) {
1048     assert(!I->isBundled() && "Cannot remove bundled instructions");
1049     return Insts.remove(instr_iterator(I));
1050   }
1051 
1052   /// Remove the possibly bundled instruction from the instruction list
1053   /// without deleting it.
1054   ///
1055   /// If the instruction is part of a bundle, the other instructions in the
1056   /// bundle will still be bundled after removing the single instruction.
1057   MachineInstr *remove_instr(MachineInstr *I);
1058 
1059   void clear() {
1060     Insts.clear();
1061   }
1062 
1063   /// Take an instruction from MBB 'Other' at the position From, and insert it
1064   /// into this MBB right before 'Where'.
1065   ///
1066   /// If From points to a bundle of instructions, the whole bundle is moved.
1067   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
1068     // The range splice() doesn't allow noop moves, but this one does.
1069     if (Where != From)
1070       splice(Where, Other, From, std::next(From));
1071   }
1072 
1073   /// Take a block of instructions from MBB 'Other' in the range [From, To),
1074   /// and insert them into this MBB right before 'Where'.
1075   ///
1076   /// The instruction at 'Where' must not be included in the range of
1077   /// instructions to move.
1078   void splice(iterator Where, MachineBasicBlock *Other,
1079               iterator From, iterator To) {
1080     Insts.splice(Where.getInstrIterator(), Other->Insts,
1081                  From.getInstrIterator(), To.getInstrIterator());
1082   }
1083 
1084   /// This method unlinks 'this' from the containing function, and returns it,
1085   /// but does not delete it.
1086   MachineBasicBlock *removeFromParent();
1087 
1088   /// This method unlinks 'this' from the containing function and deletes it.
1089   void eraseFromParent();
1090 
1091   /// Given a machine basic block that branched to 'Old', change the code and
1092   /// CFG so that it branches to 'New' instead.
1093   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1094 
1095   /// Update all phi nodes in this basic block to refer to basic block \p New
1096   /// instead of basic block \p Old.
1097   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1098 
1099   /// Find the next valid DebugLoc starting at MBBI, skipping any debug
1100   /// instructions.  Return UnknownLoc if there is none.
1101   DebugLoc findDebugLoc(instr_iterator MBBI);
1102   DebugLoc findDebugLoc(iterator MBBI) {
1103     return findDebugLoc(MBBI.getInstrIterator());
1104   }
1105 
1106   /// Has exact same behavior as @ref findDebugLoc (it also searches towards the
1107   /// end of this MBB) except that this function takes a reverse iterator to
1108   /// identify the starting MI.
1109   DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
1110   DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
1111     return rfindDebugLoc(MBBI.getInstrIterator());
1112   }
1113 
1114   /// Find the previous valid DebugLoc preceding MBBI, skipping any debug
1115   /// instructions. It is possible to find the last DebugLoc in the MBB using
1116   /// findPrevDebugLoc(instr_end()).  Return UnknownLoc if there is none.
1117   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
1118   DebugLoc findPrevDebugLoc(iterator MBBI) {
1119     return findPrevDebugLoc(MBBI.getInstrIterator());
1120   }
1121 
1122   /// Has exact same behavior as @ref findPrevDebugLoc (it also searches towards
1123   /// the beginning of this MBB) except that this function takes reverse
1124   /// iterator to identify the starting MI. A minor difference compared to
1125   /// findPrevDebugLoc is that we can't start scanning at "instr_end".
1126   DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
1127   DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
1128     return rfindPrevDebugLoc(MBBI.getInstrIterator());
1129   }
1130 
1131   /// Find and return the merged DebugLoc of the branch instructions of the
1132   /// block. Return UnknownLoc if there is none.
1133   DebugLoc findBranchDebugLoc();
1134 
1135   /// Possible outcome of a register liveness query to computeRegisterLiveness()
1136   enum LivenessQueryResult {
1137     LQR_Live,   ///< Register is known to be (at least partially) live.
1138     LQR_Dead,   ///< Register is known to be fully dead.
1139     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
1140   };
1141 
1142   /// Return whether (physical) register \p Reg has been defined and not
1143   /// killed as of just before \p Before.
1144   ///
1145   /// Search is localised to a neighborhood of \p Neighborhood instructions
1146   /// before (searching for defs or kills) and \p Neighborhood instructions
1147   /// after (searching just for defs) \p Before.
1148   ///
1149   /// \p Reg must be a physical register.
1150   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
1151                                               MCRegister Reg,
1152                                               const_iterator Before,
1153                                               unsigned Neighborhood = 10) const;
1154 
1155   // Debugging methods.
1156   void dump() const;
1157   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
1158              bool IsStandalone = true) const;
1159   void print(raw_ostream &OS, ModuleSlotTracker &MST,
1160              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
1161 
1162   enum PrintNameFlag {
1163     PrintNameIr = (1 << 0), ///< Add IR name where available
1164     PrintNameAttributes = (1 << 1), ///< Print attributes
1165   };
1166 
1167   void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
1168                  ModuleSlotTracker *moduleSlotTracker = nullptr) const;
1169 
1170   // Printing method used by LoopInfo.
1171   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
1172 
1173   /// MachineBasicBlocks are uniquely numbered at the function level, unless
1174   /// they're not in a MachineFunction yet, in which case this will return -1.
1175   int getNumber() const { return Number; }
1176   void setNumber(int N) { Number = N; }
1177 
1178   /// Return the call frame size on entry to this basic block.
1179   unsigned getCallFrameSize() const { return CallFrameSize; }
1180   /// Set the call frame size on entry to this basic block.
1181   void setCallFrameSize(unsigned N) { CallFrameSize = N; }
1182 
1183   /// Return the MCSymbol for this basic block.
1184   MCSymbol *getSymbol() const;
1185 
1186   /// Return the EHCatchret Symbol for this basic block.
1187   MCSymbol *getEHCatchretSymbol() const;
1188 
1189   std::optional<uint64_t> getIrrLoopHeaderWeight() const {
1190     return IrrLoopHeaderWeight;
1191   }
1192 
1193   void setIrrLoopHeaderWeight(uint64_t Weight) {
1194     IrrLoopHeaderWeight = Weight;
1195   }
1196 
1197   /// Return probability of the edge from this block to MBB. This method should
1198   /// NOT be called directly, but by using getEdgeProbability method from
1199   /// MachineBranchProbabilityInfo class.
1200   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
1201 
1202 private:
1203   /// Return probability iterator corresponding to the I successor iterator.
1204   probability_iterator getProbabilityIterator(succ_iterator I);
1205   const_probability_iterator
1206   getProbabilityIterator(const_succ_iterator I) const;
1207 
1208   friend class MachineBranchProbabilityInfo;
1209   friend class MIPrinter;
1210 
1211   // Methods used to maintain doubly linked list of blocks...
1212   friend struct ilist_callback_traits<MachineBasicBlock>;
1213 
1214   // Machine-CFG mutators
1215 
1216   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
1217   /// unless you know what you're doing, because it doesn't update Pred's
1218   /// successors list. Use Pred->addSuccessor instead.
1219   void addPredecessor(MachineBasicBlock *Pred);
1220 
1221   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
1222   /// unless you know what you're doing, because it doesn't update Pred's
1223   /// successors list. Use Pred->removeSuccessor instead.
1224   void removePredecessor(MachineBasicBlock *Pred);
1225 };
1226 
1227 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
1228 
1229 /// Prints a machine basic block reference.
1230 ///
1231 /// The format is:
1232 ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
1233 ///
1234 /// Usage: OS << printMBBReference(MBB) << '\n';
1235 Printable printMBBReference(const MachineBasicBlock &MBB);
1236 
1237 // This is useful when building IndexedMaps keyed on basic block pointers.
1238 struct MBB2NumberFunctor {
1239   using argument_type = const MachineBasicBlock *;
1240   unsigned operator()(const MachineBasicBlock *MBB) const {
1241     return MBB->getNumber();
1242   }
1243 };
1244 
1245 //===--------------------------------------------------------------------===//
1246 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
1247 //===--------------------------------------------------------------------===//
1248 
1249 // Provide specializations of GraphTraits to be able to treat a
1250 // MachineFunction as a graph of MachineBasicBlocks.
1251 //
1252 
1253 template <> struct GraphTraits<MachineBasicBlock *> {
1254   using NodeRef = MachineBasicBlock *;
1255   using ChildIteratorType = MachineBasicBlock::succ_iterator;
1256 
1257   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1258   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1259   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1260 };
1261 
1262 template <> struct GraphTraits<const MachineBasicBlock *> {
1263   using NodeRef = const MachineBasicBlock *;
1264   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1265 
1266   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1267   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1268   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1269 };
1270 
1271 // Provide specializations of GraphTraits to be able to treat a
1272 // MachineFunction as a graph of MachineBasicBlocks and to walk it
1273 // in inverse order.  Inverse order for a function is considered
1274 // to be when traversing the predecessor edges of a MBB
1275 // instead of the successor edges.
1276 //
1277 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
1278   using NodeRef = MachineBasicBlock *;
1279   using ChildIteratorType = MachineBasicBlock::pred_iterator;
1280 
1281   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
1282     return G.Graph;
1283   }
1284 
1285   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1286   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1287 };
1288 
1289 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
1290   using NodeRef = const MachineBasicBlock *;
1291   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
1292 
1293   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
1294     return G.Graph;
1295   }
1296 
1297   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1298   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1299 };
1300 
1301 // These accessors are handy for sharing templated code between IR and MIR.
1302 inline auto successors(const MachineBasicBlock *BB) { return BB->successors(); }
1303 inline auto predecessors(const MachineBasicBlock *BB) {
1304   return BB->predecessors();
1305 }
1306 
1307 /// MachineInstrSpan provides an interface to get an iteration range
1308 /// containing the instruction it was initialized with, along with all
1309 /// those instructions inserted prior to or following that instruction
1310 /// at some point after the MachineInstrSpan is constructed.
1311 class MachineInstrSpan {
1312   MachineBasicBlock &MBB;
1313   MachineBasicBlock::iterator I, B, E;
1314 
1315 public:
1316   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1317       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1318         E(std::next(I)) {
1319     assert(I == BB->end() || I->getParent() == BB);
1320   }
1321 
1322   MachineBasicBlock::iterator begin() {
1323     return B == MBB.end() ? MBB.begin() : std::next(B);
1324   }
1325   MachineBasicBlock::iterator end() { return E; }
1326   bool empty() { return begin() == end(); }
1327 
1328   MachineBasicBlock::iterator getInitial() { return I; }
1329 };
1330 
1331 /// Increment \p It until it points to a non-debug instruction or to \p End
1332 /// and return the resulting iterator. This function should only be used
1333 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1334 /// const_instr_iterator} and the respective reverse iterators.
1335 template <typename IterT>
1336 inline IterT skipDebugInstructionsForward(IterT It, IterT End,
1337                                           bool SkipPseudoOp = true) {
1338   while (It != End &&
1339          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1340     ++It;
1341   return It;
1342 }
1343 
1344 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
1345 /// and return the resulting iterator. This function should only be used
1346 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1347 /// const_instr_iterator} and the respective reverse iterators.
1348 template <class IterT>
1349 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
1350                                            bool SkipPseudoOp = true) {
1351   while (It != Begin &&
1352          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1353     --It;
1354   return It;
1355 }
1356 
1357 /// Increment \p It, then continue incrementing it while it points to a debug
1358 /// instruction. A replacement for std::next.
1359 template <typename IterT>
1360 inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
1361   return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
1362 }
1363 
1364 /// Decrement \p It, then continue decrementing it while it points to a debug
1365 /// instruction. A replacement for std::prev.
1366 template <typename IterT>
1367 inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
1368   return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
1369 }
1370 
1371 /// Construct a range iterator which begins at \p It and moves forwards until
1372 /// \p End is reached, skipping any debug instructions.
1373 template <typename IterT>
1374 inline auto instructionsWithoutDebug(IterT It, IterT End,
1375                                      bool SkipPseudoOp = true) {
1376   return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
1377     return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
1378   });
1379 }
1380 
1381 } // end namespace llvm
1382 
1383 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
1384