1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/ilist.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/ADT/SparseBitVector.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/MC/LaneBitmask.h"
24 #include "llvm/Support/BranchProbability.h"
25 #include <cassert>
26 #include <cstdint>
27 #include <functional>
28 #include <iterator>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 class BasicBlock;
35 class MachineFunction;
36 class MCSymbol;
37 class ModuleSlotTracker;
38 class Pass;
39 class Printable;
40 class SlotIndexes;
41 class StringRef;
42 class raw_ostream;
43 class LiveIntervals;
44 class TargetRegisterClass;
45 class TargetRegisterInfo;
46 
47 // This structure uniquely identifies a basic block section.
48 // Possible values are
49 //  {Type: Default, Number: (unsigned)} (These are regular section IDs)
50 //  {Type: Exception, Number: 0}  (ExceptionSectionID)
51 //  {Type: Cold, Number: 0}  (ColdSectionID)
52 struct MBBSectionID {
53   enum SectionType {
54     Default = 0, // Regular section (these sections are distinguished by the
55                  // Number field).
56     Exception,   // Special section type for exception handling blocks
57     Cold,        // Special section type for cold blocks
58   } Type;
59   unsigned Number;
60 
61   MBBSectionID(unsigned N) : Type(Default), Number(N) {}
62 
63   // Special unique sections for cold and exception blocks.
64   const static MBBSectionID ColdSectionID;
65   const static MBBSectionID ExceptionSectionID;
66 
67   bool operator==(const MBBSectionID &Other) const {
68     return Type == Other.Type && Number == Other.Number;
69   }
70 
71   bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
72 
73 private:
74   // This is only used to construct the special cold and exception sections.
75   MBBSectionID(SectionType T) : Type(T), Number(0) {}
76 };
77 
78 template <> struct ilist_traits<MachineInstr> {
79 private:
80   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
81 
82   MachineBasicBlock *Parent;
83 
84   using instr_iterator =
85       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
86 
87 public:
88   void addNodeToList(MachineInstr *N);
89   void removeNodeFromList(MachineInstr *N);
90   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
91                              instr_iterator Last);
92   void deleteNode(MachineInstr *MI);
93 };
94 
95 class MachineBasicBlock
96     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
97 public:
98   /// Pair of physical register and lane mask.
99   /// This is not simply a std::pair typedef because the members should be named
100   /// clearly as they both have an integer type.
101   struct RegisterMaskPair {
102   public:
103     MCPhysReg PhysReg;
104     LaneBitmask LaneMask;
105 
106     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
107         : PhysReg(PhysReg), LaneMask(LaneMask) {}
108   };
109 
110 private:
111   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
112 
113   Instructions Insts;
114   const BasicBlock *BB;
115   int Number;
116   MachineFunction *xParent;
117 
118   /// Keep track of the predecessor / successor basic blocks.
119   std::vector<MachineBasicBlock *> Predecessors;
120   std::vector<MachineBasicBlock *> Successors;
121 
122   /// Keep track of the probabilities to the successors. This vector has the
123   /// same order as Successors, or it is empty if we don't use it (disable
124   /// optimization).
125   std::vector<BranchProbability> Probs;
126   using probability_iterator = std::vector<BranchProbability>::iterator;
127   using const_probability_iterator =
128       std::vector<BranchProbability>::const_iterator;
129 
130   Optional<uint64_t> IrrLoopHeaderWeight;
131 
132   /// Keep track of the physical registers that are livein of the basicblock.
133   using LiveInVector = std::vector<RegisterMaskPair>;
134   LiveInVector LiveIns;
135 
136   /// Alignment of the basic block. One if the basic block does not need to be
137   /// aligned.
138   Align Alignment;
139 
140   /// Indicate that this basic block is entered via an exception handler.
141   bool IsEHPad = false;
142 
143   /// Indicate that this basic block is potentially the target of an indirect
144   /// branch.
145   bool AddressTaken = false;
146 
147   /// Indicate that this basic block needs its symbol be emitted regardless of
148   /// whether the flow just falls-through to it.
149   bool LabelMustBeEmitted = false;
150 
151   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
152   /// the block that used to have a catchpad or cleanuppad instruction in the
153   /// LLVM IR.
154   bool IsEHScopeEntry = false;
155 
156   /// Indicates if this is a target block of a catchret.
157   bool IsEHCatchretTarget = false;
158 
159   /// Indicate that this basic block is the entry block of an EH funclet.
160   bool IsEHFuncletEntry = false;
161 
162   /// Indicate that this basic block is the entry block of a cleanup funclet.
163   bool IsCleanupFuncletEntry = false;
164 
165   /// With basic block sections, this stores the Section ID of the basic block.
166   MBBSectionID SectionID{0};
167 
168   // Indicate that this basic block begins a section.
169   bool IsBeginSection = false;
170 
171   // Indicate that this basic block ends a section.
172   bool IsEndSection = false;
173 
174   /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
175   bool IsInlineAsmBrIndirectTarget = false;
176 
177   /// since getSymbol is a relatively heavy-weight operation, the symbol
178   /// is only computed once and is cached.
179   mutable MCSymbol *CachedMCSymbol = nullptr;
180 
181   /// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
182   mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
183 
184   /// Marks the end of the basic block. Used during basic block sections to
185   /// calculate the size of the basic block, or the BB section ending with it.
186   mutable MCSymbol *CachedEndMCSymbol = nullptr;
187 
188   // Intrusive list support
189   MachineBasicBlock() = default;
190 
191   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
192 
193   ~MachineBasicBlock();
194 
195   // MachineBasicBlocks are allocated and owned by MachineFunction.
196   friend class MachineFunction;
197 
198 public:
199   /// Return the LLVM basic block that this instance corresponded to originally.
200   /// Note that this may be NULL if this instance does not correspond directly
201   /// to an LLVM basic block.
202   const BasicBlock *getBasicBlock() const { return BB; }
203 
204   /// Return the name of the corresponding LLVM basic block, or an empty string.
205   StringRef getName() const;
206 
207   /// Return a formatted string to identify this block and its parent function.
208   std::string getFullName() const;
209 
210   /// Test whether this block is potentially the target of an indirect branch.
211   bool hasAddressTaken() const { return AddressTaken; }
212 
213   /// Set this block to reflect that it potentially is the target of an indirect
214   /// branch.
215   void setHasAddressTaken() { AddressTaken = true; }
216 
217   /// Test whether this block must have its label emitted.
218   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
219 
220   /// Set this block to reflect that, regardless how we flow to it, we need
221   /// its label be emitted.
222   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
223 
224   /// Return the MachineFunction containing this basic block.
225   const MachineFunction *getParent() const { return xParent; }
226   MachineFunction *getParent() { return xParent; }
227 
228   using instr_iterator = Instructions::iterator;
229   using const_instr_iterator = Instructions::const_iterator;
230   using reverse_instr_iterator = Instructions::reverse_iterator;
231   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
232 
233   using iterator = MachineInstrBundleIterator<MachineInstr>;
234   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
235   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
236   using const_reverse_iterator =
237       MachineInstrBundleIterator<const MachineInstr, true>;
238 
239   unsigned size() const { return (unsigned)Insts.size(); }
240   bool empty() const { return Insts.empty(); }
241 
242   MachineInstr       &instr_front()       { return Insts.front(); }
243   MachineInstr       &instr_back()        { return Insts.back();  }
244   const MachineInstr &instr_front() const { return Insts.front(); }
245   const MachineInstr &instr_back()  const { return Insts.back();  }
246 
247   MachineInstr       &front()             { return Insts.front(); }
248   MachineInstr       &back()              { return *--end();      }
249   const MachineInstr &front()       const { return Insts.front(); }
250   const MachineInstr &back()        const { return *--end();      }
251 
252   instr_iterator                instr_begin()       { return Insts.begin();  }
253   const_instr_iterator          instr_begin() const { return Insts.begin();  }
254   instr_iterator                  instr_end()       { return Insts.end();    }
255   const_instr_iterator            instr_end() const { return Insts.end();    }
256   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
257   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
258   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
259   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
260 
261   using instr_range = iterator_range<instr_iterator>;
262   using const_instr_range = iterator_range<const_instr_iterator>;
263   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
264   const_instr_range instrs() const {
265     return const_instr_range(instr_begin(), instr_end());
266   }
267 
268   iterator                begin()       { return instr_begin();  }
269   const_iterator          begin() const { return instr_begin();  }
270   iterator                end  ()       { return instr_end();    }
271   const_iterator          end  () const { return instr_end();    }
272   reverse_iterator rbegin() {
273     return reverse_iterator::getAtBundleBegin(instr_rbegin());
274   }
275   const_reverse_iterator rbegin() const {
276     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
277   }
278   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
279   const_reverse_iterator rend() const {
280     return const_reverse_iterator(instr_rend());
281   }
282 
283   /// Support for MachineInstr::getNextNode().
284   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
285     return &MachineBasicBlock::Insts;
286   }
287 
288   inline iterator_range<iterator> terminators() {
289     return make_range(getFirstTerminator(), end());
290   }
291   inline iterator_range<const_iterator> terminators() const {
292     return make_range(getFirstTerminator(), end());
293   }
294 
295   /// Returns a range that iterates over the phis in the basic block.
296   inline iterator_range<iterator> phis() {
297     return make_range(begin(), getFirstNonPHI());
298   }
299   inline iterator_range<const_iterator> phis() const {
300     return const_cast<MachineBasicBlock *>(this)->phis();
301   }
302 
303   // Machine-CFG iterators
304   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
305   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
306   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
307   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
308   using pred_reverse_iterator =
309       std::vector<MachineBasicBlock *>::reverse_iterator;
310   using const_pred_reverse_iterator =
311       std::vector<MachineBasicBlock *>::const_reverse_iterator;
312   using succ_reverse_iterator =
313       std::vector<MachineBasicBlock *>::reverse_iterator;
314   using const_succ_reverse_iterator =
315       std::vector<MachineBasicBlock *>::const_reverse_iterator;
316   pred_iterator        pred_begin()       { return Predecessors.begin(); }
317   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
318   pred_iterator        pred_end()         { return Predecessors.end();   }
319   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
320   pred_reverse_iterator        pred_rbegin()
321                                           { return Predecessors.rbegin();}
322   const_pred_reverse_iterator  pred_rbegin() const
323                                           { return Predecessors.rbegin();}
324   pred_reverse_iterator        pred_rend()
325                                           { return Predecessors.rend();  }
326   const_pred_reverse_iterator  pred_rend()   const
327                                           { return Predecessors.rend();  }
328   unsigned             pred_size()  const {
329     return (unsigned)Predecessors.size();
330   }
331   bool                 pred_empty() const { return Predecessors.empty(); }
332   succ_iterator        succ_begin()       { return Successors.begin();   }
333   const_succ_iterator  succ_begin() const { return Successors.begin();   }
334   succ_iterator        succ_end()         { return Successors.end();     }
335   const_succ_iterator  succ_end()   const { return Successors.end();     }
336   succ_reverse_iterator        succ_rbegin()
337                                           { return Successors.rbegin();  }
338   const_succ_reverse_iterator  succ_rbegin() const
339                                           { return Successors.rbegin();  }
340   succ_reverse_iterator        succ_rend()
341                                           { return Successors.rend();    }
342   const_succ_reverse_iterator  succ_rend()   const
343                                           { return Successors.rend();    }
344   unsigned             succ_size()  const {
345     return (unsigned)Successors.size();
346   }
347   bool                 succ_empty() const { return Successors.empty();   }
348 
349   inline iterator_range<pred_iterator> predecessors() {
350     return make_range(pred_begin(), pred_end());
351   }
352   inline iterator_range<const_pred_iterator> predecessors() const {
353     return make_range(pred_begin(), pred_end());
354   }
355   inline iterator_range<succ_iterator> successors() {
356     return make_range(succ_begin(), succ_end());
357   }
358   inline iterator_range<const_succ_iterator> successors() const {
359     return make_range(succ_begin(), succ_end());
360   }
361 
362   // LiveIn management methods.
363 
364   /// Adds the specified register as a live in. Note that it is an error to add
365   /// the same register to the same set more than once unless the intention is
366   /// to call sortUniqueLiveIns after all registers are added.
367   void addLiveIn(MCRegister PhysReg,
368                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
369     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
370   }
371   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
372     LiveIns.push_back(RegMaskPair);
373   }
374 
375   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
376   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
377   /// LiveIn insertion.
378   void sortUniqueLiveIns();
379 
380   /// Clear live in list.
381   void clearLiveIns();
382 
383   /// Add PhysReg as live in to this block, and ensure that there is a copy of
384   /// PhysReg to a virtual register of class RC. Return the virtual register
385   /// that is a copy of the live in PhysReg.
386   Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
387 
388   /// Remove the specified register from the live in set.
389   void removeLiveIn(MCPhysReg Reg,
390                     LaneBitmask LaneMask = LaneBitmask::getAll());
391 
392   /// Return true if the specified register is in the live in set.
393   bool isLiveIn(MCPhysReg Reg,
394                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
395 
396   // Iteration support for live in sets.  These sets are kept in sorted
397   // order by their register number.
398   using livein_iterator = LiveInVector::const_iterator;
399 #ifndef NDEBUG
400   /// Unlike livein_begin, this method does not check that the liveness
401   /// information is accurate. Still for debug purposes it may be useful
402   /// to have iterators that won't assert if the liveness information
403   /// is not current.
404   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
405   iterator_range<livein_iterator> liveins_dbg() const {
406     return make_range(livein_begin_dbg(), livein_end());
407   }
408 #endif
409   livein_iterator livein_begin() const;
410   livein_iterator livein_end()   const { return LiveIns.end(); }
411   bool            livein_empty() const { return LiveIns.empty(); }
412   iterator_range<livein_iterator> liveins() const {
413     return make_range(livein_begin(), livein_end());
414   }
415 
416   /// Remove entry from the livein set and return iterator to the next.
417   livein_iterator removeLiveIn(livein_iterator I);
418 
419   class liveout_iterator {
420   public:
421     using iterator_category = std::input_iterator_tag;
422     using difference_type = std::ptrdiff_t;
423     using value_type = RegisterMaskPair;
424     using pointer = const RegisterMaskPair *;
425     using reference = const RegisterMaskPair &;
426 
427     liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
428                      MCPhysReg ExceptionSelector, bool End)
429         : ExceptionPointer(ExceptionPointer),
430           ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
431           BlockEnd(MBB.succ_end()) {
432       if (End)
433         BlockI = BlockEnd;
434       else if (BlockI != BlockEnd) {
435         LiveRegI = (*BlockI)->livein_begin();
436         if (!advanceToValidPosition())
437           return;
438         if (LiveRegI->PhysReg == ExceptionPointer ||
439             LiveRegI->PhysReg == ExceptionSelector)
440           ++(*this);
441       }
442     }
443 
444     liveout_iterator &operator++() {
445       do {
446         ++LiveRegI;
447         if (!advanceToValidPosition())
448           return *this;
449       } while ((*BlockI)->isEHPad() &&
450                (LiveRegI->PhysReg == ExceptionPointer ||
451                 LiveRegI->PhysReg == ExceptionSelector));
452       return *this;
453     }
454 
455     liveout_iterator operator++(int) {
456       liveout_iterator Tmp = *this;
457       ++(*this);
458       return Tmp;
459     }
460 
461     reference operator*() const {
462       return *LiveRegI;
463     }
464 
465     pointer operator->() const {
466       return &*LiveRegI;
467     }
468 
469     bool operator==(const liveout_iterator &RHS) const {
470       if (BlockI != BlockEnd)
471         return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
472       return RHS.BlockI == BlockEnd;
473     }
474 
475     bool operator!=(const liveout_iterator &RHS) const {
476       return !(*this == RHS);
477     }
478   private:
479     bool advanceToValidPosition() {
480       if (LiveRegI != (*BlockI)->livein_end())
481         return true;
482 
483       do {
484         ++BlockI;
485       } while (BlockI != BlockEnd && (*BlockI)->livein_empty());
486       if (BlockI == BlockEnd)
487         return false;
488 
489       LiveRegI = (*BlockI)->livein_begin();
490       return true;
491     }
492 
493     MCPhysReg ExceptionPointer, ExceptionSelector;
494     const_succ_iterator BlockI;
495     const_succ_iterator BlockEnd;
496     livein_iterator LiveRegI;
497   };
498 
499   /// Iterator scanning successor basic blocks' liveins to determine the
500   /// registers potentially live at the end of this block. There may be
501   /// duplicates or overlapping registers in the list returned.
502   liveout_iterator liveout_begin() const;
503   liveout_iterator liveout_end() const {
504     return liveout_iterator(*this, 0, 0, true);
505   }
506   iterator_range<liveout_iterator> liveouts() const {
507     return make_range(liveout_begin(), liveout_end());
508   }
509 
510   /// Get the clobber mask for the start of this basic block. Funclets use this
511   /// to prevent register allocation across funclet transitions.
512   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
513 
514   /// Get the clobber mask for the end of the basic block.
515   /// \see getBeginClobberMask()
516   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
517 
518   /// Return alignment of the basic block.
519   Align getAlignment() const { return Alignment; }
520 
521   /// Set alignment of the basic block.
522   void setAlignment(Align A) { Alignment = A; }
523 
524   /// Returns true if the block is a landing pad. That is this basic block is
525   /// entered via an exception handler.
526   bool isEHPad() const { return IsEHPad; }
527 
528   /// Indicates the block is a landing pad.  That is this basic block is entered
529   /// via an exception handler.
530   void setIsEHPad(bool V = true) { IsEHPad = V; }
531 
532   bool hasEHPadSuccessor() const;
533 
534   /// Returns true if this is the entry block of the function.
535   bool isEntryBlock() const;
536 
537   /// Returns true if this is the entry block of an EH scope, i.e., the block
538   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
539   bool isEHScopeEntry() const { return IsEHScopeEntry; }
540 
541   /// Indicates if this is the entry block of an EH scope, i.e., the block that
542   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
543   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
544 
545   /// Returns true if this is a target block of a catchret.
546   bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
547 
548   /// Indicates if this is a target block of a catchret.
549   void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
550 
551   /// Returns true if this is the entry block of an EH funclet.
552   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
553 
554   /// Indicates if this is the entry block of an EH funclet.
555   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
556 
557   /// Returns true if this is the entry block of a cleanup funclet.
558   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
559 
560   /// Indicates if this is the entry block of a cleanup funclet.
561   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
562 
563   /// Returns true if this block begins any section.
564   bool isBeginSection() const { return IsBeginSection; }
565 
566   /// Returns true if this block ends any section.
567   bool isEndSection() const { return IsEndSection; }
568 
569   void setIsBeginSection(bool V = true) { IsBeginSection = V; }
570 
571   void setIsEndSection(bool V = true) { IsEndSection = V; }
572 
573   /// Returns the section ID of this basic block.
574   MBBSectionID getSectionID() const { return SectionID; }
575 
576   /// Returns the unique section ID number of this basic block.
577   unsigned getSectionIDNum() const {
578     return ((unsigned)MBBSectionID::SectionType::Cold) -
579            ((unsigned)SectionID.Type) + SectionID.Number;
580   }
581 
582   /// Sets the section ID for this basic block.
583   void setSectionID(MBBSectionID V) { SectionID = V; }
584 
585   /// Returns the MCSymbol marking the end of this basic block.
586   MCSymbol *getEndSymbol() const;
587 
588   /// Returns true if this block may have an INLINEASM_BR (overestimate, by
589   /// checking if any of the successors are indirect targets of any inlineasm_br
590   /// in the function).
591   bool mayHaveInlineAsmBr() const;
592 
593   /// Returns true if this is the indirect dest of an INLINEASM_BR.
594   bool isInlineAsmBrIndirectTarget() const {
595     return IsInlineAsmBrIndirectTarget;
596   }
597 
598   /// Indicates if this is the indirect dest of an INLINEASM_BR.
599   void setIsInlineAsmBrIndirectTarget(bool V = true) {
600     IsInlineAsmBrIndirectTarget = V;
601   }
602 
603   /// Returns true if it is legal to hoist instructions into this block.
604   bool isLegalToHoistInto() const;
605 
606   // Code Layout methods.
607 
608   /// Move 'this' block before or after the specified block.  This only moves
609   /// the block, it does not modify the CFG or adjust potential fall-throughs at
610   /// the end of the block.
611   void moveBefore(MachineBasicBlock *NewAfter);
612   void moveAfter(MachineBasicBlock *NewBefore);
613 
614   /// Returns true if this and MBB belong to the same section.
615   bool sameSection(const MachineBasicBlock *MBB) const {
616     return getSectionID() == MBB->getSectionID();
617   }
618 
619   /// Update the terminator instructions in block to account for changes to
620   /// block layout which may have been made. PreviousLayoutSuccessor should be
621   /// set to the block which may have been used as fallthrough before the block
622   /// layout was modified.  If the block previously fell through to that block,
623   /// it may now need a branch. If it previously branched to another block, it
624   /// may now be able to fallthrough to the current layout successor.
625   void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
626 
627   // Machine-CFG mutators
628 
629   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
630   /// of Succ is automatically updated. PROB parameter is stored in
631   /// Probabilities list. The default probability is set as unknown. Mixing
632   /// known and unknown probabilities in successor list is not allowed. When all
633   /// successors have unknown probabilities, 1 / N is returned as the
634   /// probability for each successor, where N is the number of successors.
635   ///
636   /// Note that duplicate Machine CFG edges are not allowed.
637   void addSuccessor(MachineBasicBlock *Succ,
638                     BranchProbability Prob = BranchProbability::getUnknown());
639 
640   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
641   /// of Succ is automatically updated. The probability is not provided because
642   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
643   /// won't be used. Using this interface can save some space.
644   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
645 
646   /// Set successor probability of a given iterator.
647   void setSuccProbability(succ_iterator I, BranchProbability Prob);
648 
649   /// Normalize probabilities of all successors so that the sum of them becomes
650   /// one. This is usually done when the current update on this MBB is done, and
651   /// the sum of its successors' probabilities is not guaranteed to be one. The
652   /// user is responsible for the correct use of this function.
653   /// MBB::removeSuccessor() has an option to do this automatically.
654   void normalizeSuccProbs() {
655     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
656   }
657 
658   /// Validate successors' probabilities and check if the sum of them is
659   /// approximate one. This only works in DEBUG mode.
660   void validateSuccProbs() const;
661 
662   /// Remove successor from the successors list of this MachineBasicBlock. The
663   /// Predecessors list of Succ is automatically updated.
664   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
665   /// after the successor is removed.
666   void removeSuccessor(MachineBasicBlock *Succ,
667                        bool NormalizeSuccProbs = false);
668 
669   /// Remove specified successor from the successors list of this
670   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
671   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
672   /// after the successor is removed.
673   /// Return the iterator to the element after the one removed.
674   succ_iterator removeSuccessor(succ_iterator I,
675                                 bool NormalizeSuccProbs = false);
676 
677   /// Replace successor OLD with NEW and update probability info.
678   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
679 
680   /// Copy a successor (and any probability info) from original block to this
681   /// block's. Uses an iterator into the original blocks successors.
682   ///
683   /// This is useful when doing a partial clone of successors. Afterward, the
684   /// probabilities may need to be normalized.
685   void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
686 
687   /// Split the old successor into old plus new and updates the probability
688   /// info.
689   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
690                       bool NormalizeSuccProbs = false);
691 
692   /// Transfers all the successors from MBB to this machine basic block (i.e.,
693   /// copies all the successors FromMBB and remove all the successors from
694   /// FromMBB).
695   void transferSuccessors(MachineBasicBlock *FromMBB);
696 
697   /// Transfers all the successors, as in transferSuccessors, and update PHI
698   /// operands in the successor blocks which refer to FromMBB to refer to this.
699   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
700 
701   /// Return true if any of the successors have probabilities attached to them.
702   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
703 
704   /// Return true if the specified MBB is a predecessor of this block.
705   bool isPredecessor(const MachineBasicBlock *MBB) const;
706 
707   /// Return true if the specified MBB is a successor of this block.
708   bool isSuccessor(const MachineBasicBlock *MBB) const;
709 
710   /// Return true if the specified MBB will be emitted immediately after this
711   /// block, such that if this block exits by falling through, control will
712   /// transfer to the specified MBB. Note that MBB need not be a successor at
713   /// all, for example if this block ends with an unconditional branch to some
714   /// other block.
715   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
716 
717   /// Return the fallthrough block if the block can implicitly
718   /// transfer control to the block after it by falling off the end of
719   /// it.  This should return null if it can reach the block after
720   /// it, but it uses an explicit branch to do so (e.g., a table
721   /// jump).  Non-null return  is a conservative answer.
722   MachineBasicBlock *getFallThrough();
723 
724   /// Return true if the block can implicitly transfer control to the
725   /// block after it by falling off the end of it.  This should return
726   /// false if it can reach the block after it, but it uses an
727   /// explicit branch to do so (e.g., a table jump).  True is a
728   /// conservative answer.
729   bool canFallThrough();
730 
731   /// Returns a pointer to the first instruction in this block that is not a
732   /// PHINode instruction. When adding instructions to the beginning of the
733   /// basic block, they should be added before the returned value, not before
734   /// the first instruction, which might be PHI.
735   /// Returns end() is there's no non-PHI instruction.
736   iterator getFirstNonPHI();
737 
738   /// Return the first instruction in MBB after I that is not a PHI or a label.
739   /// This is the correct point to insert lowered copies at the beginning of a
740   /// basic block that must be before any debugging information.
741   iterator SkipPHIsAndLabels(iterator I);
742 
743   /// Return the first instruction in MBB after I that is not a PHI, label or
744   /// debug.  This is the correct point to insert copies at the beginning of a
745   /// basic block.
746   iterator SkipPHIsLabelsAndDebug(iterator I, bool SkipPseudoOp = true);
747 
748   /// Returns an iterator to the first terminator instruction of this basic
749   /// block. If a terminator does not exist, it returns end().
750   iterator getFirstTerminator();
751   const_iterator getFirstTerminator() const {
752     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
753   }
754 
755   /// Same getFirstTerminator but it ignores bundles and return an
756   /// instr_iterator instead.
757   instr_iterator getFirstInstrTerminator();
758 
759   /// Returns an iterator to the first non-debug instruction in the basic block,
760   /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
761   /// Pseudo probes are like debug instructions which do not turn into real
762   /// machine code. We try to use the function to skip both debug instructions
763   /// and pseudo probe operations to avoid API proliferation. This should work
764   /// most of the time when considering optimizing the rest of code in the
765   /// block, except for certain cases where pseudo probes are designed to block
766   /// the optimizations. For example, code merge like optimizations are supposed
767   /// to be blocked by pseudo probes for better AutoFDO profile quality.
768   /// Therefore, they should be considered as a valid instruction when this
769   /// function is called in a context of such optimizations. On the other hand,
770   /// \c SkipPseudoOp should be true when it's used in optimizations that
771   /// unlikely hurt profile quality, e.g., without block merging. The default
772   /// value of \c SkipPseudoOp is set to true to maximize code quality in
773   /// general, with an explict false value passed in in a few places like branch
774   /// folding and if-conversion to favor profile quality.
775   iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
776   const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
777     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
778         SkipPseudoOp);
779   }
780 
781   /// Returns an iterator to the last non-debug instruction in the basic block,
782   /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
783   /// Pseudo probes are like debug instructions which do not turn into real
784   /// machine code. We try to use the function to skip both debug instructions
785   /// and pseudo probe operations to avoid API proliferation. This should work
786   /// most of the time when considering optimizing the rest of code in the
787   /// block, except for certain cases where pseudo probes are designed to block
788   /// the optimizations. For example, code merge like optimizations are supposed
789   /// to be blocked by pseudo probes for better AutoFDO profile quality.
790   /// Therefore, they should be considered as a valid instruction when this
791   /// function is called in a context of such optimizations. On the other hand,
792   /// \c SkipPseudoOp should be true when it's used in optimizations that
793   /// unlikely hurt profile quality, e.g., without block merging. The default
794   /// value of \c SkipPseudoOp is set to true to maximize code quality in
795   /// general, with an explict false value passed in in a few places like branch
796   /// folding and if-conversion to favor profile quality.
797   iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
798   const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
799     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
800         SkipPseudoOp);
801   }
802 
803   /// Convenience function that returns true if the block ends in a return
804   /// instruction.
805   bool isReturnBlock() const {
806     return !empty() && back().isReturn();
807   }
808 
809   /// Convenience function that returns true if the bock ends in a EH scope
810   /// return instruction.
811   bool isEHScopeReturnBlock() const {
812     return !empty() && back().isEHScopeReturn();
813   }
814 
815   /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
816   /// inserted after this block, and all instructions after \p SplitInst moved
817   /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
818   /// LiveIntervals will be appropriately updated. \return the newly inserted
819   /// block.
820   ///
821   /// If \p UpdateLiveIns is true, this will ensure the live ins list is
822   /// accurate, including for physreg uses/defs in the original block.
823   MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
824                              LiveIntervals *LIS = nullptr);
825 
826   /// Split the critical edge from this block to the given successor block, and
827   /// return the newly created block, or null if splitting is not possible.
828   ///
829   /// This function updates LiveVariables, MachineDominatorTree, and
830   /// MachineLoopInfo, as applicable.
831   MachineBasicBlock *
832   SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
833                     std::vector<SparseBitVector<>> *LiveInSets = nullptr);
834 
835   /// Check if the edge between this block and the given successor \p
836   /// Succ, can be split. If this returns true a subsequent call to
837   /// SplitCriticalEdge is guaranteed to return a valid basic block if
838   /// no changes occurred in the meantime.
839   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
840 
841   void pop_front() { Insts.pop_front(); }
842   void pop_back() { Insts.pop_back(); }
843   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
844 
845   /// Insert MI into the instruction list before I, possibly inside a bundle.
846   ///
847   /// If the insertion point is inside a bundle, MI will be added to the bundle,
848   /// otherwise MI will not be added to any bundle. That means this function
849   /// alone can't be used to prepend or append instructions to bundles. See
850   /// MIBundleBuilder::insert() for a more reliable way of doing that.
851   instr_iterator insert(instr_iterator I, MachineInstr *M);
852 
853   /// Insert a range of instructions into the instruction list before I.
854   template<typename IT>
855   void insert(iterator I, IT S, IT E) {
856     assert((I == end() || I->getParent() == this) &&
857            "iterator points outside of basic block");
858     Insts.insert(I.getInstrIterator(), S, E);
859   }
860 
861   /// Insert MI into the instruction list before I.
862   iterator insert(iterator I, MachineInstr *MI) {
863     assert((I == end() || I->getParent() == this) &&
864            "iterator points outside of basic block");
865     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
866            "Cannot insert instruction with bundle flags");
867     return Insts.insert(I.getInstrIterator(), MI);
868   }
869 
870   /// Insert MI into the instruction list after I.
871   iterator insertAfter(iterator I, MachineInstr *MI) {
872     assert((I == end() || I->getParent() == this) &&
873            "iterator points outside of basic block");
874     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
875            "Cannot insert instruction with bundle flags");
876     return Insts.insertAfter(I.getInstrIterator(), MI);
877   }
878 
879   /// If I is bundled then insert MI into the instruction list after the end of
880   /// the bundle, otherwise insert MI immediately after I.
881   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
882     assert((I == instr_end() || I->getParent() == this) &&
883            "iterator points outside of basic block");
884     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
885            "Cannot insert instruction with bundle flags");
886     while (I->isBundledWithSucc())
887       ++I;
888     return Insts.insertAfter(I, MI);
889   }
890 
891   /// Remove an instruction from the instruction list and delete it.
892   ///
893   /// If the instruction is part of a bundle, the other instructions in the
894   /// bundle will still be bundled after removing the single instruction.
895   instr_iterator erase(instr_iterator I);
896 
897   /// Remove an instruction from the instruction list and delete it.
898   ///
899   /// If the instruction is part of a bundle, the other instructions in the
900   /// bundle will still be bundled after removing the single instruction.
901   instr_iterator erase_instr(MachineInstr *I) {
902     return erase(instr_iterator(I));
903   }
904 
905   /// Remove a range of instructions from the instruction list and delete them.
906   iterator erase(iterator I, iterator E) {
907     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
908   }
909 
910   /// Remove an instruction or bundle from the instruction list and delete it.
911   ///
912   /// If I points to a bundle of instructions, they are all erased.
913   iterator erase(iterator I) {
914     return erase(I, std::next(I));
915   }
916 
917   /// Remove an instruction from the instruction list and delete it.
918   ///
919   /// If I is the head of a bundle of instructions, the whole bundle will be
920   /// erased.
921   iterator erase(MachineInstr *I) {
922     return erase(iterator(I));
923   }
924 
925   /// Remove the unbundled instruction from the instruction list without
926   /// deleting it.
927   ///
928   /// This function can not be used to remove bundled instructions, use
929   /// remove_instr to remove individual instructions from a bundle.
930   MachineInstr *remove(MachineInstr *I) {
931     assert(!I->isBundled() && "Cannot remove bundled instructions");
932     return Insts.remove(instr_iterator(I));
933   }
934 
935   /// Remove the possibly bundled instruction from the instruction list
936   /// without deleting it.
937   ///
938   /// If the instruction is part of a bundle, the other instructions in the
939   /// bundle will still be bundled after removing the single instruction.
940   MachineInstr *remove_instr(MachineInstr *I);
941 
942   void clear() {
943     Insts.clear();
944   }
945 
946   /// Take an instruction from MBB 'Other' at the position From, and insert it
947   /// into this MBB right before 'Where'.
948   ///
949   /// If From points to a bundle of instructions, the whole bundle is moved.
950   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
951     // The range splice() doesn't allow noop moves, but this one does.
952     if (Where != From)
953       splice(Where, Other, From, std::next(From));
954   }
955 
956   /// Take a block of instructions from MBB 'Other' in the range [From, To),
957   /// and insert them into this MBB right before 'Where'.
958   ///
959   /// The instruction at 'Where' must not be included in the range of
960   /// instructions to move.
961   void splice(iterator Where, MachineBasicBlock *Other,
962               iterator From, iterator To) {
963     Insts.splice(Where.getInstrIterator(), Other->Insts,
964                  From.getInstrIterator(), To.getInstrIterator());
965   }
966 
967   /// This method unlinks 'this' from the containing function, and returns it,
968   /// but does not delete it.
969   MachineBasicBlock *removeFromParent();
970 
971   /// This method unlinks 'this' from the containing function and deletes it.
972   void eraseFromParent();
973 
974   /// Given a machine basic block that branched to 'Old', change the code and
975   /// CFG so that it branches to 'New' instead.
976   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
977 
978   /// Update all phi nodes in this basic block to refer to basic block \p New
979   /// instead of basic block \p Old.
980   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
981 
982   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
983   /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
984   DebugLoc findDebugLoc(instr_iterator MBBI);
985   DebugLoc findDebugLoc(iterator MBBI) {
986     return findDebugLoc(MBBI.getInstrIterator());
987   }
988 
989   /// Has exact same behavior as @ref findDebugLoc (it also
990   /// searches from the first to the last MI of this MBB) except
991   /// that this takes reverse iterator.
992   DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
993   DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
994     return rfindDebugLoc(MBBI.getInstrIterator());
995   }
996 
997   /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
998   /// instructions.  Return UnknownLoc if there is none.
999   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
1000   DebugLoc findPrevDebugLoc(iterator MBBI) {
1001     return findPrevDebugLoc(MBBI.getInstrIterator());
1002   }
1003 
1004   /// Has exact same behavior as @ref findPrevDebugLoc (it also
1005   /// searches from the last to the first MI of this MBB) except
1006   /// that this takes reverse iterator.
1007   DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
1008   DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
1009     return rfindPrevDebugLoc(MBBI.getInstrIterator());
1010   }
1011 
1012   /// Find and return the merged DebugLoc of the branch instructions of the
1013   /// block. Return UnknownLoc if there is none.
1014   DebugLoc findBranchDebugLoc();
1015 
1016   /// Possible outcome of a register liveness query to computeRegisterLiveness()
1017   enum LivenessQueryResult {
1018     LQR_Live,   ///< Register is known to be (at least partially) live.
1019     LQR_Dead,   ///< Register is known to be fully dead.
1020     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
1021   };
1022 
1023   /// Return whether (physical) register \p Reg has been defined and not
1024   /// killed as of just before \p Before.
1025   ///
1026   /// Search is localised to a neighborhood of \p Neighborhood instructions
1027   /// before (searching for defs or kills) and \p Neighborhood instructions
1028   /// after (searching just for defs) \p Before.
1029   ///
1030   /// \p Reg must be a physical register.
1031   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
1032                                               MCRegister Reg,
1033                                               const_iterator Before,
1034                                               unsigned Neighborhood = 10) const;
1035 
1036   // Debugging methods.
1037   void dump() const;
1038   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
1039              bool IsStandalone = true) const;
1040   void print(raw_ostream &OS, ModuleSlotTracker &MST,
1041              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
1042 
1043   enum PrintNameFlag {
1044     PrintNameIr = (1 << 0), ///< Add IR name where available
1045     PrintNameAttributes = (1 << 1), ///< Print attributes
1046   };
1047 
1048   void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
1049                  ModuleSlotTracker *moduleSlotTracker = nullptr) const;
1050 
1051   // Printing method used by LoopInfo.
1052   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
1053 
1054   /// MachineBasicBlocks are uniquely numbered at the function level, unless
1055   /// they're not in a MachineFunction yet, in which case this will return -1.
1056   int getNumber() const { return Number; }
1057   void setNumber(int N) { Number = N; }
1058 
1059   /// Return the MCSymbol for this basic block.
1060   MCSymbol *getSymbol() const;
1061 
1062   /// Return the EHCatchret Symbol for this basic block.
1063   MCSymbol *getEHCatchretSymbol() const;
1064 
1065   Optional<uint64_t> getIrrLoopHeaderWeight() const {
1066     return IrrLoopHeaderWeight;
1067   }
1068 
1069   void setIrrLoopHeaderWeight(uint64_t Weight) {
1070     IrrLoopHeaderWeight = Weight;
1071   }
1072 
1073 private:
1074   /// Return probability iterator corresponding to the I successor iterator.
1075   probability_iterator getProbabilityIterator(succ_iterator I);
1076   const_probability_iterator
1077   getProbabilityIterator(const_succ_iterator I) const;
1078 
1079   friend class MachineBranchProbabilityInfo;
1080   friend class MIPrinter;
1081 
1082   /// Return probability of the edge from this block to MBB. This method should
1083   /// NOT be called directly, but by using getEdgeProbability method from
1084   /// MachineBranchProbabilityInfo class.
1085   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
1086 
1087   // Methods used to maintain doubly linked list of blocks...
1088   friend struct ilist_callback_traits<MachineBasicBlock>;
1089 
1090   // Machine-CFG mutators
1091 
1092   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
1093   /// unless you know what you're doing, because it doesn't update Pred's
1094   /// successors list. Use Pred->addSuccessor instead.
1095   void addPredecessor(MachineBasicBlock *Pred);
1096 
1097   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
1098   /// unless you know what you're doing, because it doesn't update Pred's
1099   /// successors list. Use Pred->removeSuccessor instead.
1100   void removePredecessor(MachineBasicBlock *Pred);
1101 };
1102 
1103 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
1104 
1105 /// Prints a machine basic block reference.
1106 ///
1107 /// The format is:
1108 ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
1109 ///
1110 /// Usage: OS << printMBBReference(MBB) << '\n';
1111 Printable printMBBReference(const MachineBasicBlock &MBB);
1112 
1113 // This is useful when building IndexedMaps keyed on basic block pointers.
1114 struct MBB2NumberFunctor {
1115   using argument_type = const MachineBasicBlock *;
1116   unsigned operator()(const MachineBasicBlock *MBB) const {
1117     return MBB->getNumber();
1118   }
1119 };
1120 
1121 //===--------------------------------------------------------------------===//
1122 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
1123 //===--------------------------------------------------------------------===//
1124 
1125 // Provide specializations of GraphTraits to be able to treat a
1126 // MachineFunction as a graph of MachineBasicBlocks.
1127 //
1128 
1129 template <> struct GraphTraits<MachineBasicBlock *> {
1130   using NodeRef = MachineBasicBlock *;
1131   using ChildIteratorType = MachineBasicBlock::succ_iterator;
1132 
1133   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1134   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1135   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1136 };
1137 
1138 template <> struct GraphTraits<const MachineBasicBlock *> {
1139   using NodeRef = const MachineBasicBlock *;
1140   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1141 
1142   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1143   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1144   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1145 };
1146 
1147 // Provide specializations of GraphTraits to be able to treat a
1148 // MachineFunction as a graph of MachineBasicBlocks and to walk it
1149 // in inverse order.  Inverse order for a function is considered
1150 // to be when traversing the predecessor edges of a MBB
1151 // instead of the successor edges.
1152 //
1153 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
1154   using NodeRef = MachineBasicBlock *;
1155   using ChildIteratorType = MachineBasicBlock::pred_iterator;
1156 
1157   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
1158     return G.Graph;
1159   }
1160 
1161   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1162   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1163 };
1164 
1165 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
1166   using NodeRef = const MachineBasicBlock *;
1167   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
1168 
1169   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
1170     return G.Graph;
1171   }
1172 
1173   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1174   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1175 };
1176 
1177 /// MachineInstrSpan provides an interface to get an iteration range
1178 /// containing the instruction it was initialized with, along with all
1179 /// those instructions inserted prior to or following that instruction
1180 /// at some point after the MachineInstrSpan is constructed.
1181 class MachineInstrSpan {
1182   MachineBasicBlock &MBB;
1183   MachineBasicBlock::iterator I, B, E;
1184 
1185 public:
1186   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1187       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1188         E(std::next(I)) {
1189     assert(I == BB->end() || I->getParent() == BB);
1190   }
1191 
1192   MachineBasicBlock::iterator begin() {
1193     return B == MBB.end() ? MBB.begin() : std::next(B);
1194   }
1195   MachineBasicBlock::iterator end() { return E; }
1196   bool empty() { return begin() == end(); }
1197 
1198   MachineBasicBlock::iterator getInitial() { return I; }
1199 };
1200 
1201 /// Increment \p It until it points to a non-debug instruction or to \p End
1202 /// and return the resulting iterator. This function should only be used
1203 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1204 /// const_instr_iterator} and the respective reverse iterators.
1205 template <typename IterT>
1206 inline IterT skipDebugInstructionsForward(IterT It, IterT End,
1207                                           bool SkipPseudoOp = true) {
1208   while (It != End &&
1209          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1210     ++It;
1211   return It;
1212 }
1213 
1214 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
1215 /// and return the resulting iterator. This function should only be used
1216 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1217 /// const_instr_iterator} and the respective reverse iterators.
1218 template <class IterT>
1219 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
1220                                            bool SkipPseudoOp = true) {
1221   while (It != Begin &&
1222          (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1223     --It;
1224   return It;
1225 }
1226 
1227 /// Increment \p It, then continue incrementing it while it points to a debug
1228 /// instruction. A replacement for std::next.
1229 template <typename IterT>
1230 inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
1231   return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
1232 }
1233 
1234 /// Decrement \p It, then continue decrementing it while it points to a debug
1235 /// instruction. A replacement for std::prev.
1236 template <typename IterT>
1237 inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
1238   return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
1239 }
1240 
1241 /// Construct a range iterator which begins at \p It and moves forwards until
1242 /// \p End is reached, skipping any debug instructions.
1243 template <typename IterT>
1244 inline auto instructionsWithoutDebug(IterT It, IterT End,
1245                                      bool SkipPseudoOp = true) {
1246   return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
1247     return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
1248   });
1249 }
1250 
1251 } // end namespace llvm
1252 
1253 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
1254